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Abstract

This paper investigates hindsight optimization as an approach
for leveraging the significant advances in deterministic plan-
ning for action selection in probabilistic domains. Hindsight
optimization is an online technique that evaluates the one-
step-reachable states by sampling future outcomes to gener-
ate multiple non-stationary deterministic planning problems
which can then be solved using search. Hindsight opti-
mization has been successfully used in a number of online
scheduling applications; however, it has not yet been con-
sidered in the substantially different context of goal-based
probabilistic planning. We describe an implementation of
hindsight optimization for probabilistic planning based on de-
terministic forward heuristic search and evaluate its perfor-
mance on planning-competition benchmarks and other prob-
abilistically interesting problems. The planner is able to out-
perform a number of probabilistic planners including FF-
Replan on many problems. Finally, we investigate conditions
under which hindsight optimization is guaranteed to be ef-
fective with respect to goal achievement, and also illustrate
examples where the approach can go wrong.

Introduction
An interesting development in the planning community
has been the seemingly paradoxical success of FF-Replan
(Yoon, Fern, & Givan 2007) in the probabilistic planning
track of the international planning competition. While the
original intent of this track was to evaluate which of the
“probabilistic planners” do well, the competition was dom-
inated by FF-Replan, which determinizes the problem (e.g.
assume that each action deterministically leads to only one
of its possible outcomes) and then follows a simple replan-
ning strategy. This unexpected result has led to signifi-
cant scrutiny of the probabilistic planning track, including
discussion of the domains used in the competition. Some
(Little & Thiebaux 2007) have attempted to define a no-
tion of “probabilistically interesting” domains, and claimed
that FF-Replan’s success can be attributed to the fact that
the competition problems are not probabilistically interest-
ing and/or are simple in some other sense. Indeed, the de-
terminization strategies used by FF-Replan do fail in several
domains that are deemed probabilistically interesting.
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This paper takes a different perspective on this develop-
ment. We re-interpret FF-Replan’s basic strategy as a de-
generate form of hindsight optimization, an “online anticipa-
tory strategy” for control problems that has previously been
applied successfully to problems such as online scheduling.
Rather than solving a single determinized problem at each
step, hindsight optimization randomly generates a set of
non-stationary determinized problems (where the outcome
selected for an action varies with time) and combines their
solutions. Adapting this approach to FF-Replan essentially
involves a form of “dynamic determinization”.

The hindsight optimization approach thus provides a prin-
cipled reduction from probabilistic planning to determinis-
tic planning. We show empirically that this reduction is
able to perform well even in the probabilistically interest-
ing domains of (Little & Thiebaux 2007). Furthermore, we
show conditions under which this reduction is guaranteed to
be sound and efficient in goal-oriented domains. We also
provide insight into the failure modes and implementation
choices of this reduction.

Importantly reductions such as hindsight optimization
provide a way for leveraging the large amount of effort and
advancement in deterministic planning outside of the con-
fines of deterministic domains. Similarly, the large amount
of work on learning to plan, which has focused primarily
on deterministic planning, becomes more relevant. In this
respect, our work joins a number of other recent efforts on
leveraging deterministic planners in non-deterministic and
stochastic domains (Ng & Jordan 2000; Younes & Simmons
2004; Palacios & Geffner 2007; Foss, Onder, & Smith 2007;
Bryce, Kambhampati, & Smith 2008).

The contributions of this paper are thus three fold: 1) to
connect FF-Replan to the work on online anticipatory algo-
rithms, 2) to provide a generalization of FF-Replan based on
hindsight optimization that is effective in a broader class of
probabilistic planning benchmarks, while retaining its abil-
ity to exploit deterministic planning techniques, 3) to pro-
vide conditions under which hindsight optimization consti-
tutes a sound and efficient reduction in goal-oriented do-
mains.

Problem Setup
A probabilistic planning problem is a Markov decision pro-
cess (MDP)M = 〈S, s0, A, P,R〉, with finite set of states
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S, initial states0 ∈ S, finite set of actionsA, Markovian
transition functionP giving the probabilityP (s′ | s, a) of
reaching states′ after executing actiona in states, and re-
ward functionR mapping states to real-valued rewards. In
this work, we assume that the transition function is repre-
sented using the probabilistic planning domain description
language (PPDDL) (Younes 2003). This allows us to view
each actiona as being represented via a precondition, a finite
set of outcomesO(a), each of which is a set of determinis-
tic PDDL effects, and a discrete distributionDa over those
outcomes. An actiona is available for execution when its
precondition is satisfied and when executed leads to a next
state generated by drawing an outcome fromDa and then
applying the effects of that outcome to the current state.

Given an MDP, the planning objective is typically to se-
lect actions so as to optimize some expected measure of the
future reward sequence, for example, total reward or cumu-
lative discounted reward. In this paper, as in the first two
probabilistic planning competitions, we will focus on goal-
based planning problems where the primary objective is to
reach a state achieving a goal condition. We note, how-
ever, that our approach also applies to non-goal-based prob-
lems. One goal-based formulation is to restrict considera-
tion to problems where all rewards are zero except for goals
states with reward of one, and where all actions in goal states
lead to zero-reward terminal states (where all actions are
self-transitions). In this case, maximizing expected undis-
counted cumulative reward is equivalent to maximizing the
probability of goal achievement. If instead we choose to
maximize expected cumulative discounted reward then this
would result in a trade-off between goal-achievement prob-
ability and expected solution length. Other straightforward
formulations can take into account arbitrary action costs.

Online Action Selection. The first two international prob-
abilistic planning competitions used an online approach for
evaluating planners. The competition host would first send
out a description of the planning problem and then provide
an interface to the probabilistic environment that allowed a
planner to send actions to be executed and then receive state
updates based on the simulated action outcomes. A num-
ber of planners in the competition (Little & Thiebaux 2006;
Buffet & Aberdeen 2007; Sanner & Boutilier 2006) fol-
lowed the approach of first solving for a partial action se-
lection policy offline after receiving the planning problem,
and then execute that policy during the online evaluation.
Rather, in this paper, we focus on purely online action se-
lection policies, where all planning is done during online
evaluation. In particular, at each state encountered during
execution, we run a fast heuristic planning procedure that
computes an action to be executed. FF-Replan (Yoon, Fern,
& Givan 2007), which won the first planning competition,
followed an online selection strategy where a deterministic
approximation of the MDP was solved by the planner FF in
order to select an action. In this paper, we seek to improve
the deterministic approximation used by FF-Replan via the
technique of hindsight optimization.

Hindsight Optimization
Hindsight optimization (HOP) is an online action selection
heuristic for stochastic control that has been successfully ap-
plied in a number of application domains such as packet
scheduling and online reservation systems (Chong, Givan,
& Chang 2000; Wu, Chong, & Givan 2002). The main
idea underlying HOP is to approximate the value of a state
by sampling a set of non-stationary deterministic problems
originating from that state, and then solving those problems
“in hindsight” and combining their values. In cases, where
the resulting deterministic problems are much easier to solve
than the original probabilistic problem, we get large compu-
tational gains. Below we describe HOP more formally and
then relate it to the strategy employed by FF-Replan.

A T -horizon futureF is a mapping fromA × S ×
{1, ..., T} to the real interval[0, 1], whereA is the action set
andS the state set. Given a probabilistic planning problem
M and futureF , we letM [F ] denote theT -horizon deter-
minizationof M with respect toF , which simply assigns a
deterministic outcome to each actiona in states at time t
as determined byF (a, s, t). This can be done, for example,
by partitioning the interval[0, 1] according the outcome dis-
tributionDa for actiona and then selecting the outcome for
a at timet thatF (a, s, t) indexes. A non-stationary policy
π = (π1, . . . , πT ) is a sequence of policies, eachπi provid-
ing a mapping from states to actions for use at time-stepi.
We denote the total reward achieved byπ when executed for
T steps inM [F ] starting ats by R(s, F, π).

The optimalT -horizon value functionV ∗(s, T ) for state
s is given by,

V ∗(s, T ) = max
π

E[R(s, F, π)],

whereF is a random variable distributed uniformly over
all T -horizon futures. The correspondingT -horizon
Q-function is then given byQ∗(s, a, T ) = R(s) +
E[V ∗(s′, T − 1)] where s′ is distributed according to
P (· | s, a). The policy of selecting actions that maxi-
mizeQ∗(s, a, T ) is known as receding-horizon control, and
can be made arbitrarily close to optimal for large enough
T . Unfortunately, computing this Q-function is typically in-
tractable and thus must be approximated in practice.

HOP approximates the Q-function by interchanging the
order of the expectation and maximization in the computa-
tion of value functions. The HOP value function approxima-
tion is thus given by

Vhs(s, T ) = E[max
π

R(s, F, π)]

with the hindsight Q-function given byQhs(s, a, T ) =
R(s) + E[Vhs(s

′, T − 1)]. The T -horizon hindsight pol-
icy is then defined asπhs(s, T ) = arg maxa Qhs(s, a, T ).
Vhs(s, T ) is an upper bound on the optimal value function
V ∗(s, T ) and can sometimes grossly overestimate the true
value. Intuitively, this is becauseVhs is able to “peek” at the
resolution of future randomness, and is allowed to select a
different policy for each such resolution, whereasV ∗ must
find a single policy that works in expectation across all fu-
tures. The gain we get for interchanging the expectation and
maximization is computational. In particular, it is possible
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Figure 1: Example Problems

to accurately estimateVhs(s, T ) by sampling a set of futures
and then for each one solving for the policy with maximum
reward and averaging the results. In the next section, we pro-
vide a bound on the number of samples required for accurate
estimation of the hindsight policy. When this bound is rea-
sonable and it is possible to solve the deterministic problems
efficiently, the policyπhs(s, T ) can be computed efficiently.

From the above we see there are two factors that play into
the performance of hindsight optimization. One is the im-
pact of the inaccuracy ofVhs compared to the true value
function, and the other is computational feasibility. In previ-
ous applications of HOP to stochastic scheduling, the deter-
ministic problems are offline scheduling problems for which
efficient solvers were developed. Furthermore, in that con-
text the hindsight policy provided good performance since
Qhs was able to rank actions quite accurately despite its po-
tential inaccuracy. Note thatQhs can sometimes provide
good action selection in spite of overestimatingQ∗ if the
overestimation preserves the ranking.

These past successes provide little insight into the practi-
cality and performance of HOP on PPDDL planning prob-
lems. First, the scheduling-style domains are qualitatively
very different from planning benchmarks. For example, they
are typically not goal-based and the uncertainty generally
only arises from exogenous events that are independent of
the actions; in particular, streams of incoming scheduling re-
quests. Second, in PPDDL planning, the deterministic prob-
lems arising from each sampled future are potentially quite
difficult and it is unclear whether fast satisficing determin-
istic planners will be fast enough and/or find good enough
plans. Furthermore, the deterministic problems are quali-
tatively different than typical deterministic planning bench-
marks in that the effects of actions depend on the time step,
which effectively increases the number of actions that must
be considered. One of the main contributions of this pa-
per is to consider these issues and to show that HOP can be
effectively applied to AI planning benchmarks, but also to
highlight weaknesses to be addressed in future work.
Relation to FF-Replan. It is possible to view FF-Replan
as a degenerate approximation to HOP. In particular, con-
sider the all-outcome variant of FF-Replan, FFRa, which
forms a single deterministic problem with a distinct action
for every possible outcome of every action in the probabilis-
tic planning problem. FFRa solves this problem at every step
(or just when an “unexpected” outcome occurs) and selects
the first action in the plan. One view of this is as an op-
timistic approximation to HOP whereVhs is approximated
by replacing the expectation over futures with a maximiza-

tion, that is,VFF (s, T ) = maxF maxπ R(s, F, π). Clearly
VFF (s, T ) ≥ Vhs(s, T ) for anys and can often be a gross
overestimate. This view shows that FF-Replan is an opti-
mistic approximation of HOP as it is allowed to select the
best possible future regardless of its actual likelihood.

To see the possible impact of this optimism, consider the
example problem in Figure 1(a). The starting state iss and
the goal state isG. Action c has probabilityp of leading
to the goal fromS but leads to a dead end with probability
1− p. The optimal policy for this problem avoids the possi-
ble dead end and instead takes a deterministic path through
s′ to G. FFRa would treata, b, cp, c1−p each as separate
deterministic actions and would thus select actionc since
cp leads directly to the goal. In contrast, assuming enough
sampling,πhs would choose the correct path—in this exam-
ple,Qhs(s, a, 2) is one butQhs(s, c, 2) would bep, less than
one, since a fraction1 − p of the sampled futures result in a
dead end after taking actionc from states.

Goal Achievement Analysis
We saw that HOP provides tighter upper-bound estimates on
state value than the overly optimistic FFRa by accounting
for the probability of various futures. However, HOP is still
optimistic compared to the true value function and it is im-
portant to understand the effect that this optimism can have
on performance. In this section, we consider some of the
failure modes of HOP with respect to goal achievement and
give a class of planning problems for which HOP is guaran-
teed to be optimal (when focusing solely on success ratio).

Here we focus our analysis on the objective of maximiz-
ing goal achievement probability. In this case,R(s, F, π)
is always either 1 or 0 depending on whetherπ reached the
goal in the deterministicM [F ] or not. There are two HOP
implementation choices that turn out to be important with
respect to this objective. The first is the choice of distri-
bution over futures. The literature on HOP and other an-
ticipatory algorithms has often been described in terms of
a correlated future distribution (sometimes called “common
random numbers”) whereF (a, s, t) = F (a′, s′, t) for all
a, a′ ∈ A, s, s′ ∈ S, andt. That is, actions at the same time
step share the same random number. This sharing is most
reasonable where the source of uncertainty is external to the
system, as in packet arrivals to a packet scheduler. If, on
the other hand, it is the case thatF (a, s, t) is always inde-
pendent of eachF (a′, s′, t′) (unless(a, s, t) = (a′, s′, t′)),
then we say that we have anindependent future distribution.
Second, the hindsight policyπhs selects an action that max-
imizesQhs. We say that there israndom tie-breakingif this
choice is random over all actions that achieve the maximum.

We start by showing an example of whereπhs can per-
form poorly if correlated futures are used. Consider the
problem in Figure 1(b) with single goal stateG. Here s
has the choice of taking a deterministic path to the goal or
instead going to states′ and then selecting either actiona
or b, each of which chooses stochastically between the goal
state and a dead end. Consider the case of correlated futures
where the outcomes ofa andb are ordered such that for any
number in[0, 1] either the goal outcome ofa or goal out-
come ofb is selected. In this case,Vhs(s

′, T ) = 1 since

1012



in all futures the outcomes fora and b are selected together
by a single random number that always results in a path to
the goal. This allowsπhs to choose to go tos′ even though
this is suboptimal, because, the true value ofs′ is less than
1 since there is always a chance of reaching a dead end. If
one uses independent futures then the optimal path will be
selected, since some of the futures will show that botha and
b lead to a dead end.

This suggests that there can be less over-estimation of
value and correspondingly stronger guarantees about HOP
using independent futures. A similar example can easily be
constructed to show the necessity for state-dependent ran-
dom numbers, making the future distributionF depend on
the states as well as the actiona and timet.

It is also straightforward to find problems where random
tie-breaking improves the performance of HOP. A simple
example has a single initial states that has a self-loop action
and an action that leads directly to the goal. In this case,
the hindsight Q-values for each action are equal to 1 and
thus an unlucky choice of deterministic tie-breaking could
select the self-loop ins repeatedly and never reach the goal.
One might think that this problem could be overcome with a
smart deterministic tie-breaking mechanism such as select-
ing the action that has the shortest expected distance to the
goal in hindsight, which would correct the behavior in our
simple example. However, it is possible to construct exam-
ples, where even this tie-breaking mechanism results in such
looping behavior. Figure 1(c) gives one such example.

Given independent futures and random tie-breaking, we
can show at least one problem class whereπhs is guaranteed
to reach the goal.

Theorem 1. Given a planning problemM , if there exists
a policy π with probability 1 of reaching the goal inT or
fewer steps, thenπhs with horizonT , independent futures,
and random tie breaking has success probability 1 at the
infinite horizon.

Proof. (Sketch) We say that a states is T -solvable if
V ∗(s, T ) = 1, andT -unsolvable otherwise. The key prop-
erty to proving the theorem is that for any states and hori-
zon T , V ∗(s, T ) = 1 iff Vhs(s, T ) = 1. It follows that
Q∗(s, a, T ) = 1 iff Qhs(s, a, T ) = 1 for any s, a, andT .
From this it follows thatπhs(s) will never select an action
that can lead to anT -unsolvable state. Furthermore, there is
always a trajectory of at mostT state-action-outcome triples
(s, a, o) leading to the goal, whereQhs(s, a, T ) = 1 ando is
a non-zero probability outcome ofa in s leading to the state
of the next triple. We can easily bound the probability that
πhs will follow this trajectory away from is zero, and since
this repeats at every state, we will eventually execute such a
trajectory and reach a goal.

It remains to prove the key property. The forward direc-
tion is trivial since we know that1 ≥ Vhs(s, T ) ≥ V ∗(s, T ).
For the backward direction we prove that ifV ∗(s, T ) < 1
thenVhs(s, T ) < 1. To do this we prove below that for any
s andT , if V ∗(s, T ) < 1 then there is a set ofT -horizon
futuresF of measure greater than zero such that for each
F ∈ F , maxπ R(s, F, π) = 0. That is, there is a measurable
set of futures such that no policy can reach the goal. Given

this fact, the backward direction follows since with indepen-
dent futures there is a non-zero probability of generating a
future from the setF , which impliesVhs(s, T ) < 1.

It is easy to show that for every actiona′ andt-unsolvable
states′, there must be some outcome for takinga′ in s′

that leads to a(t − 1)-unsolvable state (otherwisea′ would
“solve” s′ within t steps). Call such outcomes “t-failure out-
comes.” One can show that there is a measurable set of fu-
turesF such that eachF ∈ F selects, for each timet in
{1, . . . , T}, a t-failure outcome at everyt-unsolvable state.
For each such futureF , in the deterministic problemM [F ],
paths preserve unsolvability with decreasing horizon: every
state reached by ak-step or shorter path from aT -unsolvable
state is(T − k)-unsolvable and thus is not a goal. It follows
thatR(s, F, π) = 0 for all π, as desired.

An example problem that satisfies the assumptions of this
theorem is the triangular tireworld (Little & Thiebaux 2007),
which is a so-called probabilistically interesting domain de-
signed to defeat replanners. There are many other problems
not covered by this proposition, including those where there
exist policies with success probability 1, but for which the
length of solution trajectories is unbounded. Figure 1(c) de-
picts such a problem. Hereπhs will choose no-op actiona
from the initial states and never reach the goal, although
there is a policy with success probability 1. Here, no-op is
selected becauseVhs(s, T ) is greater thanVhs(s

′, T ) since
there are more opportunities to reach the goal froms.
Sampling Bounds. We approximateQhs(s, a, T ) by
sampling w futures {F1, . . . , Fw} and then comput-
ing the approximationQ̂(s, a, T ) = 1/w

∑

i R(s) +
maxπ R(s′, Fi, π), where s′ ∼ p(s′|s, a). The empiri-
cal hindsight policyπ̂(s, T ) then selects actions randomly
among those that maximizêQ(s, a, T ). We are interested in
bounding the sampling widthw required to guarantee that
with high probabilityπ̂(s, T ) only returns actions that max-
imize Qhs. If this is the case then̂π(s, T ) provides an ac-
curate simulation ofπhs(s, T ). It does not appear possible
to provide a problem independent bound onw. Rather, we
provide a bound in terms of the hindsight Q-advantage∆T

of a planning problem, which is equal to the minimum over
all states of the difference betweenQhs for the best action
andQhs of the second best action. If we letQ1(s, T ) be
the maximum hindsight Q-value ats andQ2(s, T ) be the
second best Q-value then∆T = mins Q1(s, T )−Q2(s, T ).
The Q-advantage measures the minimum gap between any
hindsight optimal action and any other non-optimal action.
With this definition we get the following bound.

Theorem 2. For any planning problem with hindsight Q-
advantage at least∆T , if w > 4∆−2

T ln |A|H
δ

then with prob-
ability at least1−δ, π̂(·, T ) will select actions that maximize
Qhs(s, a, T ) for at leastH consecutive decisions.

Proof. (Sketch) Using a Chernoff bound we get that at
each step with probability at least1 − δ′, |Qhs(s, a, T ) −

Q̂(s, a, T )| ≤
√

− ln δ′

w
. By settingδ′ = δ

H
we guarantee

that the bound will hold forH independent steps with prob-
ability 1 − δ. Using this value and the bound onw from
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the proposition we get that|Qhs(s, a, T )− Q̂(s, a, T )| < ∆

2

with probability at least1 − δ for H steps, which is equiva-
lent to saying that no hindsight optimal action will be ranked
worse than a non-optimal action throughout theH steps and
thusπ̂ will not return a non-optimal action.

This result shows that the HOP reduction from probabilis-
tic to deterministic planning is efficient for constant∆T . We
note, however, that it is possible to construct problems where
∆T becomes exponentially small inT , which means that
the required sampling width can grow exponentially inT .
The dependence on Q-advantage appears unavoidable, since
with a fixed sampling width it is always possible to create a
problem with small enough Q-advantage that the probability
of returning hindsight suboptimal actions is arbitrarily high.

Implementation
While our analysis was able to establish guarantees for only
one class of problems, we were sanguine that in practice the
relative performance of the technique may be significantly
better. To verify this, we implemented HOP for PPDDL
problems in a system called FF-Hindsight. FF-Hindsight is
based on three approximations to the true hindsight policy
πhs. First, we utilize sampling to estimate theQhs(s, a, T )
values rather than computing the true expectation. Sec-
ond, rather than sampling futures from a uniform indepen-
dent future distribution, we utilize the idea of common ran-
dom numbers to sample futures from a different distribution
where certain components of the futures are tied together. In
particular, our current implementation samples a future by
drawing a sequence ofT random numbers(r1, . . . , rT ) and
then lettingF (s, a, t) = rt for all s, a, andt. The use of
common random numbers is a common way to reduce vari-
ance at the potential cost of estimation bias. Third, rather
than compute the optimum policy for each sampled future
we use a heuristic deterministic planner.

More precisely, we compute an approximationπ̂(s, T ) =

arg maxa Q̂(s, a, T ) to πhs(s, T ) where Q̂(s, a, T ) is an
approximation to the hindsight Q-function.̂Q(s, a, T ) is
computed by first samplingw number ofT -horizon futures
{F1, . . . , Fw} from the non-uniform distribution described
above and then for each actiona computingQ̂(s, a, T ) =

1/w
∑

i R̂(s′, Fi), wheres′ is the result of taking action
a in states in future Fi and R̂(s, F ) is an approximation
to maxπ R(s, F, π). In our implementation̂R(s, F ) is im-
plemented by running a variant of FF (Hoffmann & Nebel
2001) on the deterministic problem and then returning the
negative plan length as the reward or−T if no plan is found.

It remains to specify the details of our deterministic plan-
ner. One approach would be to create a non-stationary
PDDL planning problem, by introducing a distinct deter-
ministic version of each action for each time point with out-
comes as specified in the future. This problem could then
be passed to any PDDL planner. This approach would be
particularly well suited to a SAT-style planner that can nat-
urally encode non-stationary actions with little additional
overhead. However, in this work, we bypass the actual con-
struction of the non-stationary PDDL problems and instead

Results from IPPC-04
Domains FFRs FFRa FF-Hindsight
bw-c-pc-8 30 (1) 30 (0) 30 (5)

bw-c-pc-nr-8 30 (1) 30 (0) 30 (5)
bw-nc-pc-11 30 (1) 30 (0) 8 (30)
bw-nc-pc-15 0 (-) 30 (1) 0 (-)
bw-nc-pc-18 0 (-) 30 (28) 0 (-)
bw-nc-pc-21 30 (19) 30 (3) 0 (-)
bw-nc-pc-5 30 (0) 30 (0) 30 (2)
bw-nc-pc-8 30 (0) 30 (0) 30 (3)

bw-nc-pc-nr-8 30 (0) 30 (0) 30 (3)
bx-c10-b10-pc-n 30 (3) 30 (0) 10 (30)
bx-c10-b10-pc 30 (2) 30 (0) 10 (30)
bx-c15-b10-pc 30 (3) 30 (0) 20 (30)
bx-c5-b10-pc 30 (1) 30 (0) 30 (5)

bx-c5-b10-pc-nr 30 (1) 30 (0) 30 (5)
exploding-block 3 (0) 5 (0) 28 (7)

file-prob-pre 14 (30) 29 (29) 14 (30)
g-tire-problem- 7 (0) 7 (0) 18 (2)
r-tire-problem- 30 (0) 30 (0) 30 (2)
toh-prob-pre 0 (-) 11 (0) 17 (11)
ztravel-1-2 0 (-) 30 (0) 0 (-)

Figure 2: Results on IPPC-04 for FF-Replan and Hindsight
Approaches. FFRs is replanning with single outcome deter-
minization and FFRa is with all outcome determinization.
The notationn(m) meansn trials were solved successfully
in m minutes.

extend the best-first search component of FF to directly read
in the probabilistic action definitions along with a future. In
particular, it is straightforward to alter the action expansion
function so that actions at search deptht follow the deter-
ministic effects specified in the provided future at timet.

A key question with this implementation is the choice of
heuristic function. One approach would be to upgrade the
relaxed plan computation to account for the known future,
which raises a number of complications due the mismatch
between sequential plans, which the futures pertain to, and
the layered plangraph used to construct relaxed plans. In this
work, we rather take a simpler approach and use a relaxed-
plan heuristic based on the all-outcomes encoding of FF-
Replan. While this all-outcomes encoding has the poten-
tial to produce highly optimistic heuristic values, we found
that it performed on par with more sophisticated attempts
we made on heuristics that take into account the provided
future.

An important implementation issue that arose was that we
also need to extend the native hashing mechanism of FF to
take both the time and state into account. That is, rather than
just hashing state, we hashed state and time altogether, to
prevent returning failure just because a particular outcome
of an action has not been realized at certain time point. This
compromised the scalability of the planner to some degree
as we will see in some of our results.

Experimental Results
We tested FF-Hindsight on the suite of IPPC-04 competition
problems with sample widthw = 30 and horizonT = 100.
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The choice of sample width was based on our empirical test-
ing over the benchmarks. In particular, we experimented
with values ofw between 10 to 50. Although we obtained
good performance for relatively small values ofw in most
domains, for IPPC-04 problems, width less than 30 tended
to produce variable results. In contrast, increasing the width
beyond 30 did not result in much improvements. We thus
opted to setw = 30 for all our experiments. The setting
of T = 100 was done in light of the knowledge that most of
the problems can be solved within 100 steps (the only excep-
tion was the Zeno-travel problem, the bottom row problem
in Figure 2).

Figure 2 summarizes the results with each table entry
showing how many of the 30 trials were solved and the num-
ber in parentheses giving the total time in minutes used dur-
ing the evaluation period. We also listed the performance of
two versions of the replanning techniques, FFRs and FFRa
(replanners based on single outcome and all outcome deter-
minization respectively) (Yoon, Fern, & Givan 2007).

Among the IPPC problems, toh-prob-pre, exploding-
block and g-tire-problem were known to be difficult for the
replanning approaches as these contain dead-end states. The
planner needs some form of probabilistic reasoning to max-
imize the number of success trajectories to the goal. In all
of these problems, FF-Hindsight outperformed the replan-
ners. toh-prob-pre is similar to the Tower-of-Hanoi problem
but there are added actions which can move two disks at the
same time but they can lead to deadend states with higher
probability than single-disk actions. Replanners naively se-
lect two-disk actions and fail, while FF-Hindsight avoids
such pitfalls. The g-tire-problem has two routes, one with-
out spare tires and the other with spare tires. Replanners do
not distinguish the routes and select the former, resulting in
worse performance than FF-Hindsight.

Exploding Blocksworld was the hardest problem in IPPC-
04 with only FF-Replan having a positive success rate.
These problems have a policy with success probability 1,
which chooses to “detonate” blocks before using them. Un-
like the replanners, FF-Hindsight was able to determine the
importance of detonation and achieved a high success rate.

In contrast, problems from Blocksworld (problems start-
ing with bw), Boxworld (problems starting with bx), file-
prob-pre, r-tire-problem, and ztravel-1-2 correspond to do-
mains without any dead end states. For these problems,
the replanners perform quite well, and solved most of the
problems. FF-Hindsight does not do as well in these do-
mains given the fixed time limit as it reasons with signifi-
cantly more futures (30 instead of 1). Note that each plan-
ner is allowed only 30 minutes for 30 trials. In our test-
ing, we observed that for the larger sized Blocksworld and
Boxworld problems, FF-Hindsight made positive progress
towards solving the first trial before the 30 minutes timeout
expires. Thus, for FF-Hindsight to solve these problems we
need at least 15 hours for one problem. As expected, we
also found that our modified FF for the non-stationary ac-
tions does not scale as well as the FF for normal stationary
actions (the latter is used by FF-Replan).

For Zenotravel the failure of FF-Hindsight is primarily
due to small probability outcomes that are required for suc-

cess, which would require significantly larger values ofw
andT . We conducted an experiment where we solved Zeno-
travel using FF-Hindsight with importance sampling where
futures were drawn from a proposal distribution with equal
probability for each outcome. This variant solved 26 out of
30 problems, which points to an interesting future research
avenue of automatically selecting good proposal distribu-
tions.
Probabilistically Interesting Domains We have also tested
FF-Hindsight on the “probabilistically interesting” domains
from (Little & Thiebaux 2007). These are “climber”,
“river”, “bus-fare”, and “triangle-tireworld” domains. We
compare FF-Hindsight with FPG (winner of IPPC-06) (Buf-
fet & Aberdeen 2007), Paragraph (Little & Thiebaux 2006)
and FFRa (Yoon, Fern, & Givan 2007).

Figure 3 summarizes the experiments with all entries
other than FF-Hindsight taken from (Little & Thiebaux
2007) giving the percentage over 30 trials that a planner
solved for a particular problem. The problems climber, river,
and bus-fare are very small problems but require some form
of probabilistic reasoning and all planners except for FFRa

perform well. For the triangular-tireworld, Paragraph and
FPG are unable to scale to the larger problems, while FF-
Hindsight achieves 100% success rate throughout.

In summary, the experimental results demonstrate that
FF-Hindsight is able to perform well over a broader class
of stochastic planning benchmarks. It is able to outper-
form replanners in problems where probabilistic reasoning
is critical. At the same time it can be computationally
more tractable compared to full offline probabilistic plan-
ning methods. However, on problems where replanners
work well, FF-Hindsight will not always perform as well
given a fixed evaluation time.

Related Work
Mercier & Van HenTenRyck (2007) have also studied theo-
retical properties of HOP. While certain details of their set-
ting and ours differ, their results carry over in a straightfor-
ward way. Their main result shows that the performance
of the hindsight policy is related to a quantity called the
anticipatory gap which measures the difference between
Vhs(s, T ) for a state andmaxa Qhs(s, a, T ), which can be
thought of as the value of one time step of foresight at states.
The performance bound is stated in terms of the global antic-
ipatory gap, which is a pessimistic estimate of the worst case
sum of anticipatory gaps that could possibly be encountered.
There is no clear relationship between their result and our
Theorem 1. For example, their result is not strong enough to
prove the optimality of HOP in the triangular tire world. It
is also easy to construct examples where their result applies
but ours does not. We consider understanding the relation-
ships between these results and possible extensions as an
interesting direction for future work.

It is interesting to note the connection between HOP and
the PEGASUS approach (Ng & Jordan 2000) for solving
large stochastic planning problems. PEGASUS approxi-
matesV ∗ by replacing the expectation with an average over
sampled futures, but does not interchange the order of expec-
tation and maximization as does HOP. The result is a single
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Planners climber river bus-fare tire1 tire2 tire3 tire4 tire5 tire6
FFRa 60% 65% 1% 50% 0% 0% 0% 0% 0%

Paragraph 100% 65% 100% 100% 100% 100% 3% 1% 0%
FPG 100% 65% 22% 100% 92% 60% 35% 19% 13%

FF-Hindsight 100% 65 % 100% 100% 100% 100% 100% 100% 100%

Figure 3: Percentage success (over 30 trials) on problems from Little & Thiebaux’s probabilistically interesting domains

deterministic problem that requires finding a single policy
that is optimal with respect to the set of sampled futures.
This deterministic planning problem is considerably harder
than the individual problems that are required to be solved
by HOP, where it is only necessary to optimize a policy for
a single future. Furthermore deterministic PEGASUS prob-
lems are not of the form that can be accepted by standard de-
terministic PDDL planners. However, unlike HOP it is pos-
sible to provide uniform convergence bounds on the number
of sampled futures that are sufficient to ensure that the solu-
tion to the deterministic problem is approximately optimal
for the original stochastic problem.

One computational bottleneck in scaling FF-Hindsight is
efficiently handling plans for multiple sampled futures. Be-
cause FF-Hindsight reasons with each future separately, it
fails to exploit the significant common structure among the
futures. In this context, the work on McLug by Bryceet.
al. (Bryce, Kambhampati, & Smith 2008) may be relevant
as it describes a way of deriving informed heuristics by si-
multaneously reasoning over a set of sampled futures. While
FF-Hindsight computes an executable deterministic plan for
each sampled future, McLug considers all the futures simul-
taneously and can thus lead to significant efficiency. On the
other hand, although McLug’s analysis considers positive in-
teractions between the plans for different futures, it ignores
negative interactions among them. It would be interesting to
evaluate the tradeoffs between these approaches.

Conclusion
The success of FF-Replan in the probabilistic planning track
of the IPC has lead to some controversy about the competi-
tion, as well as creation of alternative benchmarks intended
to defeat FF-Replan and showcase the superiority of offline
probabilistic methods for stochastic planning. In this paper,
we suggested a view of FF-Replan as a degenerate form of
hindsight optimization, and have shown that adaptation of
standard hindsight optimization can significantly improve
performance, while still retaining the key benefit of FF-
Replan–the ability to exploit the advances in deterministic
planning. Indeed, empirical studies with our current imple-
mentation, FF-Hindsight, show that it provides state of the
art performance in a broader class of probabilistic planning
benchmarks, including those designed to defeat FF-Replan.

In future we hope to focus on (i) efficiently generating
plans for multiple sampled futures (including exploiting the
common structure among the futures, as well as making the
relaxed plan heuristics sensitive to the non-stationary deter-
minization of actions) (ii) investigating the effect of using
independent futures (as against futures correlated by com-
mon random numbers) on the accuracy of action selection

and (iii) adapting hindsight approach to problems with more
general cost/reward structures (as against simple goals of
achievement), where we expect it to be even more competi-
tive.
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