
J
H
E
P
0
6
(
2
0
1
4
)
0
7
5

Published for SISSA by Springer

Received: December 5, 2013

Revised: March 17, 2014

Accepted: May 20, 2014

Published: June 12, 2014

Probabilistic picture for medium-induced jet evolution

Jean-Paul Blaizot, Fabio Dominguez, Edmond Iancu and Yacine Mehtar-Tani

Institut de Physique Théorique, CEA Saclay,
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1 Introduction

The recent experimental results from heavy ion experiments at RHIC and LHC provide

a strong motivation for improving and extending current theories of jet propagation in a

dense QCD medium such as a quark-gluon plasma. Most noteworthy are those data that

reveal the jet inner structure [1–5], and in particular show that much of the energy lost in

the medium is in the form of low energy quanta emitted at large angles with respect to the

jet axis. Such data call for the development of new theoretical tools allowing us to explore

jet quenching phenomena beyond the energy loss from the leading particle, a subject that

has been thoroughly studied within the BDMPSZ framework during the last twenty years

or so [6–10]. Further related developments are presented in [11–13].

In order to understand how the QCD shower gets modified as the jet traverses a dense

medium, one needs to study how color coherence, and interference between subsequent

emissions, are affected by the medium. These two effects play a major role in determining

jet-structure in vacuum. Recent studies [14–21] have shown how, in certain regimes, color

coherence can be destroyed by the presence of a dense medium, and how this may lead to

the suppression of angular ordering (a characteristic feature of the vacuum QCD cascade),

and the enhancement of soft emissions at large angles. In particular, in ref. [19] we showed
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explicitly that the loss of color coherence occurs on a time scale comparable to that of the

branching process, so that gluons that emerge from a splitting propagate independently of

each other. The branching time, which is proportional to the square root of the energy of

the emitted gluons, can be short for soft enough gluons, and multiple branching play an

important role whenever this time becomes much smaller than the longitudinal extent of

the medium: the ensuing multiple branchings constitute the in-medium QCD cascade.

The goal of this paper is to complete the description of this cascade. It is organized

as follows. In the next section we briefly recall the main results of ref. [19] concerning the

properties of the medium induced gluon splitting and of transverse momentum broadening

within the BDMPSZ framework. Then, in section 3, we construct a generating functional

for the probabilities to observe n gluons in the cascade, at any given time. This is then

used to derive the evolution equation for the inclusive one-gluon spectrum. This equation

generalizes that studied in ref. [21] in that it takes into account the dependence of the

distribution function on the transverse momentum of the produced gluon, as generated via

collisions in the medium. (The equation studied in [21] concerns only the energy distribu-

tion, that is, the integral of the one-gluon spectrum over the transverse momentum.) The

kernel of this equation, however, is completely integrated over the transverse momenta and

contains information on these transverse momenta only in an average way: this follows

from the fact that the transverse momentum broadening acquired during the branching

processes can be neglected as compared to that accumulated via collisions in the medium

in between successive branchings. Thus, to the accuracy of interest, the splittings can be

effectively treated as being collinear. By trying to improve the description and take into

account more explicitly the transverse momentum dependence of the splitting kernel, we

were led to identify relatively large radiative corrections, which are formally infrared di-

vergent and are best interpreted as corrections to the transport coefficient q̂ (a measure of

the transverse momentum square acquired by a parton propagating through the medium,

per unit length). This will be discussed in section 4. In particular, we recover the double

logarithmic correction to transverse momentum broadening that has been calculated re-

cently [22]. Technical material is gathered in three appendices. The first one complements

results obtained in [19], and gives an explicit expression for the splitting kernel in the har-

monic approximation, with full dependence on transverse momenta. The contribution of

the single scattering is emphasized. The second appendix is devoted to the calculation of

the double logarithmic contribution to q̂. The third appendix presents an alternative form

of the generating functional that may be more suitable for Monte-Carlo calculations.

2 Basic elements

A large part of the material of this section is borrowed from ref. [19] to which we refer for

more details. We consider energetic partons traversing a medium with which they exchange

color and transverse momentum. This medium is modeled as a random color field, with

the only non-trivial correlator (in light-cone gauge A+ = 0)1 given by〈
A−a (q, t)A∗−b (q′, t′)

〉
= δabn(t)δ(t − t′)(2π)2δ(2)(q − q′) γ(q) , (2.1)

1To simplify the notation, the light-cone time variable x+ = (x0 + x3)/
√

2 is labeled t throughout the

paper, and is referred to simply as ‘time’ rather than light-cone time.
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with n the color charge density (which may depend on the light-cone time t), and we have

assumed translational invariance in the transverse plane. Here, γ(q) ' g2/q4, with q a

vector in the transverse plane, is a correlator that accounts for the elastic collisions of the

energetic patrons with the medium particles. The infrared behavior of γ(q) is controlled

by the Debye screening mass mD, which is the typical momentum exchanged in a collision

between a colored particle and the medium constituents.

Consider now the process in which a gluon is created inside the medium with momen-

tum ~p0 ≡ (p+
0 , p0) at time t0. In practice, we shall eventually chose p0 = 0, that is, we

shall use the direction of motion of the leading particle to define the longitudinal direc-

tion with respect to which one measures polar angles and transverse momenta. (However,

in many formulae below we shall keep p0 explicit, for more clarity, in particular in cases

where one needs to emphasize differences between transverse momenta. The same remark

applies to the initial time t0 which can be chosen to be t0 = 0.) For t > t0, the gluon

propagates through the medium and interacts with the latter. In leading order, that is,

in the absence of splitting, all what happens to it is that it receives transverse momen-

tum kicks in colliding with the medium constituents. When it emerges from the medium,

at time tL,2 its momentum is ~k = (k+, k). Let us denote by P1(~k; tL, t0)dΩk the transi-

tion probability to observe the gluon at time tL with its momentum in the phase-space

element dΩk, given that, at time t0 its momentum is in the phase-space element dΩp0 .

Here, dΩk ≡ (2π)−3d2k dk+/2k+ is the invariant phase-space element. The probability

density P1 contains, quite generally, a delta function that expresses the conservation of the

+ component of the momentum (that follows from the fact that the medium is assumed

homogeneous in x−), and it is convenient to write it as

P1(~k; tL, t0) = 2p+
0 2πδ(k+ − p+

0 )P1(k; tL, t0). (2.2)

In leading order, P1(k; tL, t0) can be identified with the probability density for the gluon

to acquire a transverse momentum k − p0 from the medium during its propagation from

time t0 to time tL, a quantity that we shall denote simply by P(k − p0; tL, t0) throughout

the paper.3 This probability density P is well known, and it can be written as

P(k − p0; tL, t0) =

∫
d2r exp

[
−i(k − p0) · r − Nc

2

∫ tL

t0

dt n(t)σ(r)

]
, (2.3)

with σ(r) the ‘dipole cross section’

σ(r) = 2g2

∫
d2q

(2π)2

(
1 − eiq·r

)
γ(q). (2.4)

Note that σ(r → 0) → 0, a property commonly referred to as color transparency; this

ensures in particular that the probability P is properly normalized:
∫
k P(k−p0; t, t0) = 1.

The Fourier transform of the dipole cross section reads

σ(l) =

∫
dr e−il·rσ(r) = −2g2

[
γ(l) − (2π)2δ(l)

∫
q
γ(q)

]
, (2.5)

2Note that tL =
√

2L, with L the length of the medium.
3Remark on the notation: in P1 the dependence on p0 is kept implicit, while we leave p0 explicit in P.

This is because we shall need P also for differences of transverse momenta that do not necessarily involve p0.
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Figure 1. Diagrammatic representation of the evolution of the broadening probability (2.7).

and it obeys the properties (to be used later)∫
l
σ(l) = 0 =

∫
l
l σ(l). (2.6)

In the equations above, we introduced a shorthand notation for the transverse momentum

integrations:
∫
q ≡

∫
d2q/(2π)2. This will be used throughout the paper.

By taking the derivative of eq. (2.3) with respect to tL (and setting tL = t), one easily

obtains

∂

∂t
P(k − p0; t, t0) =

∫
l
C(l, t) P(k − p0 − l; t, t0) , (2.7)

with

C(l, t) ≡ 4παsNcn(t)

[
γ(l) − (2π)2δ(2)(l)

∫
q
γ(q)

]
= −1

2
Ncn(t)σ(l). (2.8)

Its graphical representation is shown in figure 1. This equation can be simplified by taking

into account the fact that the typical momentum transferred in one collision is |l| ∼ mD

and is much smaller than the transverse momentum |k| ∼ Qs ≡ √
q̂L acquired by the gluon

during its propagation over a distance comparable to L, the size of the medium. Under

such circumstances, eq. (2.7) can be reduced to the following Fokker-Planck equation:

∂

∂t
P(k − p0; t, t0) =

1

4

∂2

∂k2

[
q̂(t, k2) P(k − p0; t, t0)

]
, (2.9)

with the jet quenching parameter q̂(t, k2), playing the role of a diffusion coefficient, given by

q̂(t, k2) = −Ncn(t)

∫
l
l2σ(l) = g2Ncn(t)

∫
l
l2γ(l) ≈ 4πα2

sNcn(t) ln
k2

m2
D

. (2.10)

The above integral, which determines the value of q̂, is logarithmically divergent. It is

naturally cut-off at its lower end by the Debye mass, and at its upper end by the momentum

scale k at which P is evaluated. Note that in deriving eq. (2.9) attention has been paid to

this momentum dependence of q̂. It can be verified in particular that, as written, the right

hand side of the equation vanishes upon integration over k, as it should.

An alternative interpretation of q̂ is obtained by expanding the dipole cross section (2.4)

to quadratic order in the dipole size. This yields

Ncn(t)σ(r) ' 1

2
q̂(t, 1/r2) r2, (2.11)

– 4 –



J
H
E
P
0
6
(
2
0
1
4
)
0
7
5

where the inverse of the dipole size r plays the role of ultraviolet cut-off. This expression,

when used with a constant q̂ (i.e., ignoring the dependence of q̂ on the dipole size), is

referred to as the ‘harmonic approximation’. Within this approximation, the diffusion

equation (2.9) is easily solved. Assuming n, and hence q̂, to be independent of t for

simplicity, one gets

P(k − p0; t, t0) =
4π

q̂(t − t0)
e
− (k−p0)

2

q̂(t−t0) . (2.12)

The diffusion picture is valid in the regime dominated by multiple scattering, in which a

large transverse momentum is achieved by the addition of many small momentum transfers

over the propagation time ∆t = t − t0. This regime holds for k2 . q̂∆t. Larger transverse

momenta can be achieved, over comparable time scales, through a single hard scattering.

The corresponding expression for P is not given by the diffusion equation, but rather

by using the first iteration of eq. (2.7) or, equivalently, by expanding the exponential in

eq. (2.3) to linear order in σ. Either way, one finds that in the regime where k2 � q̂(tL−t0):

P(k; tL, t0) ' 16 π2 α2
s Nc

k4

∫ tL

t0

dt n(t) . (2.13)

Let us now turn to the process of in-medium gluon branching which was studied in

detail in [19]. Let P2(~ka,~kb; tL, t0)dΩkadΩkb be the transition probability to observe two

gluons at time tL in the phase space elements dΩka and dΩkb , respectively, given that one

gluon was present in the phase-space element dΩp0 at time t0. Similarly to what we did

for P1 in eq. (2.2), we separate the delta function that expresses the conservation of the +

momentum and write

P2(~ka,~kb; tL, t0) = 2p+
0 2πδ(k+

a + k+
b − p+

0 ) P2(ka, kb, z; tL, t0). (2.14)

In appendix A, it is recalled that within the approximations of interest here that we shall

shortly describe, one obtains the following, relatively simple, formula for P2:

P2(ka, kb, z; tL, t0 = 2g2z(1 − z)

∫ tL

t0

dt K(z, p+
0 ; t)

×
∫
q

P(ka − zq; tL, t) P(kb − (1 − z)q; tL, t)P(q − p0; t, t0), (2.15)

where z and 1−z are the energy fractions of the offspring gluons and K(z, p+
0 ; t) is given by

K(z, p+
0 ; t) =

Pgg(z)

2π

√
q̂f(z)

ω
, f(z) ≡ 1 − z + z2, ω ≡ z(1 − z)p+

0 , (2.16)

with Pgg(z) the leading-order Altarelli-Parisi gluon splitting function [23]:

Pgg(z) = Nc
[1 − z(1 − z)]2

z(1 − z)
= Nc

[f(z)]2

z(1 − z)
. (2.17)

We may interpret the integrand of eq. (2.15) as a product of probabilities : the probability

density P(q − p0; t, t0) for the initial gluon to acquire transverse momentum q − p0 during
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the time t − t0, the probability K(z, p+
0 ; t)dt for the gluon to split between times t and

t + dt, into two gluons with energy fractions z and 1 − z, and the probability densities

P(ka−zq, tL, t) and P(kb−(1−z)q, tL, t) for the two offspring gluons to evolve to momenta

ka and kb, respectively.

The quantity τ
br

≡
√

ω/q̂f(z) is the typical duration of the branching process for a

medium-induced gluon branching with the indicated kinematics. A major assumption in

the calculation in [19] is that this branching time τ
br

is much shorter than the time tL − t0

spent by the partons in the medium. This condition can be equivalently written as ω � ωc,

where ωc ≡ q̂f(z)(tL− t0)
2 is the maximum energy that can be taken away by an offspring

gluon within the BDMPSZ mechanism, i.e., τ
br

(ωc) = tL− t0. The leading-order formula in

eq. (2.15) for the splitting probability density has been obtained by dropping all the terms

suppressed by at least one power of τbr/L.

One particular consequence of this approximation is the fact that the splitting de-

scribed by eq. (2.15) is collinear : just after the splitting, the daughter gluons carries equal

fractions, z and respectively 1 − z, of both the longitudinal momentum p+
0 and the trans-

verse momentum q of their parent gluon. This follows from the fact that, within the leading

order approximation at hand, one can ignore, in the various factors of P, the small con-

tribution to momentum broadening that may occur during the branching process. Indeed,

this contribution is suppressed by a power of τbr/L as compared to the transverse momen-

tum gained in between the splittings, through collisions in the medium. Note however that

the effects of the collisions occurring during the branching are taken into account in an

average way in the splitting kernel. For instance, the upper limit τ
br

on the lifetime of the

fluctuations is introduced by multiple scattering.

Eq. (2.15) will be at the basis of the classical branching process to be constructed

in the next section. However, in the last section of this paper we shall examine a more

complete version of the splitting kernel, which also keeps track of the transverse momentum

that is acquired during the branching process. This is obtained by relaxing some of the

approximations leading to eq. (2.15) and involves corrections, a priori small since of order

τ
br

/L, but which happen to be amplified by logarithmic divergences. As we shall see,

these effects are best interpreted as corrections to q̂, or equivalently as corrections to

the interaction between a small dipole propagating through the medium and the medium

constituents.

3 Generating functional and inclusive one-gluon distribution

In this section, we introduce the generating functional that describes the in-medium gluon

cascade, under the assumption that successive branchings can be treated as independent,

in line with the results of ref. [19]. The generating functional follows simply from iterating

the elementary 1 → 2 splitting process whose properties are recalled in the previous sec-

tion. From the generating functional, we derive the equation for the inclusive one-gluon

distribution function and we analyze some of its properties.

– 6 –
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3.1 Generalities

We consider an in-medium parton shower initiated at (light-cone) time t0 by a ‘leading

parton’ with 3-momentum ~p0 ≡ (p+
0 , p0). The generating functional Zp0 [t, t0|u], with

t0 ≤ t ≤ tL, is defined as

Zp0 [t, t0|u] =

∞∑
n=1

1

n!

∫ ( n∏
i=1

dΩi

)
Pn(~k1, · · · ,~kn; t, t0) u(~k1) · · · u(~kn) (3.1)

where u ≡ u(~k) is a generic function of ~k and Pn(~k1, · · · ,~kn; t, t0) is the probability density

to find at time t exactly n gluons with momenta ~k1, · · · ,~kn such that k+
1 + · · · + k+

n = p+
0

(recall that the + component of the momentum is conserved during the branchings). The

function Pn(~k1, · · · ,~kn; t, t0) is totally symmetric under the permutations of the n variables
~k1, · · · ,~kn. Leading order expressions for the probabilities P1 and P2 have been given in

the previous section. Note that, Zp0 [t, t0|u = 1] = 1, which reflects the normalization of

the probabilities, while obviously Zp0 [t, t0|u = 0] = 0.

By taking the nth functional derivative of Zp0 [t, t0|u] evaluated at u = 0, one recovers

Pn(~k1, · · · ,~kn; t, t0):

Pn(~k1, · · · ,~kn; t, t0) =

[
n∏
i=1

(2π)3 2k+
i

δ

δu(~ki)

]
Zp0 [t, t0|u]

∣∣∣∣∣
u=0

, (3.2)

with the usual definition

δu(~k)

δu(~q)
= δ(3)(~k − ~q) ≡ δ(k+ − q+) δ(2)(k − q) . (3.3)

We shall be mostly concerned with inclusive distributions, that is, the probabilities to

observe at time t, n gluons with specified momenta, irrespective of whether other gluons are

produced or not. Such distributions are obtained by taking the n-th functional derivative

of Zp0 [t, t0|u] and then letting u = 1.

3.2 Evolution equations for the generating functional

Two formulations can be considered for the evolution of the generating functional. We

consider in this section the ‘forward’, formulation, where an additional splitting is allowed

to occur at the latest time t of the cascade development. In appendix C, another formulation

is presented, where one focuses instead on a splitting taking place at the beginning of the

cascade. Both formulations are equivalent but lead to different equations (see e.g. ref. [24]

for a general discussion).

Let us then consider the initial state of the cascade, where a single gluon is present at

time t = t0. For t = t0, all probabilities vanish except P1(~k; t0, t0) = 2k+(2π)3δ(~k − ~p0), so

that the generating functional reduces to

Zp0 [t0, t0|u] = u(~p0) . (3.4)

During the infinitesimal time step t0 → t0 + dt, two physical effects can occur: momentum

broadening and splitting. Only the variations with time of P1 and P2 contribute: P2

– 7 –
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changes because a splitting can occur during the time dt; P1 changes for two reasons: first

the collisions change the transverse momentum, second, probability conservation forces P1

to decrease as P2 increases. Thus, at time t0 + dt, the generating functional reads

Zp0 [t0 + dt, t0|u] =

∫
dΩk P1(~k; t0 + dt, t0) u(~k)

+
1

2

∫
dΩk1dΩk2 P2(~k1,~k2; ~p ; t0 + dt, t0) u(~k1)u(~k2), (3.5)

where P1 contains, besides the leading order contribution, a contribution of order αs, for

the reason just mentioned.

The leading order variation of P1, which corresponds to momentum broadening, is

easily deduced from eq. (2.7). The order αs correction will be inferred from the conservation

of probability. For P2 we use the definition (2.14) to write

1

2

∫
dΩ1dΩ2 P2(~k1,~k2; t, t0) u(~k1)u(~k2)

=
1

4π

∫ 1

0

dz

2z(1 − z)

∫
k1,k2

P2(k1, k2, z; t, t0) u(zp+
0 , k1) u((1 − z)p+

0 , k2), (3.6)

where we have used

k+
1 = zp+

0 , k+
2 = (1 − z)p+

0 , dΩ1dΩ2 =
1

(2π)2

dzdp+
0

4z(1 − z)p+
0

. (3.7)

Next, by taking a derivative w.r.t. tL on (2.15), and relabeling tL → t, ka → k1, and

kb → k2, one deduces

∂tP2(k1, k2, z; t, t0) =2g2z(1 − z)K(z, p+
0 ; t)

×
∫
q
(2π)4δ(2)(k1 − zq)δ(2)(k2 − (1 − z)q)P(q − p0; t, t0), (3.8)

and hence [recall that P(q − p0; t0, t0) = (2π)2δ(2)(q − p0)]

P2(ka, kb, z; t0+dt, t0) = 2g2z(1−z) K(z, p+
0 ; t0)dt (2π)4δ(2)(k1−zp0)δ

(2)(k2 − (1−z)p0).

(3.9)

Combining these results, on can rewrite Zp0 [t0 + dt, t0|u] as follows

∂

∂t
Zp0 [t, t0|u]

∣∣∣∣
t=t0

=

∫
l
C(l, t0) u(p+

0 , p0 + l) (3.10)

+ αs

∫ 1

0
dz K(z, p+

0 ; t)
[
u(zp+

0 , zp0) u((1 − z)p+
0 , (1 − z)p0) − u(~p0)

]
.

Note that the last term, proportional to u(~p0) is here to ensure that the probability is

conserved during the evolution:4 if one sets u = 1, then all terms in the right-hand-side of

eq. (3.10) vanish (recall that
∫
l C(l) = 0).

4This term proportional to u(~p0) stands for the order αs corrections to P1 that we mentioned above.
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Equation (3.10) is easily extended to a full evolution equation for the generating func-

tional, which reads

∂

∂tL
Zp0 [tL, t0|u] −

∫
dq+

2π

∫
q

∫
l
u(q+, q + l) C(l, tL)

δ

δu(~q)
Zp0 [tL, t0|u] (3.11)

= αs

∫ 1

0
dz

∫
dq+

2π

∫
q
K(z, q+; t)

[
u(zq+, zq) u((1 − z)q+, (1 − z)q) − u(~q)

] δ

δu(~q)
Zp0 [tL|u] .

This formula has a simple interpretation. The effect of the functional derivative δ/δu(~q) is

to select a gluon with momentum ~q from the gluon cascade at time tL. Then one calculates

the evolution of this particular gluon by repeating the infinitesimal time step discussed

before. The second term in the first line accounts for the collision of the gluon with the

medium which, at time tL, turns its momentum q into q + l. The second line contains

the probability for this gluon to split (via a collinear splitting), or not, in the time step

tL → tL + dtL. In appendix C, an equivalent equation is provided (cf. eq. (C.2)), in which

the generating functional is differentiated with respect to t0.

At this point, it is worth recalling that the equations above are somewhat formal

since the integrals over the spliting fraction z develop endpoint singularities at z = 0 and

z = 1. To see that more precisely, let us consider the evolution equation for the probability

P1(k; tL, t0). By using the definition (3.2) together with the evolution equation (3.11), one

easily finds

∂

∂tL
P1(k; tL, t0) −

∫
l
C(l, tL) P1(k − l; tL, t0) = −αs

∫ 1

0
dz K(z, p+

0 ; tL) P1(k; tL, t0) , (3.12)

where the r.h.s. originates from the ‘loss’ term in eq. (3.11) and describes the reduction of

the one-gluon probability due to branching. This equation is easily solved by writing

P1(k; tL, t0) = ∆(p+
0 ; tL, t0) P(k − p0; tL, t0). (3.13)

One then easily finds

∆(p+
0 ; tL, t0) = exp

[
−αs

∫ tL

t0

dt

∫ 1

0
dz K(z, p+

0 ; t)

]
. (3.14)

The physical meaning of eq. (3.13) is transparent: P1(k; tL, t0) appears as the product of

the probability density P(k−p0; tL, t0) for the initial gluon (with momentum ~p0) to acquire

transverse momentum k − p0 via collision with the medium, multiplied by the ‘survival

probability’ ∆(p+
0 ; tL, t0) (aka the ‘Sudakov factor’), that is the probability for this gluon

not to branch between t0 and tL. As it stands, this survival probability vanishes because

of the endpoint singularities of the kernel K(z, p+
0 ; t) at z = 0 and z = 1. A cut-off needs

to be introduced, which defines the ‘resolution’, i.e., the energy below which gluons cannot

be resolved anymore. The following identities (ε → 0), that result from the symmetry of

the kernel in the substitution z → 1 − z,∫ 1−ε

ε
dz K(z) = 2

∫ 1−ε

0
dz z K(z) = 2

∫ 1

ε
dz (1 − z) K(z) , (3.15)
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allow us to concentrate on one of the two endpoint singularities, say that at z = 0. One

then easily estimates (with ∆t = tL − t0)

∆(εp+
0 ; ∆t) ' exp

[
−2ᾱ∆t

√
q̂

εp+
0

]
, (3.16)

where ᾱ ≡ αsNc/π. It follows in particular that the typical time between two successive

branchings (the value of ∆t for which the exponent becomes of order one) is given by

∆trad(εp+) ' 1

2ᾱ

√
εp+

q̂
∼ 1

ᾱ
τ
br

(εp+) , (3.17)

for a gluon within the cascade with generic energy p+. In order for successive branchings

to proceed independently from each other, we need ∆trad to be significantly larger than the

duration τ
br

(p+) of the branching giving birth to the p+ gluon, which implies5 ε > ᾱ2. Such

a cut-off must be included to give a meaning to the generating functional. Note however

that physical (inclusive) distributions remain finite in the limit ε → 0, as we shall shortly

verify. Accordingly, their calculation is only weakly sensitive to the precise value of this

cutoff, so long as it is small enough.

3.3 Evolution equation for the one-gluon distribution

We turn now to a specific study of the inclusive one-gluon distribution. To simplify the no-

tation, we shall omit the explicit dependence on the initial momentum ~p0 ≡ (p+
0 ,0), as well

as on t0, and denote the gluon distribution simply by D(x, k, t), with x = k+/p+
0 . We shall

also assume from now on that the density n is independent of time, and therefore so is K.

The inclusive one-gluon distribution is given by

D(x, k, t) = k+ dN

dk+d2k
≡ k+

〈 ∞∑
n=1

n∑
j=1

δ(3)(~kj − ~k)

〉

=
1

2(2π)3

{
P1(~k; t, t0) +

∞∑
n=2

1

n!

∫ n−1∏
i=1

dΩi n Pn(~k,~k1, · · · ,~kn−1; t, t0)

}

= k+ δZp0 [t, t0|u]

δu(~k)

∣∣∣∣∣
u=1

. (3.18)

According to this formula, the evolution equation obeyed by D(x, k, t) can be obtained

by taking a functional derivative δ/δu(~k) of eq. (3.11), and then setting u = 1 (note that

only the explicit factors of u in eq. (3.11) contribute in this operation). We thus find

∂

∂t
D(x, k, t) =

∫
l
C(l, t)D (x, k − l, t) (3.19)

+ αs

∫ 1

0
dz

[
2

z2
K
(
z,

x

z
p+

0 ; t
)

D

(
x

z
,
k

z
, t

)
− K

(
z, xp+

0 ; t
)
D (x, k, t)

]
.

5Note that this is not a very restrictive condition for the medium-induced cascade. Indeed, as demon-

strated in ref. [21], the branchings of the soft gluons are mostly ‘democratic’ as soon as p+ . ᾱ2ωc.
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k

= −∂
∂ tL

p⊥pk

+
p q⊥

t0 tL tL

k

tL tLt0 t0 t0

k
zpp

x

xx

x
z

D DD D
k q

x

zkxz

x

Figure 2. Diagrammatic representation of the forward evolution for the inclusive gluon distribu-

tion.

This equation, which represents an important result of this paper, is illustrated in fig-

ure 2. The first term in its r.h.s. describes transverse momentum broadening via medium

rescattering in between successive branchings, and leads to diffusion in momentum space.

The two terms within the square brackets in the second line of eq. (3.19) can be viewed

respectively as a ‘gain term’ and a ‘loss term’ associated with one branching. The ‘gain

term’ describes the production of a new gluon with energy fraction x and transverse mo-

mentum k via the decay of an ancestor gluon having energy fraction x′ = x/z > x and

transverse momentum k/z. (Note that the condition x < x′ < 1 implies 1 > z > x for

the respective integral over z.) The ‘loss term’ describes the disappearance of a gluon with

energy fraction x via the decay (x, k) → (zx, zk) ((1 − z)x, (1 − z)k), with 0 < z < 1.

Equation (3.19) thus describes the interplay between collinear splittings (cf. eq. (2.15))

and diffusion in momentum space in the development of the in-medium cascade.

3.4 Energy distribution

By integrating eq. (3.19) over the transverse momentum k, one finds a simplified equation

describing the evolution of the energy distribution alone:

∂

∂t
D(x, t) = αs

∫ 1

0
dz
[
2K
(
z,

x

z
p+

0 , t
)

D
(x

z
, t
)

− K
(
z, xp+

0 , t
)
D (x, t)

]
, (3.20)

where we have set D(x, t) ≡
∫
k D(x, k, t). Since the kernel is independent of time, the gluon

distribution depends upon t and t0 only via their difference t − t0 and it is convenient to

rescale the time variable and the emission kernel in such a way as to construct dimensionless

quantities. Namely, we define

τ ≡ αsNc

π

√
q̂

p+
0

(t − t0) , K̂(z) ≡ 2π

Nc

√
p+

0

q̂
K(z, p+

0 ) =
[1 − z(1 − z)]5/2

[z(1 − z)]3/2
. (3.21)

Using also the property (cf. eq. (2.16))

K
(
z,

x

z
p+

0

)
=

√
z

x
K(z, p+

0 ), (3.22)
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as well as the identities eq. (3.15), one can put the evolution equation (3.20) in the form

∂

∂τ
D(x, τ) =

∫
dz K̂(z)

[√
z

x
D
(x

z
, τ
)

− z√
x

D(x, τ)

]
, (3.23)

which is the equation6 that has been studied in ref. [21].

Note that the singularities of the kernel K̂(z) at z = 0 and z = 1 are here harmless,

since they exactly cancel: the integral over z in the ‘gain’ term is restricted to z > x,

while that in the ‘loss’ term involves an additional factor of z, which ensures convergence

as z → 0. When z → 1, the ‘gain’ and ‘loss’ terms would separately be singular, yet

the respective divergences cancel in their sum, provided the spectrum D(x, τ) is a regular

function of x for x < 1. Accordingly, eq. (3.23) is well defined as written, and the same

applies to eq. (3.19).

4 Radiative corrections to q̂

As recalled in the appendix A, several approximations are involved in the derivation of

the splitting kernel. Among those are approximations in which one ignores small momenta

in the propagators P, thereby allowing us to integrate the kernel over those particular

momenta. Such approximations are in line with the leading order of our approximation

scheme. However, in integrating the kernel over the various transverse momenta on which it

may depend, one eliminates potentially interesting physics: we have seen in particular that

in the leading order of our approximation scheme, the gluon splitting is strictly collinear,

with all transverse momenta arising from collisions with medium constituents in between

the splittings. Clearly, one may wish to go beyond this simplified picture. In fact, the

detailed calculations reported in appendix A allow us to to go beyond the leading order

approximation and explore the consequences of keeping some of these momenta in the

factors P attached to a gluon splitting. Since these momenta are small, their effects can be

well captured by a Taylor expansion, so that the entire corrections to the leading calculation

presented so far appear as integral moments of the kernel, which may become large (in fact

they are logarithmically divergent) for splittings that involve very soft gluons. As we shall

see, these corrections are in fact better interpreted as corrections to the transport coefficient

q̂, or equivalently as corrections to the interaction between the partons of the cascade and

the medium particles. They are formally suppressed by a power of the QCD coupling

αs, so in that sense they are small (which explains why we were able to ignore them in

the previous developments); but on the other hand they are enhanced by large logarithms

generated by the integration over the phase. Accordingly, such corrections could become

numerically large for a sufficiently large medium. Within the present formalism, we cannot

claim having a systematic control of these corrections. Still, as we shall see, our approach

does correctly capture the main correction to q̂ — the one which is enhanced by a double

logarithm —, in line with a recent study of transverse momentum broadening [22]. From a

6Eq. (3.23) has been heuristically proposed in refs. [25, 26] and later implemented in the MARTINI event

generator [27]. Recently [21], a complete analytical study of this equation has been achieved showing its

relevance in explaining the energy flow at large angles, via soft particles, responsible for dijet asymmetry [2].
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t0 tL

ka

kb

p0 q

p

q − p + l

l

t

z

1 − z

Figure 3. Graphical illustration of the equation (4.1). The thick wavy lines represent the proba-

bility P for transverse momentum broadening, the black dot is the splitting kernel K.

physical viewpoint, these corrections express the contribution to the transverse momentum

broadening coming from the recoil associated with unresolved emissions.

As discussed in appendix A, the most general expression for the splitting probability

that is compatible with a minimal set of approximations [referred to as 1) and 2) in the

appendix] is given by (see also figure 3 for an illustration)

P2(ka, kb, z; tL, t0) = 2g2z(1 − z)

∫ tL

t0

dt

∫
q,Q,l

K(Q, l, z, p+
0 ; t)

× P(ka − p; tL, t) P(kb − (q + l − p); tL, t)P(q; t, t0), (4.1)

where Q = p − z(q + l), with q the momentum of the gluon before splitting, p that of the

offspring that carries zq+, and l is the transverse momentum acquired during the branch-

ing process. The complete expression of the splitting kernel K(Q, l, z, p+
0 ; t) is given in

appendix A, in terms of an integral representation obtained in the harmonic approxima-

tion (see eq. (A.15)). Note that, in contrast to the fully integrated kernel in eq. (2.16),

the non integrated one is not positive definite anymore. (This is already obvious on the

partially integrated one, eq. (A.17), although we may argue that this particular kernel be-

comes negative only in a momentum region where it is dwarfed by the exponential.) Yet,

even though strictly speaking one loses their probabilistic interpretation, the manipulations

of the previous section can be formally repeated in order to obtain the evolution equation

for the inclusive one-gluon distribution corresponding to a more general splitting kernel.

This equation reads

∂

∂t
D(x, k, t) =

∫
l
C(l, t)D (x, k − l, t) (4.2)

+ αs

∫ 1

0
dz

∫
q,l

[
2K
(
Q, l, z,

x

z
p+

0

)
D
(x

z
, q, t

)
− K

(
q, l, z, xp+

0

)
D (x, k−l, t)

]
,

where Q ≡ k− z(q + l). In the following, we shall use the fact that Q and l are generically

small compared to k in order to simplify this equation. The fact that l is small is obvious

from its interpretation as the momentum broadening acquired during the branching process.

– 13 –
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That Q is also small may be inferred from the explicit expression (A.17) of the splitting

kernel after integration over l: this expression shows that the kernel which enters the ‘gain’

term in eq. (4.2) is peaked around |Q|2 ∼ k2
br

≡
√

ωq̂f(z), with ω = (1 − z)xp+
0 . The

strategy that we shall follow then is the same as that we used in order to reduce eq. (2.7)

to the diffusion equation (2.9), which involves essentially an expansion around the large

momentum k of the followed gluon.

4.1 The double logarithmic correction to q̂

In order to perform this expansion in powers of the small momenta Q and l, it is convenient

to change variables in the r.h.s. of eq. (4.2), in such a way that these momenta become the

independent integration variables:

∂

∂tL
D(x, k, tL) =αs

∫ 1

0
dz

∫
Q,l

[
2

z2
K
(
Q, l, z,

x

z
p+

0

)
D
(x

z
, (k − Q − zl)/z, tL

)
− K

(
Q, l, z, xp+

0

)
D (x, k − l, tL)

]
−
∫
l
C(l)D (x, k − l, tL) . (4.3)

We can now expand the gluon distributions around k. One gets, for the first term of

eq. (4.3),

D

(
x

z
,
k − Q̃

z

)
= D

(
x

z
,
k

z

)
− Q̃ · ∂

∂k
D

(
x

z
,
k

z

)
+

1

2!
Q̃iQ̃j ∂

∂ki

∂

∂kj
D

(
x

z
,
k

z

)
+ · · · (4.4)

where we have set Q̃ ≡ Q + zl. One expands similarly D (x, k − l). It is easy to see that

the leading terms will reproduce eq. (3.19). The linear terms will vanish upon angular

integration. Remain the quadratic terms, whose contribution can be cast in the form of

the diffusion term, thereby exhibiting a correction δq̂ to the jet quenching parameter. For

consistency, we shall also simplify the collision term by using the diffusion approximation.

The evolution equation obtained after this expansion to quadratic order reads

∂

∂tL
D(x, k, tL) = αs

∫ 1

0
dz

[
2

z2
K
(
z,

x

z
p+

0

)
D

(
x

z
,
k

z
, tL

)
− K

(
z, xp+

0

)
D (x, k, tL)

]
+

1

4

(
∂

∂k

)2 [
q̂(k2) D (x, k, tL)

]
+

1

4

(
∂

∂k

)2 ∫ 1

x
dz

dδq̂(z, xp+
0 , k2)

dz
D

(
x

z
,
k

z
, tL

)
, (4.5)

where the first two lines are recognized as the leading-order transport equation, eq. (3.19),

and in the last term we have set

dδq̂(z, xp+
0 , k2)

dz
≡2αs

z2

∫
Q,l

(Q + zl)2 K
(
Q, l, z,

x

z
p+

0

)
− αsδ(1 − z)

∫ 1

0
dz′
∫
Q,l

l2 K(Q, l, z′, xp+
0 ) . (4.6)
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The k2-dependence in eq. (4.6) comes via the upper cutoff ∼ k in the integrals over Q and

l, which is kept implicit (see the discussion after eq. (2.10), and eq. (4.9) below).

The evaluation of the correction δq̂ from eq. (4.6) meets with logarithmic divergences.

These arise from the region z . 1. To the leading-logarithmic accuracy, we can set z = 1

everywhere, except in the dominant singularity. Thus the dominant contribution to δq̂ can

be then written as∫ 1

x
dz

dδq̂(z, xp+
0 , k2)

dz
D

(
x

z
,
k

z
, tL

)
' δq̂(x, k2) D (x, k, tL) , (4.7)

with

δq̂(x, k2) ≡
∫ 1

x
dz

dδq̂(z, xp+
0 , k2)

dz
= 2αs

∫ 1

x
dz

∫
Q,l

[
(Q + l)2 − l2

]
K
(
Q, l, z, xp+

0

)
, (4.8)

where the lower limit x in the integral over z, which was a priori present only in the ‘gain’

term, has also been inserted in the ‘loss’ term, while at the same time multiplying the

latter by a factor of 2, to account for its original singularities at both z = 0 and z = 1

(which is legitimate since, to the accuracy of interest, the integral is controlled by values

z ' 1 � x). The particular combination of momenta,
[
(Q + l)2 − l2

]
, that emerges then

in eq. (4.8) can be given the following interpretation: when z ' 1, Q ≡ k − z(q + l) is the

same as (minus) the transverse momentum q + l − k of the unmeasured daughter gluon.

Hence Q + l ' k − q is the change in transverse momentum at the emission vertex, with

two obvious components: the momentum l acquired via medium rescattering during the

branching process and the momentum Q taken away by the unmeasured daughter gluon.

The above applies to the ‘gain’ term. For the ‘loss’ term, there is no real emission, so the

only source of momentum broadening is the momentum l transferred from the medium.

The difference (Q+l)2−l2 represents therefore the net change in the transverse momentum

squared, and the average of this quantity over the (momentum dependent) splitting kernel

yields the correction δq̂.

The complete calculation of the integral (4.8) is presented in appendix B, where it

is shown that the result is dominated by the contribution of the single scattering to the

splitting kernel. One gets

δq̂(k2) =
αs Nc

2π
q̂ ln2 k2

q̂τmin
, (4.9)

where τmin is the inverse of the maximum energy that can be extracted from the medium

in a single scattering (e.g. τmin = 1/T for a weakly coupled plasma with temperature T ).

This result agrees with that obtained in ref. [22] using a different approach.

The net result of incorporating this large radiative correction is a transport equation

similar to that obtained at leading order, eq. (3.19), but with an enhanced jet quenching

coefficient, which includes the correction in eq. (4.9):

∂

∂tL
D(x, k, tL) = αs

∫ 1

0
dz

[
2

z2
K
(
z,

x

z
p+

0

)
D

(
x

z
,
k

z
, tL

)
− K

(
z, xp+

0

)
D (x, k, tL)

]
+

1

4

(
∂

∂k

)2 [(
q̂(k2) + δq̂(k2)

)
D (x, k, tL)

]
. (4.10)
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Note that the scale k2 which controls the size of the double logarithm is the transverse mo-

mentum accumulated by the gluon throughout the medium, that is k2 ∼ Q2
s = q̂L. Hence

the argument of the logarithm is large, ∼ L/τmin, which makes this radiative corrections

particularly significant. For a more quantitative estimate, let us use the phenomenolog-

ically relevant values L = 4 fm, 1/τmin = T = 0.5 GeV, αs = 0.3 and Nc = 3. Then,

ln(L/τmin) ' ln 10 ' 2.30 and eq. (4.9) implies δq̂(Q2
s)/q̂ ' 0.8, which is a significative

correction indeed — commensurable with the respective leading-order result.

4.2 A logarithmic correction to q̂

The correction that we have exhibited in the previous subsection appears to be the leading

correction to the transport coefficient. There are also subleading (logarithmic, instead

of double logarithmic) corrections. These have been estimated in ref. [22], and could in

principle be extracted as well from our calculation. In this section, we shall just focus on

one particular logarithmic correction that is easy to obtain because it is the correction that

naturally emerges when one uses the kernel integrated over l but not over Q, namely the

expression (A.17). The starting point is now the equation

∂

∂t
D(x, k, t) =

∫
l
C(l, t)D (x, k − l, t) (4.11)

+ αs

∫ 1

0
dz

∫
q

[
2K
(
Q, z,

x

z
p+

0

)
D
(x

z
, q, t

)
− K

(
q, z, xp+

0

)
D (x, k, t)

]
,

where Q ≡ k − zq.

Expanding the distribution around the momentum k as in the previous subsection,

one gets

∂

∂t
D(x, k, t) − 1

4

(
∂

∂k

)2 [
q̂(k2)D (x, k, t)

]
= αs

∫ 1

0
dz

[
2

z2
K
(
z,

x

z
p+

0

)
D

(
x

z
,
k

z
, t

)
− K

(
z, xp+

0

)
D (x, k, t)

]
+αs

∫ 1

0
dz

∫
Q

2

z2
K
(
Q, z,

x

z
p+

0

) 1

4
Q2 ∂2

∂k2
D(x, k) (4.12)

The second-order term in the expansion (which carries the divergence near z = 1) yields a

correction to q̂, which we call δq̂′. We get (below, we use approximations valid for z ' 1)

δq̂′ = 2αs

∫ 1

x
dz

∫
Q

Q2 K
(
Q, z, xp+

0

)
∝ αs

∫ 1

x
dz k4

br
(z, xp+

0 )
P (z)

(1 − z)xp+
0

∼ αsq̂

∫ 1

x

dz

1 − z
, (4.13)

where to obtain the estimate in the second line we have used the fact that the splitting

kernel is peaked at k2
br

(z, xp+
0 ) =

√
(1 − z)xp+

0 q̂, cf. eq. (A.17). As anticipated, there is a

logarithmic divergence at z = 1, corresponding to ω → 0. This must be cut at the lowest

energy scale at which the BDMPSZ mechanism is applicable, which is the Bethe-Heitler
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energy ωBH ≡ q̂λ2
mfp

, i.e. the energy for which the branching time τ
br

(ω) becomes of the

order of the mean free path λ
mfp

. In practice this means that the integral over z in eq. (4.13)

must be restricted to 1 − z ≤ ωBH/ω, with ω = xp+
0 the energy of the measured gluon.

Note that single scattering does not contribute to this logarithmic correction (as it can

be checked using eq. (A.21)), in contrast to the double logarithmic one discussed in the

previous subsection. Let us also emphasize that eq. (4.13) is only one among the several

logarithmic corrections to q̂ that have been analyzed in ref. [22].

5 Conclusions

In this paper, we have extended our previous studies of the in-medium QCD cascade, based

on the approximation that successive gluon branchings can be treated as independent from

each other. This approximation is indeed justified for the typical partons within the cas-

cade, whose formation times are much smaller than the medium size. We have constructed

a generating functional for the various relevant probabilities and deduced from it the evo-

lution equation for the inclusive one-gluon distribution function, that keeps track of the

transverse momentum of the measured gluon. In this equation, however, the transverse

momenta entering the splitting kernel are treated in an average way and the splittings are

effectively collinear. This is justified since the transverse momentum broadening during

the comparatively short (in our approximation, quasi-instantaneous) branching processes

is much smaller than that accumulated via collisions in the medium all the way along the

parton trajectories. By relaxing some of our approximations, in particular those which

allow us to integrate the kernel over transverse momenta, we were able to identify large

corrections to the jet quenching parameter, and in particular to recover the double log-

arithmic contribution that has been calculated recently in a general study of transverse

momentum broadening. It however remains as an interesting open problem whether a sys-

tematic renormalization of q̂ in all the relevant quantities (like the emission kernel K) is

indeed possible.
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A The splitting kernel

It was shown in ref. [19] that the cross section for observing at time tL two gluons with

momenta ~ka, ~kb, given that a single gluon was present with momentum ~p0 at time t0, is

given, in leading order perturbation theory, by

d2σ

dΩkadΩkb

=

∫
dΩp0 P2(~ka,~kb; tL, t0)

dσhard
dΩp0

, (A.1)
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where dσhard/dΩp0 is the hard cross section for the production of the initial gluon, and

dΩk ≡ (2π)−3d2k dk+/2k+ is the invariant phase-space element, and the vector notation
~k stands for (p+, p), as in the main text of this paper. The transition probability density

P2(~ka,~kb; tL, t0) can be written as (cf. eq. (2.14))

P2(~ka,~kb; tL, t0) = 2π 2p+
0 δ(k+

a + k+
b − p+

0 ) P2(ka, kb, z; tL, t0), (A.2)

with z = k+
a /p+

0 , and P2(ka, kb, z; tL, t0) given by

P2(ka, kb, z; tL, t0) =
g2Pgg(z)

z(1 − z)(p+
0 )2

2<e

∫ tL

t0

dt2

∫ t2

t0

dt1

∫
p1q1q̄2p2q2

(P̂1 · Q̂2)

×(kakb; kakb|S̃(4)(tL, t2)|q2, q̄2−q2; p2, q̄2−p2)(q2, q̄2−q2; q̄2|S̃(3)(t2, t1)|p1, q1−p1; q1)

×(q1; q1|S̃(2)(t1, t0)|p0; p0), (A.3)

where P̂1 ≡ p1 − zq1, Q̂2 ≡ p2 − zq̄2 denote the ‘natural’ momentum variables7 at the

vertices in the amplitude and the complex conjugate amplitude, respectively. The explicit

flow of momenta that label intermediate states is illustrated in figure 4. The dependence

of P2 (and P2) on the initial momentum ~p0 is left implicit to simplify the notation. The

real part takes into account the time ordering t1 > t2 not explicitly included in (A.3). The

formula above has been obtained after performing the average over the field fluctuations

using eq. (2.1), and summing over polarizations. Azymuthal angles of the momenta at the

vertices have also been averaged.

At this point no approximation has been made, except for the obvious restriction to

leading order in perturbation theory (in the background field), that is, a single splitting

occurs between t0 and tL. One may now introduce several approximations that are valid

in the regime where the branching occurs on a time scale that is small compared to the

length of the medium, i.e, in the regime τ
br

� tL − t0 (or equivalently for infinite medium

length). We shall first consider the following two approximations:

1) Ignore the non factorizable piece of S̃(4), that is, set

(kakb; kakb|S̃(4)
fac (tL, t2)|q2, q̄2 − q2; p2, q̄2 − p2)

= (2π)2δ(2)(p2 − q2)P(ka − q2, tL, t2)P(kb − q̄2 + q2, tL, t2). (A.4)

It was shown in [19] that the non factorizable piece of the 4-point function dies away

over a time scale of order τ
br

, and it is down by a least one power of τ
br

/L as compared

to the factorized part.

2) Use as time integration variables t1 and t2 − t1 ≡ τ , i.e., set t2 = t1 + τ , and neglect

τ in the P factors that enter the 4-point function (A.4), that is e.g.

P(ka − q2, tL, t1 − τ) → P(ka − q2, tL, t1), (A.5)

7The momentum P̂1 = p1 − zq1 is the relative momentum of the non relativistic motion of the two

offspring gluons in the transverse plane. Alternatively, |P̂1|/p+1 ' θz is the polar angle of the gluon carrying

zq+1 . Since |P̂1| ' kbr, θz ∼ kbr/zq+1 .
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q1

p1

q1 − p1

t2

ka

ka

kb

kb

tL

q̄2

p0

p0

q1

t1t0

q2

q̄2 − p2

p2

q̄2 − q2

Figure 4. The momenta of the intermediate states in eq. (A.3). The amplitude is drawn above

the complex conjugate amplitude (see ref. [19]), with the gluon splitting occurring at time t1 in

the amplitude, and at time t2 in the complex conjugate amplitude. At any given time, the sum of

momenta in the amplitude equals that of momenta in the complex conjugate amplitude.

and similarly for the other P. This allows us to integrate freely the 3-point function

over τ from 0 to ∞ (as we shall soon recall, the 3-point function is strongly damped

as soon as τ & τ
br

).

With these two approximations, eq. (A.3) simplifies to

P2(ka, kb, z; tL, t0) = 2g2z(1−z)

∫ tL

t0

dt1

∫
q1,Q̂2,l

P(ka − q2, tL, t1)P(kb − q1 − l + q2, tL, t1)

×Pgg(z)

ω2
<e

[∫
P̂1

∫ ∞
0

dτ (P̂1 · Q̂2) (q2, q̄2 − q2; q̄2|S̃(3)(t2, t1)|p1, q1 − p1; q1)

]
× P(q1 − p0, t1 − t0), (A.6)

where we have set ω ≡ z(1 − z)p+
0 and we have used as independent variables q1, P̂1 =

p1 − zq1, Q̂2 = p2 − zq̄2 = q2 − zq̄2, l = q̄2 − q1 in place of q1, p1, q̄2, q2. At this point we

set (with a slight abuse of notation)

S̃(3)(P̂1, Q̂2, l, z, τ, t1) = (q2, q̄2 − q2; q̄2|S̃(3)(t2, t1)|p1, q1 − p1; q1) (A.7)

which makes explicit the relevant momentum variables on which the 3-point function de-
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pends, and we define the splitting kernel

K(Q̂, l, z, t1) ≡ Pgg(z)

ω2
Re

∫ ∞
0

dτ

∫
P̂

(P̂ · Q̂) S̃(3)(P̂ , Q̂, l, z, τ, t1). (A.8)

With this new notation, eq. (A.6) reads

P2(ka, kb, z; tL, t0) = 2g2z(1 − z)

∫ tL

t0

dt1

∫
q1,Q̂2,l

P(ka − Q̂2 − z(q1 + l), tL, t1) (A.9)

×P(kb + Q̂2 − (1−z)(q1 + l), tL, t1) K(Q̂2, l, z, t1) P(q1 − p0, t1, t0).

At this point further approximations are legitimate. For instance, as we did in [19], we

can neglect the momentum l in the P factors: indeed l represents the typical momentum

acquired during the branching process, l2 ' q̂τ
br

, and it is small compared to ka or kb
which are both of order Qs ∼ q̂(tL − t0). If one neglects l in the P factors, then one can

integrate the splitting kernel over l and get the simpler formula

P2(ka, kb, z; tL, t0) = 2g2z(1 − z)

∫ tL

t0

dt1

∫
q1,Q̂2

P(ka − Q̂2 − zq1, tL, t1) (A.10)

×P(kb + Q̂2 − (1 − z)q1, tL, t1) K(Q̂2, z) P(q1 − p0, t1, t0).

with K(Q̂, z, t) ≡
∫
l K(Q̂, l, z, t). This is the approximation that was explicitly considered

in ref. [19].

We may also observe that the variable Q̂ that stands as argument of K is also small,

of order k
br

� Qs, and can also be neglected in a leading order approximation. Doing so,

one ends up with an even simpler formula

P2(ka, kb, z; tL, t0) = 2g2z(1 − z)

∫ tL

t0

dt1 K(z, t1)

∫
q1

P(ka − zq1, tL, t1) (A.11)

×P(kb − (1 − z)q1, tL, t1) P(q1 − p0, t1, t0).

with K(z, t) ≡
∫
Q̂ K(Q̂, z, t) =

∫
Ql K(Q̂, l, z, t) is the fully integrated splitting kernel. This

is the kernel used to construct the generating functional of the in-medium cascade in

section 3.

As was shown in [19], the 3-point function can be written as the following path integral

S̃(3)(P , Q, l, z, p+
0 ; t2, t1) =

∫
du1du2dv eiu1·P−iu2·Q−iv·l (A.12)

×
∫ u2

u1

Du exp

{
iω

2

∫ t2

t1

dt u̇2 − Nc

4

∫ t2

t1

dt n(t) [σ(u) + σ(v − zu) +σ(v + (1 − z)u)]

}
.

This can be explicitly evaluated within the ‘harmonic approximation’, which assumes

σ(r) ∝ q̂r2 (cf. eq. (2.11)). By expanding all the σ’s to quadratic order, and perform-
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ing the resulting gaussian path integrals, one gets [19]8

S̃(3)(P , Q, l, z, p+
0 ; t2, t1) =

16πf(z)

3q̂∆t
exp

{
−4f(z)

[
l + (1 − 2z)(P − Q)/2f(z)

]2
3q̂∆t

}

× 2πi

Ωω sinh(Ω∆t)
exp

{
−i

(P + Q)2

4ωΩ coth(Ω∆t/2)
− i

(P − Q)2

4ωΩ tanh(Ω∆t/2)

}
. (A.13)

where ∆t ≡ t2 − t1, f(z) ≡ 1 − z(1 − z), and

Ω ≡ 1 + i

2τ
br

(z, p+
0 )

, (A.14)

with τ
br

(z, p+
0 ) ≡

√
ω/q̂f(z).

By inserting the result (A.13) for S̃(3) into eq. (A.8), one finds the following integral

representation for the splitting kernel (in the harmonic approximation):

K(Q, l, z, p+
0 ; t) = 16π

f(z)Pgg(z)

ω2
<e

∫ ∞
0

d∆t

3q̂∆t
(A.15)

×
∫
P

(Q · P ) exp

{
−4f(z)

[
l + (1 − 2z)(P − Q)/2f(z)

]2
3q̂∆t

}

× 2πi

Ωω sinh(Ω∆t)
exp

{
−i

(P + Q)2

4ωΩ coth(Ω∆t/2)
− i

(P − Q)2

4ωΩ tanh(Ω∆t/2)

}
.

This kernel obeys the symmetry property:

K(Q, l, z, p+
0 ; t) = K(−Q, l, 1 − z, p+

0 ; t) , (A.16)

which expresses the symmetry of the splitting under the exchange of the two daughter

gluons.

By performing the integration over l one recovers the splitting kernel obtained in [19]:

K(Q, z, p+
0 ; t) ≡

∫
l
K(Q, l, z, p+

0 ; t) =
2

p+
0

Pgg(z)

z(1 − z)
sin

[
Q2

2k2
br

]
exp

[
− Q2

2k2
br

]
, (A.17)

In this expression, k2
br

= q̂f(z)τ
br

(z, p+
0 ) =

√
ωq̂f(z) is the typical transverse momentum

squared transferred via medium rescattering during the splitting. Note that the branching

time, and hence the splitting kernel, depend upon both p+
0 (the energy of the parent

gluon) and upon the splitting fraction z. The expression (A.17) illustrates an important

property of the branching that is induced by soft multiple collisions: it is strongly peaked

at |Q| ∼ k
br

(z, p+
0 ). For smaller momenta |Q| � k

br
, gluon splitting is suppressed by

Q2/k2
br

, which reflects the interferences of the LPM effect. At larger momenta |Q| & k
br

,

it is rapidly damped, as it is unlikely to acquire more transverse momentum than k
br

via

multiple scattering.

8Note that a mistake was made in evaluating the Gaussian path-integral in [19]: in going from eq. (B.24)

to eq. (B.25) in appendix B of ref. [19], one has ignored the shift in the endpoints of the trajectory u(t).

This was of no consequence in [19] since the splitting kernel was there integrated over l. However this

affects the l dependence of the kernel, which is here given correctly.
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The kernel in eq. (A.17) contains information about the geometry of the medium-

induced splitting: the polar angles made by the two offspring gluons with respect to their

parent parton are θz ' |Q|/zp+
0 and respectively θ1−z ' |Q|/(1 − z)p+

0 . Since |Q| ∼ k
br

�
Qs =

√
q̂L, it is clear that these angles are negligible compared to the angular spreading

acquired via collisions in between successive branchings. By integrating the kernel (A.17)

over Q, this information about the emission angles is averaged out, and one obtains the

fully integrated kernel K(z, p+
0 ; t) given explicitly in eq. (2.16).

Finally, we shall write the expression of the splitting kernel in the limit where a single

scattering occurs during the branching process. We limit ourselves to the case where z . 1,

the case of relevance for discussing the double logarithmic correction to q̂. The three-point

function in the one-scattering approximation, obtained by expanding (A.12) to leading

order in σ, takes the form

S̃(3)(P , Q, l) ≈ −Nc

4

∫ t2

t1

dt n(t) G0(Q, t2 − t) G0(P , t − t1) (A.18)

×
[
(2π)2δ(l) σ(Q − P ) + (2π)2δ(Q − P + l) σ(l) + (2π)2δ(Q − P ) σ(l)

]
,

where G0(Q, t2 − t1) is the free propagator

G0(Q, t2 − t1) = e−i
Q2

2ω
(t2−t1). (A.19)

When needed (see below) a small negative imaginary part may be added to Q2 to account

for the retarded condition. If we assume that n is independent of time, we can perform the

time integration, and obtain (τ ≡ t2 − t1)

S̃(3)(P , Q, l) ≈ −Ncnω

2i

e−i
P 2

2ω
τ − e−i

Q2

2ω
τ

Q2 − P 2
(A.20)

×
[
(2π)2δ(l) σ(Q − P ) + (2π)2δ(Q − P + l) σ(l) + (2π)2δ(Q − P ) σ(l)

]
.

At this point, the kernel reads

K(Q, l, z) ≡ C2
An

1 − z
Re

∫
P

P · Q

Q2P 2
(A.21)

×
[
(2π)2δ(l) σ(Q − P ) + (2π)2δ(Q − P + l) σ(l) + (2π)2δ(Q − P ) σ(l)

]
.

where we have used the time integral (recall that P 2 → P 2 − iε)

∫ ∞
0

dτ
e−i

P 2

2ω
τ − e−i

Q2

2ω
τ

Q2 − P 2
= − 2iω

Q2P 2
. (A.22)

This expression will be used in the next appendix. Note that the last two terms in the

r.h.s. of eq. (A.21) vanish upon integration over l, because of the identities (2.6). These

terms play an essential role in the evaluation of δq̂, as shown in the next appendix.
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B Estimating the double logarithmic correction to q̂

Our starting point is the integral representation for the kernel given, in the harmonic

approximation, by eq. (A.15), where we keep only the singular part at z → 1 from the

Altarelli-Parisi splitting function Pgg(z) (see eq. (2.17)), and we set z = 1 in the rest

of the expression. After inserting eq. (A.15) into the r.h.s. of eq. (4.8), we are facing

four integrations: an integration over the duration τ of the branching process and three

Gaussian integrations over the momentum variables l, Q and P . Performing first the

integral over l, one obtains (with τ ≡ ∆t)

δq̂(k2) ' 2αs <e

∫ 1

x

dz

1 − z

CA
ω2

0

∫ ∞
0

dτ

∫
Q,P

(Q · P )2

× 2πi

ωΩ sinh(Ωτ)
exp

{
−i

(P + Q)2

4ωΩ coth(Ωτ/2)
− i

(P − Q)2

4ωΩ tanh(Ωτ/2)

}
, (B.1)

where ω ≡ (1 − z)zq+ ' (1 − z)xp+
0 and ωΩ2 = iq̂f(z)/2 (cf. eq. (A.14)). Note that for

z close to one, the quantity ω is essentially the energy (1 − z)q+ of the unresolved gluon

and f(z) ' 1. It is now straightforward to perform the remaining momentum integrations,

yielding

δq̂(k2) = 2<e

∫ 1

x

dz

1 − z

αs CA
ω2

0

∫ ∞
0

dτ
i(ωΩ)3

π

1

sinh(Ωτ)

[
1 +

4

sinh2(Ωτ)

]
. (B.2)

Anticipating on the fact that the dominant (divergent) contribution will come from the

small τ region, we carefully expand the integrand for |Ω|τ � 1 and get

Ω3

sinh Ωτ

(
1 +

4

sinh2 Ωτ

)
≈ 4

τ3
− Ω2

τ
. (B.3)

The Ω-independent piece is real, so it does not contribute to the real part of the integral

in eq. (B.2) (because of the explicit factor i in eq. (B.2)). The second term in the r.h.s.

eq. (B.3) is purely imaginary and is linear in q̂, suggesting that it describes the contribution

of a single scattering (see below). When inserted into eq. (B.2), this term generates an

integral which is logarithmically divergent as τ → 0. One then gets, after changing the

integration variable from z to ω = (1 − z)xp+
0 ,

δq̂(k2) ≈ αs Nc

π
q̂

∫
dω

ω

∫
dτ

τ
. (B.4)

We can verify that the dominant contribution to K is coming from a single scattering

with the medium by using the expression obtained in appendix A, eq. (A.21), in order to

perform the calculation. We get (with ω = (1 − z)p+)

ω
dδq̂

dω
= 2αs

∫
Q,l

q · (Q + 2l) K(Q, l, z)

= 4αsN
2
c n Re

∫
Q,P

(Q · P )2

Q2P 2
σ(Q − P ) (B.5)
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where, in order to perform the l integration we have used the identities (2.6). By using

eq. (2.5), we get ∫
Q,Q

(Q · P )2

Q2P 2
σ(Q − P ) = 2g2

∫
q,l

γ(l)
Q2l2 − (l · Q)2

Q2(Q − l)2

≈ g2

∫
Q

1

Q2

∫
l
l2γ(l), (B.6)

where, in the last line, we have made approximations valid in the region l � Q. We

therefore get from (B.5)

ω
dδq̂

dω
= 2αsN

2
c n

∫
Q

1

Q2

∫
l
l2V (l)

=
αNc

π
q̂

∫
dQ2

Q2
, (B.7)

which is recognized as eq. (B.4) after recalling that the formation time and the virtuality

of the soft emitted gluon are related by τ ' ω/Q2.

Returning to eq. (B.4), we shall now discuss the boundaries of the double integral

there. Consider the time integral first. At larger times |Ω|τ & 1, this integral is cutoff

by the exponential decay of [sinhΩτ ]−1; this is the effect of multiple scattering during the

emission process, which limits the branching times to values τ . τ
br

(ω) =
√

ω/q̂. On the

other hand the time τ cannot be smaller that the inverse of the maximum energy that can

be taken away from the medium through a single scattering [22]. We call this limiting time

τmin. This lower bound may not always be reached however. If ω is not too small, then τ

will be limited by the formation time of the unobserved gluon, τ ' ω/Q2
⊥. But in reality

such values cannot exceed the transverse momentum k⊥ of the measured gluon, which in

turn implies a lower limit ∼ ω/k2
⊥ in the integral over τ . Thus the lower bound on τ is

max
(
τmin, ω/k2

⊥
)
.

Turning now to ω, we note that the lower limit at z = x in the original integral over

z implies an upper limit ωmax = (1 − x)xp+
0 ' xp+

0 (the energy of the measured gluon) in

the integral over ω. For the ensuing integral to have a non-trivial support when τ = τmin,

one also needs τ
br

(ω) ≡
√

ω/q̂ & τmin, that is, ω & q̂τ2
min.

In view of the above, we need to split the integral over ω into two regions:

q̂1(k
2) ≈ αs Nc

π
q̂

{∫ τmink
2

q̂τ2min

dω

ω

∫ √
ω/q̂

τmin

dτ

τ
+

∫ xp+0

τmink2

dω

ω

∫ √
ω/q̂

ω/k2

dτ

τ

}
. (B.8)

≈ αs Nc

2π
q̂

{
ln2 k2

q̂τmin
− 1

2
ln2 k4

q̂xp+
0

}
. (B.9)

Dropping the last term (negligible if xp+
0 � τmink2), one finds the result (4.9).

C Equivalence between forward and backward evolutions

As mentioned earlier, one may write two types of evolution equations, depending on

whether one differentiates the generating functional with respect to the initial or the final
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times. These two evolutions are referred to as backward and forward Kolmogorov evolu-

tions (see ref. [24] for a general discussion). In section 3, we have discussed the forward

case. We discuss here the backward case that is often preferred for Monte-Carlo imple-

mentations. The two formulations are in principle equivalent, although the forms of the

resulting equations may look rather different. At the end of this appendix, we shall prove

the equivalence in the case of the inclusive one gluon distribution.

In order to derive the backward evolution equation for the generating functional, which

we denote now Z[p+, p; tL, t0|u],9 we first note the analog of eq. (3.8) for the time derivative

of P2, with now the derivative acting on t0:

−∂t0P2(ka, kb, z; tL, t0)

= 2g2z(1 − z)K(z, p+
0 ; t0)P(ka − zp0; tL, t0)P(kb − (1 − z)p0; tL, t0). (C.1)

This provides the essential ingredient for the construction of the evolution equation,

which reads:

− ∂

∂t0
Z[~p; tL, t0|u] = αs

∫ 1

0
dz K(z, p+; t0)

{
Z[z~p; tL, t0|u]Z[(1−z)~p; tL, t0|u]−Z[~p; tL, t0|u]

}
+

∫
l
C(l, t0)Z[p+, p − l; tL, t0|u] . (C.2)

The term quadratic in Z within the braces in the r.h.s. describes the splitting of the initial

parton into two partons, whereas the term linear in Z is necessary to ensure probabil-

ity conservation. As usual, the collision term which involves C accounts for transverse

momentum broadening.

This differential equation can be easily transformed into an integral equation,

which reads

Z[~p; tL, t0|u] =

∫
p′

∆(p+; tL − t0)P(p′ − p; tL, t0) u(p+, p′) (C.3)

+αs

∫ tL

t0

dt

∫
p′

∆(p+; t − t0)P(p′ − p; tL, t0)

×
∫ 1

0
dz K(z, p+, t) Z

[
zp+, zp′; tL, t|u

]
Z
[
(1 − z)p+, (1 − z)p′; tL, t|u

]
,

where ∆(p+; tL − t0) is the Sudakov factor defined in eq. (3.14). This equation, which

is graphically illustrated in figure 5, recursively generates the ensemble of the cascade by

‘inserting one additional splitting at the beginning of the cascade’.

As an illustration of the equivalence between the two different versions for the evolution

equations, we show explicitly the connection between them for the specific case of the one-

gluon energy distribution.

The evolution equation for the one-gluon energy distribution, as derived from the

generating functional, reads

− ∂

∂τ0
D(x, τ − τ0) =

∫ 1

0
dz K̂(z) D

(
x

z
,
τ − τ0√

z

)
− 1

2

∫ 1

0
dz K̂(z) D (x, τ − τ0) . (C.4)

9In contrast to what happens in the forward evolution, in the present case the variable p+ changes in

the evolution.
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= +
p⊥pp′pp

Z
p′

zp′

P u(!p′) P

Z

Z

t0 tL t0 tL

(1 − z)p′

t0 tLt

Figure 5. Diagrammatic representation of the master equation (C.3).

It is understood, here and in the following equation that D(x > 1) = 0, so that the lower

bound on the first z-integration is actually z = x. To write down this equation we have

assumed that the energy of the initial parton is p+
0 . It is convenient, for the foregoing

derivation, to consider an arbitrary initial p+, so that we shift p+
0 to x′p+

0 . Under such a

shift τ → τ/
√

x′ (recall eq. (3.21)). We can then rewrite eq. (C.4) as

− ∂

∂τ0
D

(
x

x′
,
τ − τ0√

x′

)
=

1√
x′

∫ 1

0
dzK̂(z)D

(
x

zx′
,
τ − τ0√

zx′

)
− 1

2
√

x′

∫ 1

0
dzK̂(z)D

(
x

x′
,
τ − τ0√

x′

)
.

(C.5)

Now let us introduce the following identity (which results from the Chapman-Kolmogorov

law of composition of probabilities)

D(x, τ − τ0) =

∫ 1

x

dx′

x′
D

(
x

x′
,
τ − τ ′√

x′

)
D(x′, τ ′ − τ0). (C.6)

This equality holds for any τ ′. In particular, it is obviously true for τ ′ = τ0 where D(x′, 0) =

δ(x′−1), and for τ ′ = τ where D(x/x′, 0) = xδ(x−x′). More generally, taking the derivative

of eq. (C.6) with respect to τ ′ one gets

−
∫ 1

x

dx′

x′
∂

∂τ ′
D

(
x

x′
,
τ − τ ′√

x′

)
D(x′, τ ′−τ0) =

∫ 1

x

dx′

x′
D

(
x

x′
,
τ −τ ′√

x′

)
∂

∂τ ′
D(x′, τ ′ − τ0). (C.7)

By combining this equation with eq. (C.5) (in which we replace τ0 by τ ′) we get∫ 1

x

dx′

x′
D

(
x

x′
,
τ − τ ′√

x′

)
∂

∂τ ′
D(x′, τ ′ − τ0)

=

∫ 1

x

dx′

x′
1√
x′

∫ 1

0
dzK̂(z) D

(
x

zx′
,
τ − τ ′√

zx′

)
D(x′, τ ′ − τ0)

−
∫ 1

x

dx′

x′
1

2
√

x′

∫ 1

0
dzK̂(z) D

(
x

x′
,
τ − τ ′√

x′

)
D(x′, τ ′ − τ0) . (C.8)

At this point we set τ ′ = τ , which allows us to perform the x′ integrations (thanks to the

properties recalled after eq. (C.6)). We end up with

∂

∂τ
D(x, τ − τ0) =

∫ 1

x
dz K̂(z)

√
z

x
D
(x

z
, τ − τ0

)
− 1

2
√

x

∫ 1

0
dz K̂(z) D(x, τ − τ0). (C.9)
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Since K̂(z) is symmetric under the transformation z → 1 − z, we have∫ 1

0
dz zK̂(z) =

∫ 1

0
dz (1 − z)K̂(z) =

1

2

∫ 1

0
dz K̂(z) , (C.10)

which allows us to write eq. (C.9) as

∂

∂τ
D(x, τ) =

∫ 1

x
dz K̂(z)

√
z

x
D
(x

z
, τ
)

−
∫ 1

0
dz

z√
x

K̂(z) D(x, τ), (C.11)

which is the evolution equation (3.23).
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