PRoBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE

INITIATION AND SiZE EFFECT.

Il: APPLICATION

By Zden&k P. Bazant," Fellow, ASCE, and Drahomir Novak®

ABSTRACT: The nonlocal probabilistic theory developed in Part | is applied in numerical studies of plain
concrete beams and is compared to the existing test data on the modulus of rupture. For normal size test beams,
the deterministic theory is found to dominate and give adequate predictions for the mean. But the present
probabilistic theory can further provide the standard deviation and the entire probability distribution (calculated
via Latin hypercube sampling). For very large beam sizes, the statistical size effect dominates and the mean
prediction approaches asymptotically the classical Weibull size effect. This is contrary to structures failing only
after the formation of a large crack, for which the classical Weibull size effect is asymptotically approached for
very small structure sizes. Comparison to the existing test data on the modulus of rupture demonstrates good
agreement with both the measured means and the scatter breadth.

INTRODUCTION

In the preceding Part |1 (Bazant and Novék 2000), a prob-
abilistic nonlocal theory for quasibrittle structures exhibiting
strain-softening damage due to cracking has been developed.
In the present Part 11, this theory will be applied in numerical
studies of plain concrete beams, and the numerical results will
be compared to the existing test data on the size effect on the
modulus of rupture.

NUMERICAL STUDIES AND STATISTICAL ANALYSIS
OF SIZE EFFECT

Input Data and Spatial Distributions

Three-point symmetric bending of a beam with a span-to-
depth ratio L/D = 4 is considered first. The ratio of the mod-
ulus of rupture to the direct tensile strength, f,/f/, is calculated
for beam depths D spanning a very broad size range from D
= 0.01 m (which is a hypothetical value, smaller than the max-
imum aggregate size) to D = 10 m. The following material
properties are assumed: Modulus of elasticity E = 27 GPa,
tangential softening modulus E; = 15 GPa, tensile strength f{
= 2.8 MPa, maximum aggregate size d, = 12.7 mm (0.5 in.),
characteristic length | = 3d,, Weibull modulus m = 24, and
Weibull scaling parameter o, = 0.9 f{ (note that E, is afunction
of the fracture energy of the material, G; and |; Bazant and
Planas 1998). The beam width isb = 1.

The selection of mis a crucia point for the statistical size
effect. The higher the mvalue, the milder this effect is. Ac-
cording to Zech and Wittmann (1977), m = 12. But that value
was derived from the coefficient of variation of beam strength
for one beam size and one shape, and was based on a rather
limited set of test data. Comparisons of test data with the pres-
ent numerica calculations showed that m = 12 gives an un-
redistically strong size effect. A detailed study justification is
given in a forthcoming paper (Bazant and Novak 1999).

Because of symmetry, only one-half of the beam needs to
be analyzed. It is subdivided by a regular rectangular 50 X 50
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mesh. To achieve the prescribed failure probability (target)
pr ., the calculations were iterated, starting with the initial es-
timate of load P and observing the estimated lower and upper
limit on load P. The criterion to terminate the iterations was
|pre — Pil/pr; = 0.02. The number of iterations for reasonable
heuristically selected initial starting loads was about 10. The
starting load values P, and P, should be selected to satisfy two
conditions: pry; (P1) = pry and pro(P2) = py,. lterations (in
which the load is varied according to the values of the prob-
abilities) are then performed until the desired accuracy is
achieved.

Fig. 1(a—c) shows 3D plots of the calculated distributions
of stresses a(X, y), o”(x, ¥) and €"(x, y) E over the beam of
size D = 0.1 m for the three aternatives. Note that, despite
the negativeness of strain in the compression part, the nonlocal
inelastic stress can in the same place be positive because of
averaging. Fig. 1(d—f) shows the corresponding plots of the
integrand of formula (6) of Part | representing the density of
contribution to failure probability from various points of the
beam. Obviously by far the highest contribution comes from
the small region near the tensile face and near the midspan.
Note that, from the viewpoint of visualization, a sharp bound-
ary of the contribution appears as a result of using a logarith-
mic scale for p;.

Median of Modulus of Rupture and Its Size Effect

The most simple statistic to calculate is the median of the
modulus of rupture. To this end, the failure probability is spec-
ified as p; = 0.5, and the load P and corresponding f, are ob-
tained by iterative calculations. The values of the relative
boundary layer thickness I;/D at midspan for averaging alter-
native | are plotted as a function of the relative beam depth
D/l in Fig. 2. For small sizes D, I; reaches aimost half of the
beam depth. For sizes D = 16l (or 0.6 m), approximately, I;
is negligible, which means that the size effect should become
predominantly statistical because the peak load is reached
when the cracking starts, and no significant stress redistribu-
tion occurs prior to the peak load. For smaller D/, the size
effect is predominantly deterministic, being caused mainly by
stress redistribution that is a consequence of a large thickness
of the boundary layer.

The dimensionlessratio of the median of modulus of rupture
f, to the standard tensile strength, f! is plotted in Figs. 3(aand
b) for the three types of averaging as a function of the dimen-
sionless relative size D/I. It can be seen that, for al the alter-
natives, the statistical size effect begins to dominate for rela-
tive sizes, approximately, D/l = 16 (or D = 0.6 m). For very
large sizes, it asymptotically approaches the classical Weibull
size effect represented in a doubly logarithmic plot by an as-
ymptote of slope —ny/m = —2/24 = —1/12 (ny = number of
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FIG. 1. (a—c) 3D Views of Distributions of Nonlocal Averaged Strain € Times E, Inelastic Stress ¢”, and Inelastic Strain €” Times E;
(d—f) Density Distribution of Corresponding Contribution to Failure Probability, Given by Integrand of Formula (6) of Part |

dimensions). For large sizes, the ratio f./f{ drops below 1,
which is the asymptotic value for the deterministic size effect
models of Bazant and Li (1995) and Planas et al. (1995). The
range of sizes shown in the figures is deliberately far broader
than the range of practical interest. In the range, approximately
0.1m =D =06mor 2.6 = D/l = 16, the present statistical
analysis gives about the same results as the deterministic for-
mula, which means that the role of randomness of strength is
negligible.

Among the three types of averaging, the closest to the de-
terministic prediction are alternatives Il and 1ll. These alter-
natives resulted in almost the same size effect curves, with
negligible differences. The size effect curves obtained for the
three averaging alternatives are plotted in Fig. 3(c). All the
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curves have been constructed from points calculated for the
sizesD = 0.01, 0.05, 0.1, 0.2, ... 0.9, 1, 5, and 10 m.

In one sense, the role of material strength randomness is
opposite to that established for structures that are either
notched or fail after large stable crack growth. In that case,
not only the size effect for normal sizes but also the asymptotic
size effect for large sizes is predominantly deterministic, while
the statistical size effect dominates only for extremely small
(hypothetical) sizes below the normal size range (Bazant and
Xi 1991; Bazant and Planas 1998).

The physical reason for this difference is that, in the case
of a preexisting crack or notch, there is virtually no chance
for the final fracture to occur away from the notch tip or crack
tip (whereas in the present case of a smooth surface with a
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FIG. 3. Median of Modulus of Rupture versus Relative Size
D/l. (a) Averaging Alternative I; (b) Averaging Alternatives Il and
IIl; (c) Comparison of Averaging Alternatives

boundary layer of cracking, the fina fracture can initiate in a
relatively large region). Attached to the tip is a fracture process
zone whose size is approximately constant. Because of the
stress concentration near the tip, the failure probability integral
receives a significant contribution only from this fracture pro-
cess zone, and since the size of this zone is independent of D,
there can be no appreciable size effect due to material strength
randomness, except when the structure is smaller than the fully
developed process zone (Bazant and Xi 1991; Bazant and
Planas 1998).

Probability Distribution Function

The Weibull-type integral makes it possible to estimate the
failure probabilities corresponding to different load levels.
Covering the full range of probabilities, one can estimate the
probability distribution function for the modulus of rupture.
Proper load levels are such that the entire range of the cu-
mulative probability distribution function from O to 1 could be
covered amost regularly. Thus, it is efficient to use the idea
of the stratified sampling called Latin hypercube sampling
(McKay et al. 1979), whose effective utilization was suggested
by Novék et a. (1997). The range of the probability distri-
bution function from O to 1 is divided into N equal nonover-
lapping intervals of equal probability 1/N (N is thus the sample
size). The centroids of these intervals are then used to get the
values of the sample. The advantage of this strategy is obvi-
ous. The regularity of the probability intervals on the proba-
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FIG. 4. Probability Distributions of Modulus of Rupture for
Different Sizes of D

bility distribution function ensures good quality sampling,
even for a very small sample size. This approach is known to
lead to relatively good estimates of the statistical characteris-
tics. It appears more efficient than selecting many load levels,
even though the former approach, unlike the latter, necessitates
iteration for every value of target failure probability. The fail-
ure probability values are chosen as

2i -1
2N

pi(i) = (i=12...N) (1)

The sample size N = 16 has been chosen for calculations. In
the case of Latin hypercube sampling, this represents a suffi-
cient sample for obtaining good-quality estimates of basic sta-
tistical characteristics. Note that this sampling method is not
used fully here: Only one random variable is characterized by
samples of equal probability contents corresponding to 16 dif-
ferent probabilities, which are taken as the input into the non-
local Weibull model.

The probability distribution functions of the ratio of mod-
ulus of rupture to strength, calculated for averaging alternative
I11, are plotted in Fig. 4 for different sizes. As expected, the
steepness increases with increasing size, which means that the
scatter decreases with size. This agrees with the well-known
fact that the statistical correlation of strength imposed by av-
eraging has a mgjor influence only for small sizes. The
stronger the correlation on the input, the greater the statistical
variability on the output, as known from reliability theory (be-
cause random deviations from the mean in a given set of var-
iables have less of a chance to cancel each other if they are
correlated). Such trends for the distribution functions were a -
ready in general sketched by Shinozuka (1972) (although no
mutual dependence of the strengths of the reference volume
elements was considered in his early work).

Mean Value, Variance, Coefficient of Skewness

The aforementioned Latin hypercube samples establishing
the distribution functions for the modulus of rupture ratio have
been statistically evaluated. The basic statistics of these sam-
ples are shown here for the sizes 0.05, 0.1, 1.0, and 5 m,
corresponding to D/l = 1.3, 2.6, 26, and 130.

Fig. 5(a) shows the mean values for the modulus of rupture
ratio as a function of the relative size D/I. The medians, ob-
tained directly for p; = 0.5, are adso plotted. Their differences
from the means are seen to be insignificant.

The statistical variability as characterized by the standard
deviation is plotted in Fig. 5(b). A decreasing trend with the
size can be observed that is the logical result of disappearing
statistical correlation for large sizes, as already mentioned. In
spite of the small sample size (N = 16), the coefficients of
skewness have aso been calculated [Fig. 5(c)].
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FIG. 5. (a) Mean and Median of Modulus of Rupture versus
Relative Size D/I; (b) Standard Deviation of Modulus of Rupture
versus Relative Size D/I; (c) Coefficients of Skewness of Modu-
lus of Rupture versus Relative Size D/I

Statistical Size Effect for Different Span-to-Depth
Ratios

Fig. 6(a) shows the median of the modulus of rupture as a
function of the relative size D/I for various slenderness (span-
to-depth ratios) L/D. As L/D increases, the modulus of rupture
decreases. But the decrease is mild; compared to the size effect
of the depth D, it is very small.

Statistical Size Effect for Different Types of Loading

In addition to the three-point bending, beams with four-
point bending (with two loads at distance L/3 from the sup-
ports), as well as beams with a uniform distributed load p,
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FIG. 6. (a) Median of Modulus of Rupture for Different Span-
to-Depth Ratios L/D; (b) Median of Modulus of Rupture for Dif-
ferent Types of Loading

have been analyzed using the averaging alternative I11. The
results for the median modulus of rupture are shown in Fig.
6(b). The three-point bending yields the maximum ratios
f./f{. This agrees with the observations in laboratory tests with
three-point and four-point bending, for example, those of
Wright (1952).

COMPARISON WITH EXISTING EXPERIMENTAL DATA

The present theory has further been compared with most
important data sets found in the literature. They are described
in Appendix | and listed in Tables 1 and 2. The averaging
aternative |1l was again used; it agrees with test data better
than alternative |I. The corresponding values calculated by the
present theory are also listed in the tables. The data points for
the medians and for the 5th and 95th percentiles directly es-
timated from the various data sets reported in the literature are
plotted in Figs. 7 and 8.

Fig. 7 shows asymptotic behavior beyond test data sizes
(same vertical axis scale); in Fig. 8, the range of test datais
zoomed and only ranges of reasonable sizes are plotted (dif-
ferent vertical axis scale). The calculated curves of the corre-
sponding values seen in the figures reveal a satisfactory agree-
ment, not only for the medians but also for the statistical
measures of random scatter. It should be emphasized that the
curves were obtained by numerical analysis simulating the
available test data rather than by regression of experimental
results.

The comparison of published experimental results with the
nonlocal Weibull theory results is made for p; = 0.5 (median)
(the mean value is inconvenient, as it necessitates a tedious
calculation of the points on the cumulative distribution func-
tion). The 5th and 95th percentiles of the measured values of
the modulus of rupture were approximately obtained as the
mean *+1.64 standard deviation under the assumption of nor-
mal probability distribution (the means and standard deviations
were based on reported data). In the case of nonlocal Weibull
theory, the calculations were made for prescribed probabilities
0.05 and 0.95. Despite many uncertainties in both the exper-
iments and the computations, the experimental and calculated
statistics characterizing the limit scatter agree reasonably well.

Prediction of the classical, purely statistical size effect of
the Weibull type is one benefit of the present theory. It is
practically relevant only for the bending of very large unrein-
forced concrete structures such as arch dams, foundations, and
earth-retaining structures (this was already suggested by Pe-
tersson, 1981, based on his analysis of size effect on the mod-
ulus of rupture with the cohesive crack model). By contrast,
the prediction of the probability distribution that characterizes
the random scatter of the modulus of rupture is relevant aso
to the typical sizes of unreinforced beams encountered in prac-
tice.

An important new source of statistical information are Ko-
ide et a.s (1998) and Koide's (personal communication,



TABLE 1. Mean and 5th and 95th Percentiles of Modulus of Rupture for Various Test Data, Compared to Median and Percentiles Cal-

culated by Present Theory for Various Beam Depths

THEORY
Mean 95% 5% Median 95%

Size TEST
D(mm) 5%

Reagel & Willis (1931), 4-point bending
10 11.00  14.00
50 524 947 1111
101.6 541 594 647 491 666 831
1524 535 5.74 6.13 4.76 5.62 7.09
203.2 5.15 5.45 5.75 4.66 5.21 6.27
254 4.59 5.26 5.57 4.58 5.12 5.96

500 429 4381 5.15
1000 405 453 4.84
Wright (1952), 3-point bending
10 6.62  9.08 10.27
50 3.01 5.14 6.22

762 3.47 4.13 4.79 251 420 5.05
101.6 351 3.82 4.13 236 359 443
1524 266 296 326 225 2.98 3.68
203.2 253 2.76 2.99 2.19 270 332

500 2.03 227 2.53

1000 191 2.14 2.28
Wright (1952) , 4-point bending

10 520 7.11 779

50 248  4.07 4,80

762 2.88 3.21 3.54 2.19 3.29 4.09
101.6 277 2.94 3.11 2.14 290 3.54
1524  2.30 2.60 290 207 2.43 2.96

2032 219 231 243 201 225 267

500 1.86 209 224

1000 1.75 1.97 210
Nielsen (1954), 3-point bending

10 355 531 6.09

50 283 425 523

100 3.29 3.57 3.85 273 366  4.59
150 2.90 3.16 342 268 337 416
200 3.01 3.30 3.59 2.65 321 3.94
500 2.55 290 338
1000 2.47 2.77 3.11

Lindner & Sprague (1956), 4-point bending
10 852 1026 11.50
50 426 7157 9.07
1524 353 448 543 364 454 566
228.6 327 407 487 351 394 472
304.8 3.05 393 481 342 384 432
4572 340 379 412 331 370 396
1000 309 346 370

Size TEST
D(mm) 5%

THEORY
Mean 95% 5% Median 95%

Walker & Bloem (1957), 4-point, da = 1 in.
10 8.84 11.71 1290
50 4.26 7.66 9.20
101.6 439 470 501 3.73 5.16 6.42
1524 422 450 478 3.64 4.55 5.60
2032 4.07 425 4.43 3.55 397 503
254 4.07 427 447 348 390 4.62

500 3.28 3.67 393
1000 3.09 3.46 3.70
Walker & Bloem (1957), 4-point, da =2 in.
10 7.00 1122 1235
50 4.85 796 9.70

101.6 4.06 4.68 5.30 3.27 5.48 6.87
1524 406 434 462 3.19 4.82 6.10
2032 371 4.15 4.59 3.11 400 531
254 343 374 405 3.05 3.61 4.77

500 2.88 322 361
1000 271 3.03 3.25
Sabnis & Mirza (1979), 4-point bending
10 8.8 7.08 9.12 10.34
19.1 6.9 530 795 9.36
38.1 5.6 3.83 6.03  7.35
50 3.65 539 653
76.2 4.8 352 447 543
152.4 4.3 3.31 3.71 4.30
500 2.99 335 3.59
1000 2.81 3.15 3.37
Rokugo (1995), 4-point bending

10 510  6.95 8.35
50 4.35 3.13 5.08 628
100 4.04 2.95 373 455
200 3.66 2.78 3.11 3.60
300 3.46 2.68 3.01 3.30
400 3.30 2.62 2.93 3.13
500 2.53 2.87 3.07
1000 2.42 270 290

Rocco (1997), 3-point bending

8.40 10.33  12.65

17 634 704 774 654  8.69 11.01
37 627 652 677 492 631 8.11
75 516 560 603 448 497 635
150 478 512 547 422 434 534
300 460 467 475 397 403 480
500 380 3.87 456
1000 3.57 364 428

1999) three series of tests of 279 plain concrete beamsin four-
point bending, aimed at determining the influence of the beam
length L on the flexural strength of beams of three depths D
(Appendix 1). Unfortunately, no tests of tensile strength and
modulus of elasticity have been reported, and so their values
are estimated as follows: f{ = 2.8 MPa for series A and B, f/
= 2.2 MPafor series C; modulus of elasticity E = 35 GPawith
softening modulus E; = 10 MPa for series A and B; and E =
30 GPa with E, = 8 MPa for series C.

Koide's excellent data allow comparing the probability dis-
tribution function of maximum bending moment M, corre-
sponding to failure load over its full range (Koide, persona
communication, 1999). The measured mean vaues and the
calculated means obtained by nonlocal Weibull simulation are
compared in Fig. 9. To calculate the probability density func-
tions by the nonlocal approach, the efficient method of Latin
hypercube sampling was again adopted. To cover the proba
bility range (0, 1) efficiently, it was divided into 16 intervals

of equal probability content, characterized by 16 prescribed
probability values. A good agreement with Koide et al.’s
(1998) data has been achieved. The calculations indicate a de-
crease of the flexural strength as the span increases. Infor-
mation on the size effect, however, is missing since only one
cross-section size was used by Koide et al. (1998).

The data points in Fig. 10 show the empirical cumulative
probability density functions for three different spans obtained
from al the series of test beams of Koide et a. (1998) and
Koide (personal communication, 1999), and the solid lines
show the corresponding results of the present probabilistic
nonlocal theory. As can be seen, the calculated probability den-
sity functions exhibit trends similar to those of data points.
These functions were obtained by optimizing only the values
of tensile strength f{ and Weibull scale parameter o, the latter
being restricted to the range 0.9 f{ = o, = 1.15 f{. The Wei-
bull modulus was not optimized but kept as m = 24, which is
a value suitable for all concretes on the average (as shown in
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TABLE 2. Koide’s (1999) Test Data on Maximum Loads in kN
(Reprinted with Permission)

Series A Series B Series C
Test Bending span Bending span Bending span
No Sem 7em 9em Sem 10ecm 20em 20cm 40cm 60cm

2340 1.773 1.833 5559 6.585 5.565 7.251 6.742 6.677
2.127 2.150 1.643 5.169 5.125 5310 7.546 7.132 6.807
2.000 1971 1.765 6205 5814 5919 7.713 7.031 6.424
2.164 2200 1.895 5596 6335 5.718 6.609 6.591 7.090
1.936 2.172 1.666 5.986 6.025 5.119  7.567 6.716 5.861
1.631 2.086 1987 5.809 5498 5411 6.937 6.338 6.786
1.985 1732 2.041 6.191 5.785 5393  8.140 6.559 6.603
2323 1.634 2.076 5910 7.093 5.153  7.530 7.091 6.673
2,008 1935 2.110 6.118 6.103 5879  7.346 7.662 6.436
10 2.090 2.004 2.009 6.147 5.698 5306 6.638 6.069 4.958
11 1.840 1.895 1.880 5.919 6.724 5399  7.721 4.378 5.072
12 2.050 1.788 1.751 6.687 5966 5407 7.494 6.384 5.957
13 1.998 1876 2233 7.015 6708 4.813  7.703 6.659 6.210
14 2.070 1.894 1.722 6482 7.066 5708 7.656 5.184 4.896
15 2475 1791 2.046 6218 6.831 5717 7.418 5.928 4.948
16 2,135 2.130 2.125 5949 6.017 6.271  7.813 5374 5.112
17 2234 1.855 1.998 7.126 6.103 6.523  6.569 5.082 6.000
18 2380 2.064 2.046 6.173 6.305 6.102  7.433 6.223 5.745
19 2447 1943 1.623 6390 7.099 6.080 7.569 5.680 4.449

O 01NN W -

20 2.154 1.833 6.710 5.801 5943  7.269 5.867 5.927
21 2.160  .815  6.927 5480 6.651 5942 6.447 5.609
22 1.868 1.733  6.869 6.255 6.099  6.686 6.679 5297
23 2210 1936 7.311 6203 5735 5294 6.777 5.897
24 1999 1749 6.172 5.823 6.020 6.220 6.498
25 1.991  6.544 5.839 6.406 6.191 6.412
26 2.060  5.826 6.279 7.137 6.662 5.694
27 1983 6.786 6.427 6.731 6.402 5.809
28 1.570  7.436 6.219 6.099 6.525 6.253
29 1.889  6.141 6.136 5.940 5452 5.634
30 1.898  5.344 6241 6.280 7.442
31 1874 6435 6.496 6.100 6.358
32 6.495 6.475 6.535 6.665
33 6.646 6.837 6.998
34 6.425 7.732 6.798
35 6.930 6.147 6.504
36 7.122 7.849

37 6.571 6.668

38 7.536 6.668

39 7.873 6.506

40 6.689 7.313

41 6.873

42 7.071

43 6.962

44 7.734

45 7.458

46 7.567

Bazant and Novak 1999). The elastic modulus E and the soft-
ening modulus E, were not optimized either. The statistics for
the data and the theory are summarized in Table 3.

The values of Weibull modulus m and scale parameter o,
are found to have a paramount influence on the statistical scat-
ter, particularly on the shape of the probability density func-
tion. The measured probability density functions could be
matched better, and in fact very closely, if the m and o, values
were aso optimized for Koide et a.’s (1998) data set. But the
intent was to show how close the match is when m and o,
values suitable for al concretes on the average are used
(m = 24).

Modulus of rupture tests were performed by the Portland
Cement Association (PCA) (1966) in order to study the effect
of slenderness L/D and the differences between three types of
beam bending: three-point, four-point, and cantilever. Even
though no detailed information on the concrete properties,
beam geometry, supports, load application, number of tests,
and statistics was reported, the information on the differences
in f, between these three types of loading is unique and rather
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interesting, and so it has been decided to check whether it can
be explained by the present theory.

The results of the fitting of the PCA (1966) data are shown
in Fig. 11, where the solid lines represent the medians and the
dashed lines the 5th and 95th percentiles. As seen, the differ-
ence between the three- and four-point loading iswell captured
by the present statistical theory (while the deterministic theory,
m - oo, predicts no difference).

Comparing the numerical simulation of three-point and can-
tilever loading, in the former case the nonlocal averaging vol-
ume protrudes into the other symmetric half of beam, but in
the latter case it does not protrude into the support. This leads
to only a minute difference in the response curves, as seen in
Fig. 11. The difference in the reported test data is much larger,
in fact too large for being matched by the present theory. How-
ever, this difference is well within the calculated scatter band
bounded by the 5th and 95th percentiles, and so it may well
be assigned to the scatter of test data, especially since the
number of tests was probably very small. On the other hand,
this difference might result from inadequate supports causing
different stress concentrations or from various other systematic
differences.

SUMMARY AND CONCLUSIONS FROM PARTS |
AND I

1. In the nonlocal generdization of Weibull theory for
quasibrittle materials such as concrete, previously pro-
posed by Bazant and Xi (1991) for notched specimens
or structures with alarge crack at the moment of failure,
the failure probability of a small material element is a
function of nonlocal (spatially averaged) continuum
variables rather than the local stress. This generdization
can also be applied to unnotched specimens or struc-
tures failing at the initiation of macroscopic fracture,
and in particular to the test of modulus of rupture (flex-
ura strength).

2. The nonlocality is needed not only to prevent spurious
localization of cracking but also to introduce spatial
correlation of random material strength, governed by a
certain finite characteristic length of the material.

3. As in the previous model for structures containing
notches or large cracks at the moment of failure, the
size effect on the mean or median of modulus of rupture
is, for norma size beams, essentiadly deterministic.
However, the size range in which the statistical size
effect dominates is different from that in the previous
model —it is the asymptotic range of very large sizes,
which are often beyond the range of practical interest,
while in the previous moddl it is the range of very small
sizes that happens to lie below the range of practical
interest.

4. Compared to the existing stochastic finite-element ap-
proaches, great simplification is achieved by the fact
that the nonlocal structural analysis with strain soften-
ing can be deterministic because the probability analy-
Sis is separated from the stress analysis, in a manner
similar to the classica Weibull theory. Yet, just as in
these existing approaches, the present approach is gen-
eral and can be applied not only to quasibrittle failures
occurring at crack initiation (as in the modulus of rup-
ture test), but also to quasibrittle failures occurring after
long stable crack growth (typical for reinforced con-
crete structures or dams). Thus, the statistical theory of
both becomes unified.

5. Nonlocality is required to avoid the spurious localiza-
tion and mesh sensitivity inferred from strain softening,
and to introduce spatial correlation. Three simple alter-
natives for the nonlocality are studied. The failure prob-
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ability of a small material element is considered to de-
pend, in the same manner as in Weibull theory, on
(alternative ) the strain averaged over a certain neigh-
borhood whose size is determined by the characteristic
length of the material; (aternative I1) the averaged in-
elagtic stress; or (aternative 111) the averaged inelastic
strain. All three give similar results, but the third yields
the mildest size effect and seems closest to the test data.
For alternatives 11 and I11, the size effect is quite similar,
but slightly stronger for aternative I.

. The redistribution of stresses due to strain softening in
the boundary layer of cracking may be approximately
taken into account in the manner of the deterministic
size effect model of Bazant and Li (1995), based on the
hypothesis of plane cross sections.

. The present model agrees well with the test data sets

found in the literature.

. The main benefit of the present theory is the possibility
of predicting, for various structure sizes (and shapes),
the full probability distribution of structural strength,
and in particular the modulus of rupture. Examples of
calculating the 5th and 95th percentile probabilities of
structural failure are given.

. The calculated size dependence confirms that standard

10.

Reagel and Willis (1931).

APPENDIX I.

deviation characterizing the scatter of the modulus of
rupture decreases with increasing beam size.

As a fundamental check of soundness, the classical
Weibull theory with weakest link model (extreme value
distribution) should be recovered as the asymptotic
limit when the size of a quasibrittle or strain-softening
structure tends to infinity. Satisfying this requirement
has been the main objective in developing the present
theory. The stochastic finite-element method, however,
does not satisfy this basic requirement, which casts
doubts on its applicahility, especialy when one needs
the load of a very small failure probability, requiring
the use of extreme value distribution.

INFORMATION ON TEST DATA USED

Span length | = 0.4572, 0.6096,

0.7620, 0.9144 m (18, 24, 30, 36 in.). The span/depth ratio
was not constant, but varied from 4.5 to 3.6. Width b = D
(sguare cross sections); depth D = 10.16, 15.24, 20.32, 25.4

cm (4

, 6, 8, 10 in.). The direct tensile strength f; = 5.3 MPa,

modulus of elasticity E = 50.00 GPa, and softening modulus

JOUR

E, = 35.00 GPa had to be intuitively estimated here. Maximum
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aggregate size d, = 25.4 mm (1 in.); number of test specimens
for each depth = 64.

Wright (1952). Span length | = 0.2286, 0.3048, 0.4572,
0.6096 m (9, 12, 18, 24 in.). Only the results for a constant
span-depth ratio |/D = 3 are considered here; width b = D;
square cross sections; depth D = 7.62, 10.16, 15.24, 20.32 cm
(3, 4, 6, 8in.). The direct tensile strength f{ = 2.3 MPa, mod-
ulus of elasticity E = 40.00 GPa, and softening modulus E, =
30.00 GPa al had to be intuitively estimated for the present
analysis. Maximum aggregate size d, = 19.05 mm (3/4 in.),
river gravel; number of test specimens for each depth =
5or 6.

Nielsen (1954). Span length | = 1.0 m (kept constant);
width b = 0.15 m (kept constant); beam depths D = 10, 15, 20
cm. The direct tensile strength f{ = 2.8 MPawas estimated from
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the compressive strength at 27 days, f; = 47.3 MPa by the CEB-
FIP formula f{ = 0.22 (f))**. Modulus of elasticity E = 40.6
GPa, measured a 27 days [the mean value from al results
obtained as (40.8 + 40.9 + 40.1)/3 GP4]. The softening mod-
ulus E; = 27.0 GPa was estimated assuming E/E, = 1.5. Maxi-
mum aggregate size d, = 26 mm was estimated from the pub-
lished grading curve of the aggregate. The number of test
specimens for each depth = 4. Curing conditions: 21 days in
water and 7 days in air. The mean values were obtained from
only four measured values for each depth. It must be stressed
that geometrical similarity was not maintained in these tests as
the beam length was kept constant (I = 1 for all the small and
large sizes). The calculations were made for span-to-depth ratios
D/l, varying from 1 to 100. This is doubtless the reason that the
statigtical size effect for large sizes is less pronounced.
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Lindner and Sprague (1956). Span length | = 0.4572,
0.6858, 0.9144, 1.3716 m; span/depth ratio = 3; width b = D
(sguare cross sections); beam depth D = 15.24, 22.86, 30.48,
45.72 cm. The direct tensile strength f{ = 4.0 MPa, modulus
of elasticity E = 21.00 GPa, softening modulus E, = 15.00,
and maximum aggregate size d, = 25.4 mm (1 in.) had to be
estimated. Number of test specimens for each depth = 8 to 24.

Walker and Bloem (1957). Span length 1 = 0.381,
0.4572, 0.6096, 0.762 m (15, 18, 24, 30 in.). The span/depth
ratio was |/D = 3, except for the smallest size. The beam width
varied as b = 3, 6, 8, 10 in. The direct tensile strength f{ =
4.0 MPa (but 3.4 MPafor d, = 2 in.), modulus of elasticity E
= 40.00 GPa, and softening modulus E; = 30.00 GPa all had
to be intuitively estimated for the present analysis. Maximum
aggregate size d, = 25.4, 50.8 mm (1, 2 in.); number of test
specimens for each depth = 10 for every aggregate size and
every depth.

Sabnis and Mirza (1979). Span length | = 0.0381,
0.0764, 0.1524, 0.3048, 0.6096 m; span/depth ratio = 4; width
b = (2/3) D; beam depth D = 0.953, 1.91, 3.81, 7.62, 15.24
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cm. The direct tensile strength f{ = 3.8 MPa, modulus of elas-
ticity E = 30.00 GPa, softening modulus E, = 20.00 GPa, max-
imum aggregate size d, = 12.7 mm (/2 in.) al had to be
estimated here. The number of test specimens for each depth
was taken as 1 because no statistics were reported.

Rokugo (1995). Span length | = 0.15, 0.30, 0.60, 0.90,
1.2 m; span/depth ratio = 3; width b = D (square cross sec-
tions); beam depth D = 5, 10, 20, 30, 40 cm. The direct tensile
strength f{ = 3.2 MPa was inferred from the splitting tensile
strength. Modulus of elasticity E = 27.50 GPa. The softening
modulus E; = 20.00 GPa had to be intuitively estimated here.
The maximum aggregate size was d, = 15 mm. The number
of test specimens for each depth was 8, but no statistics were
reported in the paper, only the mean values.

Rocco (1995; personal communication, 1997). Span
length | = 0.068, 0.148, 0.300, 0.600, 1.2 m; span/depth ratio
= 4; beam width b = 0.50 m; beam depth D = 1.7, 3.7, 7.5,
15.0, 30.0 cm. The direct tensile strength f{ = 4.6 MPa was
estimated from the reported splitting tensile strength = 3.66
MPa; the modulus of éasticity E = 29.10 GPa; maximum ag-
gregate size d, = 5 mm. The softening modulus E, = 20.00
GPa had to be intuitively estimated. Number of test specimens
for each depth = 3 to 4.
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TABLE 3. Statistics of Koide's (Personal Communication, 1999) Test Data and Nonlocal Weibull Theory Calculations

Bending span Mean Median Standard deviation Coefficient
Series (cm) (Nm) (Nm) (Nm) of variation Skewness
& ©) @®) @) 5) ©) ©
(a) Test Data
A 5 84.7 83.6 8.3 0.098 —0.18
7 78.8 78.3 6.4 0.082 —-0.17
9 75.8 75.8 6.5 0.086 —-0.14
B 5 632.3 619.8 57.9 0.092 0.38
10 616.8 612.0 48.6 0.079 0.27
20 5775 572.7 42.4 0.073 0.30
C 20 701.8 709.7 62.4 0.089 —0.52
40 641.7 651.6 69.6 0.108 —0.50
60 607.1 621.0 70.6 0.116 —0.39
(b) Nonlocal Weibull Theory
A 5 84.0 85.7 9.0 0.108 —0.89
7 77.6 79.0 8.3 0.107 —0.90
9 754 76.8 8.0 0.106 —0.87
B 5 630.0 639.6 62.4 0.099 —0.81
10 604.6 614.8 58.2 0.096 —-0.78
20 573.7 582.8 54.0 0.094 —0.79
C 20 703.7 716.5 67.8 0.096 —-0.74
40 635.8 645.7 67.7 0.106 —0.85
60 608.8 617.9 66.9 0.110 —0.90
8 9
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Koide et al. (1998, 1999). Three test series of 279 tests pressive strength of concrete: f; = 48.2 MPain seriesA; 49.1

of beams in four-point bending (19 to 46 specimens for each MPa in series B; and 30.0 MPa in series C. Maximum aggre-
span). Series A: cross section 4.5 X 4.5 cm and bending spans gate sized, = 10 mm in series A and d, = 20 mm in series B
5, 7, and 9 cm. Series B: cross section 85 X 85 cm and and C. All the specimens were cast from one and the same
bending spans 5, 10, and 20 cm. Series C: cross section 10.0 batch of concrete and were cured under identical environmen-
X 10.0 cm and bending spans 20, 40, and 60 cm. Mean com- tal conditions. See Table 2 for the individual data.

184 / JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2000



Portland Cement Association (PCA, 1966). Bending
tests for different spans. Cross section 15.24 cm X 15.24 cm
(6 X 6 in.). Three types of loading were compared. Three-
point bending, four-point bending and cantilever. No infor-
mation on material properties, number of tests and statistics
was given. The direct tensile strength f{ = 4.5 MPa, modulus
of elasticity E = 40.0 GPa, softening modulus E, = 30.0 GPa,
maximum aggregate size d, = 25.4 mm, had al to be intui-
tively estimated.
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