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ABSTRACT: The nonlocal generalization of Weibull theory previously developed for structures that are either
notched or fail only after the formation of a large crack is extended to predict the probability of failure of
unnotched structures that reach the maximum load before a large crack forms, as is typical of the test of modulus
of rupture (flexural strength). The probability of material failure at a material point is assumed to be a power
function (characterized by the Weibull modulus and scaling parameter) of the average stress in the neighborhood
of that point, the size of which is the material characteristic length. This indirectly imposes a spatial correlation.
The model describes the deterministic size effect, which is caused by stress redistribution due to strain softening
in the boundary layer of cracking with the associated energy release. As a basic check of soundness, it is
proposed that for quasibrittle structures much larger than the fracture process zone or the characteristic length
of material, the probabilistic model of failure must asymptotically reduce to Weibull theory with the weakest
link model. The present theory satisfies this condition, but the classical stochastic finite-element models do not,
which renders the use of these models for calculating loads of very small failure probabilities dubious. Numerical
applications and comparisons to test results are left for Part II.
INTRODUCTION

The effect of randomness of material properties on the load
capacity of brittle or quasibrittle structures and its statistical
characteristics has been widely analyzed according to the sto-
chastic finite-element models. Many studies have been devoted
to these models, and significant achievements have been made
(e.g., Schuëller 1997). This method is generally capable of
predicting the loads of various specified failure probabilities.

Despite many years of investigations, however, it has ap-
parently passed unnoticed that the stochastic finite-element
models are fundamentally incapable of predicting the load
with a given failure probability when the structure is very
large. The reason is that when the ratio of the structure size
D to the characteristic correlation length of the random field
of local material strength tends to infinity (and when the ge-
ometry is positive, in the sense of fracture mechanics), the
failure occurs right at the initiation of fracture from a micro-
scopic flaw.

Consequently, Weibull theory based on the weakest link sta-
tistical model must be the limit case of the stochastic finite-
element models. But this is not the case. In particular, in the
special case of a very long cable made of a strain-softening
random material, the stochastic finite-element method does not
reduce to Weibull theory. This casts doubt on the basic sound-
ness of the stochastic finite-element models in those problems
that concern probabilistic prediction of load capacity of a brit-
tle or quasibrittle structure.

Of particular importance to design is the prediction of a load
with a very small failure probability, such as 1027. Only such
predictions can be used as a direct check of design. When only
the failure load with a large probability, such as 1023, is
known, an empirical safety factor must still be used, and little
is gained from stochastic structural analysis. In this regard it
must be noted that the Weibull statistical model, based on the
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theory of extreme value distribution (weakest link model), is
inevitable. Only this theory can predict the statistics of a load
in a long cable giving an extremely low failure probability.

Probabilistic analysis using stochastic finite-element models
focusing on the estimation of small probabilities is numerically
feasible, but practically one faces difficulties in applying the
method for complex models (e.g., to capture size effect phe-
nomena). Crude Monte Carlo simulation, the subsequent curve
fitting to get a theoretical model of the probability distribution
function for structural response, and the estimation of failure
probability from this theoretical model (such as Gaussian, log-
normal, etc.) cannot be used for small probabilities, as the
distribution support is only around the mean value of structural
response. Advanced Monte Carlo simulation techniques (e.g.,
Schuëller et al. 1989) are then called for (they are discussed
later in the paper).

The aim of this study is to present an alternative general
method that provides the correct large size asymptotic behav-
ior and thus offers a sound basis for statistical prediction of
failure loads. This method combines the nonlocal concept of
strain-softening damage with the Weibull weakest link model,
in the general manner proposed by Bažant and Xi (1991) in
their study of size effect in quasibrittle structures with large
cracks or notches (see also Bažant and Planas 1998, chapter
11). The present paper will describe how to apply this concept
in general situations, including unnotched structures that fail
at fracture initiation from a smooth surface—a practically im-
portant case.

A typical example of such failures is the modulus of rupture
test, on which an extensive experimental basis permitting sta-
tistical analysis has become available by now. Therefore, the
implementation and numerical application will be focused on
this test. The size effect on this test will receive the main
attention since it is the principal consequence of both the
strain-softening damage and the strength randomness. The
general theory will be presented in Part I, and the application
will follow in Part II (Bažant and Novák 2000).

NONLOCAL WEIBULL THEORY: STATISTICAL SIZE
EFFECT

According to the weakest-link model (Tippett 1925; Fréchet
1927; Fischer and Tippett 1928) underlying the classical Wei-
bull theory, the theoretical failure probability of a structure
with a continuously variable uniaxial stress s(x) is



m
s(x) 2 s dV(x)u

p = 1 2 exp 2 (1)f H E K L Js V0 rV

(e.g., Bažant et al. 1991; Bažant and Planas 1998). Here V =
volume of structure; s0, su, and m are the parameters of Wei-
bull probability distribution of the strength of the material
(scale parameter, strength threshold, and shape parameter); Vr

is the representative volume of the material, x is the coordinate
vector of the material point; and ^ & denotes the positive part
of the argument (used because only positive tensile stresses
contribute to failure probability).

The integral in (1) diverges (for realistic m values) if the
singular stress field of a sharp crack or notch is substituted.
This means that the classical Weibull theory cannot be applied
to failure (stability loss) that occurs only after large stable
crack growth. To overcome this problem, a nonlocal contin-
uum approach has been introduced (Bažant and Xi 1991; Ba-
žant and Planas 1998). In this approach, the stress at a point
depends not only on the strain at that point but also on the
strain field within a certain neighborhood of that point. In the
simplest version, it depends on the weighted spatial average
of the strain in that neighborhood, which stands for the rep-
resentative volume of the material. In the case of materials
with strain-softening, the nonlocal concept is necessary to reg-
ularize the boundary value problem (prevent spurious locali-
zation with failure at zero energy dissipation and avoid spu-
rious mesh sensitivity and unobjectivity). Within the
framework of the Weibull integral, such averaging introduces,
in a statistical sense, a spatial correlation (this is also dem-
onstrated by the numerical simulations of Breysse and Fokwa
1992).

Because very different strength thresholds (with very dif-
ferent m-values) can usually give equally good representations
of test data, a zero threshold, su = 0, is assumed as a result.
Then, if the stresses are at the same time replaced by the non-
local stresses, as proposed by Bažant and Xi (1991), the mul-
tidimensional generalization of (1) may be written as

mn
s̄ (x) dV(x)i

p = 1 2 exp 2 (2)f H E O K L Js V0 ri =1V

where n is the number of dimensions, si are the principal
stresses (i = 1, . . . n), and an overbar denotes nonlocal aver-
aging. The failure probability now depends not on the local
stresses si(x) but on the nonlocal stresses which are thes̄ (x),i

results of some form of spatial averaging.
In the case of an unreinforced simply supported symmetric

beam [Fig. 1(b)] with a symmetric uniaxial stress field, (2)
becomes

L/2 h/2 m
¯2 s(x, y)

p = 1 2 exp 2 dx dy (3)f H E E F G JV sr 00 2s

Here the integration over y is limited to the domain of positive
stresses, that is, from 2s to h/2, where s is the shift of the
neutral axis caused by cracking at the tensile face [Figs. 1(b)
and 1(e)].

The nonlocal averaging in (3) is 2D and thus independent
of the width of the beam. This appears reasonable because the
available test results do not reveal any systematic dependence
on the width.

ALTERNATIVES OF NONLOCAL AVERAGING

Three types of nonlocal averaging will be explored:

Alternative I

Averaging the stresses directly would make no sense be-
cause, for a given stress value, the strain and damage level are
FIG. 1. (a) Microcracked Zone in Bažant and Li’s (1995) Model;
(b) Strain Distribution with Shifted Neutral Axis; (c) Stress-
Strain Relation and Inelastic Stress; (d) Inelastic Strain; and (e)
Stress Redistribution Due to Strain-Softening in Boundary
Layer of Thickness lf

nonunique (one prepeak and one postpeak strain correspond
to the same given stress). One meaningful and simple for-
mulation consists of a direct averaging of the local strains ε(x9,
y9), with weights given by a bell-shaped function a(x, y), as
considered by Bažant and Xi (1991) and Bažant and Planas
(1998). The nonlocal strains y) are obtained according toε̄(x,
the formula:

L h/2
1

ε̄(x, y) = = a(x9 2 x, y9 2 y)ε(x 9, y 9) dx9 dy9 (4)E Eā(x, y) 0 2h/2

where the weights are normalized by the function

L h/2

ā(x, y) = a(x9 2 x, y9 2 y) dx9 dy9 (5)E E
0 2h/2

The nonlocal stresses to be used in calculating the generalized
Weibull integral (3) are then simply evaluated from the non-
local strains as the corresponding elastic stresses:

¯ ¯s(x, y) = Eε(x, y) (6)
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Averaging of the total strain was shown to require suppres-
sion of certain periodic zero-energy modes of instability (Ba-
žant et al. 1984; Bažant and Cedolin 1991, chapter 13), which
complicated the formulation. In the present model, though,
such modes cannot arise. The reason is that we employ the
nonlocal averaging of strain to calculate only the failure prob-
ability of a small material element rather than the stresses that
are subject to the differential equation of equilibrium. In Wei-
bull-type theory, we do not need to formulate a nonlocal con-
stitutive equation to be used in solving the boundary value
problem with strain-softening damage.

Alternative II

The aforementioned instability modes are avoided if the
nonlocal constitutive model for damage subjects to nonlocal
averaging not the total strain but only some measure of dam-
age or inelastic strain (Pijaudier-Cabot and Bažant 1987; Ba-
žant and Pijaudier-Cabot 1988; Bažant and Planas 1998).
Thus, as the second alternative, we choose to subject to spatial
averaging the inelastic stress s0(x9, y9), defined as the elastic
stress corresponding to the given strain minus the actual stress
for the same strain according to the given stress-strain diagram
[Fig. 1(c)]. So we calculate first the nonlocal inelastic stress

L h/2
1

s̄0(x, y) = a(x9 2 x, y9 2 y)s0(x9, y9) dx9 dy9E Eā(x, y) 0 2h/2

(7)

where

s0(x9, y9) = Eε(x9, y9) 2 f [ε(x9, y9)] (8)

The nonlocal stress at point (x, y) is then obtained as

¯ ¯s(x, y) = Eε(x, y) 2 s0(x, y) (9)

Alternative III

Another type of averaging that avoids the zero-energy in-
stability modes of a nonlocal constitutive model for damage
is the spatial averaging of the inelastic strain, ε0(x9, y9), rep-
resenting the difference of the current strain and the elastic
strain corresponding to the same stress [Fig. 1(d)]. So we
choose the third alternative as

L h/2
1

ε̄0(x, y) = a(x9 2 x, y9 2 y)ε0[s(x9, y9)] dx9 dy9E Eā(x, y) 0 2h/2

(10)

and then calculate the nonlocal stress as

¯ ¯s(x, y) = E[ε(x, y) 1 ε0(x, y)] (11)

Alternative I is precisely the averaging used in Bažant and
Xi’s (1991) statistical size effect model for large cracks (also
Bažant and Planas 1998). Because that model applies aver-
aging to the strain field of a large sharp crack in an elastic
material with no distributed damage, the other types of aver-
aging cannot be applied to that model, unless its formulation
were generalized.

The spatial averaging integral is approximated by a finite
sum over all the points of the structure. For all three types of
averaging considered here, the computer implementation of
the integrations over x9 and y9 involves, for every mesh point,
four nested loops over the mesh points at which the strains
and stresses are evaluated. This considerably increases the
amount of computations, but is not a problem if a powerful
computer is used. The computer time can be reduced by using
a weight function that vanishes at a finite distance.

Different choices of the weight function a(x, y) for spatial
averaging are possible, but the results are not too sensitive to
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the choice made. For instance, one may simply choose a uni-
form weight function that is nonzero only over a certain rep-
resentative volume such as a circle (or for convenience a
square). However, according to the computational experience,
a better convergence is achieved by using a smooth, bell-
shaped weight function, which also appears more realistic (Ba-
žant et al. 1984; Bažant and Lin 1988; Bažant and Ožbolt
1990). One suitable form of such a weight function, which is
adopted here, is the modified bivariate normal (Gaussian)
probability distribution function suggested by Bažant et al.
(1984):

2 222 x 1y /lÏa(x, y) = e (12)

Here l is the characteristic length of the nonlocal continuum
(or material length), which characterizes the size of the rep-
resentative volume Vr. It represents the diameter of a cylinder
of height 1 that has the same volume as the weight function.
This condition requires that Vr = pl/8. For concrete, the char-
acteristic length can be taken approximately as l = 3da, which
is the band width used for the crack band model (da = maxi-
mum aggregate size).

For l → 0, the material becomes local and (3) becomes the
classical Weibull probability integral. So the classical Weibull
theory is a special case of the present theory. For beams so
large that the characteristic length is negligible compared to
the depth of the cross section, the classical Weibull size effect
on the modulus of rupture must be approached (as observed
by Petersson 1981).

MODULUS OF RUPTURE TEST

The structure size effect on the modulus of rupture of plain
concrete beams, as well as other quasibrittle materials such as
rocks, composites, ceramics, or ice, has been known for a long
time. Its classical explanation was statistical—the randomness
of material strength (e.g., Bažant and Planas 1998), as sug-
gested already by Mariotte (1686) and mathematically de-
scribed in a final form by the theory of Weibull (1939).

As revealed, however, by the finite-element calculations of
Hillerborg et al. (1976) and thoroughly demonstrated by Pe-
tersson (1981), the mean observed size effect can be described
deterministically by the cohesive (or fictitious) crack model,
as a consequence of stress redistribution in the cross section
prior to maximum load. A simple analytical formula based on
this redistribution was derived by Bažant and Li (1995) and
was shown to match all the important test data reasonably
well. The same formula was proposed earlier on an empirical
basis by Rokugo et al. (1995) (Bažant and Li 1996). It was
also shown that this formula can be derived from fracture me-
chanics if the nonnegligible size of the fracture process zone
near the tensile face of the beam is taken into account [Bažant
1997(a)].

The size effect on the modulus of rupture, and generally the
size effect for all failures occurring at crack initiation from a
smooth surface, is of a different kind than the size effect on
failures that occur after a long stable crack growth and are
typical of reinforced concrete structures. Until the mid 1980s,
that size effect was also generally believed to be statistical,
but it is now widely accepted that its cause is primarily de-
terministic—the energy release due to crack growth (Bažant
1984).

The maximum load of plain concrete beams occurs before
a continuous crack initiates. But it occurs only after a bound-
ary layer of distributed cracking of a certain critical thickness
develops at the tensile face of beam. For beams of different
sizes made of the same concrete, the thickness of this layer
appears to be about the same, dictated by the maximum ag-
gregate size. Formation of this boundary layer, representing a
fracture process zone, is the principal reason why the direct



tensile strength differs from the modulus of rupture, fr,f9t
which is defined (for an unreinforced beam of a rectangular
cross section) as

6Mu
f = (13)r 2bD

where Mu = ultimate bending moment, D = characteristic size
of the structure, chosen to coincide with the beam depth (often
denoted as h), and b = beam width.

The randomness of the heterogeneous microstructure of
concrete and of its strength must nevertheless have at least
some influence, as demonstrated by stochastic finite elements,
including nonlocal finite-element simulations with random
spatially correlated strength (e.g., Breysse 1990; Breysse and
Fokwa 1992; Breysse et al. 1994; Breysse and Renaudin
1996). For quasibrittle structures failing after large stable crack
growth, this question was studied by Bažant and Xi (1991)
and Bažant and Planas (1998). They presented a generalization
of Weibull-type theory in which the material failure probability
depends not only on the local continuum stress but also on the
average strain of a characteristic volume of the material. Their
analysis, later slightly simplified and refined by Bažant and
Planas (1998), led to a size effect formula that agrees well
with test results and approaches the original size effect law as
its deterministic limit.

The key point in Bažant and Xi’s analysis (1991), which
allows handling of the crack tip singularity, is the introduction
of the nonlocal continuum concept for determining the failure
probability of a material element. If the Weibull probability
integral is applied to the redistributed stress field, the dominant
contribution comes from the fracture process zone at the crack
tip. The contribution from the rest of the structure is nearly
vanishing, which is explained by the fact that the fracture can-
not occur outside the process zone. Because the process zone
size is nearly independent of structure size D, no statistical
size effect can thus take place except when the structure is so
small that its boundaries restrict full development of the pro-
cess zone.

In the case of the modulus of rupture, the Weibull-type size
effect can dominate only in unreinforced beams that are far
deeper than the boundary layer of distributed cracking and thus
fail right at crack initiation, as suggested by Petersson (1981).
The beam depth, however, would have to exceed about a few
meters, which is hardly a realistic test. Besides, good practice
requires designing structures so as not to fail at crack initiation.

Randomness of the material must nevertheless be expected,
in the case of the modulus of rupture, to play at least some
role. To explore it is the objective of this two-part study. In
the first part, a statistical theory that has the correct determin-
istic limit will be formulated, and the asymptotic behavior for
very small and very large sizes will be determined. The role
of Weibull-type statistical size effect in the modulus of rupture
test will be analyzed using a simple nonlocal strain-softening
model that is of the same type as introduced for failure after
large crack growth in the Weibull theory generalization of Ba-
žant and Xi (1991). The boundary layer of distributed cracking
will play a role analogous to the crack-tip fracture process
zone. However, by contrast to Bažant and Xi’s (1991) statis-
tical analysis of large continuous cracks, the reason for non-
local strain averaging will not be the suppression of stress
singularity but the necessity to impose spatial statistical cor-
relation. The second part that follows will present numerical
applications with comparisons to test results.

A SIMPLE DETERMINISTIC ENERGY-BASED SIZE
EFFECT FORMULA

At maximum load, a boundary layer of distributed cracking
having a nonnegligible thickness lf [Figs. 1(a) and 1(e)] may
be assumed to exist at the tensile face of the beam. With this
assumption, and assuming further the beam theory (cross sec-
tions remaining plane) and a linear postpeak softening stress-
strain diagram, Bažant and Li (1995) derived the approximate
formula:

f lr f= 1 1 2 (14)
f 9 Dt

where D = beam depth. The same formula was also derived
by an energetic argument upon truncating an LEFM-based as-
ymptotic series expansion in terms of lf /D after the linear term
(Bažant 1997a). Neither plane cross sections nor any postpeak
stress-strain diagram has been assumed.

In spite of the fact that (14) contains no term nonlinear in
lf /D, it agrees well with the existing test results. Because the
decline of the statistical density of microcracks with an in-
creasing distance from the beam face is gradual rather than
sudden, lf should be interpreted as a certain effective thickness
of the boundary layer of cracking, representing the fracture
process zone. We will find it convenient to use lf as a parameter
of the statistical generalization.

The exact solution according to beam bending theory under
the aforementioned simplifying assumptions of beam theory
yields a slightly more involved formula (Planas et al. 1995):

f l 4k Er f t= 1 1 2 2 ; k = (15)2f 9 D k 1 (D/l 2 1) Et f

E = Young’s modulus of elasticity and Et = softening modulus.
This formula, however, does not yield appreciably better fits
of test results, which is due to inevitable experimental scatter
and even more to simplifications in the basic assumptions.

COMPUTATIONAL MODEL FOR MODULUS OF
RUPTURE TEST

The constitutive model for failure of concrete must exhibit
strain softening, that is, a postpeak decrease of stress at in-
creasing strain. The simplest but adequate choice is a bilinear
stress-strain diagram [Fig. 1(c)]. For the three-point beam
bending test of the modulus of rupture, the statistical analysis
proceeds as follows.

It might seem that the analysis of strain softening would
call for using finite elements, as was done in studies by the
cohesive crack model (Petersson 1981). In the present problem
of beam bending, however, this is unnecessary because only
the states before a crack forms are of interest. The softening
zone, restrained by adjacent concrete in an elastic state, does
not yet localize, remaining distributed over a long portion of
the beam. Therefore, the classical hypothesis of cross sections
remaining planar is a good approximation. It implies a linear
distribution of strains within the cross section.

Because of strain softening (due to distributed cracking)
near the tensile face, the neutral axis is shifted upward by
distance s, which is an unknown parameter to be determined
for each cross section where microcracking occurs [Fig. 1(b)].
The linear strain distribution within the cross section x may
be written as

ε(x, y) = k(x)[y 1 s(x)] (16)

where k(x) = curvature of the beam, which is the second un-
known. The unknown parameters s and k can be solved from
the equilibrium conditions for bending moment M = Px/2 (in
the case of three-point bending) and axial force N = 0;

h/2
Px

yf{k(x)[y 1 s(x)]} dy = (17)E 22h/2

h/2

f{k(x)[y 1 s(x)]} dy = 0 (18)E
2h/2
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where the stress-strain relation is considered as ε = f(s). For
the bilinear stress-strain diagram in Fig. 1(c), these equations
become

yp

yEk(x)[y 1 s(x)] dyE
2h/2

h/2
Px

1 {2E [k(x)(y 1 s(x)) 2 ε ] 1 f 9}y dy =t p tE 2yp
(19)

yp

Ek(x)[y 1 s(x)] dyE
2h/2

h/2

1 {2E [k(x)(y 1 s(x)) 2 ε ] 1 f 9} dy = 0t p tE
yp (20)

Evaluation of the integrals yields the following system of two
nonlinear equations for s and k:

3 2 3 2 3 2Ek(y /3 1 sy /2 1 h /24 2 sh /8) 2 E (kh /24 1 ksh /8p p t

2 3 2 2 2 22 ε h /8 2 ky /3 2 ksy /2 1 ε y /2) 1 f 9(h /8 2 y /2)p p p p p t p

2 Px/2 = 0 (21)

2 2 2Ek(y /2 1 sy 1 h /8 2 sh/2) 2 E (kh /8 1 ksh/2p p t

22 ε h/2 2 ky /2 2 ksy 1 ε y ) 1 f 9(h/2 2 y ) = 0p p p p p t p (22)

in which argument x is omitted, and yp = εp /k(x) 2 s(x) = y-
coordinate of the boundary of the elastic zone [εp = strain at
peak stress, Fig. 1(c)]. This system can be solved iteratively
by the Newton-Raphson method or even more efficiently by
the Levenberg-Marquardt nonlinear optimization algorithm.
The solution for the shift of neutral axis s, however, does not
always imply realistic values for the boundary layer thickness
lf. The value of lf ensues from the condition that, for y = h/2
2 lf, ε = εp and s = [Fig. 1(e)];f9t

h f 9t
l (x) = max s(x) 1 2 , 0 (23)f S D2 Ek(x)

The ‘‘max’’ condition (equivalent to taking the positive part
^ & of the first argument) must be introduced here to make the
solution realistic. It prevents negative lf values, which result
from the solution of (21) and (22) when the entire cross section
is elastic (because, in that case, the tensile strength is reached
hypothetically outside the cross section). When lf = s = 0, the
curvature k must be recalculated from the elastic bending
theory.

The result of the foregoing calculation is the 2D local strain
field ε(x, y), to which the spatial averaging according to one
of the aforementioned alternatives needs now to be applied to
obtain the nonlocal stress field In the statistical sense,s̄(x, y).
this averaging is equivalent to imposing spatial statistical cor-
relation, characterized by the characteristic length l, which is
a material property of concrete.

The calculated nonlocal stress field is then substi-s̄(x, y)
tuted into the generalized Weibull-type integral (3). For pre-
scribed load P, the integral can be evaluated numerically, fur-
nishing the failure probability pf. For prescribed pf, the load P
needs to be solved iteratively.

The foregoing procedure makes it possible to study the full
probability range for the modulus of rupture (ratio atf / f9)r t

different beam sizes. It can provide estimates of the mean val-
ues, variances, and coefficients of skewness, and it also makes
it possible to test the probability distribution function of the
theoretical model. Once a data sample of the modulus of rup-
ture is obtained, a theoretical model of the probability distri-
bution function can be assigned to the sample. The most suit-
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able theoretical model can be selected using standard statistical
tests, such as the Kolmogorov-Smirnov test or the chi-square
test.

The presence of a characteristic length in the problem is
essential, not only from the viewpoint of statistical correlation.
It is now well established that the very concept of strain soft-
ening per se is meaningless without reference to a certain non-
zero characteristic length. In the deterministic model of Bažant
and Li (1995), the role of the characteristic length is played
by the boundary layer thickness lf, which is in that model an
assumed material parameter.

The field of nonlocal stresses needed for evaluating the gen-
eralized nonlocal Weibull probability integral (2) or (3) re-
quires solving the deterministic boundary value problem for
nonlocal strain-softening material behavior. This usually ne-
cessitates finite-element analysis. But in the case of the bend-
ing beam test of the modulus of rupture, the solution may be
carried out quite simply according to the beam theory.

Compared to the stochastic finite-element approaches (see,
for example, the review by Breysse et al. 1994) or the ‘‘nu-
merical concrete’’ model (Roelfstra et al. 1985), an important
feature that brings about great simplification is that the non-
local structural analysis with strain softening, or the structural
analysis with a cohesive crack, can be carried out determin-
istically, that is, independently of the probability analysis.
However, iterations of the deterministic solution are required
if the failure probability of the structure is specified. But the
number of these iterations is very small compared to the clas-
sical approaches of reliability engineering (where calculations
of failure probability usually require thousands of repetitive
deterministic solutions using advanced Monte Carlo-type sim-
ulation techniques).

ILLUSTRATION OF SPATIAL DISTRIBUTION OF
CONTRIBUTIONS TO FAILURE PROBABILITY

To clarify the basic concept, it is helpful to present at this
point Fig. 2, which shows the succession of breaks of material
points according to the spatial distribution of the contributions
to failure probability entering the integral (3). This figure has
been calculated using the material parameters of ‘‘average con-
crete,’’ as will be described in Part II of this paper, where the
spatial distribution of the contributions to failure probability
also will be plotted.

Both the three-point bending and the four-point bending
cases are studied in Fig. 2. For the input, consisting of the
number of failed points (indicated at the top-left corner of each
quarter of the beam), pure Monte Carlo simulation is per-
formed according to the distribution of probabilities. Naturally,
the first failed points appear near the midspan, in the case of
three-point bending, or near the bottom face within the max-
imum moment region of the beam, in the case of four-point
bending. As the number of failed points increases, the devel-
opment of the shape of the fracture process zone, visualized
by different levels of probabilities, can be observed. In the
case of four-point bending, a large bending span (60% of the
total beam span) was selected. It should be kept in mind that
the figure does not portray the sequence of failures associated
with the formation of a real crack. Rather, it shows merely the
distribution of the contributions to failure probability intended
to provide better insight into the nonlocal Weibull theory.

COMPARISON WITH STOCHASTIC FINITE-ELEMENT
MODELS

Applications of the theory of random fields to the finite-
element method have led during the last 15 years to the de-
velopment of the stochastic finite-element method (SFEM).
Several effective alternatives have been proposed by Schuëller



FIG. 2. Monte Carlo Simulation of Failed Points According to Spatial Distribution of Contributions to Failure Probability
(1997); Ghanem and Spanos (1991); Hisada and Nakagiri
(1985); Liu et al. (1986); and others (for a literature review,
see Brenner 1991). The objective of these models is to deter-
mine the statistics of the response, such as the deflection,
stress, failure load, and, consequently, the probability of fail-
ure. Similar approaches, such as the stochastic lattice models,
can physically simulate material heterogenity and deal with
the spatial variability of material strength (Breysse 1990;
Breysse and Fokwa 1992), including stochastic lattice models
[Jirásek and Bažant 1995 (a,b)]. The method generally requires
repetitive solutions of the finite-element system equations us-
ing Monte Carlo simulation. The failure probability within the
framework of SFEM can be calculated in one of the following
ways:

1. The FORM (first-order reliability method) or SORM
(second-order reliability method) approximation tech-
nique (e.g., Madsen et al. 1986), normally used within
the framework of the SFEM. This technique requires ap-
plying a suitable optimization method to find the so-
called design point. For highly nonlinear problems, how-
ever, the accuracy of the calculation of failure probability
is not good (e.g., Schuëller et al. 1989).

2. Direct Monte Carlo simulation. Even if advanced simu-
lation techniques, such as importance sampling and adap-
tive sampling (e.g., Schuëller et al. 1989), are applied, a
large number of simulations are still necessary for ac-
curately estimating a low failure probability, such as
1027, which makes applications of complex computa-
tionally intensive finite-element models practically im-
possible.

3. The response surface techniques (e.g., Bucher and Bour-
gund 1987), with the consequent application of advanced
simulation methods. This approach is feasible for large
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systems because it is based merely on a polynomial ap-
proximation of the failure surface. It requires only a lim-
ited number of finite-element calculations (from tens to
hundreds). Once the polynomial approximation is ob-
tained, then any standard technique for failure probability
calculation can be applied, and thousands of simulations
can be performed easily.

The term ‘‘stochastic finite elements’’ is used in the sense
of both random variables and random fields. The latter natu-
rally require representing the random field by a large set of
random variables, and the size of the problem increases even
if one uses some special technique for reducing the number
of random variables used as a discrete approximation of the
field.

Asymptotic Case of Very Large Quasibrittle Structure

The problem of failure of a structure with distributed dam-
age is one of many physical phenomena whose mathematical
modeling is very difficult for the practical range but easy for
the asymptotic cases. An approximate model is usually good
if it is made to match the asymptotic cases. This approach, in
which the model for the intermediate range is anchored at the
infinities so as to provide ‘‘interpolation’’ between the oppo-
site infinities, is known as asymptotic matching. It has been
used with great success in fluid mechanics, and its emulation
has been proven useful for developing approximate scaling
laws for the nominal strength of quasibrittle structures.

When the ratio of the structure size D to the effective size
cf of the fracture process zone (or damage zone) tends to in-
finity, the failure behavior approaches that of linear elastic
fracture mechanics (LEFM), and when this ratio (D/cf) tends
to zero, the behavior approaches that of plasticity. These as-
ymptotic behaviors should be satisfied not only by determin-
istic failure models but also by probabilistic ones. This as-
ymptotic condition has not previously been considered in
connection with the probabilistic models of failure. It is pro-
posed here to adopt it as a basic check of the soundness of
such models, including the stochastic finite-element models.

The characteristic length < of the autocorrelation function
of the random field of local material strength, which is a basic
characteristic of stochastic finite-element models, is propor-
tional to cf, which in turn is proportional to the nonlocal char-
acteristic length < in the present nonlocal Weibull theory (as
well as to the boundary layer thickness lf).

When D/l tends to infinity or zero, so do D/cf and D/< (or
D/lf). For D/cf → 0, the damage cannot localize, and so the
small size asymptotic behavior ought to approach plasticity.
Both the present theory and SFEM satisfy this condition.

When D/cf → `, the front of the zone of distributed crack-
ing or strain softening is unstable and must therefore localize
into a single point (in structures of positive geometry). This
implies that such a structure must fail right at the initiation of
cracking or strain softening at one point of the structure (this
is intuitively most obvious when the structure is a long ten-
sioned bar). Such points of initial cracking or strain softening
play a role similar to that of the material flaws (or points of a
low local strength) in the Weibull theory.

Consequently, for D/< → 0, a sound stochastic finite-ele-
ment model must reduce to the classical Weibull theory, based
on the weakest-link statistical model (or extreme value statis-
tics). In particular, the size effect of classical Weibull theory
ought to be the limiting case of a sound stochastic finite-ele-
ment model.

The nonlocal Weibull theory proposed here obviously sat-
isfies this condition. However, the SFEM, as presently known,
does not. In particular, it cannot model the brittle failures of
very long bars under uniaxial tension, for which Weibull the-
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ory is inevitable. Recognition of this fundamental drawback
stimulated the development of the present theory.

Other Aspects of Comparison

Aside from the asymptotic case of a very large structure,
the comparison of both approaches may be summarized as
follows:

1. One advantage of the SFEM is that any number of var-
iables or random fields can be used to simulate the un-
certainties of material, environmental, and geometric pa-
rameters. In the present nonlocal Weibull approach, the
reliability problem is reduced to one dominant random
variable (strength). Randomness of elastic moduli and
other parameters of a nonlinear strain softening consti-
tutive law can nevertheless be taken into account by stan-
dard Monte Carlo simulation.

2. The nonlocal Weibull theory is conceptually transparent
and simple. In calculating the failure load probability, the
stochastic finite-element models are considerably more
complicated than the present nonlocal Weibull approach
and, despite their many achievements, cannot yet handle
really complex structures because of the tremendous
amount of computational effort required.

3. Applying commercial finite-element codes to the sto-
chastic finite-element models would be difficult since a
special interface to the reliability software would have to
be developed. The nonlocal Weibull theory, by contrast,
can use the commercial codes without any significant
modification.

4. Essential random field characteristics required as the in-
put to the stochastic finite-element models, particularly
the correlation length, type of correlation function, or
spectral density of the field, are very difficult to deter-
mine in a rational manner and have generally been es-
timated heuristically, based on intuitive judgement. In the
nonlocal Weibull theory, on the other hand, the parameter
of spatial correlation is the characteristic length, which
is the same as in the deterministic nonlocal damage the-
ory and has an intimate relationship to the heterogenity
of the material (it may be taken as several times the
maximum aggregate size in concrete and may also be
related to the fracture energy and strength of the material
and calibrated by size effect tests).

5. Whereas the calculation of loads with a failure proba-
bility such as 5% doubtless gives reliable results, the
calculation of loads with an extremely small failure prob-
ability, such as 1027, of which the main interest is for
design, is probably unreliable. It thus still seems neces-
sary to employ in design some safety factor based on
experience and intuition. In principle, the prediction of
failure should in some way be based on the extreme
value statistics (Tippett 1925; Fisher and Tippett 1928)
and the Weibull distribution, which can capture the fact
that the failure is triggered by the weakest material ele-
ments in the critical region of the structure. The SFEM
misses these fundamental features; it is based on full-
range distributions such as Gaussian, which have phys-
ically meaningless far-off tails and are inherently inap-
propriate for treating the statistics of extremely unlikely
breaks in the material responsible for extremely rare fail-
ures.

6. Not only the asymptotic limit of very large structures,
but generally the incorporation of fracture mechanics
into the stochastic finite-element models poses difficul-
ties, and attempts to do so have been rare.



CLOSING COMMENTS

Note that the direct tensile strength as well as D, E, Et,f9,t

L, and da, is a deterministic parameter in the present model. It
would of course be possible to generalize these parameters as
random, select their random samples, run for each sample the
present model in the sense of classical Monte Carlo simulation,
and obtain the statistics of the responses. However, concep-
tually this seems inappropriate because the parameters of a
statistical model are by definition deterministic, and the afore-
mentioned parameters indeed play here precisely such a role.

The situation is analogous to the Weibull scale parameter
s0, which is treated physically as deterministic in all Weibull
theories. It could be argued that s0 is also random. This kind
of argument could continue since it could be argued that a
parameter of the distribution of s0, which must have a dimen-
sion of stress, should be physically random too. The param-
eters of the distribution of that parameter should again be ran-
dom, and so forth, ad infinitum. Such induction reduces this
kind of arguments to nonsense.

In this regard, note further that the present model has been
verified and calibrated by the available test data considering
s0 and other parameters to be deterministic. Obviously the
model should be used in the same way as it has been verified
and calibrated, which will be done in Part II.

The general approach has by now been presented; it remains
to apply it in numerical calculations and compare it to the
result of experiments. This task will be tackled in Part II, in
which all the conclusions are formulated.

APPENDIX I. GENERALIZED DETERMINISTIC
ENERGY-BASED FORMULA

The derivations of formula (14) in both Bažant and Li
(1995) and Bažant (1997a) are accurate only up to the first
two terms of the asymptotic power series expansion of fr in
terms of 1/D. As it turns out, however, the following more
general formula has the same first two terms of the asymptotic
expansion and is therefore equally justified:

1/r
f rDr b= 1 1 (r > 0) (24)S Df 9 Dt

Exponent r is related to the third term of the expansion.
It is interesting that a special case of formula (24) for r =

2 (as pointed out in Bažant 1998) is the empirical formula

A2f = (25)A 1r Î 1
D

where A1, A2 = constants. This special case, which was derived
from fracture mechanics in Bažant (1998), is identical to the
formula proposed on the basis of strictly geometric arguments
by Carpinteri et al. (1994, 1995), which was named the ‘‘mul-
tifractal scaling law’’ (this term is, however, questionable be-
cause, if an energy-based mechanical analysis is carried out, a
different law is found to ensue from the fractal hypothesis:
Bažant 1997b, 1997c).

Exponent r could in theory be determined from the third
derivative of the energy release function of LEFM, but in prac-
tice such determination of r is oversensitive to changes of
geometry. Using the Levenberg-Marquardt algorithm to si-
multaneously fit the set of all the presently used data indicated
r = 1.47 as the optimum value. But the coefficient of variation
of the prediction errors was found to be only a little sensitive
to the changes in r and was not much larger for r = 1. For
this reason, (14) is used here instead of (24). Eq. (25) is stud-
ied in detail in a separate paper (Bažant and Novák 1999),
along with its transition to Weibull theory at large sizes.
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Bažant, Z. P., and Planas, J. (1998). Fracture and size effect in concrete
and other quasibrittle materials. CRC Press, Boca Raton, Fla.
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Fréchet, M. (1927). ‘‘Sur la loi de probabilité de l’écart maximum.’’ Ann.
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Pijaudier-Cabot, G., and Bažant, Z. P. (1987). ‘‘Nonlocal damage theory.’’
J. Engrg. Mech., ASCE, 113(10), 1512–1533.

Planas, J., Guinea, G. V., and Elices, M. (1995). ‘‘Rupture modulus and
fracture properties of concrete.’’ Fracture mechanics of concrete struc-
tures, Vol. 1, F. H. Wittmann, ed., Aedificatio Publishers, Freiburg,
Germany, 95–110.

Roelfstra, P. E., Sadouki, H., and Wittmann, F. H. (1985). ‘‘Le béton
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