
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 1

Probabilistic Packet Marking for
Large-Scale IP Traceback

Michael T. Goodrich,Senior Member, IEEE

Abstract— This article presents an approach to IP traceback
based on the probabilistic packet marking paradigm. Our ap-
proach, which we call randomize-and-link, uses large checksum
cords to “link” message fragments in a way that is highly scalable,
for the checksums serve both as associative addresses and data
integrity verifiers. The main advantage of these checksum cords
is that they spread the addresses of possible router messages
across a spectrum that is too large for the attacker to easily
create messages that collide with legitimate messages.

Index Terms— Distributed denial of service, IP, traceback,
probabilistic packet marking, checksum cords, associate ad-
dresses.

I. I NTRODUCTION

A. Modeling the Problem

One of the insidious aspects of distributed denial-of-service
attacks is that they maliciously use the strength of routers—
to move packets quickly—in that they exploit many different
compromised hosts as “zombies” to fire packets at a victim.
In order to model DDOS attacks, we consider the attack as
propagating in a treeT , where the root of the treeT is the
victim, V , and each node inT corresponds to a routerX
on the Internet that is downstream from an attack host to the
victim. From the perspective ofV , the treeT is a subtree of
a much largeruniversal tree U that consists of the union of
all routes toV . (See Figure 1.)

Victim

Fig. 1. The universal treeU and attack treeT . The nodes inT are shown
darkened.

The goal in the traceback problem is to identify the leaves
of T , that is, the routers upstream from the victim closest
to attack hosts. We model the attacker as an adversary,A,
who can compromise many hosts and use them as “zombies”

Dr. Goodrich is a professor in Department of Computer Science, University
of California, Irvine, CA 92697-3435. Email:goodrich(at)ieee.org.

in a DDOS attack. We allow thatA may have knowledge
about our traceback algorithms, and that he can even try to
design his DDOS attack so as to confuse, break, or delay our
algorithms, by “spoofing” the IP headers of attack packets. In
this context, we define aDDOS attackto consist of a stream of
many attacks packets sent from the attack hosts to the victim
(in an attempt to overwhelm the victim). We assume that the
attacker cannot compromise routers, however. In so doing,A
can make it difficult for us to identify some of the routers in
the attack treeT . In addition, we allow thatA may know the
IP addresses of routers in the Internet; hence, he can try to
trick us so as to implicate routers not inT .

A major challenge in the IP traceback problem is that there
are over 400 million hosts on the Internet. Conservatively
assuming that there is a router for every 100–200 hosts on the
Internet, we therefore estimate the number of routers (internal
nodes) inU to be at least two million. Thus, in practical
terms, solving the IP traceback problem amounts to correctly
identifying a few thousand of the million internal nodes inU
as forming the leaves of the attack treeT . Ideally, we would
like to do this identification without requiring anya priori
knowledge of the universal treeU on the part of the victimV ,
for such information could be difficult to obtain and maintain.

Finally, we desire solutions to the IP traceback problem that
are fast and efficient. We prefer solutions that minimize the
amount of additional traffic on the Internet needed to solve
the traceback problem or create an infrastructure for solving
it. Likewise, we want to allow for incremental adoption by
routers in any new infrastructure needed for traceback, andwe
want to minimize the amount of state that must be maintained
by routers. That is, if only a subsetU ′ of routers on the Internet
implement our protocol, then we want our traceback algorithm
to still work correctly, in this case to identify the leaves of the
treeT ∩U ′. In addition, the computations needed on the part
of the victim to identify the leaves of the attack treeT should
be fast enough so thatV can quickly reconstructT .

B. Pattern-based Filtering and Hop-by-hop Tracing

In some cases, such as in reflector-based attacks, we can
use patterns in the attack packets to filter out DDOS packets
at a firewall. Likewise, the approach ofhop-by-hoptracing,
which is also known aslink testing, uses a pattern-based
approach to do traceback of a DOS attack while it is in
progress. This is the approach of the automated Pushback
mechanism [8], for example, and it is the solution currently
supported manually by many router manufacturers. In this

0000–0000/00$00.00c© 2006 IEEE

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 2

approach, a network administrator or his/her agent logs into
the routers nearest the victim, and using statistics and pattern
analysis, determines the next upstream routers in the attack tree
T . The approach is then repeated at the upstream routers for
as long as the attack continues. This scheme therefore requires
immediate action during the attack, and requires consider-
able coordination between network administrators (to either
communicate directly or setup access points for the agents
of partnering administrators). This technique also requires
some pattern-based way to separate legitimate packets from
attack packets. A similar approach is used by Burch and
Cheswick [4] to perform traceback by iteratively flooding from
V portions of the Internet to see its effects onV ’s incoming
traffic. Unfortunately, because of their iterative nature,these
approaches have limited traceback capabilities in a large-scale
DDOS attack.

C. ICMP Messaging

An alternative approach, based onICMP messaging[3], is to
have each routerX decide, with some probabilityq (typically,
q = 1/20000 is mentioned), for each packetP to send an
additional ICMP packet to the destination, which identifiesX
and some content ofP . The main idea of this approach is
that during a DDOS, a sufficient amount of attack packets
will trigger ICMP messages from the routers in the attack
tree T so that the victim can identify the leaves ofT from
these messages. The main drawback of this approach is that
it causes additional network traffic even when no DDOS is
present. Even so, it is not efficient, for identifying then leaf
nodes in the attack treeT requires, according to the analysis
of the coupon collectors problem (e.g., see Motwani and
Raghavan [10]), an expected number ofnHn/q packets are
needed to arrive at the victim, whereHn is then-th Harmonic
number. For example, ifn = 1000, then the expected number
of attack packets needing to arrive at the victimV beforeV
will have sufficient information to identify then leaves ofT
is 138 million.

D. Logging

In addition to the hop-by-hop and ICMP messaging ap-
proaches, several researchers have advocated a logging ap-
proach to the IP traceback problem. In a logging solution,
we either ask routers to log the packets they process or we
augment the data packets themselves to contain a full log of
all the routers they have encountered on their way to their
destinations. Stone [14] and Baba and Matsuda [2] advocate
logging of packet information at the routers, and Snoerenet
al. [12] propose the logging of message digests of packets at
the routers. The drawback with these approaches is that they
require additional storage at the routers.

E. Probabilistic Packet Marking

An intriguing alternative solution to the IP traceback prob-
lem is probabilistic packet marking. This traceback approach,
which we follow in this paper, can be applied during or after an
attack, and it does not require any additional network traffic,
router storage, or packet size increase.

Probabilistic packet marking was originally introduced by
Savageet al. [11]. In this approach to the IP traceback
problem, each routerX performs, for each packet it processes,
an information injection event that occurs with a set probability
p (e.g.,p = 1/20). The information injection involves usingb
bits in the IP header that are typically not used or changed
by routers (they identify the 16-bit IP identification field).
They use 5 bits of this field for a hop count, which helps
their reconstruction algorithm. The remaining bits are used
for the messageMX that the routerX wishes to send. If that
message is too big, they break it into fragments and use the
b−5 bits of usable IP header to store a fragment offset and its
data fragment. By then including a hash interleaved with the
messageMX , the victim can reconstructMX from the packets
it receives during the DOS attack. Their algorithm is quite
interesting, as it introduces the packet marking framework,
and does not requirea priori knowledge of the universal
treeU . But their algorithm, unfortunately, is not practical for
large distributed denial-of-service attacks. In particular, their
algorithm for reconstructing a messageMX from a router at
distanced from the victim requiresnl

d checksum tests, where
nd is the number of routers inT at distanced from V andl is
the number of fragments messages have been divided into (and
this bound generously assumes there are no “noise” packets
from the adversary). For example, ifnd = 30 and l = 8,
then the victim has to perform over 650 trillion checksum
tests in order to reconstruct each of the 30 messages. Such a
computation is, of course, not feasible for the victim, and even
if it were, it would introduce many false positives. Moreover,
this scheme is easily spoofed by an adversary who knows this
algorithm.

Song and Perrig [13] improve the performance of proba-
bilistic packet marking and suggest the use of hash chains for
authenticating routers. They also use a 5-bit distance field, but
they do not fragment router messages. Instead, they assume
the victim knows the universal treeU , and they include a
(b − 5)-bit XOR of hashed message authentication codes
(HMACs) from each routerX and its downstream neighborY .
Once a time-released key is revealed, which is a computation
performed out-of-band, the victim uses his/her knowledge of U
and the revealed keys to determine which routers have marked
the given packets. The computation proceeds breadth-first from
V , so that each phase requiresnd−1Nd HMAC tests, where
nd−1 denotes the number of routers inT at distanced − 1
from V andNd denotes the number of routers in the universal
graphU at distanced from V . For example, ifnd−1 = 50
and we conservatively estimate that the number of routers
in U at distanced is 100,000, then their algorithm would
perform 5 million HMAC tests to determine the routers at
distanced in T . Summing over distancesd = 5 to d = 25
(and assuming that near-by tests are faster), implies a total of
at least 100 million HMAC tests, which is several orders of
magnitude better than a similar reconstruction in the Savage et
al. approach. Such a computation is still a great effort for the
victim, of course, but it is at least feasible. Unfortunately, using
an 11-bit HMAC implies that over 45,000 of these tests will be
validated at random. Thus, the authentication aspects of their
algorithm has scalability issues in addition to the drawback of

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 3

requiring knowledge ofU .
Dean et al. [5] introduce an algebraic approach to prob-

abilistic packet marking, where a routerX will mark the
b reusable bits of a packet with probabilityp, as in the
previous schemes, but the marking information is the value of
a linear polynomial withX ’s identity as its leading coefficient.
Any subsequent routerY not initiating a similar computation
nevertheless changes theb-bits by performing an iteration of
Horner’s rule to create an evaluation of a new polynomial
having the IP addresses of the routers on the path fromX to Y
as its coefficients. Thus, in order to reconstruct each path in the
attack tree, the victim must perform polynomial interpolation
with noise on the packets it has received. Deanet al. identify
25 bits in the IP header that can be used for marking, namely,
16 bits from the ID field used in fragmentation (which is used
only 0.25% of the time), 8 type-of-service bits, and one flag
bit (which is also used in fragmentation). Unfortunately, their
interpolate-with-noise algorithms are complex and slow for
large distributed denial-of-service attacks.

Lee et al. [9] show how to add statistical analysis to
an existing probabilistic packet marking scheme, so that, in
addition to identifying the routers that are downstream from
attack hosts, they can estimate the average traffic rate for each
edge in the attack tree. Their scheme appears to work with any
probabilistic packet marking scheme, so combining it with our
approach should allow for traffic analysis of larger attack trees.

F. Our Results

In this paper we introduce a novel approach to probabilistic
packet marking, which we call therandomize-and-linkap-
proach, that greatly improves the practicality and security of
probabilistic packet marking. The main idea of our approachis
to have each routerX fragment its messageMX into several
words and include in theb reusable bits such a word fragment
at random together with a large checksumcord on the entire
messageMX . For example, ifb = 25, we may wish to include
14 bits of a checksum cord in every marked packet. Such an
approach to packet marking may at first seem counter-intuitive,
for we are apparently wasting a large amount of “real estate”
in the preciousb bits. But the checksum cords make the recon-
struction algorithm much more efficient. The checksum cords
serve both as associative addresses for the router messages
and also as partial integrity validators. They also spread the
spectrum of possible messages across a large domain, which
significantly reduces the ability of the adversary to interject
false messages that collide with legitimate ones. In addition, by
including reasonably-large HMAC information in the message
MX , we can achieve unpredictability for these checksum
cords, which makes the adversary’s job harder, while also
providing moderate-to-strong authentication of the routers in
the attack treeT . Moreover, our algorithms do not require
any knowledge of the universal treeU , and we avoid the
requirement of having routers sign individual setup messages
by employing authenticated dictionaries [1], [7] for the out-
of-band validations. In addition, our scheme can be deployed
incrementally—not all routers need be using our scheme in
order for it to work.

II. EFFICIENT PACKET MARKING

Let b denote the number of bits in the IP header that we can
safely use to encode information from a router. For example,
we may wish to useb = 25, as advocated by Deanet al. [5].
Indeed, we will useb = 25 as a running example throughout
most of this paper. Still, even if one does not use the 8 type-
of-service bits (which are being advocated for differentiated
services), we would still haveb = 17 (and we give some
examples using this value forb as well). In either case, we may
sometimes upset packet fragmentation, but the frequency of
fragmentation is arguably below typical packet loss rates [5].

A. High-Level View

Our scheme for sending toV the messageMX from each
routerX in the attack tree is based on using a technique that
we call randomize-and-link. The main idea of this technique
is to perform the following transformation onMX :

1) PadMX as needed to make|MX | a multiple ofl, which
is a parameter in our algorithm.

2) Compute a reasonably large (and statistically random)
checksumC = C(MX) on the sequenceMX . The
checksumC(MX) should utilize randomness in itself
or MX , so thatC(MX) is statistically random (like a
random hash function) and unpredictable to the adver-
sary.

3) BreakMX into a sequenceW of non-overlapping word
fragmentsM0, M1, M2, . . . , Ml−1.

4) Create a collection of blocks, which are used to over-
write theb bits, sobi = [i, C, Mi].

Thus, the block consists of an index, checksum cord, and a
message fragment. (See Figure 2.)

We use thesebi blocks to transmit the messageMX to the
victim V . These pieces are not sent in any particular order,
however. We callC = C(MX) thecord for MX , as it will be
used as both an associative address forMX and a checksum
to “link” all the pieces ofMX back together. Moreover, since
the cordC is statistically random and unpredictable to the
attacker, he cannot easily create false cords that would confuse
the reconstruction algorithm. This reconstruction algorithm is
therefore quite simple—given a collection ofbi’s with the
same cordC, a victim simply tries all possible ways of putting
the bi’s back together in the right order, using the checksum
property of the cordC to eliminate unintended sequences.
Once the victimV has a valid sequence ofbi’s correctly
constructed in order,V will have built the messageMX . We
give the details below. (See also Figure 3.)

B. Randomize-and-Link Transmission

As mentioned above, we assume that the IP header allows
the reuse of some of its bits for the purpose of information
marking by routers. We partition theb reusable bits in the IP
header as follows:

• ⌈log l⌉ bits for the fragment indexi
• c bits for the cord, which serves both as an associative

address and as a checksum
• h = b − c − ⌈log l⌉ bits for the data wordMi.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 4

M C
checksum

M1 M2 M3 M4 M5M0 M6 M7Fragments:

C 77 C M7
C 66 C M6

C 55 C M5
C 44 C M4

C 33 C M3
C 22 C M2

C 11 C M1
C 00 C M00

Message blocks:

Fig. 2. The message blocks in our packet marking scheme.

If B=1, chose a block
at random and inject

P:
1

bit

Version H. Length Type of Service (8 bits) Total Length

Fragment ID (16 bits) Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

C 77 C M7
C 66 C M6

C 55 C M5
C 44 C M4

C 33 C M3
C 22 C M2

C 11 C M1
C 00 C M00

Fig. 3. The block injection process. Potentially-reusablebits are shown shaded.

For example, ifb = 25 andl = 8, then we could use⌈log l⌉ =
3 bits for the indexi, c = 15 bits for the checksumC, and
h = 7 bits for each data wordMi.

We assume that either the functionC() or MX itself contain
a sufficient randomness so that the checksum valueC(MX) is
statistically random and unpredictable to the adversary. That
is, it is as unlikely as a random hash function with similar
output size forC(MX) = C(MY) for two different router
messagesMX and MY . In particular, we wantC(MX) to
be unpredictable to an adversary who knows only the value
of X (we assume the adversary does not know all ofMX).
For example, ifMX does not contain sufficient randomness
in itself, we could padMX with a random nonce.

We pad MX to have a size that is a multiple ofl and
we compute thec-bit checksum cordC = C(MX) on
MX , and we breakMX into a sequenceW of l words
M0, M1, M2, . . . , Ml−1 of length h bits each. We define a
set of l blocks b0, b1, . . . , bl−1 so thatbi = [i, C, Mi]. Note
that the cordC is included in every blockbi. Indeed, it is the
inclusion of the cordC that links the blocksbi together, as it
makesC an associative address for the blocks.

C. Packet Marking

Once we have the blocksb0, b1, . . . , bl−1 defined for a
messageMX , we proceed with probabilistic packet marking
in the natural way. Namely, we define a probability parameter
p (e.g., p = 1/20). With each packet thatX receives, we
“flip a coin” with probability p. If this coin comes up “tails”
(an event that occurs with probability1 − p), thenX simply
forwards the packet on to its destination as usual. Otherwise,
if the coin comes up “heads,” thenX chooses one of its blocks
bi at random, insertsbi into the reusable bits of this packet
(updating the header checksum as needed), and forwards this
revised packet on to its destination.

This packet marking process continues until we choose, for
timeliness reasons, to change the messageMX . At such a time

that we wish to change to a newMX , the routerX repeats
that above computation for thebi blocks for the new message.
The router then repeats the probabilistic packet marking for
this new set of blocks, until we decide yet another change is
needed. Thus, we keep very little state at a router in order to
implement the randomize-and-link packet marking scheme. A
router doesn’t even need to store the blocksb0, b1, . . . , bl−1,
so long as it has a fast way of generating abi at random.
Moreover, note that the computational overhead per packet is
very small. In the default case, when the “coin flip” is tails,the
router’s work is the same as if it were doing no packet marking
at all; hence, this scheme can be deployed incrementally.

D. Message Reconstruction

The message reconstruction algorithm is based on a simple
combinatorial process. Given a set of packets received at the
victim, we sort their b-bit blocks lexicographically by their
(C, i, Mi) values, and remove duplicates (interpreting values
according to the same format we used to store blocks in the IP
header). This sorting can be done, for example by a radix sort.
Thus, we have, for each distinct cordC, all the distinct blocks
for this cord ordered by theiri-index. We letPC,i denote the
set of distinct packets that have cordC and fragment index
i. We then try all combinatorial combinations of the blocks
in PC,0 ·PC,1 · · ·PC,l−1, computing a checksum for each. We
keep only those combinations that have a checksum equal to
the cordC. That is, we accept these strings as being strong
candidates as having been sent from the routers (although we
must recognize that some of these may have been sent by the
attacker). (See Figure 4.)

The total running time, then, for this reconstruction algo-
rithm at the victim is proportional to the following quantity:

N +
∑

C

l
∏

i=0

NC,i,

whereN is the total number of packets andNC,i is the number

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 5

C 77 C M7
C 66 C M6

C 5’5 C M’5
C 55 C M5

C 44 C M’4
C 3’’3 C M’’3

C 3’3 C M’3
C 33 C M3

(12 combinations)

M7M6

M5
M4M3’M2

M1’
M0

M3

M3’’

M1

M5’

C 22 C M2
C 1’1 C M’1

C 11 C M1
C 00 C M00

Fig. 4. The message-fragment combination process.

of distinct packets from this set with cordC and fragment
index i.

E. Two-Phase Fragmentation

In the above discussion, we argued how fragmenting a
message into small blocks indexed (that is, linked) by a
large statistically-random checksum cord can be an effective
means for sending a message to the victim that is longer
than b bits. In particular, fragmenting a message into two,
four, or eight word fragments can be an efficient way to send
a moderate-sized message to the victim (say, on the order
of 48 to 96 bits). Unfortunately, if we have a larger-sized
message (say, on the order of 128 or 192 bits), eight fragments
may not be sufficient to send the message and still utilize a
large checksum cord (which is needed for both security and
message reconstruction). We can iterate our randomize-and-
link approach, however, to send larger messages. We begin
as in our previous method. We take the messageM and
subdivide it intol words,M0, M1, . . . , Ml. This subdivision
should be done in such as way as to preserve in each word
Mi the same degree of randomness as is present globally in
the messageM . Still, in many cases where we wantM to
be reasonably large, we may observe that each wordMi is
too big to be transported with high confidence in a single data
block. So we further subdivide each wordMi into m subwords
Mi,0, Mi,1, . . . , Mi,m. Given the valuem and the size of the
subwords, we determine the number,c1, of checksum bits that
we can devote to sending the subwords in the first round (given
our fixed size ofb bits per block). We devoteb− c1−⌈logm⌉
bits to the data in each subwordMi,j . Thus, we can compose
subwords to form bigger blocks ofm(b − c1 − ⌈log m⌉) bits.
In order for these big blocks to have the same security as the
smaller blocks, we should devotec2 = c1 − ⌈log m⌉ bits to
a random checksum cord for each of them, just as we did in
our single-phase approach. This factor is due to the fact that
the probability of collision between two distinct packets in the
first round is1/m2c1 and this probability in the second round
is 1/lm2c2, since every round-two word was comprised ofm
round-one subwords. In addition, we must also devote⌈log l⌉
bits to a fragment number of each indexi. So, for each word
Mi we compute ac2-bit checksum cord we wish to use in
order to achieve high confidence of message transmission for
each word. (See Figure 5.)

Data transmission in the two-level scheme is as in the
one-level scheme, except that now when a router decides to
interject a message into a packet it chooses one of its many

subwords,Mi,j at random and interjects this. Reconstruction
of the message, of course, proceeds in two phases. In the first
phase we reconstruct all the candidate wordsMi and in the
second phase we reconstruct all the candidate messages. Thus,
the running time for message reconstruction in the two-phase
scheme is proportional to the following:

N +
∑

C

m
∏

i=0

MC,i +
∑

C

l
∏

i=0

NC,i,

whereN is the total number of packets the victim is using
for reconstruction,MC,i is the number of distinct phase-one
blocks from this set with cordC and fragment indexi, and
NC,i is the number of distinct phase-two blocks with cordC
and fragment indexi. In the analysis section that follows, we
show that these quantities can be quite reasonable, provided
that there are a sufficient number of bits devoted to the
checksum cords.

III. A NALYSIS

We begin our analysis by estimating the number of packets
that are needed for traceback in our single-phase method. Let
n denote the number of leaf routers in the attack treeT , and
recall thatl is the number of words in the messageMX each
routerX wishes to transmit to the victimV . Thus, the victim
wishes to receivenl distinct packets if we are to reconstruct
the messages from all the leaf routers inT .

Let p denote the probability that a router inserts its infor-
mation into a packet that it is routing. So,p(1 − p)d−1 is the
probability that a packet is marked and arrives unchanged from
a router that isd hops away fromV . If we conservatively as-
sume that all routers have their packets successfully delivered
with probability at least that of the farthest routers, thenwe
can safely estimate that the information from some leaf router
in the attack tree will be contained in a packet received by the
victim with probability at leastp(1 − p)d−1, whered is the
maximum hop-distance for any such router.

Since every router must successfully sendl different blocks
for all of its information to arrive at the victim, the expected
number of packets that must be received before all fragments
have been received is an instance of the coupon collectors
problem [10], where the number of “coupons” isnl and the
probability of receiving a marked packet is at leastp(1−p)d−1.
This observation implies that the expected number of packets
that must arrive at the victim before it can identify then leaf
routers ofT is at most

nlHnl

p(1 − p)d−1
,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 6

M C
1st checksum

1st Fragments:

C ii C Mii

Message i blocks:
Ci M3

Ci M2
Ci M1

Ci Mi,j0

Mi,1 Mi,2 Mi,3Mi,0

Ci

2nd checksum

For i=0 to 7:

2nd Fragments:

(for j=0 to 3)

M1 M2 M3 M4 M5M0 M6 M7

Fig. 5. The two-phase fragmentation scheme.

whereHn denotes then-th Harmonic number. Using a well-
known inequality forHn,

Hn < lnn + γ +
1

2n
,

where γ = 0.5772156649... is Euler’s constant. Thus, the
expected number of packets that must arrive atV before it can
perform a complete traceback ofn routers using our scheme
is at most

nl ln(nl) + γnl + 1

p(1 − p)d−1
.

For example, ifp = 1/20, d = 10, n = 1000, andl = 8, then
the expected number of needed packets to do reconstruction
of all the leaf router messages is76516, not considering the
minimum packet marking probability,p(1 − p)d−1. Dividing
this expectation by the minimum packet marking probability
in this case implies that the expected total number of packets
needed by the victim to do complete reconstruction of all
messages is at most2428118. Note that there are onlynl
distinct packets that come from the leaf routers in the attack
tree. The challenge for the attacker is that he cannot predict
the checksum cords; hence, it is unlikely that the packets that
get routed to the victim without marking (which occurs with
probability (1 − p)d) will be confused for marked packets.

The analysis of the two-phase version of the randomize-and-
link algorithm is similar to that given above for the single-
phase version. The main difference is that in the two-phase
algorithm we wish to receive, from each router,l words
subdivided intom subwords. That is, we wish to receivelm
packets from each leaf router inT . Thus, the expected number
of packets we have to receive in order to do complete traceback
is

nlmHnlm

p(1 − p)d−1
.

Let us address next the expected running time needed to
reconstruct all the messages received by the victim. We give
the analysis first for our single-phase algorithm, and we then
explain the slight differences for our two-phase algorithm.

The important observation in analyzing the expected run-
ning time of the message reconstruction algorithm is that, since

the checksum cords are statistically random, we can view the
mapping of messages to checksum indices as a random hash
function. Thus, the number of collisions among legitimate
messages should be small. Of course, the adversary might
construct lots of fake messages and then construct lots of
collisions with these messages, but let us ignore this possibility
for the time being (we will revisit this possibility shortly).

We begin with the reconstruction algorithm for our single-
phase scheme. LetN denote the number of distinct packets
the victim has received and letn denote the number of routers
in the attack tree. Since there arel pieces to each message
and each one has ac-bit checksum cord that is statistically
random, the probability that two random packets have the
same fragment indexi and cordC is 1/(l2c). In addition,
the probability that two router-sent packets have the same
fragment indexi and cordC is at most1/2c, since any router
wishing to send a message will send a packet with eachi-
index for the checksum cordC it is using. Thus, the expected
number of packets with the same fragment indexi and cordC
is at most⌈N/(l2c) + n/2c⌉. For any given cordC, then, the
running time for computing all combinatorial combinationsof
blocks with this cord is proportional toZ = Z0Z1 · · ·Zl−1,
whereZi is a random variable corresponding to the number
of packets with fragment indexi (for this checksum cord
C). Since theseZi’s refer to different fragment indices, they
are independent; hence, the expected value of their product
is equal to the product of their expected values. That is, the
expected running time for checking all the combinations fora
given checksum cordC is ⌈(N + ln)/(l2c)⌉l. Summing this
expectation over the at mostN possible cord values, we see
that the expected number of checksum tests in the message
reconstruction phase is

(

N

l

) ⌈

N + ln

l2c

⌉l

,

where theN/l bound comes from the fact that we have to
have at leastl different fragments for a given checksum cord
before we will have to perform an actual checksum test. So,
for example, ifN = 80000, l = 8, n = 1000, and c = 14,
then the expected number of checksum tests the victim must

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 7

make is only 10,000.
The adversary has little advantage in our two-phase algo-

rithm, as well, although the total number of packets needed
in this case is somewhat greater than in the single-phase
approach. Specifically, in the two-phase algorithm, each router
sends a total oflm fragments. The victim first assembles
these asm-length subwords, and then assembles thel words
produced from this reconstruction. If the first phase usesc1-bit
checksum cords and the second phase usesc2-bit checksum
cords, then the expected number of checksum tests is

(

N

m

) ⌈

N + nlm

m2c1

⌉m

+

(

N

lm

) ⌈

N + nlm

lm2c2

⌉l

.

The arguments justifying this bound are similar to those above,
but applied twice. So, for example, ifN = 80000, l = 8,
m = 4, n = 250, c1 = 14, and c2 = 12, then the expected
number of checksum tests the victim must make is 10,000.

Of course, the adversary may deliberately send false mes-
sages that have valid checksum cords according by our
scheme. But the number of such messages is limited, for
the adversary must be limited to the same coupon collector
bounds as the legitimate routers inT . To estimate the number
of such false messages, let us conservatively assume that the
probability that a packet arrives unchanged from the adversary
is equal to the probability that the victim receives a packet
marked by a router. Thus, the maximum number of false
messages the adversary can send is bounded byn, the number
of legitimate routers in the attack tree. Still, the adversary may
not only try to send us false message with valid checksum
cords. He may also send lots of extra packets that have
checksum cords that deliberately collide with each other, so
as to make us do extra wasteful work trying in vain to find
a combination of these word fragments that have a checksum
equal to this cord. Fortunately, as we show below, we can
apply a probabilistic packet filtering strategy to our algorithm
that significantly limits the amount of extra work the adversary
can force us to do in combining colliding word fragments.

We can derive a high-probability upper bound on the
running time of the message reconstruction algorithm, which is
useful for identifying improbably large numbers of collisions
that are most likely deliberately sent by the adversary in an
attempt to slow down our traceback algorithm. Armed with
this high-probability bound, we can safely discard packets
that define an improbably large number of collisions in re-
constructing the blocks for a specific cordC. Let us fix a
checksum cordC, and letY = Z0 + Z1 + · · · + Zl−1, where
Zi denotes the number of distinct blocks with fragment index
i and cordC. We will boundY and thereby derive a bound
on Z = Z0Z1 · · ·Zl−1. We will utilize the following Chernoff
bound (e.g., see Motwani and Raghavan [10]):

Theorem 1 ((Chernoff Bound Theorem)):Let Y be the sum
of independent indicator (0/1) random variables, and letµ
denote the expected value ofY . Then,

Pr(Y > (1 + δ)µ) <

(

eδ

(1 + δ)1+δ

)µ

.

Corollary 2: Let Y be the sum of independent indicator
(0/1) random variables, and letµ denote the expected value

Frag. Number,c, of Checksum Bits
scheme 9 10 11 12 13 14 15

2 56 52 48 44 40 36 32
3 104 96 88 80 72 64 56

2 + 2 188 168 148 128 108 88 68
3 + 2 380 344 308 272 236 200 164
3 + 3 760 688 616 544 472 400 328

Fig. 6. Message sizes for the given fragmentation schemes and checksum
lengths, assumingb = 25 is the bit length of individual blocks. A fragment
scheme identified by ”x” indicates a scheme withx number of bits used
to index fragments. A fragment scheme identified by “x + y” indicates a
two-phase fragmentation scheme where the first round usesx bits for the
fragment index and the second round usesy bits for the fragment index. We
index the checksum needs in the two-phase schemes byc1, since we can set
c2 = c1 − ⌈log l⌉.

of Y . For anyk > µ,

Pr(Y > k) <
ek−µµk

kk
.

Returning to our analysis, then, note thatY can be defined
as the sum of independent indicator random variables and that
the expected value ofY is E(Z0) + E(Z1) + · · · + E(Zl−1).
Thus, in the single-phase algorithm,E(Y) is lN/(l2c) +
ln/2c = (N + ln)/2c. Thus, we have:

Lemma 3:SupposeN ≤ l2c. Then, for any integerx ≥ 2,

Pr(Y > lx) <
exl−(N+ln)/2c

xxlll(x−1)
;

hence,

Pr(Z > xl) <
exl−(N+ln)/2c

xxlll(x−1)
.

Thus, we can bound with this same probability thatY > lx
the odds thatZ > xl. So, for example, ifl = 8, c = 15, x = 3,
n = 210, andN = 218, then the probability thatY > 24 is
less than1/248, which is a very small number. Thus, in this
example, we may safely discard the packets for any index
C that have more than24 packets. That is, we may safely
discard any subproblems that would cause us to perform more
than 38 = 6561 checksum tests. With high probability, such
a subproblem will not occur at random, so it most likely was
sent to us by the adversary in an attempt to make us do extra
unnecessary work in our single-phase traceback algorithm.A
similar analysis can be done for the two-phase algorithm.

A. Trading-Off Message and Cord Size

As we observed above, increasing the checksum size leads
to higher security. A large checksum makes the space of
possible messages addresses large, which in turn makes it
more difficult for the adversary to interject false messages
that collide with legitimate ones. Of course, this increased
security has a cost. Namely, as the checksum becomes larger,
the bits left over for the message must go down. Even so,
there are still several strong choices for checksum lengths
and fragmentation schemes that allow for message sizes long
enough to do authenticated IP traceback. We show in Figure 6
the maximum message size for various randomize-and-link
fragmentation schemes, assumingb = 25, and we show similar
information forb = 17 in Figure 7.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 8

Frag. Number,c, of Checksum Bits
scheme 8 9 10 11

3 48 40 32 24
2 + 2 80 60 40 20
3 + 2 160 124 88 52
3 + 3 320 248 176 104

Fig. 7. Message sizes for the given fragmentation schemes and checksum
lengths, assumingb = 17 is the bit length of individual blocks.

Frag. Number,n, of Routers in Attack Tree
scheme 50 100 250 500 1000

2 1176 2628 7486 16357 35486
3 2628 5810 16357 35486 76516

2 + 2 5810 12729 35486 76516 164122
3 + 1 5810 12729 35486 76516 164122
2 + 3 12729 27675 76516 164122 350424
3 + 2 12729 27675 76516 164122 350424
3 + 3 27675 59785 164122 350424 745208

Fig. 8. Expected upper bounds onN , the number of packets that need to be
received for various fragmentation schemes and number of routers,n, in the
attack tree. The volumes given are the expected number needed to cover all
the routers. To convert the presented numbers to an expectation that factors in
the marking probability, the above values should be dividedby p(1− p)d−1.

B. Sufficient Packet Volume

We have described the randomize-and-link strategy in a
general way, so as to allow for several possible message
sizes. But we should also recognize that reconstructing large
messages requires more packets. Moreover, the number of
needed packets also increases with the number of routers in the
attack tree. In order to keep the reconstruction algorithm fast,
we prefer that expected number of collisions between a given
packet and any other packet be less than2. The randomize-
and-link algorithm will still work for higher expectations,
but it is most efficient when the expected collision size is
less than2. Thus, we have worked out the needed packet
volume and checksum bit-length for various randomize-and-
link fragmentation schemes under various numbers of routers
in the attack tree. We provide this information in Figures 8
and 9.

We have performed an experimental simulation of our
scheme to test empirically the average number of packets that
must be received by a victim before it can identify all the leaf
routers in an attack treeT . We used a complete binary tree
for T and assumed that packets were being generated at attack

Frag. Number,n, of leaf routers inT
scheme 50 100 250 500 1000 2000

2 8 9 10 11 13 14
3 8 9 10 12 13 14

2 + 2 10 11 13 14 15 16
3 + 1 9 10 12 13 14 15
2 + 3 11 12 14 15 16 17
3 + 2 10 11 13 14 15 16
3 + 3 11 12 14 15 16 17

Fig. 9. The checksum sizes needed for the different randomize-and-link
fragmentation schemes, assuming various values of the number of leaf routers,
n, in the attack tree. The checksum sizes given are the number needed to force
the expected collision size to be less than2. For the two-phase schemes, the
checksum size is given for the first round, since its checksumneeds are higher.

hosts uniformly at random. Experiments were performed to
test the average number of packets needed by a victim to
identify all of 1000 attack hosts that were 10 hops away, for
varying values of the marking probabilityp. Average packet
frequencies are reported in Figure 10 for the total number
of packets and the number of unmarked packets. Note that,
for high probabilities, most packets are marked, but not by
leaf nodes inT , while, for low probabilities, most packets are
unmarked. Fortunately, the results show that as long as the
probability is roughly equal to the inverse of the distance to
the attack hosts, the number of total packets needed to identify
all the leaves ofT is reasonable.

Average Number of Necessary Packets per Marking Probability

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25

Marking Probability

Total

Unmarked

Fig. 10. Average packet frequencies needed to identify 1000leaves in a
binary attack treeT with depth10, for various marking probabilities. Each
frequency is averaged over 100 runs of the experiment.

IV. ROUTER IDENTIFICATION AND AUTHENTICATION

In this section, we discuss how our packet marking algo-
rithm could fit into a complete IP traceback scheme. This
discussion is not meant to be exhaustive, however, as the
randomize-and-link approach only specifies the length of the
information that is sent from the routers in an attack tree
to the victim. The main point we want to make in the
following discussion, then, is to show how the randomize-
and-link strategy can be used to create a traceback method that
scales to thousands of routers, that does not require the victim
know the universal treeU , and that can authenticate routers
without requiring them individually to sign setup messages.

As mentioned above, our general approach is based on the
existence of a messageMX that a routerX will transmit so
that it includesX ’s identity. That is,MX includesX ’s 32-
bit IP address. Additionally, if we want to learn edges of the
attack treeT , as opposed to simply learning the names of
all the leaf routers inT , we can optionally have each router
X also include inMX the name of its downstream router in
T , which would add another 32 bits toMX . This identity and
optional topology information, of course, does not provideany
additional randomness or authentication information toMX ,
as is needed by the security needs of a good randomize-and-
link traceback scheme. Fortunately, there are several waysthat
we can simultaneously add randomness and authentication to
MX . Before we describe one of these ways, however, let us
briefly review the main cryptographic tool that this method is
based on.

A. Authenticated Dictionaries

One possible authentication scheme utilizes an authenticated
dictionary for some portions of the task of authenticating

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 9

routers. An authenticated dictionary [1], [7] consists of a
trusted source and many untrusted directories. The trusted
source produces and maintains a dictionary database,D, of
objects, stored as key-value pairs,(k, o), while the directories
answer key-value queries forD on behalf of client users. In
requesting a key-value query, a client provides a keyk and
asks the directory to return the objecto in D that hask as its
key. If there is such an object, then the directory returns it. If,
on the other hand, there is no object with keyk in D, then
the directory returns a special “no-such-object” value. Ineither
case, in addition to the answer a directory gives, a directory
also provides a cryptographic proof of that answer, which
validates (subject to standard cryptographic assumptions) that
the answer is current and is as accurate as if it had come
directly from the source. There is a small (usually logarithmic)
overhead incurred for this cryptographic proof, but it allows
the source to be offline during the request. In addition, by
deploying many directories widely dispersed in the network,
using an authenticated dictionary allows us to reduce response
latency and the effectiveness of a denial-of-service attack
on the authenticated dictionary itself (for such an attack
would have to target all of the directories simultaneously). We
describe below how authenticated dictionaries can be used in
various traceback schemes to allow for strong authentication
of routers without requiring them to sign any setup messages
individually.

B. HMAC with Individual Key Exposure

One way to do router authentication is to determine, for each
router X , a sequence of secret keysKX,0, KX,1, Then,
with a messageMX intended for a victimV , the routerX
includes a hashed message authentication code (HMAC) of
h(V ||KX,t), whereh is a one-way cryptographic hash function
andt is a time-quantum counter that is of sufficient granularity
that we can assume rough synchronization between routers
and the victim. We includeV in the HMAC so as to reduce
the possibility of a replay attack. We reveal the keyKX,t for
each routerX in time quantumt + 2. The revelation is done
using an authenticated dictionary for each autonomous system
(AS), whose source is the administrator of the AS. Indeed, we
assume this administrator distributed the secret keys to his or
her routers in the first place. To determine the amount of extra
space this scheme adds to the messageMX , note that we did
not include the packet’s source address in the HMAC, as is
done, for example, in a previous scheme [13], for this value
is set by the adversary. Thus, there is no risk of a birthday
attack for our hash functionh, as its data is fixed forV and
the current time quantumt. This scheme will therefore add
32, 48, or 64 bits toMX depending on whether we want fair,
moderate, or strong authentication ofX .

a) HMAC with Messaged Key Exposure:An alternate
scheme to the previous authentication method is to utilize a
sequence of secret keys,KX,0, KX,1, ..., as before, but include
KX,t−2 in MX during time quantumt. In this way, the router
X itself reveals the secret key used in the HMAC. In this
case, we should create the sequence of keys themselves as a
hash chainusing a one-way cryptographic hash function,g,

so thatKX,i = g(KX,i+1). Then we need only storeKX,0

in the authenticated dictionary forX ’s autonomous system.
For given any revealedKX,t, the victim can determine the
authenticity of this key by performingt applications of the
function g. Thus, this approach reduces the work required of
the AS administrator, so that rather than revealing keys with
each time quantum, the administrator now just needs to reveal
the base of each router’s hash chain. The trade-off is that we
now are including more information inMX . Namely, we are
adding 64, 96, or 128 bits toMX , depending on whether we
want fair, moderate, or strong authentication ofX . In addition,
since the keys are determined through a hash chain, we now
require the victim to performt hash computations for every
router in the attack tree. This effort can be significant if the
number of routers inT is over1000.

V. D ISCUSSION ANDCONCLUSION

We have presented a new approach to IP traceback based
on the probabilistic packet marking paradigm. Our approach,
which we call randomize-and-link, uses large checksum cords
to link message fragments in a way that is highly scalable, for
the cords serve both as associative addresses and data integrity
verifiers. For example, with a 12-bit checksum cord we can
use a single-phase randomize-and-link scheme to produce an
80-bit message that contains a router’s 32-bit IP address and
a 48-bit combination HMAC. Such a scheme would allow for
fast and efficient message reconstruction for up to 500 routers
in the attack treeT . If we wish to traceback efficiently attacks
that are targeting a victim through a larger attack tree, we could
use a 16-bit initial checksum cord in a two-phase randomize-
and-link strategy (using 8 subwords in phase one and 4 words
in phase two) that produces a 128-bit message. Such a message
could contain a routerX ’s IP address, the IP address of the
downstream neighbor ofX , and a 64-bit HMAC (collective or
individual). Or such a message could containX ’s IP address, a
48-bit HMAC, and a 48-bit key revelation. In either case, using
a 16-bit checksum cord with a two-phase scheme producing a
128-bit message would allow for fast and efficient traceback
for attack trees of size up to 2000 routers. In general, our
methods do not require that a victim know the topology of the
universal treeU , we do not require that routers sign any setup
messages individually, and we allow for incremental adoption
(for the default router action is to process packets in the same
way as a non-participating router).

Acknowledgments

We thank Maithili Narasimha, Dawn Song, and Gene Tsudik
for helpful discussions related to this paper. A preliminary
version of this paper was announced in [6]. This work was
supported by DARPA grant F30602-00-2-0509 and NSF grants
CCR-0225642, CCR-0311720, and CCR-0312760.

REFERENCES

[1] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent
authenticated dictionaries and their applications. InProc. Information
Security Conference (ISC 2001), volume 2200 ofLNCS, pages 379–393.
Springer-Verlag, 2001.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY2007 10

[2] T. Baba and S. Matsuda. Tracing network attacks to their sources.IEEE
Internet Computing, 6(2):20–26, 2002.

[3] S. M. Bellovin. ICMP traceback messages. InWork in Progress, Internet
Draft draft-bellovin-itrace-00.txt, March 2000.

[4] H. Burch and B. Cheswick. Tracing anonymous packets to their
approximate source. InUsenix LISA (New Orleans) Conference, pages
313–322, 2000.

[5] D. Dean, M. Franklin, and A. Stubblefield. An algebraic approach to
IP traceback. InNetwork and Distributed System Security Symposium
(NDSS), pages 3–12, 2001.

[6] M. T. Goodrich. Efficient packet marking for large-scaleIP traceback.
In 9th ACM Conf. on Computer and Communications Security (CCS),
pages 117–126, 2002.

[7] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an
authenticated dictionary with skip lists and commutative hashing. In
Proc. 2001 DARPA Information Survivability Conference andExposi-
tion, volume 2, pages 68–82, 2001.

[8] J. Ioannidis and S. M. Bellovin. Implementing pushback:Router-
based defense against DDoS attacks. InProceedings of Network and
Distributed System Security Symposium. The Internet Society, 2002.

[9] T. K. T. Law, D. K. Y. Yau, and J. C. S. Lui. You can run, but you can’t
hide: An effective statistical methodology to trace back ddos attackers.
IEEE Transactions on Parallel and Distributed Systems, 16(9):799–813,
2005.

[10] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge
University Press, New York, NY, 1995.

[11] S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson. Practical
network support for IP traceback. InSIGCOMM, pages 295–306, 2000.

[12] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer. Hash-based IP traceback. InProc. of
the ACM SIGCOMM 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, 2001.

[13] D. Song and A. Perrig. Advanced and authenticated marking schemes
for IP traceback. InIEEE Infocomm, 2001.

[14] R. Stone. Centertrack: An IP overlay network for tracking DoS floods.
In Proc. of 9th USENIX Security Symposium, August 2000.

Michael T. Goodrich received his PhD in Computer
Sciences from Purdue University in 1987, and is a
professor of computer science at UC-Irvine, where
he also serves as director of the Center of Cyber-
Security and Privacy. Dr. Goodrich’s research is di-
rected at the design of high performance algorithms
and data structures for solving large-scale problems
motivated from information assurance and security,
the Internet, information visualization, and geomet-
ric computing. He has pioneered and led research
on efficient parallel and distributed solutions to a

number of fundamental problems, including sorting, convexhull construc-
tion, segment intersection reporting, fixed-dimensional linear programming,
polygon triangulation, Voronoi diagram construction, anddata authentication.

