
Probabilistic Path Queries in Road Networks: Traffic
Uncertainty Aware Path Selection∗

Ming Hua
Facebook Inc.

Palo Alto, CA, USA
arceehua@facebook.com

Jian Pei
Simon Fraser University, Canada

Burnaby, BC, Canada
jpei@cs.sfu.ca

ABSTRACT
Path queries such as “finding the shortest path in travel
time from my hotel to the airport” are heavily used in many
applications of road networks. Currently, simple statistic
aggregates such as the average travel time between two ver-
tices are often used to answer path queries. However, such
simple aggregates often cannot capture the uncertainty in-
herent in traffic. In this paper, we study how to take traffic
uncertainty into account in answering path queries in road
networks. To capture the uncertainty in traffic such as the
travel time between two vertices, the weight of an edge is
modeled as a random variable and is approximated by a set
of samples. We propose three novel types of probabilistic
path queries using basic probability principles: (1) a prob-
abilistic path query like “what are the paths from my hotel
to the airport whose travel time is at most 30 minutes with
a probability of at least 90%?”; (2) a weight-threshold top-k
path query like “what are the top-3 paths from my hotel to
the airport with the highest probabilities to take at most 30
minutes?”; and (3) a probability-threshold top-k path query
like “what are the top-3 shortest paths from my hotel to
the airport whose travel time is guaranteed by a probabil-
ity of at least 90%?” To evaluate probabilistic path queries
efficiently, we develop three efficient probability calculation
methods: an exact algorithm, a constant factor approxima-
tion method and a sampling based approach. Moreover, we
devise the P* algorithm, a best-first search method based on
a novel hierarchical partition tree index and three effective
heuristic evaluation functions. An extensive empirical study
using real road networks and synthetic data sets shows the
effectiveness of the proposed path queries and the efficiency
of the query evaluation methods.

∗This research is supported in part by an NSERC Discovery
Grant and an NSERC Discovery Accelerator Supplement
Grant. All opinions, findings, conclusions and recommen-
dations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

1. INTRODUCTION
How often do you search for driving directions online by

asking path queries on road networks such as “finding the
shortest path in travel time from my hotel to the airport”?
Thanks to a few emerging techniques for traffic monitor-
ing such as roadside sensors and cell phone signal analysis,
more and more traffic data about road networks becomes
available. Currently, using online services such as Google
maps and Yahoo! maps, simple statistic aggregates such as
the average travel time between two vertices are often used
to answer path queries. However, such simple aggregates
often cannot sufficiently capture the uncertainty inherent in
traffic.

At the data collection level, roadside sensors are often used
to count traffic volumes, measure vehicle speeds, or classify
vehicles. The actual travel time along a road segment can be
derived from such sensor readings. However, data collected
from sensors as such cannot be accurate all the time due to
the limitations of equipment and delay or loss in data trans-
fer. Therefore, confidence values are often assigned to those
data, based on the specific sensor characteristics, the pre-
dicted value, and the physical limitations of the system [12].
Moreover, different vehicles have different speeds. There-
fore, the travel time along each road segment derived from
sensor readings is inherently uncertain and probabilistic.

At the model level, while a road network is certain, uncer-
tainty is inherent in travel time on the road network. Travel
time is often represented as weights of edges in a road net-
work. To capture the uncertainty, the weight on an edge can
be modeled as a random variable. In practice, a weight ran-
dom variable can be approximated by a set of samples where
each sample takes a membership probability to be the rep-
resentative. We call such a network incorporating uncertain
traffic information an uncertain traffic network.

Does uncertainty affect path queries in a road network?

Example 1 (Probability and paths). Suppose in
an uncertain traffic network, from point A to point B
there are two paths, P1 and P2. The set of travel time
samples (in minutes) of P1 is {35, 35, 38, 40} and the set of
samples of P2 is {25, 25, 48, 50}. Should each sample take a
membership probability of 25%, the average travel time on
both P1 and P2 is 37 minutes. Which path is better?

If a user wants to make sure that the travel time is no
more than 40 minutes, path P1 is better since according
to the samples, it has a probability of 100% to meet the
travel time constraint, while path P2 has a probability of
only 50% to meet the constraint. On the other hand, if a
user wants to go from A to B in 30 minutes, path P2 should

347

be recommended since the path has a probability of 50% to
make it while P1 has no chance to make it.

Example 1 clearly shows that answers to path queries in
an uncertain traffic network depend on the distributions of
weight variables and users’ constraints. We need to extend
the traditional path queries in classical road networks to
fully utilize the rich traffic information available in an un-
certain traffic network.

Example 2 (Probabilistic path queries). Suppose
multiple paths exist from point A to point B in an un-
certain traffic network. Taking the uncertainty of travel
time into consideration, path queries may be extended to
probabilistic path queries such as “what are the paths
from my hotel to the airport whose travel time is at most
30 minutes with a probability of at least 90%?”

In a large road network, there can be many paths between
two points. A user is often not interested in all answers
to a path query. Instead, the top-k paths in a ranked list
are highly desirable. Since we have two constraints in a
probabilistic path query, the travel time and the probability,
there are two types of top-k probabilistic path queries.

First, a user can constrain the travel time and rank paths
in probability descending order in a weight-threshold top-
k path query, such as “what are the top-3 paths from my
hotel to the airport with the highest probabilities to take at
most 30 minutes?”

Second, a user can constrain the probability and rank
paths in travel time ascending order in a probability -
threshold top-k path query, such as “what are the top-3
shortest paths from my hotel to the airport whose travel
time is guaranteed by a probability of at least 90%?”

Although answering traditional path queries in road net-
works has been studied extensively, answering probabilistic
path queries on uncertain traffic network is challenging.

Challenge 1: How can path queries be asked in
an intuitive and useful way in uncertain traffic net-
works? As illustrated in Example 1, path queries in an
uncertain traffic network are more complicated when traf-
fic uncertainty is considered. Therefore, we need to extend
path queries properly in uncertain traffic networks.

Our contribution. We model an uncertain traffic net-
work as a simple graph with probabilistic weights on edges.
Correlations among probabilistic weights are considered.
Moreover, we propose three types of probabilistic path
queries as elaborated in Example 2. The queries are based
on simple probability principles and the answers can be un-
derstood easily.

Challenge 2: How to answer probabilistic path
queries efficiently in uncertain traffic networks? A
straightforward method is to compute the probability dis-
tribution of the travel time on every path from the source
point to the destination point. However, in a large road
network, the number of paths can be huge. Moreover, com-
puting the distribution of travel time itself on a long path
consisting of many edges is costly.

There has been much existing work on path queries in
probabilistic graphs, such as stochastic shortest paths [9,
20], routing with probabilistic graphs [11], and stochastic on-
time arrival problem (SOTA) [6]. However, the above meth-
ods cannot be extended straightforwardly to answer proba-
bilistic path queries on real road networks due to the follow-

ing two reasons. First, they often adopt a simple probabilis-
tic graph model, where all probabilistic weights of edges are
independent from each other, or only some particular types
of correlations are considered. Second, path query evalua-
tion in real road networks is computationally challenging.
Pre-computation is often used to reduce the evaluation cost.
Without considering pre-computation, the above methods
may not scale well in real road networks.

Path queries on certain (deterministic) traffic networks
have been studied extensively [26, 27, 13, 25]. However,
uncertainty is not considered in those studies. Therefore,
those query answering methods and indices cannot be easily
extended to the probabilistic path queries discussed in this
paper.

Our contribution. We address the problem of proba-
bilistic path query answering in large scale probabilistic road
networks. First, we propose three algorithms to compute the
distribution of travel time given a set of correlated proba-
bilistic edge weights. The exact algorithm explores the con-
ditional independency among edge weights. A constant fac-
tor approximation algorithm and a sampling based method
approximate the probability distribution of path weights ef-
ficiently.

Second, we develop the P* algorithm, a best-first search
method for efficient path search in probabilistic graphs.
Three heuristic evaluation functions are proposed to help
select the best path during the search. Moreover, to sup-
port efficient P* search in large scale uncertain traffic net-
works, a hierarchical partition tree is devised to index the
graph structure and probability distribution information in
probabilistic road networks.

The rest of the paper is organized as follows. In Section 2,
we define probabilistic path queries formally. We review the
related work in Section 3. We discuss an exact probability
calculation algorithm and two approximation methods in
Section 4. We devise P*, a best-first search algorithm in
Section 5. To handle large scale uncertain traffic networks,
a hierarchical index is developed in Section 6. A systematic
empirical evaluation is reported in Section 7. The paper is
concluded in Section 8.

Limited by space, we omit all mathematical proofs in the
paper. The proofs are available at http://www.cs.sfu.ca/

~jpei/publications/edbt10proof.pdf.

2. PROBABILISTIC PATH QUERIES
In this section, we model uncertain traffic networks as

probabilistic graphs and define probabilistic path queries.
To keep our discussion simple, we consider undirected simple
graphs only in this paper. However, our discussion can be
extended to directed graphs straightforwardly.

2.1 Probabilistic Graphs and Paths
A probabilistic graph G(V, E, W) is a simple graph

with probabilistic weights on edges, which consists of a set
of vertices V , a set of edges E ⊆ V ×V , and a set of weights
W defined on edges in E. For each edge e ∈ E, we ∈ W is a
real-valued random variable in (0, +∞), denoting the travel
time along edge e.

Theoretically, the distribution of we can be captured by
a probability density function (PDF for short) we(x).
In practice, we(x) is often unavailable. Instead, a set of
samples bwe = {x1, . . . , xm} is used to approximate the dis-
tribution of we, where each sample xi > 0 (1 ≤ i ≤ m)

348

takes a membership probability Pr[bwe = xi] ∈ (0, 1] to
appear. Moreover,

Pm
i=1 Pr[bwe = xi] = 1. In the rest of the

paper, to keep our presentation simple, we write bwe as we

as well if no ambiguity, and call a sample xi ∈ bwe as the
sample of the edge.

we is a discrete random variable whose probability mass
function (pmf for short) is fe(xi) = Pr[we = xi]. The
cumulative distribution function (cdf for short) of we

is Fe(xi) = Pr[we ≤ xi].
A simple path P is a sequence of non-repeated vertices

〈v1, . . . , vn+1〉, where ei = (vi, vi+1) is an edge in E (1 ≤ i ≤
n). v1 and vn+1 are called the start vertex and the end
vertex of P , respectively. For the sake of simplicity, we call
a simple path a path in the rest of the paper. Given two
vertices u and v, the complete set of paths between u and v
is denoted by Pu,v.

For two paths P = 〈v1, . . . , vn+1〉 and P ′ =
〈vi0 , vi0+1, . . . , vi0+k〉 such that 1 ≤ i0 ≤ n+1−k, P is called
a super path of P ′ and P ′ a subpath of P . Moreover, P =
〈P1, P2, . . . , Pm〉 if P1 = 〈v1, . . . , vi1〉, P2 = 〈vi1+1, . . . , vi2〉,
. . . , Pm = 〈vim−1+1, . . . , vn+1〉, 1 < i1 < i2 < · · · < im−1 ≤
n. Pj (1 ≤ j ≤ m) is called a segment of P .

The weight of path P = 〈v1, . . . , vn+1〉 is the sum of the
weights of all edges in P , that is wP =

Pn
i=1 wei , where

wei is the weight of edge ei = (vi, vi+1) with probability
mass function fei(x). Since each wei is a discrete random
variable, wP is also a discrete random variable. A sample
of P is xP =

Pn
i=1 xi, where xi (1 ≤ i ≤ n) is a sample of

edge ei = (vi, vi+1). We also write xP = 〈x1, . . . , xn〉 where
x1, . . . , xn are called the components of xP .

The probability mass function of wP is

fP (x) = Pr[wP = x]

=
X

x1+...+xn=x

Pr[we1 = x1, . . . , wen = xn] (1)

In road networks, the travel time on a road segment e may
be affected by the travel time on other roads connecting with
e. Therefore, the weights of adjacent edges in E may be cor-
related. Among all edges in path P , the correlation between
the weights wei and wei+1 of two adjacent edges ei and ei+1

(1 ≤ i ≤ n) can be represented using different methods,
depending on the types of correlations. To keep our dis-
cussion general, in this paper we represent the correlation
between wei and wei+1 using the joint distribution over the
sample pairs (xi, xi+1) ∈ wei ×wei+1 . The joint probabil-
ity mass function of wei and wei+1 is fei,ei+1(xi, xi+1) =
fei+1,ei(xi+1, xi) = Pr[wei = xi, wei+1 = xi+1]. Cor-
respondingly, the conditional probability of wei given

wei+1 is fei|ei+1(xi|xi+1) =
fei,ei+1 (xi,xi+1)

fei+1 (xi+1)
.

Theorem 1 (Path weight mass function). The
probability mass function of a simple path P = 〈v1, . . . , vn+1〉
(ei = (vi, vi+1) for 1 ≤ i ≤ n) is

fP (x) =
X

x1+...+xn=x

Qn−1
i=1 fei,ei+1(xi, xi+1)Qn−1

j=2 fej (xj)
(2)

In sequel, the cumulative distribution function of wP

is

FP (x) = Pr[wP ≤ x] =
X

0<xi≤x

fP (xi) (3)

We call FP (x) the x-weight probability of path P .

A

B D

EC
(a) A graph.

Edge Weight: value (probability)

ei xi1 xi2 xi3

e1:AB 10(0.3) 15(0.3) 20(0.4)

e2:AC 5(0.2) 10(0.3) 15(0.5)

e3:BD 20(0.4) 25(0.4) 30(0.2)

e4:BE 5(0.2) 25(0.6) 40(0.2)

e5:CE 10(0.5) 20(0.1) 45(0.4)

e6:DE 10(0.3) 20(0.6) 50(0.1)

(b) Probabilistic weights of edges.

20 25 30

10 0.15 0.15 0

15 0.15 0.15 0

20 0.1 0.1 0.2

(c) fe1,e3(x1i, x3j).

10 20 50

20 0.1 0.2 0.1

25 0.1 0.3 0

30 0.1 0.1 0

(d) fe3,e6(x3i, x6j).

Figure 1: A probabilistic graph.

Example 3 (Probabilistic graph and paths). A
probabilistic graph is shown in Figure 1, where the weight
of each edge is represented by a set of samples and their
membership probabilities.

Path P = 〈A, B, D, E〉 consists of edges AB, BD and DE.
The joint probabilities of (wAB , wBD) and (wBD, wDE) are
shown in Figures 1(c) and 1(d), respectively. The probabil-
ity that wP = 45 is

Pr[wP = 45]
= Pr[we1 = 15, we3 = 20, we6 = 10]

+Pr[we1 = 10, we3 = 25, we6 = 10]

=
fe1,e3 (15,20)×fe3,e6 (20,10)

fe3 (20)
+

fe1,e3 (10,25)×fe3,e6 (25,10)

fe3 (25)

= 0.075

2.2 Path Queries
Let us formulate the probabilistic path queries elaborated

in Example 2.

Definition 1 (Probabilistic path queries). Given
probabilistic graph G(V, E, W), two vertices u, v ∈ V ,
a weight threshold l > 0, and a probability threshold
τ ∈ (0, 1], a probabilistic path query Qτ

l (u, v) finds all
paths P ∈ Pu,v such that FP (l) ≥ τ .

There can be many paths between two vertices in a large
graph. Often, a user is interested in only the “best” paths.
Thus, we define weight- and probability-threshold top-k
path queries.

Definition 2 (Top-k probabilistic path queries).
Given probabilistic graph G(V, E, W), two vertices u, v ∈ V ,
an integer k > 0, and a weight threshold l > 0, a weight-
threshold top-k path query WTQk

l (u, v) finds the k paths
P ∈ Pu,v with the largest FP (l) values.

For a path P , given a probability threshold τ ∈ (0, 1], we
can find the smallest weight x such that FP (x) ≥ τ , which
is called the τ-confident weight, denoted by

F−1
P (τ) = min{x|x ∈ wP ∧ Pr[wP ≤ x] ≥ τ} (4)

A probability-threshold top-k path query PTQk
τ (u, v)

finds the k paths P ∈ Pu,v with the smallest F−1
P (τ) val-

ues.

349

Example 4 (Path Queries). In the probabilis-
tic graph in Figure 1, there are 4 paths between A
and D, namely P1 = 〈A, B, D〉, P2 = 〈A, B, E, D〉,
P3 = 〈A, C, E, B, D〉, and P4 = 〈A, C, E, D〉. Suppose the
weights of all edges are independent in this example.

Given a weight threshold l = 48 and a probability thresh-
old τ = 0.8, a probabilistic path query Qτ

l finds the paths
whose weights are at most 48 of probability at least 0.8.
According to the cumulative distribution functions of the
paths, we have FP1(48) = 0.92, FP2(48) = 0.14, FP3(48) =
0.028, and FP4(48) = 0.492. Thus, the answer is {P1}.

The weight-threshold top-3 path query WTQ3
l (A, D) finds

the top-3 paths P having the largest 48-weight probability
values FP (48). The answer to WTQ2

l (A, D) is {P1, P4, P2}.
The probability-threshold top-3 path query PTQ3

τ (A, D)
finds the top-3 paths P having the smallest 0.8-confidence
weights F−1

P (0.8). Since FP1(40) = 0.7 and FP1(45) =
0.92, the smallest weight that satisfies FP (x) ≥ 0.8 is 45.
Thus, F−1

P1
(0.8) = 45. Similarly, we have F−1

P2
(0.8) = 75,

F−1
P3

(0.8) = 105, and F−1
P4

(0.8) = 75. Therefore, the answer

to PTQ2
τ (A, D) is {P1, P2, P4}.

To keep our presentation simple, hereafter we call proba-
bilistic path queries, weight- and probability-threshold top-
k queries as path queries, WT top-k queries, and PT
top-k queries, respectively.

3. RELATED WORK
Our study is related to the previous work about path

queries on probabilistic graphs and on traffic networks. Both
problems have been studied extensively. However, to the
best of our knowledge, there is no work on extending prob-
abilistic graphs to traffic networks.

3.1 Path Queries on Probabilistic Graphs
The shortest path problem on probabilistic graphs has

been studied under various constraints. For example,
Frank [9] studied the shortest path queries on probabilistic
graphs, where the weight of each edge is a random variable
following a certain probability distribution. A Monte Carlo
simulation method is proposed to approximate the probabil-
ity distribution of the shortest path. Loui [20] extended [9]
by defining a utility function which specifies the preference
among paths. More recently, Rasteiro and Anjo [23] studied
the problem of optimal paths in directed random networks,
where the cost of each arc is a real-valued random variable
following Gaussian distribution, and the optimal path is a
path that maximizes the expected value of a utility function.

Stochastic shortest path search [8, 21, 6, 7] is to find a
path between two end nodes and maximize the probability
that the path length does not exceed a given threshold. It
is also referred to as the “stochastic on-time arrival problem
(SOTA)”. SOTA has the same semantics as the WT top-
1 queries (a special case of WT top-k queries discussed in
this paper). However, Nikolova et al. [21] only considered
some particular parametric weight distribution (such as the
Normal distribution and the Poisson distribution). In ad-
dition, there have been other formulations of the optimal
routing problem with probabilistic graphs. Ghosh et al. [11]
developed an optimal routing algorithm that generates an
optimal delivery subgraph so that the connectivity between
two end nodes is maximized. Chang and Amir [5] computed

the most reliable path between two end nodes when each
edge has a failure probability.

Our work here is different from the above studies in the
following three aspects.

First, the probabilistic graph models are different. Many
existing studies focus on simple probabilistic graphs, where
probabilistic weights are independent from each other, such
as [9, 6]. Moreover, some methods only work for cer-
tain probability distributions, such as the Normal distribu-
tion [21]. Last, the existing studies only consider certain
types of correlations, such as the dependence with a global
hidden variable [5]. Our model considers arbitrary weight
distributions and correlations between the weights of adja-
cent edges. Our model is more capable and flexible for real
road networks.

Second, the path queries are different. Most of the above
studies focus on the optimal path query, where a utility func-
tion is adopted to evaluate the optimality of paths. How-
ever, as discussed in Section 1, using a single simple aggre-
gate as the utility score may not capture traffic uncertainty
sufficiently, since the probability of optimality is often very
small. To tackle the problem, we propose probabilistic path
queries and two new types of top-k path queries.

Last, the query answering techniques are different. We
propose a novel best-first search algorithm for probabilistic
path queries. Moreover, we develop a hierarchical partition
tree to index the road network structure and weight distribu-
tion information. Our query answering methods are efficient
and scalable thanks to the two techniques.

3.2 Path Queries on Certain Traffic Networks
The shortest path queries on traffic networks have been

studied extensively before. Please see [10] for a nice survey.
The well known A* algorithm [15] uses a heuristic evalua-

tion function f(x) = g(x) + h(x) to measure the optimality
of the path currently under exploration, where g(x) is the
cost from the start vertex to the current vertex, and h(x)
is the heuristic estimation of the distance to the goal. The
paths with a smaller f(x) score are explored earlier.

Sanders and Schultes [26, 27] proposed a “highway hier-
archy” for large scale traffic networks, which captures the
key edges that are on the shortest paths between two far
away vertices. Then, the shortest path search is restricted
to those key edges.

Bast et al. [2, 3] introduced a concept of “transit” node
to preprocess traffic networks. A transit node is on a set of
non-local shortest paths. The distance from every vertex in
the network to its closest transit node is computed to help
the shortest path search.

Gonzalez et al. [13] mined important driving and speed
patterns from historical data to help to compute the fastest
paths on traffic networks. A road hierarchy is built based
on different classes of roads. Frequently traversed road seg-
ments are preferred in the path search.

In addition, Kurzhanski and Varaiya [19] considered a
model that allows correlations between links for the reach-
ability problem. More studies on the hierarchical approach
for searching shortest path include [29, 4, 25].

The above studies tackle the path queries in large scale
certain traffic networks. Therefore, both the graph models
and the query types are different from our work. Thus,
those techniques cannot be extended straightforwardly to
probabilistic path queries on uncertain road networks.

350

wDE wBD=20givenDistribution of

20 (0.09375) 30 (0.1875) 60 (0.09375)
w B

D
=

20
gi

ve
n

w A
B

20 (0.25)

10 (0.375)

20 (0.5) 50 (0.25)10 (0.25)

15 (0.375) 25 (0.09375) 35 (0.1875) 65 (0.09375)

30 (0.0625) 40 (0.125) 70 (0.0625)

D
is

tr
ib

ut
io

n
of

Figure 2: The weight constrained region of P1 =
〈A, B, D, E〉 when wBD takes sample 20.

Moreover, although hierarchical indices have been exten-
sively used in path queries on certain traffic networks, the
existing index techniques only work for certain path queries.
In this paper, we develop a hierarchical partition tree to in-
dex the weight probability distributions on graphs.

4. PROBABILITY CALCULATION
There are two orthogonal issues in answering a path query

Qτ
l (u, v): the l-weight probability calculation and the path

search. In this section, we first discuss how to compute the
exact l-weight probabilities for paths. Then, two approxima-
tion algorithms are developed. We also present a straightfor-
ward depth-first path search method. An efficient best-first
path search algorithm will be introduced in Section 5.

4.1 Exact l-Weight Probability Calculation

Example 5 (l-weight constrained region). Let
l = 55 and τ = 0.5. Consider path query Qτ

l (A, E) and path
P = 〈A, B, D, E〉 in the probabilistic graph in Figure 1.

P contains three edges, e1 = (A, B), e3 = (B, D) and
e6 = (D, E). The joint probabilities fe1,e3 and fe3,e6 are
given in Figures 1(c) and 1(d), respectively, which specify
the correlation between edges. Weights we1 and we6 are
conditionally independent given we3 .

The conditional probability of we1 given we3 = 20 is

fe1|e3(x|20) =
fe1,e3 (x,20)

fe3 (20)
=

�
0.375, x = 10 or x = 15;
0.25, x = 20.

The conditional probability of we6 given we3 = 20 is

fe6|e3(x|20) =
fe6,e3 (x,20)

fe3 (20)
=

�
0.25, x = 10 or x = 50;
0.5, x = 20.

The probability that wP is at most l when we3 = 20 is

Pr[wP ≤ 55|we3 = 20]

=
X

x1+20+x3≤55

Pr[we1 = x1, we3 = 20, we6 = x3]

= fe3(20)
X

x1+x3≤35

fe1|e3(x1|20) · fe6|e3(x3|20)

The sets of samples and their membership probabilities
of fe1|e3(x1|20) and fe6|e3(x3|20) are {10(0.375), 15(0.375),
20(0.25)} and {20(0.25), 20(0.5), 50(0.25)}, respectively. We
sort the samples in the weight ascending order.

There are in total 3 × 3 = 9 samples on we1 × we6 when
we3 = 20. To enumerate all samples, we can build a 3 × 3
sample array M as shown in Figure 2. Cell M [i, j] stores two
pieces of information: (1) M [i, j].ws is the sum of the i-th
sample of we1 and the j-th sample of we6 ; and (2) M [i, j].pr

is the membership probability of sample M [i, j].ws which
equals the product of the corresponding membership prob-
abilities. For example, the lowest left-most cell M [1, 1] cor-
responds to a sample where we1 is 10 and we6 is 10. Thus,
M [1, 1].ws = 10 + 10 = 20 and M [1, 1].pr = 0.375× 0.25 =
0.09375.

When we3 takes sample 20, in order to satisfy wP1 ≤ 55,
the samples of we1 + we6 should take values of at most 35.
Those samples are at the left-lower part of the array. We
call the region of those cells the l-weight constrained region
when we3 = 20. The sum of the membership probabilities
of the cells in the region is 0.375.

The l-weight constrained region when we3 takes other
samples can be calculated similarly. When we3 = 25 and
we3 = 30, the sum of the membership probabilities of the
cells in the l-weight constraint regions are 0.09375 and 0, re-
spectively. FP1(55) = fe3(20)× 0.375 + fe3(25)× 0.09375 +
fe3(30)× 0 = 0.1875 < τ . P1 is not an answer to Qτ

l .

The idea in Example 5 can be generalized to paths of
arbitrary length.

Theorem 2 (Path weight distribution). Let Pm =
〈v1, . . . , vm+1〉, Pm−1 = 〈v1, . . . , vm〉 and em = (vm, vm+1)
(m > 2), the conditional probability of wPm given wem is

fPm|em(x|y) =
X

z≤x−y

fem−1|em(z|y)× fPm−1|em−1(x− y|z)

(5)
Moreover, the probability mass function of wPm is

fPm(x) =
P

y≤x fem(y)× fPm|em(x|y) (6)

For a path Pm = 〈v1, . . . , vm+1〉, the probability function
of wPm can be calculated from wPm−1 and wem using The-
orem 2. Calculating the probability mass function of Pm

requires O(|wPm−1 | · |wem |) = O(
Q

e∈Pm
|we|) time.

Interestingly, if only FPm(l) is required, we do not need to
use all samples in an edge weight. Apparently, the largest
sample we can take from wei (1 ≤ i ≤ m) is bounded by the
following rule.

Lemma 1 (Sample components). For weight thresh-
old l and path P = 〈v1, . . . , vm+1〉, a sample xij of edge ei =
(vi, vi+1) (1 ≤ i ≤ m) can be a component of a sample of P
in the l-weight constrained region only if xij ≤ l−Pi′ 6=i xi′1 ,

where xi′1 is the smallest sample of edge ei′ = (vi′ , vi′+1).

4.2 Approximating l-Weight Probabilities
The probability mass function of FPm+1(l) can be calcu-

lated from the distributions on fPm|em and fem |fem+1 ac-
cording to Theorem 2. To accelerate probability calcula-
tion, we introduce an approximation method that keeps a
constant number of samples in the weight distribution of
any subpath during the search.

If wPm contains n > 2t samples x1, · · · , xn (t is a user
defined parameter), then, we divide those values into b ex-
clusive buckets φi = [xzi , xz′i], where for 1 < k ≤ b and
1 ≤ i ≤ b,

z1 = 1
zk = z′k−1 + 1;

z′i = max
j≥zi

{j|FPm|em(xj |y)− FPm|em(xzi |y) ≤ 1

t
}

(7)

351

The number of buckets is at most 2t, as shown in the
following lemma.

Lemma 2 (Number of buckets). Given wPm with n
samples (n > 2t > 0), let φi = [xzi , xz′i] (1 ≤ i ≤ b) be b
exclusive buckets satisfying Equation 7. Then, b ≤ 2t.

Constructing the buckets only requires one scan of all val-
ues in wPm . The minimal value in bucket φi = [xzi , xz′i] is

min(φi) = xzi , and the maximal value in φi is max(φi) =
xz′i . When computing the probability distribution of wPm+1

using wPm , we only select one value in each bucket φi ⊂ wPm

as the representative, and assign Pr(φi) to the representa-
tive. If min(φi) is selected as the representative, then the so
computed F ′Pm+1

(l) is greater than FPm+1(l); if max(φi) is

used as the representative, then the so computed F ′′Pm+1
(l)

is smaller than FPm+1(l).

Example 6 (Bucket Approximation). Consider
path Pm and edge em. Let fPm|em(xj |y) = 0.2 for
1 ≤ j ≤ 5. If t = 2, then all values in wPm are divided into
three buckets: [x1, x2], [x3, x4], [x5, x5], with probabilities
0.4, 0.4 and 0.2, respectively.

If the minimal value of each bucket is used as a repre-
sentative, then x1, x3 and x5 are selected. As a result, the
calculated F ′Pm+1

(l) is greater than the actual FPm+1(l).
If the maximal value of each bucket is used as the rep-

resentative, then x2, x4 and x5 are selected. The l-weight
constrained region of Pm+1 is decreased. So the calculated
F ′′Pm+1

(l) is smaller than the exact value of FPm+1(l).

Therefore, the average value of F ′Pm+1
(l) and F ′′Pm+1

(l)

can be used to approximate FPm+1(l). The following lemma
guarantees the approximation quality.

Lemma 3 (Approximation quality). Given a real
value l > 0 and an integer t > 0, let {φi = [xzi , xz′i]}
be a set of buckets of wPm . Let F ′Pm+1

(l) and F ′′Pm+1
(l)

be the l-weight probabilities computed using {min(φi)} and
{max(φi)}, respectively. Then, F ′Pm+1

(l) − F ′′Pm+1
(l) ≤

1
t
. Moreover, Let bFPm+1(l) =

F ′Pm+1
(l)+F ′′Pm+1

(l)

2
. Then,

| bFPm+1(l)− FPm+1(l)| ≤ 1
2t

.

After obtaining the approximate probability distribution
of wPm+1 , we can further divide the approximate wPm+1

into buckets, and compute the approximate probability dis-
tribution of wPm+2 . By applying the bucket approximation
iteratively, we finally obtain an approximate l-weight prob-
ability of path Pwith quality guarantee as follows.

Theorem 3 (Overall approximation quality).
Given a real value l > 0, an integer t > 0, and a path

P = 〈v1, . . . , vm+1〉 containing m edges, let bFP (l) be the ap-
proximate l-weight probability computed using the iterative

bucket approximation. Then | bFP (l)− FP (l)| ≤ m−1
2t

.

The complexity is analyzed as follows. Lemma 2 shows
that there are at most 2t buckets constructed in the approx-
imation. Therefore, approximating fPi+1(x) from fPi and
fei(x) (i ≥ 2) takes O(t× |wei |) time. The overall complex-
ity of approximating fm+1(x) is O(t

P
2≤i≤m |wei |).

4.3 Estimating l-Weight Probabilities
The l-weight probability of a path can also be estimated

using sampling. For a path P = 〈v1, . . . , vm+1〉, let XP be
a random variable as an indicator to the event that wP ≤ l.
XP = 1 if wP ≤ l; XP = 0 otherwise. Then, the expectation
of XP is E[XP] = FP (l).

To estimate E[XP], we draw a set of samples uniformly
with replacement. Each sample unit s is an observation of
the path weight, generated as follows. At first, s is set to
0. Then, for edge e1 ∈ P , we choose a value x1 in we1

following the probability distribution fe1(x). Then, for each
edge ei ∈ P (2 ≤ i ≤ m), we choose a value xi in wei

following the probability distribution fei|ei−1(x|xi−1). The
chosen value is added to s. Once the weight values of all
edges are chosen, we compare s with l. If s ≤ l, then the
indicator XP for s is set to 1, otherwise, it is set to 0.

We repeat the above procedure until a set of samples S
are obtained. The mean of XP in S is ES [XP], which can
be used to estimate E[XP]. If the sample size is sufficiently
large, the approximation quality is guaranteed using with
the well known Chernoff-Hoeffding bound [1].

Theorem 4 (Sample size). Given a path P , for any
δ (0 < δ < 1), ε (ε > 0), and a set of samples S of P , if

|S| ≥ 3 ln 2
δ

ε2
, then Pr{|ES [XP]− E[XP]| > ε} ≤ δ.

The complexity of estimating E[XP] is O(|S| · |P |), where
|S| is the number of samples drawn and |P | is the number
of edges in P .

4.4 A Depth First Search Method
Straightforwardly, the depth-first path search

method can be used to answer a path query Qτ
l (u, v).

The search starts at u. Each time when a new vertex vi is
visited, the weight probability mass function of the path
P = 〈u, . . . , vi〉 is calculated using one of the three methods
discussed in this section. If vi = v and FP (l) ≤ τ , then P is
added to the answer set.

Since weights are positive, as more edges are added into a
path, the l-weight probability of the path decreases. There-
fore, during the search, if the current path does not satisfy
the query, then all its super paths should not be searched,
since they cannot be in the answer set.

Lemma 4 (Monotonicity). Given a path P and its
subpath P ′, and a weight threshold l > 0, FP (l) ≤ FP ′(l).

The overall complexity of the depth-first path search al-
gorithm is O(

P
P∈P C(P)), where P is the set of visited

paths and C(P) is the cost of the l-weight probability calcu-
lation. If the exact method is used, then C(P) =

Q
e∈P |we|.

If the bucket approximation method is used, then C(P) =
4t×Pe∈P |we|, where t is the bucket parameter. If the sam-
pling method is used, then C(P) = |S| × |P |, where |S| is
the number of samples and |P | is the number of edges in P .

The method can be extended to answer top-k path queries
as following. To answer a WT top-k path query, the proba-
bility threshold τ is set to 0 at the beginning. Once a path
between u and v is found, we compute its l-weight proba-
bility, and add the path to a buffer. If the buffer contains
k paths, we set τ to the smallest l-weight probability of the
paths in the buffer. During the search, when a new path
is found between u and v and satisfying the threshold τ , it

352

is added into the buffer. At the same time, the path in the
buffer with the smallest l-weight probability is removed from
the buffer. τ is updated accordingly. Therefore, during the
search, the buffer always contains at most k paths. At the
end of the search, the k paths in the buffer are returned.

A PT top-k path query can be answered following the
similar procedure. We set the weight threshold l = +∞
at the beginning. During the search, a buffer always stores
at most k found paths between u and v with the smallest
τ -confident weights. l is set to the value of the smallest τ -
confident weight of the paths in the buffer. The k paths
in the buffer at the end of the search are returned as the
answers.

Limited by space, hereafter, we focus on answering prob-
abilistic path queries and omit the details for top-k path
query evaluation.

5. P*: A BEST FIRST SEARCH METHOD
Although the approximation algorithms developed in Sec-

tion 4 can accelerate the probability calculation, it is still
computationally challenging to search all paths in real road
networks. In this section, we present the P* algorithm,
a best-first search algorithm for efficient probabilistic path
query evaluation.

P* carries the similar spirit as the A* algorithm [15]. It
iteratively visits the next vertex that is most likely to be
an answer path using a heuristic evaluation function, and
stops when the rest unexplored paths have no potential to
satisfy the query. However, the two algorithms are critically
different due to the different types of graphs and queries.

A* is used to find the shortest path between two vertices
u and v in a certain graph. Therefore, the heuristic eval-
uation function for each vertex vi is simply the sum of the
actual distance between u and vi and the estimated distance
between vi and v.

P* aims to find the paths between two vertices u and v
that satisfy the weight threshold l and probability threshold
p in a probabilistic graph with complex correlations among
edge weights. Therefore, the heuristic evaluation function
for each vertex vi is the joint distribution on a set of cor-
related random variables. This posts serious challenges in
designing heuristic evaluation functions and calculation.

In this section, we first explain the intuition of the P*
algorithm. Then, we design three heuristic evaluation func-
tions that can be used in the P* algorithm. In Section 6,
a hierarchical index is developed to support efficient query
answering using the P* algorithm.

5.1 The P* Algorithm
To answer a probabilistic path query Qτ

l (u, v), we search
the paths from vertex u. The situation during the search
is illustrated in Figure 3. Generally, before we decide to
visit a vertex vi, we want to evaluate how likely vi would
be included in an answer path. Suppose P1 is the explored
path from u to vi, and P2 is an unexplored path from vi to
v. Then, the l-weight probability of the path P from u to v
that contains P1 and P2 can be determined as follows.

Theorem 5 (Super path probability). Let P1 =
〈u, . . . , vi〉, P2 = 〈vi, . . . , v〉 such that (P1 ∩ P2 = {vi})
and e = (vi−1, vi). The l-weight probability of super path

vu

P2unexplored path

actual Pr w =x P]1 1[estimated P2 2[Pr w =x |w =ye]

P1

eedge

vvi−1 i

explored path

Figure 3: P* search process.

P = 〈u, . . . , vi, . . . , v〉 is

FP (l) =
X

x1+y+x2≤l

fP1,e(x1, y)× fP2|e(x2|y) (8)

In Equation 8, fP1,e(x1, y) can be easily calculated ac-
cording to Theorem 2. It also can be computed using the
approximation methods discussed in Section 4. However,
fP2|e(x2|y), the probability distribution of P2 given edge e,
is unknown.

The objective of P* is to find a good heuristic estimate
hP2|e(x2|y) for fP2|e(x2|y), such that FP (l) can be estimated
before visiting vi. Then, the vertex with the highest esti-
mated FP (l) is visited next. The estimated FP (l) is used as
a heuristic evaluation function of vertex vi:

∆(vi, l) = F̂P (l) =
X

x1+y+x2≤l

fP1,e(x1, y)× hP2|e(x2|y) (9)

In order to answer a query Qτ
l (u, v), P* starts from u.

For any vertex vi adjacent to u, P* calculates ∆(vi, l) and
puts vi into a priority queue. Each time, P* removes the
vertex vi with the highest ∆(vi, l) from the priority queue.
After vi is visited, the ∆ scores of other vertices are updated
accordingly. A path P is output if v is reached and FP (l) ≥
τ . The algorithm stops if the priority queue is empty, or the
∆ scores of the vertices in the priority queue are all smaller
than τ .

In order to guarantee that P* finds all answer paths, the
heuristic evaluation function should satisfy the following re-
quirement.

Theorem 6 (Heuristic evaluation function).
P* outputs all answer paths if and only if for any path
P = 〈u, . . . , vi, . . . , v〉, ∆(vi, l) ≥ FP (l).

∆(vi, l) is called a valid heuristic evaluation function
if ∆(vi, l) ≥ FP (l).

5.2 Heuristic Estimates
It is important to find a good heuristic estimate

hP2|e(x2|y) so that the evaluation function ∆(vi, l) is valid
and close to FP (l). In this subsection, we first present two
simple heuristic estimates that satisfy Theorem 6. Then,
we derive a sufficient condition for valid heuristic estimates,
and present a more sophisticated heuristic estimate.

5.2.1 The Constant Estimate
Trivially, we can set

hP2|e(x2|y) =

�
1, x2 ≥ 0;
0, otherwise.

353

Then, the evaluation function becomes

∆(vi, l) =
X

x1+y≤l

fP1,e(x1, y) = FP1(l)

In this case, at each step, P* always visits the vertex vi

that maximizes the l-weight probability of P1 = 〈u, . . . , vi〉.
The subpaths 〈u, . . . , vj〉 whose current l-weight probabili-
ties are smaller than τ are pruned.

Example 7 (The constant estimate). Consider
the probabilistic graph in Figure 1. To answer a
query Q0.3

15 (A, E), the search starts from A. Using
the constant estimate, the evaluation functions for B
and C are ∆(B, 15) =

P
x1≤15 fAB(x1) = 0.6, and

∆(C, 15) =
P

x1≤15 fAC(x1) = 1.0. Since ∆(C, 15) is larger,
C should be explored first.

The constant estimate is easy to construct. But clearly,
it does not consider the relationship between the current
vertex and the unvisited end vertex v.

5.2.2 The Min-Value Estimate
To incorporate more information about the unexplored

paths into decision making, we consider the minimal possible
weights from the current vertex vi to the end vertex v. We
construct a certain graph G′ with the same set of vertices
and edges as the uncertain graph G. For each edge e, the
weight of e is the minimal value in we of G. Let lmin

i be the
weight of the shortest path between vi and v, excluding the
visited edges. We set the estimation function

hP2|e(x2|y) =

�
1, x2 = lmin

i ;
0, otherwise.

The evaluation function becomes

∆(vi, l) =
P

x1+y+lmin
i ≤l fP1,e(x1, y)× hP2|e(l

min
i |y)

=
P

x1+y≤l−lmin
i

fP1,e(x1, y)

= FP1(l − lmin
i)

The search algorithm always visits the vertex vi that max-
imizes the (l − lmin

i)-weight probability of P1 = 〈u, . . . , vi〉.
The subpaths 〈u, . . . , vj〉 whose (l − lmin

j)-weight probabili-
ties are smaller than τ are pruned.

Example 8 (The min-value estimate). Consider
the probabilistic graph in Figure 1 and query Q0.3

15 (A, E)
again. Using the min-value estimate, we construct a certain
graph G′ with weights wAB = 5, wAC = 5, wBD = 20,
wBE = 5, wCE = 10, and wDE = 10.

The shortest distance from B to E among the unvis-
ited edges in G′ is 5. The evaluation function for B is
∆(B, 15) =

P
x1≤15−5 fAB(x1) = 0.3. The shortest dis-

tance from C to E in G′ is 10. The evaluation function for
C is ∆(C, 15) =

P
x1≤15−10 fAC(x1) = 0.2. Since ∆(B, 15)

is larger, B should be explored first. Moreover, there is no
need to visit C further because ∆(C, 15) < τ .

Compared to the constant estimate, the min-value es-
timate considers more information about the unexplored
paths, and gives a priority to the vertices that are closer to
the end vertex v and more likely to satisfy the query. The
drawback of the min-value estimate is that it does not con-
sider the probabilistic distribution of the paths not explored
yet. Next, we tackle this weakness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Weight

CDF(e_opt)
CDF(BD)
CDF(DE)
CDF(BE)

(a) CDF of weopt .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

Weight

CDF(P_opt)
CDF(BDE)

(b) CDF of wPopt .

Figure 4: CDFs of “virtual optimal” edges and
paths.

5.2.3 The Stochastic Estimate
How can we incorporate into the heuristic estimates the

probability distribution information of the paths not ex-
plored yet? Let P2 = {P21 , . . . , P2m} be all paths from vi to
v that do not contain any visited vertices except for vi. We
can construct a “virtual path” Popt = 〈vi, . . . , v〉 such that
for any real number x and P2i ∈ P2, FPopt(x) ≥ FP2i

(x).

Definition 3 (Stochastic order [24]). For two
random variables r1 and r2 with distribution functions
Fr1(x) and Fr2(x), respectively, r1 is smaller than r2 in
stochastic order if for any real number x, Fr1(x) ≥ Fr2(x).

Popt stochastically dominates all paths in P2, if wPopt

is smaller than any wPj (1 ≤ j ≤ m) in stochastic order.
An example is shown in Figure 4(b). Popt stochastically
dominates 〈B, D, E〉. The following theorem shows that Popt

can be used to define a valid heuristic evaluation function.

Theorem 7 (Sufficient condition). Let
P2 = {P21 , . . . , P2m} be all paths between vi and v in
graph G. For a path Popt = 〈vi, . . . , v〉, if Popt stochastically
dominates all paths in P2, then

∆(vi, l) =
X

x1+y+x2≤l

fP1,e(x1, y)× fPopt(x2)

is a valid heuristic evaluation function for P*.

More than one Popt can be constructed. Here we present
a simple three-step construction method that ensures the
resulting path is a stochastically dominating path for P2.

Step 1: Constructing the path. We find the path P2i in P2

with the least number of edges. Let n be the number of edges
in P2i . We construct n−1 virtual vertices v̂1, . . . , v̂n−1. Let
Popt = 〈vi, v̂1, . . . , v̂n−1, v〉. Thus, Popt has the least number
of edges among all edges in P2.

For example, in the probabilistic graph in Figure 1, there
are two paths between B and E: P1 = 〈B, E〉 and P2 =
〈B, D, E〉. Since P1 only contains one edge, the path Popt

should also contain only one edge.

Step 2: Assigning edge weights. Let E be the set of edges
in P2. We want to construct the weight of an edge eopt in
Popt such that eopt stochastically dominates all edges in E .

We construct weopt as follows. At the beginning, we set
weopt = ∅. Then, we represent each sample x ∈ we (e ∈ E)
as a pair (x, Fe(x)). We sort all samples in value ascending
order. If there are two samples having the same value, we
only keep the sample with the larger cumulative probability.

354

We scan the samples in the sorted list. If weopt = ∅, then
we add the current sample (x, Fe(x)) into weopt . Otherwise,
let (x′, Feopt(x

′)) be the sample with the largest value x′ in
weopt . We add the current sample (x, Fe(x)) into weopt if
x > x′ and Fe(x) > Feopt(x

′). Last, we assign weight weopt

to each edge ei ∈ Popt (1 ≤ i ≤ n).

Example 9 (Assigning edge weights). Consider
the probabilistic graph in Figure 1. There are
two paths between B and E: P1 = 〈B, E〉 and
P2 = 〈B, D, E〉. E = {BD, DE, BE}. The probabil-
ity mass function of the constructed weight weopt is
{5(0.2), 10(0.1), 20(0.6), 30(0.4)}. weopt is smaller than
wBD, wDE and wBE in stochastic order. The weight
cumulative distribution functions of those edges are shown
in Figure 4(a).

Step 3: Assigning the path weight. Since wPopt =P
1≤i≤n wei , the distribution of wPopt depends on the

marginal distribution of wei and the correlations among
wei ’s. If the correlations among edges are explicitly rep-
resented, then we just construct wPopt according to the cor-
relation function.

In most cases, the correlation functions among weights are
not available. In such a case, we construct a path weight
wPopt that stochastically dominates all possible weights
given the same we1 , . . . , wen , as defined in the following rule,
which follows with Lemma 1 immediately.

Theorem 8 (Upper bound). For path Popt contain-
ing edges e1, . . . , en, let xmin

i be the smallest sample of weight
wei , and lmin =

P
1≤i≤n xmin

i . Then,

FPopt(l) ≤ min
1≤i≤n

{Fei(l − lmin + xmin
i)}.

Therefore, for any value l, we assign

FPopt(l) = min
1≤i≤n

{Fei(l − lmin + xmin
i)}.

The heuristic evaluation function is

∆(vi, l) =
X

x1+y+x2≤l

fP1,e(x1, y)× fPopt(x2).

Example 10 (Assigning path weights).
Continuing Example 9, since Popt only contains one
edge, the probability distribution of Popt is the same as
that of eopt.

As another example, suppose Popt contains two edges e1

and e2 with the same weight weopt . How can we calcu-
late the probability distribution of Popt? The sum of the
minimal samples of we1 and we2 is 10. Then, FPopt(20) is
min{Fe1(20 − 10) = 0.3, Fe2(20 − 10) = 0.3} = 0.3. The
cumulative distribution function of Popt is shown in Fig-
ure 4(b).

Using the stochastic estimate, in each step, the search al-
gorithm visits the vertex vi whose heuristic evaluation func-
tion using optimal virtual path Popt is the largest. However,
constructing Popt requires enumerating all possible paths
from vi to v, which is computationally prohibitive. There-
fore, in the next section, we discuss how to approximate
Popt using a hierarchical partition tree index in large road
networks.

l l
F

I

A

B

C

D

E

G

H

l2
l3

(a) A graph partitioning.

l1

Root

N1 N2

l3l2 N5 N6N4N3

l4 l5 l6 l7

F G H

N14N7 N8 N9 N10 N12 N13N11

(b) A hierarchical partition tree.

Figure 5: Graph partitioning and HP-tree.

6. A HIERARCHICAL INDEX FOR P*
In this section, we introduce a hierarchical partition tree

to index the vertices of a graph and maintain the information
of weight probability distribution for efficient query answer-
ing using the P* algorithm.

6.1 HP-Tree Index
A graph partitioning divides the vertices of a graph

into subsets of about the same size, such that there are few
edges spanning between subsets [18]. Each subset can be
partitioned recursively. In general, an m-partitioning re-
cursively partitions a graph such that at each step a subset
is partitioned into m smaller subsets (unless there are less
than m vertices in a subset), until each subset has at most
d vertices, where d ≥ 1 is a user specified parameter.

Figure 5(a) illustrates a 2-partitioning on a graph, where
all vertices are divided into two subsets at the first level,
separated by line l1. Among the vertices on the left of l1,
only A and B are connected to the vertices on the right
subset. A and B are called the border vertices. Similarly,
C, D and E are the border vertices in the right subset. The
left subset is further partitioned into two smaller subsets by
line l2, and the right subset is further partitioned into two
smaller subsets by l3.

Given a graph G and an m-partition H on G, a hierar-
chical partition tree (HP-tree for short) is an m-nary
tree that indexes the vertices in G according to H. Each
leaf node in an HP-tree represents a vertex, and each non-
leaf node represents a set of vertices. Figure 5(b) shows the
HP-tree corresponding to the 2-partitioning in Figure 5(a).
Please note that not all leaf nodes are drawn.

An HP-tree can be constructed top-down starting from
the root which represents the complete set of vertices in
graph G. Then, the graph is partitioned recursively. If we
apply a linear time heuristic graph partitioning method [14],
then constructing an HP-tree using m-partitioning takes
O(n logm

n
d
) time.

6.2 Approximating the Min-Value Estimate
To approximate a min-value estimate, we store auxiliary

information for each node in an HP-tree as follows. For each
leaf node NL representing a vertex v and its parent node N
associated with a set of vertices VN , we compute the weight
of the shortest path between v and each border vertex of
VN . The smallest weight is stored in NL. Then, for node
N and each of its ancestor nodes NA, let VA be the set of
vertices associated with NA. We compute the shortest paths
between each border vertex of VN and each border vertex of
VA. The smallest weight is stored in N .

355

For example, in the HP-tree shown in Figure 5(b), F is
a leaf node, and we store the smallest weight of shortest
paths from F to the border vertices of N7, which is w1 in
Figure 5(a). Then, for node N7, we compute the smallest
weight of the shortest paths between any border vertex in
N7 and any border vertex in N3. Since N7 and N3 share
a common border vertex I, the smallest weight is 0. The
smallest weight of the shortest paths between N7 and N1 is
w2 in Figure 5(a).

The min-value estimate for a vertex u can be approxi-
mated as follows. Let Nu and Nv be the parent node of u and
v, respectively. Let N be the lowest common ancestor node
of Nu and Nv. Then, the weight of any path between u and v
is at least w(u, Nu)+w(Nu, N)+w(v, Nv)+w(Nv, N), where
w(u, Nu) and w(v, Nv) are the smallest weight from u and
v to Nu and Nv, respectively, and w(Nu, N) and w(Nv, N)
are the smallest weight from Nu and Nv to N , respectively.
Searching the lowest common ancestor node of two vertices
takes O(logm

n
d
) time.

For example, in Figure 5(b), the lowest common ancestor
node of F and G is the root node, which is partitioned by l1.
Thus, the weight of the shortest path between F and G is
at least w1 + w2 + w3 + w4. It can be used as the min-value
estimate of F with respect to the end vertex G.

6.3 Approximating the Stochastic Estimate
To approximate the stochastic estimate, we store two

pieces of information for each node in the HP-tree.
For each leaf node NL representing a vertex v and its

parent node N associated with a set of vertices VN , we first
compute the shortest path between v and each border vertex
in VN . The number of edges is stored in leaf node NL. Then,
we compute a weight stochastically dominating all weights
in VN , and store it as the “optimal weight” of the node.

For an intermediate node N and each of its ancestor nodes
NA, let VA be the set of vertices associated with NA. We
first compute the shortest edge paths between each border
vertex of VN and each border vertex of VA. The number
of edges in the path is stored in N . Second, we compute a
weight that stochastically dominates all weights of the edges
between the border vertices in VN and VA. It is stored as
the “optimal weight” of the node.

Therefore, the stochastic estimate can be approximated by
slightly changing the three steps in Section 5.2.3 as follows.
In the first step, in order to find the smallest number of
edges from a vertex vi to v, we compute the lower bound
of the least number of edges. Second, instead of finding an
edge weight that stochastically dominates all edges in P2,
we use the optimal weights stored in nodes. The third step
remains the same. In this way, we can compute a path that
has a smaller number of edges and weights that dominate
all weights in Popt.

6.4 Maintaining HP-Trees
An HP-tree can be maintained incrementally as edge

weights change. For each node in an HP-tree that contains
a set of edges, an optimal weight stochastically dominating
all edge weights is stored. The optimal weight can be con-
structed using a set of (value, probability) pairs that are
the skyline points among the (value, probability) pairs of all
edges. Therefore, the optimal weight in a sliding window
can be maintained using any efficient skyline maintenance
algorithms for streams, such as [28].

7. EXPERIMENTAL RESULTS
In this section, we report a systematic empirical study.

All experiments were conducted on a PC computer with
a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a
160 GB hard disk, running the Microsoft Windows XP Pro-
fessional Edition operating system. Our algorithms were
implemented in Microsoft Visual Studio 2005. The graph
partitioning algorithm in METIS 4.0.1 (http://glaros.
dtc.umn.edu/gkhome/views/metis) and Dijkstra’s Short-
est Path Algorithm in the Boost C++ Libraries (http:
//www.boost.org/) were used in the implementation of HP-
trees.

7.1 Experiment Setup
We tested the efficiency, the memory usage, the approxi-

mation quality, and the scalability of the algorithms on the
following five real road network data sets (available at http:
//www.cs.fsu.edu/~lifeifei/SpatialDataset.htm): City
of Oldenburg Road Network (OL) (6, 104 nodes and 7, 034
edges), City of San Joaquin County Road Network (TG)
(18, 262 nodes and 23, 873 edges), California Road Network
(CAL) (21, 047 nodes and 21, 692 edges), San Francisco
Road Network (SF) (174, 955 nodes and 223, 000 edges),
and North America Road Network (NA) (175, 812 nodes and
179, 178 edges).

The available weight of each edge in the above real road
networks is certain. To simulate an uncertain road network,
we generated a set of uncertain samples for each edge follow-
ing the Normal distribution and the Gamma distribution.

In the Normal distribution N(µ, σ), µ is the original edge
weight in the certain graphs and σ is the variance. σ was
generated for different edges following the Normal distribu-
tion N(µσ, σσ), where µσ = xR, x was varied from 1% to
5%, and R is the range of weights in the data sets. By de-
fault, µσ was set to 1% ·R. This simulation method follows
the findings in the existing studies on traffic simulations [16],
which indicate that the travel time on paths in road networks
follows the Normal distribution in short time intervals.

To simulate the travel time in real road networks using
the Gamma distribution Γ(k, θ), as suggested in [22], we set
θ = 0.16 and k = µ

θ
, where µ is the original edge weight

in the certain graphs. Since the experimental results on
the weights under the Gamma distribution and the Normal
distribution are highly similar, limited by space, we only
reported here the results on the data sets with the Normal
distribution.

After generating the edge weights we1 = {x1, . . . , xm}
and we2 = {y1, . . . , yn}, the joint distribution fe1,e2(xi, yj)
was randomly generated from the interval [0, pij), where
pij = min{fe1(xi), fe2(yj)} (i = 0, j = 0), and
pij = min{fe1(xi) −

P
1≤s≤j−1 fe1,e2(xi, ys), fe2(yj) −P

1≤t≤i−1 fe1,e2(xt, yj)}, (i > 0 or j > 0).
The path queries were generated as follows. The weight

threshold was set to x% of the diameter d of the network,
where d is the maximal weight of the shortest paths among
pairs of nodes. The probability threshold was varied from
0.1 to 0.9. The start and the end vertices were randomly
selected.

By default, the number of samples of each edge was set to
5, the weight threshold l was set to 10% · d, and the proba-
bility threshold τ was set to 0.5. 500 samples were used in
the sampling algorithm to estimate the weight probability
distribution of each path. In the hierarchical approxima-

356

 0
 20
 40
 60
 80

 100
 120
 140
 160

 5 10 15 20 25 30

R
un

tim
e

(s
ec

on
d)

Weight threshold (%)

Exact
Sampling

approximation

(a) Runtime vs. l.

 0

 2

 4

 6

 8

 10

 0.1 0.3 0.5 0.7 0.9

R
un

tim
e

(s
ec

on
d)

Probability threshold

Exact
Sampling

Approximation

(b) Runtime vs. prob threshold.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5

R
un

tim
e

(s
ec

on
d)

Variance

Exact
Sampling

Approximation

(c) Runtime vs. variance.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 5 10 15 20 25

R
un

tim
e

(s
ec

on
d)

Number of samples of an edge

Exact
Sampling

Approximation

(d) Runtime vs. sample size.

Figure 6: Efficiency of weight probability calculation methods.

 0

 50

 100

 150

 200

 250

 30 40 50 60 70

R
un

tim
e

(s
ec

on
d)

Weight threshold (%)

DFS
P*+constant

P*+min-value
P*+stochastic

(a) Runtime vs. l.

 0

 20

 40

 60

 80

 100

 0.1 0.3 0.5 0.7 0.9

R
un

tim
e

(s
ec

on
d)

Probability threshold

DFS
P*+constant

P*+min-value
P*+stochastic

(b) Runtime vs. prob threshold.

 0

 5

 10

 15

 20

 1 2 3 4 5

R
un

tim
e

(s
ec

on
d)

Variance

DFS
P*+constant

P*+min-value
P*+stochastic

(c) Runtime vs. variance.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

R
un

tim
e

(s
ec

on
d)

Number of samples of an edge

DFS
P*+constant

P*+min-value
P*+stochastic

(d) Runtime vs. sample size.

Figure 7: Efficiency of path search methods.

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

M
em

or
y

(M
B

)

Weight threshold (%)

Exact+DFS
Sampling+DFS

Approximation+P*

(a) Memory vs. l.

 0
 1
 2
 3
 4
 5
 6
 7

 0.2 0.4 0.6 0.8

M
em

or
y

(M
B

)

Probability threshold

Approximation+P*
Exact+DFS

Sampling+DFS

(b) Memory vs. prob threshold.

Figure 8: Memory usage.

 0

 1

 2

 3

 4

 5

 100 200 300 400 500

E
rr

or
 (

%
)

Number of samples

l=5%
l=10%
l=25%

(a) The sampling algorithm.

 0

 2

 4

 6

 8

 10

 10 20 30 40 50

E
rr

or
 (

%
)

Bucket parameter t

l=5%
l=10%
l=25%

(b) The bucket approx method.

Figure 9: Approximation quality.

tion algorithm, the bucket parameter t was set to 50, and
2-partitionings were used to construct HP-trees. For each
different parameter setting, we ran 20 path queries and re-
ported the average results.

7.2 Efficiency and Memory Usage
Using data set OL, we evaluated the efficiency of the three

probability calculation methods, the exact method (Exact),
the bucket approximation method (Approximation), and the
sampling based method (Sampling). The depth-first path
search was used. The results are shown in Figure 6. Clearly,
the bucket approximation method and the sampling based
method are more efficient than the exact algorithm.

Particularly, the runtime increases as the weight thresh-
old increases (Figure 6(a)), since a larger weight threshold
qualifies more paths in the answer set. The runtime of all
three algorithms decreases when the probability threshold
increases (Figure 6(b)), because fewer paths can pass the
threshold when the probability threshold becomes higher.
The runtime of the algorithms decreases slightly as the vari-
ance of the weight samples increases (Figure 6(c)). The run-
time of the exact algorithm increases significantly when the
number of samples of each edge increases, but the runtime
of the sampling algorithm and the bucket approximation al-
gorithm remains stable (Figure 6(d)) thanks to the efficient
probability approximation techniques.

We also tested the efficiency of the P* algorithm against
the depth-first search (DFS) (Figure 7). Three heuristic esti-
mates were used: the constant estimate (P*+constant), the
min-value estimate (P*+min-value), and the stochastic es-
timate (P*+stochastic). The bucket approximation method
was used to compute the path probability distribution. To
show the difference in efficiency of the different methods

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 6104 21047 175812

R
un

tim
e

(s
ec

on
d)

Number of nodes

Exact+DFS
Sampling+DFS

HP-Tree construction
Approximation+P*

(a) Normal distribution.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 6104 21047 175812

R
un

tim
e

(s
ec

on
d)

Number of nodes

Exact+DFS
Sampling+DFS

HP-Tree construction
Approximation+P*

(b) Normal distribution with noise.

Figure 10: Scalability.

more clearly, we increased the weight threshold to 30% · d.
Clearly, the P* method is more efficient than the depth-

first search method thanks to the heuristic path evaluation
during the search. Among the three types of heuristic esti-
mates, the stochastic estimate is the most effective, because
it uses the weight probability distribution of the paths not
explored yet to guide the search. The HP-tree construction
takes 25 seconds on this data set.

The memory usage for different algorithms is shown in
Figure 8. The memory requirement in the exact probability
calculation method with DFS increases rapidly when the
weight threshold increases, since longer paths are explored
with a larger weight threshold. However, the memory usage
in P* with the bucket approximation probability calculation
is stable, because the space used for an HP-tree does not
depend on the weight threshold.

7.3 Approximation Quality and Scalability
Using data set OL, we tested the approximation quality

of the sampling algorithm and the bucket approximation
algorithm. In the same parameter setting as in Figure 6, the

357

precision and the recall of all queries are computed. Since
they are all 100%, we omit the figures here.

The average approximation error of the l-weight prob-
ability computed in the two algorithms is shown in Fig-
ure 9. For any path P , the approximation error is defined

as |F̂P (l)−FP (l)|
FP (l)

, where F̂P (l) and FP (l) are the approximate

and exact l-weight probabilities of P , respectively.
The error rate of the sampling method is always lower

than 3%, and is very close to 0 when a set of 500 samples
are used (Figure 9(a)). The average error rate of the bucket
approximation method decreases from 4.31% to 0.1% when
the bucket parameter t increases from 10 to 50 (Figure 9(b)).

Figure 10 shows the scalability of the three algorithms on
the five real road network data sets. Figure 10(a) shows
the results for weights following the Normal distribution.
Figure 10(b) is the results on the data with the Normal dis-
tribution and 10% noise. That is, 10% of the edges have a
sample drawn from the uniform distribution in [xmin, xmax],
where xmin and xmax are the minimal and maximal weights
in the original road network, respectively. The results in
Figures 10(a) and (b) are similar. All three algorithms are
scalable, and the hierarchical approximation algorithm has
very short runtime (20 seconds on the largest data set, the
North America Road Network (NA) with 175, 812 nodes).
Although constructing the HP-tree takes around 2, 000 sec-
onds in this case, it is constructed only once offline.

8. CONCLUSIONS
In this paper, we studied the novel probabilistic path

queries in road networks with uncertain weights. Three
methods for efficient probability calculation and a best-first
search algorithm were proposed. The experimental results
on real road networks verified the effectiveness and efficiency
of the probabilistic path queries and our methods.

As future work, we will explore temporal correlations and
other types of uncertainty in road networks.

9. REFERENCES
[1] D. Angluin and L. G. Valiant. Fast probabilistic

algorithms for hamiltonian circuits and matchings. In
STOC’77.

[2] H. Bast et al. Transit: Ultrafast shortest-path queries
with linear-time preprocessing. In C. Demetrescu et
al. (editors). 9th DIMACS Implementation Challenge
— Shortest Path, 2006.

[3] H. Bast et al. In transit to constant time shortest-path
queries in road networks. In ALENEX’07.

[4] E. P. F. Chan and J. Zhang. A fast unified optimal
route query evaluation algorithm. In CIKM’07.

[5] A. Chang and E. Amir. Reachability under
uncertainty. In UAI’07.

[6] Y. Fan et al. Arriving on Time. CJ. Optimization
Theory and Applications, 127(3):497–513, 2005.

[7] Y. Fan et al., Shortest paths in stochastic networks
with correlated link costs, Computers and
Mathematics with Applications, vol. 49, no. 9-10, pp.
1549–1564, 2005.

[8] Y. Fan and Y. Nie. Optimal Routing for Maximizing
the Travel Time Reliability. Networks and Spatial
Economics, 6(3-4):333–344, 2006.

[9] H. Frank. Shortest paths in probabilistic graphs.
Operations Research, 17(4):583–599, 1969.

[10] L. Fu et al. Heuristic shortest path algorithms for
transportation applications: State of the art.
Computers and Operations Research,
33(11):3324–3343, 2006.

[11] J. Ghosh et al. On a routing problem within
probabilistic graphs and its application to
intermittently connected networks. In INFOCOM’07.

[12] K. Goebel and A. M. Agogino. Sensor validation and
fusion for automated vehicle control using fuzzy
techniques. Journal of Dynamic Systems,
Measurement, and Control, 123(1):145–146, 2001.

[13] H. Gonzalez et al. Adaptive fastest path computation
on a road network: a traffic mining approach. In
VLDB’07.

[14] M. T. Goodrich. Planar separators and parallel
polygon triangulation. J. Comput. Syst. Sci.,
51(3):374–389, 1995.

[15] P. Hart et al. A formal basis for the heuristic
determination of minimum cost paths. Systems
Science and Cybernetics, IEEE Transactions on,
4(2):100–107, July 1968.

[16] R. R. He et al. Temporal and Spatial Variability of
Travel Time. Center for Traffic Simulation Studies.
Paper UCI-ITS-TS-02-14.

[17] N. Jing et al. Hierarchical encoded path views for path
query processing: An optimal model and its
performance evaluation. IEEE Trans. on Knowl. and
Data Eng., 10(3):409–432, 1998.

[18] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 49(2):291–307, Febuary 1970.

[19] A. B. Kurzhanski and P. Varaiya. On reachability
under uncertainty. SIAM J. Control Optim.,
41(1):181–216, 2002.

[20] R. P. Loui. Optimal paths in graphs with stochastic or
multidimensional weights. Commun. ACM,
26(9):670–676, 1983.

[21] E. Nikolova et al. Stochastic Shortest Paths Via
Quasi-convex Maximization. In ESA’06.

[22] A. Polus. A study of travel time and reliability on
arterial routes . Transportation, 8(2):141–151, 1979.

[23] D. D. M. L. Rasteiro and A. J. B. Anjo. Optimal
paths in probabilistic networks. Journal of
Mathematical Sciences, 120(1):974–987, 2004.

[24] R. Righter. Scheduling. In Stochastic Orders and
Their Applications, 1994.

[25] H. Samet et al. Scalable network distance browsing in
spatial databases. In SIGMOD’08.

[26] P. Sanders and D. Schultes. Highway hierarchies
hasten exact shortest path queries. In ESA’05.

[27] P. Sanders and D. Schultes. Engineering highway
hierarchies. In ESA’06.

[28] Y. Tao and D. Papadias. Maintaining Sliding Window
Skylines on Data Streams. In TKDE, vol. 18, no. 3,
pp. 377 – 391, 2006.

[29] Y. Wu et al. A shortest path algorithm based on
hierarchical graph model. In Intelligent Transportation
Systems, pages 1511 – 1514, 2003.

358

