Journal of Artificial Intelligence Research 30 (2007) 586 Submitted 3/07; published 12/07

Probabilistic Planning via Heuristic Forward Search
and Weighted Model Counting

Carmel Domshlak DCARMEL@IE.TECHNION.AC.IL
Technion - Israel Institute of Technology,

Haifa, Israel

Jorg Hoffmann JOERG.HOFFMANN@DERI.AT

University of Innsbruck, DERI,
Innsbruck, Austria

Abstract

We present a new algorithm for probabilistic planning withabservability. Our algorithm,
called Probabilistic-FF, extends the heuristic forwaedssh machinery of Conformant-FF to prob-
lems with probabilistic uncertainty about both the initshte and action effects. Specifically,
Probabilistic-FF combines Conformant-FF's techniqueth\ai powerful machinery for weighted
model counting in (weighted) CNFs, serving to elegantlyefoth the search space and the
heuristic function. Our evaluation of Probabilistic-FFogls its fine scalability in a range of prob-
abilistic domains, constituting a several orders of magtétimprovement over previous results in
this area. We use a problematic case to point out the main ispea to be addressed by further
research.

1. Introduction

In this paper we address the problempodbabilistic planning with no observabilitfKushmerick,
Hanks, & Weld, 1995), also known in the Al planning commurdty conditional (Majercik &
Littman, 2003) or conformant (Hyafil & Bacchus, 2004) proltiatic planning. In such problems
we are given an initial belief state in the form of a probaypitistribution over the world statd4’,

a set of actions (possibly) having probabilistic effectg] a set of alternative goal statdg; C .

A solution to such a problem is a single sequence of actioaisttansforms the system into one
of the goal states with probability exceeding a given thoesld. The basic assumption of the
problem is that the system cannot be observed at the timeaof g@ecution. Such a setting is
useful in controlling systems with uncertain initial stated non-deterministic actions, if sensing is
expensive or unreliable. Non-probabilistic conformarrpling may fail due to non-existence of a
plan that achieves the goals with 100% certainty. Even ifethe such a plan, that plan does not
necessarily contain information about what actions aret mesful to achieve only the requested
thresholdb.

The state-of-the-art performance of probabilistic plaaias been advancing much more slowly
than that of deterministic planners, scaling from 5-10 gta@ps for problems with=20 world states
to 15-20 step plans for problems witg100 world states (Kushmerick et al., 1995; Majercik &
Littman, 1998; Hyafil & Bacchus, 2004). Since probabiligtlanning is inherently harder than its
deterministic counterpart (Littman, Goldsmith, & Mundket998), such a difference in evolution
rates is by itself not surprising. However, recent develepts in the area (Onder, Whelan, & Li,
2006; Bryce, Kambhampati, & Smith, 2006; Huang, 2006), angarticular our work here, show
that dramatic improvements in probabilistic plannaan be obtained.

(©2007 Al Access Foundation. All rights reserved.

DOMSHLAK & H OFFMANN

In this paper we introduce Probabilistic-FF, a new prolistiil planner based omeuristic for-
ward searchin the space oimplicitly representegbrobabilistic belief states. The planner is a natural
extension of the recent (non-probabilistic) conformaanpler Conformant-FF (Hoffmann & Braf-
man, 2006). The main trick is to replace Conformant-FF’'s BA%ed techniques with a recent
powerful technique for probabilistic reasoning by weightaodel counting (WMC) in proposi-
tional CNFs (Sang, Beame, & Kautz, 2005). In more detail, f@aonant-FF does a forward search
in a belief space in which each belief state corresponds tt afswvorld states considered to be
possible. The main trick of Conformant-FF is the use of CNiffidas for an implicit represen-
tation of belief states. Implicit, in this context, meanattformulasg(a) encode the semantics of
executing action sequenadn the initial belief state, with propositional variablesresponding to
facts with time-stamps. Any actual knowledge about thesgbstiates has to be (and can be) inferred
from these formulas. Most particularly, a facts known to be true in a belief state if and only if
¢(@) — p(m), wherem is the time endpoint of the formula. The only knowledge cotagwy
Conformant-FF about belief states are thkesewn factsas well as (symmetrically) the facts that
are known to be false. This suffices to do STRIPS-style ptagjrthat is, to determine applicable
actions and goal belief states. In the heuristic functidf's FHoffmann & Nebel, 2001) relaxed
planning graph technique is enriched with approximate Sf&soning.

The basic ideas underlying Probabilistic-FF are:

(i) Define time-stamped Bayesian networks (BNs) descripiadpabilistic belief states.
(i) Extend Conformant-FF’s belief state CNFs to model éhBas.

(i) In addition to the SAT reasoning used by Conformant-bBBe weighted model-counting to
determine whether the probability of the (unknown) goala belief state is high enough.

(iv) Introduce approximate probabilistic reasoning intenrmant-FF’s heuristic function.

Note the synergetic effect: Probabilistic-FF re-usesfallanformant-FF’s technology to recognize
facts that are true or false with probability This fully serves to determine applicable actions, as
well as detect whether part of the goal is already known. ¢t fais as if Conformant-FF's CNF-
based techniques were specifically made to suit the prosbgetting: while without probabilities
one could imagine successfully replacing the CNFs with BD#h probabilities this seems much
more problematic.

The algorithms we present cover probabilistic initial bEktates given as Bayesian networks,
deterministic and probabilistic actions, conditionaleefs, and standard action preconditions. Our
experiments show that our approach is quite effective inngegaof domains. In contrast to the
SAT and CSP based approaches mentioned above (Majercikt&arit 1998; Hyafil & Bacchus,
2004), Probabilistic-FF can fintD0-step plans for problem instances with billions of watdtes
However, such a comparison is not entirely fair due to thiediht nature of the results provided; the
SAT and CSP based approaches provide guarantees on tHedétfyg solution. The approach most
closely related to Probabilistic-FF is implemented in PO{#Dyce et al., 2006): this system, like
Probabilistic-FF, does conformant probabilistic plamniar a threshold), using a non-admissible,
planning-graph based heuristic to guide the search. Heooengarison between Probabilistic-FF
and POND is fair, and in our experiments we perform a comparataluation of Probabilistic-FF
and POND. While the two approaches are related, there andisamt differences in the search

566

PROBABILISTIC-FF

space representation, as well as in the definition and catipatof the heuristic functioh.We run
the two approaches on a range of domains partly taken frorpritteabilistic planning literature,
partly obtained by enriching conformant benchmarks withbgbilities, and partly obtained by
enriching classical benchmarks with probabilistic uraietty. In almost all cases, Conformant-FF
outperforms POND by at least an order of magnitude. We makeesateresting observations
regarding the behavior of the two planners; in particularidestify a domain — derived from the
classical Logistics domain —where both approaches faitates The apparent reason is that neither
approach is good enough at detecting how many times, at npeant in the plan, a probabilistic
action must be applied in order to sufficiently support a hlgghl threshold at the end of the plan.
Devising methods that are better in this regard is the mestsimg open issue in this line of work.
The paper is structured as follows. The next section praevide technical background, formally
defining the problem we address and illustrating it with auming example. Section 3 details how
probabilistic belief states are represented as time-stdrBayesian networks, how these Bayesian
networks are encoded as weighted CNF formulas, and how ttessary reasoning is performed
on this representation. Section 4 explains and illustrateextension of Conformant-FF’s heuris-
tic function to the probabilistic settings. Section 5 pd®s the empirical results, and Section 6
concludes. All proofs are moved into Appendix A.

2. Background

The probabilistic planning framework we consider adds philistic uncertainty to a subset of
the classical ADL language, namely (sequential) STRIP& wainditional effects. Such STRIPS
planning tasks are described over a set of propositPm@s triples(A, I, G), corresponding to the
action set initial world state andgoals I andG are sets of propositions, whefedescribes a
concrete initial statev;, while G describes the set of goal states> G. Actions a are pairs
(pre(a), E(a)) of the preconditionand the(conditional) effects A conditional effecte is a triple
(con(e),add(e),del(e)) of (possibly empty) proposition sets, corresponding todffect’s con-
dition, add anddeletelists, respectively. The preconditigine(a) is also a proposition set, and
an actiona is applicablein a world statew if w 2 pre(a). If a is not applicable inw, then
the result of applying: to w is undefined. Ifa is applicable imw, then all conditional effects
e € E(a) with w D con(e) occur. Occurrence of a conditional effecin w results in the world
statew U add(e) \ del(e).

If an actiona is applied tow, and there is a propositiopsuch thaty € add(e) N del(e’) for
(possibly the same) occurringe’ € E(a), then the result of applying in w is undefined. Thus,
we require the actions to be not self-contradictory, thafoiseacha € A, and eveng, e’ € E(a),
if there exists a world state O con(e) U con(¢’), thenadd(e) N del(e’) = (. Finally, an action
sequencea is aplanif the world state that results from iterative executiorusfactions, starting in
wr, leads to ayoal statew O G.

2.1 Probabilistic Planning

Our probabilistic planning setting extends the above witp{obabilistic uncertainty about the
initial state, and (ii) actions that can have probabiligtffects. In general, probabilistic planning

1. POND does not use implicit belief states, and the protsaicipart of its heuristic function uses sampling techeisju
rather than the probabilistic reasoning techniques we eympl

567

DOMSHLAK & H OFFMANN

tasks are quadruplgsd, b7, G, 0), corresponding to thaction set initial belief state goals and
acceptable goal satisfaction probabilityAs before,G is a set of propositions. The initial state is
no longer assumed to be known precisely. Instead, we are giyeobability distribution over the
world statesp;, whereb;(w) describes the likelihood af being the initial world state.

Similarly to classical planning, actionse A are pairs(pre(a), E(a)), but the effect sef(a)
for sucha has richer structure and semantics. Each E(a) is a pair(con(e), A(e)) of a propo-
sitional condition and a set gfrobabilistic outcomes Each probabilistic outcome € A(e) is a
triplet (Pr(e), add(e), del(e)), whereadd anddeletelists are as before, anBr(¢) is the proba-
bility that outcome= occurs as a result of effeet Naturally, we require that probabilistic effects
define probability distributions over their outcomes, tha} ..,) Pr(e) = 1. The special case of
deterministic effects is modeled this way via (e¢) = {¢} and Pr(¢) = 1. Unconditional actions
are modeled as having a single effeatith con(e) = 0. As before, ifa is not applicable inw,
then the result of applying to w is undefined. Otherwise, if is applicable inw, then there exists
exactly one effect € E(a) such thaton(e) C w, and for eaclr € A(e), applyinga to w results
inw U add(e) \ del(e) with probability Pr(e). The likelihood[b, a] (w') of a world statew’ in the
belief stateb, a|, resulting from applying a probabilistic actianin b, is given by

[b,a] (w') = Z b(w) Z Pr(e) -0 (w' =wUs\s',s Cadd(e),s Cdel(e)), (1)

wIpre(a) ceA(e)

wheree is the effect ofa such thaicon(e) C w, andd(-) is the Kronecker step function that takes
the valuel if the argument predicate evaluates to TRUE, amdherwise.

Our formalism covers all the problem-description featw@sported by the previously proposed
formalisms for conformant probabilistic planning (Kushinok et al., 1995; Majercik & Littman,
1998; Hyafil & Bacchus, 2004; Onder et al., 2006; Bryce et2006; Huang, 2006), and it cor-
responds to what is called Unary Nondeterminism (1ND) néfioran (Rintanen, 2003). We note
that there are more succinct forms for specifying probstiiliplanning problems (Rintanen, 2003),
yet 1IND normal form appears to be most intuitive from the pective of knowledge engineering.

Example 1 Say we have a robot and a block that physically can be at ongmfdcations. This
information is captured by the propositions, ro for the robot, and, b, for the block, respec-
tively. The robot can either move from one location to angtbe do it while carrying the block.
If the robot moves without the block, then its move is guagadtto succeed. This provides us
with a pair of symmetrically defined deterministic actiofgove-right, move-left}. The ac-
tion move-right has an empty precondition, and a single conditional effeet ({r1}, {¢}) with
Pr(e) =1, add(e) = {ra}, anddel(e) = {r1}. If the robot tries to move while carrying the block,
then this move succeeds with probabilityr, while with probability0.2 the robot ends up moving
without the block, and with probabilit§.1 this move of the robot fails completely. This provides us
with a pair of (again, symmetrically defined) probabilistictions{move-b-right, move-b-left}.
The actionmove-b-right has an empty precondition, and two conditional effects ifipdcas in
Table 1.

Having specified the semantics and structure of all the copis of(A, b;, G, 0) buté, we are

now ready to specify the actual task of probabilistic plagrin our setting. Recall that our actions
transform probabilistic belief states to belief states. &ty action sequencec A*, and any belief

568

PROBABILISTIC-FF

‘E(a) ‘ con(e) ‘ Ale ‘ Pr(e ‘ add(e ‘ del(e) ‘
&1 0.7 {7“2, bg} {7”1, bl}
e r1 A by €9 0.2 {T’Q} {7"1}
€3 0.1 @ @

e —ry Vb E/l 1.0 0 0

Table 1: Possible effects and outcomes of the actiome-b-right in Example 1.

stateb, the new belief statg, a] resulting from applying: atb is given by

= (a),a € A . (2)
[[b,a],a@'], @={(a)-@,ac A;a #0

In such setting, achieving' with certainty is typically unrealistic. Hencé,specifies the required
lower boundon the probability of achieving:. A sequence of actiornsis called aplan if we have
ba(G) > 0 for the belief staté; = [br,al.

2.2 Specifying the Initial Belief State

Considering the initial belief state, practical considiers force us to limit our attention only to
compactly representable probability distributiolys While there are numerous alternatives for
compact representation of structured probability distidns, Bayes networks (BNs) (Pearl, 1988)
to date is by far the most popular such representation nfodéierefore, in Probabilistic-FF we
assume that the initial belief staigis described by a BNV, over our set of propositior.

As excellent introductions to BNs abound (e.g., see Jers®@96), it suffices here to briefly
define our notation. A BNV = (G, 7)) represents a probability distribution as a directed acycli
graphg, where its set of node&’ stands for random variables (assumed discrete in this paper
and7, a set of tables of conditional probabilities (CPTs)—onddd’y for each nodeX € X.

For each possible value € Dom(X) (where Dom(X) denotes the domain of), the tableTx

lists the probability of the evenlX = x given each possible value assignment to all of its immediate
ancestors (parent$)a(X) in G. Thus, the table size is exponential in the in-degre& obsually, it

is assumed either that this in-degree is small (Pearl, 1988)at the probabilistic dependence’of

on Pa(X) induces a significant local structure allowing a compactesgntation o’y (Shimony,
1993, 1995; Bouitilier, Friedman, Goldszmidt, & Koller,)9 (Otherwise, representation of the
distribution as a BN would not be a good idea in the first plagbe joint probability of a complete
assignment) to the variablest’ is given by the product ofX| terms taken from the respective
CPTs (Pearl, 1988):

— [Prix] | 9(Pa0) = [] Tx 01X) | 9[Pa(xX))).

Xex XeX

whered[-] stands for the partial assignment providedibp the corresponding subset &f

2. While BNs are our choice here, our framework can suppberanodels as well, e.g. stochastic decision trees.

569

DOMSHLAK & H OFFMANN

In Probabilistic-FF we allowV;,, to be described over the multi-valued variables underlying
the planning problem. This significantly simplifies the gss of specifyingV;, since the STRIPS
propositionsP do not correspond to the true random variables underlyioblpm specification.
Specifically, IelUf:1 P; be a partition ofP such that each proposition set uniquely corresponds
to the domain of a multi-valued variable underlying our peotr. That is, for every world state
and everyp;, if |P;| > 1, then there i®xactly oneropositiong € P; that holds inw. The variables
of the BNV, describing our initial belief statey arexX’ = {Xy,..., X;}, whereDom(X;) = P;
if |P;] > 1, andDom/(X;) = {q, ~q} if P; = {q}.

Example 2 For an illustration of such\V,,, consider our running example, and say the robot is
known to be initially at one of the two possible locations twigrobability Pr(r;) = 0.9 and
Pr(ry) = 0.1. Suppose there is a correlation in our belief about theairitications of the robot and
the block. We believe that, if the robot is#at, thenPr(b;) = 0.7 (and Pr(b2) = 0.3), while if the
robot is atry, thenPr(b;) = 0.2 (andPr(b2) = 0.8). The initial belief state BNV}, is then defined
over two variablesk (“robot”) and B (“block”) with Dom(R) = {ri,r2} andDom(B) = {b1, b2},
respectively, and it is depicted in Figure 1.

T T bl b2
019 021 R B |] 0.7 03
- . rg | 0.2 0.8

Figure 1: Bayes network/,, for Example 1.

It is not hard to see that our STRIPS-style actians A can be equivalently specified in terms
of the multi-valued variableg’. Specifically, if|P;| > 1, then no actioru can add a proposition
q € P; without deleting some other propositigh € P;, and thus, we can consideras setting
X; = ¢. If |P;| = 1, then adding and deletinge P; has the standard semantics of settitig= ¢
and X; = —q, respectively. For simplicity of presentation, we assuha bur actions are not self-
contradictory at the level ot’ as well—if two conditional effects, ¢’ € F(a) can possibly occur in
some world statev, then the subsets df affected by these two effects have to be disjoint. Finally,
our goalG directly corresponds to a partial assignmentitqunless ourG is self-contradictory,
requiringq A ¢’ for someg, ¢’ € P;.)

3. Belief States

In this section, we explain our representation of, and mn@iagoabout, belief states. We first explain
how probabilistic belief states are represented as tigeyzed BNs, then we explain how those
BNs are encoded and reasoned about in the form of weightedf@iRfulas. This representation

of belief states by weighted CNFs is then illustrated on teebstate from our running example in

Figure 2. We finally provide the details about how this work®robabilistic-FF.

3. SpecifyingV,, directly overP would require identifying the multi-valued variables amgfollowed by connecting
all the propositions corresponding to a multi-valued valgeby a complete DAG, and then normalizing the CPTs of
these propositions in a certain manner.

570

PROBABILISTIC-FF

T T2
T T e1Vey | 01 T:E Té
1
0.9 0. il 10
V
e3Vel ol 0 1 ro|l O
R o) R R9)
g1 €9 €3 €}
Yh) r1 Ab; 10.70.20.1 (
7 othrw |0 0 0 1
Bo) B, Ba)
by b
by by - 01 12 by by
0.7 0.3 1b o b1 0
2 0.20.8 —E bl 01 b2 01
2

Figure 2: Bayes networl/;,_ for our running Example 1-2 and action sequence
@ = (move-b-right, move-left).

3.1 Bayesian Networks

Probabilistic-FF performs a forward search in a space débsiates. The search states are belief
states (that is, probability distributions over the wotlaktssw), and the search is restricted to belief
states reachable from the initial belief statghrough some sequences of actiah#\ key decision
one should make is the actual representation of the behédsst Leth; be our initial belief state
captured by the BNV;,, and letb; be a belief state resulting from applying &p a sequence of
actionsa. One of the well-known problems in the area of decision+tbto planning is that the
description ofbz directly over the state variablés becomes less and less structured as the number
of (especially stochastic) actions dhincreases. To overcome this limitation, we represent belie
stated; as a BNV,,_ thatexplicitly captures the sequential applicatioricdtarting fromb;, trading

the representation size for the cost of inference, compareepresenting belief states directly as
distributions over world states. Below we formally spedifg structure of such a BN,,_, assuming
that all the action@ are applicable in the corresponding belief states of th@itieation, and later
showing that Probabilistic-FF makes sure this is indeedcts®. We note that these belief-state
BNs are similar in spirit and structure to those proposechn Al literature for verifying that a
probabilistic plan achieves its goals with a certain prdiigt{Dean & Kanazawa, 1989; Hanks &
McDermott, 1994; Kushmerick et al., 1995).

Figure 2 illustrates the construction ., for our running example witli = (move-b-right,
move-left). Ingeneral, lei = (a',...,a™) be a sequence of actions, numbered according to their
appearance oa. For0 <t < m, let X;) be a replica of our state variablés with X, € X{y

571

DOMSHLAK & H OFFMANN

corresponding toX € X. The variable set ofV;, is the union ofX(gy, ..., A, plus some
additional variables that we introduce for the actiong.in

First, for eachX) € X, we set the parent®a(X) and conditional probability tables
Tx, to simply copy these of the state variabfein N, . Now, consider an actioa’ from @, and
let a’ = a. For each such action we introduce a discrete varizplethat “mediates” between the
variable layerst,_;) andX(;). The domain o, is set toDom(Y(;)) = UeeE(a) A(e), that is, to
the union of probabilistic outcomes of all possible effeafta. The parents of/; in N, are setto

Pa(Yy) = U {X(i—1) | con(e) N Dom(X) # 0}, (3)
e€E(a)

and, for eachr € Dom(Pa(Y(;))), we set

Pr(e), con(e(e)) Cm

0, otherwise

Tywy(Ye =¢|m) = { (4)

wheree(e) denotes the effeet of a such that € A(e).

We refer to the set of all such variablle’§) created for the actions afas). Now, letEx(a) C
E(a) be the probabilistic effects af that affect a variableX € X. If Ex(a) = 0, then we set
Pa(X @) ={X@-1}, and

_
1, z=2a,

Txpy(Xpy =z | Xg1y =2) = { (5)

0, otherwise

Otherwise, ifEx (a) # 0, letz. € Dom(X) be the value provided t& by ¢ € A(e), e € Ex(a).
Recall that the outcomes of effects(a) areall mutually exclusive. Hence, we s&la (X)) =
{X(-1), Y¢-1)}, and

1, e(e) € Ex(a) N =z,
Tx, (X =] Xg-1y =2" Y =€) ={1, e(e)¢Ex(a) A z=2,, (6)

0, otherwise

wheree(e) denotes the effect responsible for the outceme

It is not hard to verify that Equations 4-6 capture the frammi®as and probabilistic seman-
tics of our actions. In principle, this accomplishes our stanction of A, over the variables
X, = YU, X)- We note, however, that the mediating variablg are really needed only
for truly probabilistic actions. Specifically, if’ is a deterministic action, let Ex(a) C E(a) be
the conditional effects af that add and/or delete propositions associated with theadoati a vari-
ableX € X. If Ex(a) = 0, then we sePa(X ;) = {X;—1)}, andT’x) according to Equation 5.
Otherwise, we set

Pa(X) = {Xe-} U {Xét_1> | con(e) N Dom(X) #0)}, 7

e€Ex (a)

and specifyl'y , as follows. Letr, € Dom(X) be the value that (the only deterministic outcome
of) the effecte € Ex(a) provides toX. For eachr € Dom(Pa(X(y)), if there existse € Ex(a)

572

PROBABILISTIC-FF

such thaton(e) C , then we set

1, x=uwm,

(8)

T Xy = =
X (X =z | 7) {07 otherwise
Otherwise, we set

1, x=n[X¢_pl,

0, otherwise

Txp)(X =2 |m) = { 9)
Due to the self-consistency of the action, it is not hard tafywehat Equations 8-9 are consistent,
and, together with Equation 5, capture the semantics ofdhditional deterministic actions. This
special treatment of deterministic actions is illustratedrigure 2 by the direct dependencies of
X(Q) on X(l)

Proposition 1 Let(A,N,,, G, 6) be a probabilistic planning problem, anthbe anm-step sequence
of actions applicable irb;. Let Pr be the joint probability distribution induced hy/_ on its
variablesX,_. The belief staté, corresponds to the marginal distribution & on X/,,,), that is:
ba(X) = Pr(X,), andifG,,) is a partial assignment provided l6yto X/,,,), then the probability
ba(G) thata achieveds starting fromb, is equal toPr (G,).

As we already mentioned, our belief-state BNs are congtduatong the principles outlined
and used by Dean and Kanazawa (1989), Hanks and McDerm@&#)1and Kushmerick et al.
(1995), and thus the correctness of Proposition 1 is imniediam these previous results. At this
point, it is worth bringing attention to the fact that all treriables inX(y), . .., X(,,,) are completely
deterministic. Moreover, the CPTs of all the variables\f are allcompactly representablue to
either a low number of parents, or some local structure iediy a large amount of context-specific
independence, or both. This compactness of the CPR§,iris implied by the compactness of the
STRIPS-style specification of the planning actions. By eitjplg this compactness of the action
specification, the size of th&/,_'s description can be kept linear in the size of the input drel t
number of actions if.

Proposition 2 Let (A4, N, , G, 6) be a probabilistic planning problem described ovestate vari-
ables, and: be anm-step sequence of actions frotn Then, we haveV,,_ | = O(|N, |[+ma(k+1))
whereq is the largest description size of an actionAn

The proof of Proposition 2, as well as the proofs of other farataims in the paper, are relegated
to Appendix A, pp. 613.

3.2 Weighted CNFs

Given the representation of belief states as BNs, next weldselect a mechanism for reasoning
about these BNs. In general, computing the probability oliarg in BNs is known to be #P-
complete (Roth, 1996). In addition, it is not hard to verifiging an analysis similar to the ones
of Darwiche (2001) and Brafman and Domshlak (2006), thatrtbvorks arising in our work
will typically exhibit large tree-width. While numerous @&st algorithms for inference with BNs
have been proposed in the literature (Darwiche, 2000; [2ech999; Zhang & Poole, 1994), the
classical algorithms do not scale well on large networkshitihg high tree-width. On the positive

573

DOMSHLAK & H OFFMANN

side, however, an observation that guides some recent eglvamthe area of probabilistic reasoning
is that real-world domains typically exhibit a significarggilee of deterministic dependencies and
context-specific independencies between the problemblasiaTargeting this property of practical
BNs already resulted in powerful inference techniques Y@aa& Darwiche, 2005; Sang et al.,
2005). The general principle underlying these technigsés i

(i) Compile a BNA into aweighted propositional logic formula(/\) in CNF, and

(i) Perform an efficientweighted model countinfpr ¢(N\') by reusing (and adapting) certain
techniques that appear powerful in enhancing backtradRiPgL-style search for SAT.

One observation we had at the early stages of developingabitiic-FF is that the type of
networks and type of queries we have in our problems makenthishinery for solving BNs by
weighted CNF model counting very attractive for our needsstFHn Section 3.1 we have already
shown that the BNs representing our belief states exhibitggelamount of both deterministic nodes
and context-specific independence. Second, the queriesrahi@rest correspond to computing
probability of the “evidenceG,,,y in Ay, and this type of query has a clear interpretation in terms
of model counting (Sang et al., 2005). Hence, taking thiser@u Probabilistic-FF, we compile our
belief state BNs to weighted CNFs following the encodingesul proposed by Sang et al. (2005),
and answer probabilistic queries using Cachet (Sang, Bac&eame, Kautz, & Pitassi, 2004), one
of the most powerful systems to date for exact weighted mooighting in CNFs.

In general, the weighted CNFs and the weights of such forsnaita specified as follows. Let
Vv = {W,..., V,,} be a set of propositional variables withom(V;) = {v;, —wv;}, and letw :

U; Dom(V;) — R%* be a non-negative, real-valuegightfunction from the literals o¥. For any
partial assignment to)V, the weightzo () of this assignment is defined as the product of its literals’
weights, that isgo(7) = [[,., @(l). Finally, a propositional logic formula is calledweightedf it
is defined over such a weighted set of propositional varsaldfer any weighted formula overV,
the weighteo(¢) is defined as the sum of the weights of all the complete asggtso) satisfying
o, that is,

w(@)= Y w@mi(rE9),

w€Dom(V)

whereDom/(V) = x;Dom(V;). For instance, if for all variable®; we havew (v;) = w(—wv;) = 1,
thenw(¢) simply stands for the number of complete assignmeniéttwat satisfye.

Given an initial belief state BW,, and a sequence of actiodis= (a, ..., a™) applicable in
br, here we describe how the weighted CNF encodiy},_) (or ¢(bg), for short) of the belief state
bz is built and used in Probabilistic-FF. First, we formallyesfly the generic scheme introduced
by Sang et al. (2005) for encoding a BM over variablesY into a weighted CNR)(N'). The
encoding formulap(/\') contains two sets of variables. First, for each varigble X and each
valuez € Dom(Z), the formulag(N') contains astate propositiorwith literals { z, ~z}, weighted
asw(z) = w(—z) = 1. These state propositions actdb;) as regular SAT propositions. Now,
for each variableZ € X;,_, let Dom(Z) = {z1, ..., z;} be an arbitrary fixed ordering dom(Z).
Recall that each roW;[i] in the CPT ofZ corresponds to an assignment(or a set of such as-
signments) taPa(Z). Thus, the number of rows ifi; is upper bounded by the number of different
assignments td’a(Z), but (as it happens in our case) it can be significantly lodéne depen-
dence ofZ on Pa(Z) induces a substantial local structure. Following the ondeof Dom(Z) as
above, the entr{’;[i, j] contains the conditional probability d?r(z; | ¢;). For every CPT entry

574

PROBABILISTIC-FF

procedure basic-WMC(¢)
if =0 return 1
if ¢ has an empty claugeturn 0
selecta variableV € ¢
return basic-WMC(¢|,) - w(v) + basic-WMC(¢|-,) - w(—w)

Figure 3: Basic DPPL-style weighted model counting.

Tz|i, 7] but the last one (i.eZz 7, k), the formulag(/') contains a&hance propositiomvith literals
{(z}),~(2})}. These chance variables aim at capturing the probabiligticemation from the CPTs
of N,.. Specifically, the weight of the Iitera(lzj.> is set toPr(z; | (i, —z1,...,7zj-1), that is to
conditional probability that the entry is true, given thas row is true, and no prior entry in the row

is true:
= ((2)) = —Lzlis]]
() 1— Y242 T2li. k] (10)
@ (~(#) =1 - @ (%))

Considering the clauses e{\), for each variableZ € X, and each CPT entryy[i, j], the
formula¢(N) contains a clause

(G A2l A Algia) M) = 2, (11)

whereg; is a conjunction of the literals forming the assignmén& Dom(Pa(Z)). These clauses
ensure that the weights of the complete assignments to tlables of¢ () are equal to the prob-
ability of the corresponding atomic events as postulatethey8N . To illustrate the construction
in Equations 10-11, let boolean variabldsand B be the parents of a ternary varialle (with
Dom(C) = {C1,Cs,C5}) in some BN, and lePr(C,|A,-B) = 0.2, Pr(C2|A,—~B) = 0.4, and
Pr(Cs|A,—B) = 0.4. Let the raw corresponding to the assignmdnt-B to Pa(C') be thei-th
row of the CPTI. In the encoding of this BN, the first two entries of this rawlef are captured
by a pair of respective chance propositidd), and(C3). According to Equation 10, the weights
of these propositions are setdo((C})) = 0.2, andw ((C})) = 1235 = 0.5. Then, according to
Equation 11, the encoding contains three clauses

(mAV BV ~(C}) vV Cy)
(mAV BV (C}) v ~(C3) Vv Cs)
(=AV BV (C}) v (C3) V Cs)

Finally, for each variablgZ € X, the formulagp(/N') contains a standard set of clauses encoding
the “exactly one” relationship between the state propms#ticapturing the value ¢f. This accom-
plishes the encoding o¥ into ¢(N\). In the next Section 3.3 we illustrate this encoding on the
belief state BN from our running example.

The weighted CNF encoding(bz) of the belief state BNV;,_ provides the input to a weighted
model counting procedure. A simple recursive DPPL-styteepdurebasic-WMC underlying Ca-
chet (Sang et al., 2004) is depicted in Figure 3, where thadta¢|, is obtained fromy by setting

575

DOMSHLAK & H OFFMANN

the literalv to true. Theorem 3 by Sang et al. (2005) shows thatif a weighted CNF encoding

of a BN, andPr(Q|F) is a general query with respect.A, query@, and evidence”, then we

have:

basic-WMC(¢ A Q A E)
basicWMC(¢p A E) ’

where query and evidence” can in fact be arbitrary formulas in propositional logic. tBléhat,

in a special (and very relevant to us) case of empty evidelBgaation 12 reduces t&r(Q) =
basic-WMC(pAQ), that is, a single call to thieasic-WMC procedure. Corollary 3 is then immediate
from our Proposition 1 and Theorem 3 by Sang et al. (2005).

Pr(Q|E) =

(12)

Corollary 3 Let(A,b;, G, 0) be a probabilistic planning task with a BN}, describingb;, anda
be anm-step sequence of actions applicablé in The probabilitybz(G) thata achieves starting
from by is given by:

ba(G) = WMC (¢(ba) A G(m)), (13)

whereG(m) is a conjunction of the goal literals time-stamped with tineet endpointr of @.

3.3 Example: Weighted CNF Encoding of Belief States

We now illustrate the generic BN-to-WCNF encoding schem8&anfig et al. (2005) on the belief
state BN\, from our running example in Figure 2.

For0 < i < 2, we introduce time-stamped state propositions), 72 (7), b1 (), b2 (7). Likewise,
we introduce four state propositions(1),e2(1),e3(1),€) (1) corresponding to the values of the
variableY(;). The first set of clauses in(bz) ensure the “exactly one” relationship between the
state propositions capturing the value of a variabl&/jn:

(e1(1) Vea(1) Ves(1) Vel (D)),
1<i<j<4:

(—wi(1) V ~y;(1)),
0<1<2:

(r1(8) V r2(i)) , (—ri(2) V —ra(i))
(b1(3) V b2(7)) , (=bi(i) V —ba(d))

Now we proceed with encoding the CPTs/Af_. The root nodes have only one row in their
CPTs so their chance propositions can be identified with tmeesponding state variables (Sang
et al., 2005). Hence, for the root variablé(o) we need neither additional clauses nor special
chance propositions, but the state propositigfD) of ¢(bz) is treated as a chance proposition
with @ (r1(0)) = 0.9.

Encoding of the variabl&) is a bit more involved. The CPTp , contains two (content-wise
different) rows corresponding to the “given” and “given r,” cases, and both these cases induce
a non-deterministic dependence Bfy) on R(. To encode the content dfp,, we introduce
two chance variableé (0)!) and (b;(0)2) with @ ((b1(0)!)) = 0.7 andw({b1(0)?)) = 0.2. The
positive literals of(b; (0)') and (b1 (0)?) capture the eventsi givenr;” and “b; givenry”, while
the negations~(b;(0)!) and —(b;(0)?) capture the complementary events given 5" and “by
givenry”, respectively. Now consider the “given” row in T, . To encode this row, we need

(14)

576

PROBABILISTIC-FF

¢(bz) to contain(r(0) A (b1(0)')) — b1(0) and (r1(0) A —(b1(0)')) — b2(0). Similar encoding
is required for the row “givem,”, and thus the encoding @fzo introduces four additional clauses:

(=r1(0) vV =(b1(0)") Vv b1(0)) , (=r1(0) V (b1(0)") V b2(0))
(=r2(0) V = (b1(0)%) v b1(0)) , (=72(0) V (b1(0)%) V b(0))

Having finished with theV;, part of V., we proceed with encoding the varialig,, cor-
responding to the probabilistic actionove-b-right. To encode the first row OTy(l) we in-
troduce three chance propositiotis (1)), (e2(1)!), and (e3(1)!); in general, no chance vari-
ables are needed for the last entries of the CPT rows. Thehtged these chance propositions
are set according to Equation 104o((s1(1)")) = 0.7, w ({e2(1)!)) = 2% = 0.6(6), and
@ ((e3(1)1)) = 1235 = 0.1. Using these chance propositions, we ade(t;) four clauses as in
Equation 11, notably the first four clauses of Equation 16Wwel

Proceeding the second row &f,,,, observe that the value @t and B, in this case fully
determines the value df(;). This deterministic dependence can be encoded withoug usiy
chance propositions using the last two clauses in Equation 1

(15)

(=r1(0) v =b1(0) V =(er (1)) Ver (1)),

(=r1(0) v =b1(0) V (e1(1)") V ~(ea(1)") V ea(1))

(=r1(0) v =b1(0) V (e1(1)") V (e2(1)!) V ~{ea(1)!) Vv es(1)) (16)
(=r1(0) v =b1(0) V (e1(1)") V (e2(1)") V (e3(1)") V€L (D))

(r1(0) v =¢1 (1)), (61(0) v —ef(1))

Using the state/chance variables introducedHbty B°, andY{;), we encode the CPTs @,
andB;) as:

Ry 1 (me1(1) Vira(1)), (mea(l) Vira(1)),

(—es(1) v —r1(0) V(1)) (—e'l(l) vV =r1(0) V 7"1(1)) ,

(—es(1) v —=r1(0) V(1)) (—e'l(l) V =19(0) V 1y 1)) (17)
By i (me1(1) Vba(1)),

(e1(1) v =b1(0) vV b1(1))

(e1(1) Vv =b2(0) V b2(1))

Since the CPTs of botR;) and B(;) are completely deterministic, their encoding as well isgsi
no chance propositions. Finally, we encode the (detertiihiSPTs of R,y and B, as:

Ry : (11(2))
B(Q) : (ﬁbl(l)
(=ba(1)

(2)) (18)
(2))

where the unary clause(2)) is a reduction of —r1(1) vV r1(2)) and(—r2(1) vV r1(2)). This ac-
complishes our encoding 6f(bz).

Vb
V by

577

DOMSHLAK & H OFFMANN

3.4 From Conformant-FF to Probabilistic-FF

Besides the fact that weighted model counting is attradtivéhe kinds of BNs arising in our con-
text, the weighted CNF representation of belief states ertremely well with the ideas underly-
ing Conformant-FF (Hoffmann & Brafman, 2006). This was gt in the introduction already;
here we give a few more details.

As stated, Conformant-FF does a forward search in a norapitigtic belief space in which
each belief state corresponds to a set of world states @masido be possible. The main trick of
Conformant-FF is the use of CNF formulas for an implicit eg@ntation of belief states, where
formulas¢(a) encode the semantics of executing action sequericehe initial belief state. Facts
known to be true or false are inferred from these formulasis Tbmputation of only a partial
knowledge constituteslazy kind of belief state representation, in comparison to o#fpgroaches
that use explicit enumeration (Bonet & Geffner, 2000) or BOBertoli, Cimatti, Pistore, Roveri,
& Traverso, 2001) to fully represent belief states. Thedbaktas underlying Probabilistic-FF are:

(i) Define time-stamped Bayesian Networks (BN) describimgbpbilistic belief states (Sec-
tion 3.1 above).

(i) Extend Conformant-FF’s belief state CNFs to model thB& (Section 3.2 above).

(iii) In addition to the SAT reasoning used by Conformant-BBe weighted model-counting to
determine whether the probability of the (unknown) goalsibelief state is high enough
(directly below).

(iv) Introduce approximate probabilistic reasoning inton@rmant-FF’s heuristic function (Sec-
tion 4 below).

In more detail, given a probabilistic planning task, b7, G, 9), a belief staté; corresponding to
some applicable ib; m-step action sequencg and a propositioly € P, we say thay is known
in bg if bz(q) = 1, negatively knowrn b3 if bz(q) = 0, andunknownin bz, otherwise. We begin
with determining whether eachis known, negatively known, or unknown at time Re-using the
Conformant-FF machinery, this classification requiresaipo SAT tests of(bz) A —q(m) and
o(bz) A q(m), respectively. The information provided by this classtiima is used threefold. First,
if a subgoalg € G is negatively known at time:, then we havég(G) = 0. On the other extreme,
if all the subgoals of7 are known at timen, then we havéz(G) = 1. Finally, if some subgoals of
G are known and the rest are unknown at timethen we accomplish evaluating the belief state
by testing whether

ba(G) = WMC (¢(ba) A G(m)) = 0. (19)

Note also that having the sets of all (positively/negayiy&nown propositions at all time steps up
to m allows us tosignificantly simplify the CNF formulag(bz) A G(m) by inserting into it the
corresponding values of known propositions.

After evaluating the considered action sequetnice we getbz(G) > 6, then we are done.
Otherwise, the forward search continues, and the acti@tsatlke applicable ih; (and thus used to
generate the successor belief states) are actions whasmgitons are all known ihg.

578

PROBABILISTIC-FF

4. Heuristic Function

The key component of any heuristic search procedure is thastie function. The quality (in-
formedness) and computational cost of that function detexrie performance of the search. The
heuristic function is usually obtained from solutions toetakation of the actual problem of in-
terest (Pearl, 1984; Russell & Norvig, 2004). In classidahping, a successful idea has been to
use a relaxation that ignores the delete effects of therac(lcDermott, 1999; Bonet & Geffner,
2001; Hoffmann & Nebel, 2001). In particular, the heurigifche FF planning system is based on
the notion ofrelaxed plan which is a plan that achieves the goals while assuming thdebete
lists of actions are empty. The relaxed plan is computedgusiGraphplan-style (Blum & Furst,
1997) technique combining a forward chaining graph cootitn phase with a backward chaining
plan extraction phase. The heuristic vahigv) that FF provides to a world state encountered
during the search is the length of the relaxed plan ftenin Conformant-FF, this methodology was
extended to the setting of conformant planning under irstiate uncertainty (without uncertainty
about action effects). Herein, we extend Conformant-FFsmmery to handle probabilistic initial
states and effects. Section 4.1 provides background orthaigues used in FF and Conformant-
FF, then Sections 4.2 and 4.4 detail our algorithms for thedod and backward chaining phases in
Probabilistic-FF, respectively. These algorithms fortilie phases of the Probabilistic-FF heuristic
computation are illustrated on our running example in $estd.3 and 4.5, respectively.

4.1 FF and Conformant-FF

We specify how relaxed plans are computed in FF; we provideasise sketch of how they are
computed in Conformant-FF. The purpose of the latter is tmBlowly prepare the reader for what
is to come: Conformant-FF’s techniques are re-used fordhibbtic-FF anyway, and hence will be
described in full detail as part of Sections 4.2 and 4.4.

Formally, relaxed plans in classical planning are compatedollows. Starting fromo, FF
builds arelaxed planning graptas a sequence of alternating proposition laye(s) and action
layers A(t), where P(0) is the same a&, A(t) is the set of all actions whose preconditions are
contained inP(t), and P(t + 1) is obtained fromP(¢) by including the add effects (with fulfilled
conditions) of the actions id(¢). That is,P(t) always contains those facts that will be true if one
would execute (the relaxed versions of) all actions at thkeedayers up toA(t — 1). The relaxed
planning graph is constructed either until it reaches agsitjnal layerP(m) that contains all
the goals, or until the construction reaches a fixpéitt) = P(¢ + 1) without reaching the goals.
The latter case corresponds to (all) situations in whichlaxesl plan does not exist, and because
existence of a relaxed plan is a necessary condition forxlsteace of a real plan, the stateis
excluded from the search space by setfifig)) = oco. In the former case off C P(m), a relaxed
plan is a subset of actions (1), ..., A(m) that suffices to achieve the goals (under ignoring the
delete lists), and it can be extracted by a simple backamgilwiop: For each goal if’(m), select
an action inA(1),..., A(m) that achieves this goal, and iterate the process by coisid#rose
actions’ preconditions and the respective effect conadlitias new subgoals. The heuristic estimate
h(w) is then set to the length of the extracted relaxed plan, sha&b the number of actions selected
in this backchaining process.

Aiming at extending the machinery of FF to conformant plagniin Conformant-FF, Hoff-
mann and Brafman (2006) suggested to extend the relaxediptpgraph with additional fact lay-
ersuP(t) containing the factsinknownat time¢, and then to reason about when such unknown

579

DOMSHLAK & H OFFMANN

facts become known in the relaxed planning graph. As the tmiity of this type of reasoning is
prohibitive, Conformant-FF further relaxes the planniagkt by ignoring not only the delete lists,
but also all but one of the unknown conditions of each actiifece That is, if actiona appears
in layer A(t), and for effecte of a we havecon(e) C P(t) U uP(t) andcon(e) N uP(t) # 0,
thencon(e) NwP(t) is arbitrarily reduced to contain exactly one literal, aedgoning is done as if
con(e) had this reduced form from the beginning.

This relaxation converts implicationt$\ .c ..., () p() ¢(t)) — a(t + 1) that the action effects
induce between unknown propositions into their 2-progatdithat take the form ddinary impli-
cationsc(t) — q(t + 1), for arbitraryc € con(e) N uP(t). Due to the layered structure of the
planning graph, the set of all these binary implicatiefl3 — ¢(¢ 4+ 1) can be seen as forming a
directed acyclic graptmp. Under the given relaxations, this graph captures exatitjependen-
cies between the truth of propositions over time. Hencegkihg whether a propositiognbecomes
known at timet can be done as follows. First, backchain over the implicagidges ofmp that end
in ¢(t), and collect the setupportq(t)) of leafé that are reached. Then,df is the CNF formula
describing the possible initial states, test by a SAT chelekther

b — \/ l

lesupportq(t))

This test will succeed if and only if at least one of the leafsupportq(t)) is true in every possible
initial state. Under the given relaxations, this is the gaaad only if, when applying all actions in
the relaxed planning graphwill always be true at time.>

The process of extracting a relaxed plan from the consuctsformant relaxed planning
graph is an extension of FF's respective process with maohitat selects actions responsible for
relevant paths inmp. The overall Conformant-FF heuristic machinery is sound e@mplete for
relaxed tasks, and yields a heuristic function that is igtflormative across a range of challenging
domains (Hoffmann & Brafman, 2006).

In this work, we adopt Conformant-FF'’s relaxations, igngrthe delete lists of the action ef-
fects, as well as all but one of the propositions in the efaatindition. Accordingly, we adopt the
following notations from Conformant-FF. Given a set of anti A, we denote by, any function
from A into the set of all possible actions, such thamaps eacl € A to the action similar ta
but with empty delete lists and with all but one conditionp@positions of each effect removed,;
for | (a), we writea|;. By A|{ we denote the action set obtained by applyiifido all the actions
of A, that is,A|f = {a|{ | a € A}. For an action sequencawe denote byi|; the sequence of
actions obtained by applying to every action along, that is,

W:{o, a=)

For a probabilistic planning task4, b, G,), the task(A|{,br,G,0) is called a relaxation of
(A,br,G,0). Finally, if al{ is a plan for(A|], b1, G,0), thena is called a relaxed plan for
(A> b[>G7 0)

4. Following the Conformant-FF terminology, by “leafs” wefer to the nodes having zero in-degree.

5. Note here that it would be possible to do a full SAT checkhwait any 2-projection (without relying amp), to see
whetherg becomes known dt However, as indicated above, doing such a full check foryesraknown proposition
at every level of the relaxed planning graph for every sestate would very likely be too expensive, computationally.

580

PROBABILISTIC-FF

In the next two sections we describe the machinery underlstie Probabilistic-FF heuristic
estimation. Due to the similarity between the conceptulaixetions used in Probabilistic-FF and
Conformant-FF, Probabilistic-FF inherits almost all offfmrmant-FF’s machinery. Of course,
the new contributions are those algorithms dealing wittbahdlistic belief states and probabilistic
actions.

4.2 Probabilistic Relaxed Planning Graphs

Like FF and Conformant-FF, Probabilistic-FF computes désristic function in two steps, the first
one chaining forward to build a relaxed planning graph, dmdsiecond step chaining backward to
extract a relaxed plan. In this section, we describe in detababilistic-FF’s forward chaining step,
building aprobabilistic relaxed planning grapfor PRPG, for short). In Section 4.4, we then show
how one can extract a (probabilistic) relaxed plan from tR€8. We provide a detailed illustration
of the PRPG construction process on the basis of our runniagple; since the illustration is
lengthy, it is moved to a separate Section 4.3.

The algorithms building a PRPG are quite involved; it is rinstive to first consider (some
of) the key points before delving into the details. The masue is, of course, that we need to
extend Conformant-FF's machinery with the ability to detere when the goal set is sufficiently
likely, rather than when it is known to be true for sure. To achiea, thve must introduce into
relaxed planning some effective reasoning about both tbleafilistic initial state, and the effects
of probabilistic actions. It turns out that such a reasoniag be obtained by a certaimeighted
extension of the implication graph. In a nutshell, if we wantletermine how likely it is that a fact
q is true at a time, then we propagate certain weights backwards through théciation graph,
starting inq(t); the weight ofq(t) is set tol, and the weight for any(¢') gives an estimate dhe
probability of achievingy at ¢ given thatp holds att’. Computing this probability exactly would,
of course, be too expensive. Our estimation is basedssuming independence of the various
probabilistic events involvedhis is a choice that we made very carefully; we experimentielely
with various other options before deciding in favor of thashnique.

Any simplifying assumption in the weight propagation cansts, of course, another relaxation,
on top of the relaxations we already inherited from Confartyfie. The particularly problematic
aspect of assuming independence is that it is not an untieragimg technique. The actual weight
of a nodep(t’) — the probability of achieving att given thatp holds att’ — may be lower than our
estimate. In effect, the PRPG may decide wrongly that a eelgptan exists: even if we execute
all relaxed actions contained in the successful PRPG, thigapility of achieving the goal by this
execution may be less than the required threshold. In otbedsywe lose the soundness (relative
to relaxed tasks) of the relaxed planning process.

We experimented with an alternative weight propagatiorhogtbased on an opposite assump-
tion, that the relevant probabilistic events always codocand that hence the weights must be
propagated according to simple maximization operationsis propagation method yielded very
uninformative heuristic values, and hence inacceptablpiriral behaviour of Probabilistic-FF,
even in very simple benchmarks. In our view, it seems unfitkht an under-estimating yet in-
formative and efficient weight computation exists. We fartbxperimented with some alternative
non under-estimating propagation schemes, in particmlambased on assuming that the probabilis-
tic events are completely disjoint (and hence weights shbahdded; these schemes gave better

581

DOMSHLAK & H OFFMANN

performance than maximization, but lagged far behind thdependence assumption in the more
challenging benchmarks.

Let us now get into the actual algorithm building a PRPG. Arseautline of the algorithm is as
follows. The PRPG is built in a layer-wise fashion, in ea@ndtion extending the PRPG, reaching
up to timet, by another layer, reaching up to time 1. The actions in the new step are those whose
preconditions are known to hold atEffects conditioned on unknown facts (note here the réolict
of effect conditions to a single fact) constitute new edgethé implication graph. In difference to
Conformant-FF, we don't obtain a single edge from conditmadd effect; instead, we obtain edges
from the condition to “chance nodes”, where each chance regtesents a probabilistic outcome of
the effect; the chance nodes, in turn, are linked by edgd®torespective add effects. The weights
of the chance nodes are set to the probabilities of the régpamitcomes, the weights of all other
nodes are set tb. These weights are “static weights” which are not “dynaithjtanodified by
weight propagation; rather, the static weights form an inpuhe propagation.

Once all implication graph edges are inserted at a layerlt@ithm checks whether any new
facts become known. This check is done very much like theesponding check in Conformant-FF,
by testing whether the disjunction of the support leafs fpra@ositionp att + 1 is implied by the
initial state formula. The two differences to Conformaf-&re: (1) Only leafs are relevant whose
dynamic weight isl (otherwise, achieving a leaf is not guaranteed to accompliatt + 1). (2)
Another reason fop to become known may be that all outcomes of an unconditicifette(or an
effect with known condition) result in achievementoét timet + 1. We elegantly formulate the
overall test by a single implication test over support leglf®se dynamic weight equals their own
weight.

Like FF's and Conformant-FF's algorithms, the PRPG protesstwo termination criteria. The
PRPG terminates positively if the goal probability is higioegh at time; the PRPG terminates
negatively if, fromt to ¢ + 1, nothing has changed that may result in a higher goal préfyaat
some future’. The goal probability in a layeris computed based on weighted model counting over
a formula derived from the support leafs of all goals not kndavbe true. The criteria for negative
termination check: whether any new facts have become knownlamown (not negatively known);
whether any possibly relevant new support leafs have apgeand whether the goal probability
has increased. If neither is the case, then we can stopsafdlye PRPG terminates unsuccessfully
then we have a guarantee that there is no relaxed plan, antth¢heorresponding belief is hence a
dead end.

Let us get into the details. Figure 4 depicts the main routnduilding the PRPG for a belief
stateb;. As we already specified, the sé®t), uP(t), and A(t) contain the propositions that are
known to hold at time (hold at¢ with probability 1), the propositions that are unknown to hold at
time ¢ (hold att with probability less tharl but greater tha®), and actions that are known to be
applicable at time, respectively. The layers> 0 of PRPG capture applying the relaxed actions
starting frombg. The layers—m to —1 of PRPG correspond to the-step action sequengdeading
from the initial belief state to the belief state in questign We inherit the latter technique from
Conformant-FF; in a sense, the PRPG “reasons about the pHSi§ may look confusing at first
sight, but it has a simple reason. Imagine the PRPG stagsealtlinstead. Then, to check whether
a proposition becomes known, we have to do SAT tests regaslipport leafagainst the belief
state formula,¢(bz), instead of the initial state formuléimilarly for weighted model counting
to test whether the goal is likely enough). Testing agadfidt) is possible, but very expensive

582

PROBABILISTIC-FF

procedure build-PRPG (@, A, (N,), G, 0,]7),
returns a Bool saying if there is a relaxed plan for the baliafe

givenbya = (a=™,...,a"!), and
builds data structures from which a relaxed plan can be ebera
O := d(Ny,), Imp:= 10
P(—m) :={p]| pisknownin®}, uP(—m) := {p | pis unknown in®}
fort:=—-m-.-—1do

A(t) ={at|T} U NOOPS
build-timestep(t, A(t))
endfor
t:=0
while get-P(¢,G) < 6 do
A(t) ={al{ | a € A, pre(a) C P(t)} U NOOPS
build-timestep(t, A(t))
if P(t+1) = P(t) and
uP(t+1) =uP(t)and
Vp € uP(t+ 1) : uP(—m) N supportp(t + 1)) = uwP(—m) N supportp(t)) and
get-P(t + 1,G) = get-P(t, G) then
return FALSE
endif
ti=t+1
endwhile
T :=t, return TRUE

Figure 4: Main routine for building a probabilistic relaxphnning graph (PRPG).

computationally. The negative-index layers chain the implication graph el way back to the
initial state, and hence enable us to perform SAT tests ag#ia — typically much smaller — initial
state formula.

Returning to Figure 4, the PRPG is initialized with an emptyplication setimp, P(—m)
anduP(—m) are assigned the propositions that are known and unknowreimitial belief state,
and a weighted CNF formul@ is initialized with¢(N;,). @ is the formula against which implica-
tion/weighted model checking tests are run when askinglenet proposition becomes known/whether
the goal is likely enough. While the PRPG is buidltjs incrementally extended with further clauses
to capture the behavior of different effect outcomes.

Thefor loop builds the set® andu P for thea's time steps—m - - - — 1 by iterative invocation
of the build-timestep procedure that each time expands PRPG by a single time levebach
iteration —m < t < —1, the setsP(t + 1) anduP(t + 1) are made to contain the propositions
that are known/unknown after applying the relaxed versibthe actiona’ € @ (remember that
a = (a',...,a™)). To simplify the presentation, each action gHt) contains a set of dummy
actionsNOO PSS that simply transport all the propositions from time lay#y time layert+1. More
formally, NOOPS = {noop, | p € P}, wherepre(noop,) = 0, E(noop,) = {({p},{e})}, and
e=(1.0,{p}, 0)}).

6. In Conformant-FF, this configuration is implemented aogtion; it significantly slows down the search in most
domains, and brings advantages only in a few cases.

583

DOMSHLAK & H OFFMANN

The subsequenwhile loop constructs the relaxed planning graph from layemwards by,
again, iterative invocation of theuild-timestep procedure. The actions in each layer 0 are
relaxations of those actions whose preconditions are krtowrld at timet with certainty. This
iterative construction is controlled by two terminatiostte First, if the goal is estimated to hold at
layert with probability higher thad, then we know that a relaxed plan estimate can be extracted.
Otherwise, if the graph reaches a fix point, then we know tbatetaxed (and thus, no real) plan
from by exists. We postpone the discussion of these two terminatiteria, and now focus on the
time layer construction procedubaild-timestep.

procedure build-timestep (¢, A),
builds P(t + 1), uP(t + 1), and the implication edges frotrto ¢ + 1,
as induced by the action sdt
Pt+1):=P(t),uPt+1):=10
for all effectse of an actioru € A, con(e) € P(t) UuP(t) do
for alle € A(e) do
uP(t+1) :=uP(t+ 1) Uadd(e)
introduce new fact(t) with w(s(t)) = Pr(e)
Imp :=ImpU {(e(t),p(t + 1)) | p € add(e)}
endfor
if con(e) € uP(t) then
Imp = IMPU U, ¢ o { (con(e) (1), ()}
else
=D A (\/EEA(e)a(t)) A /\a,a’eA(e) (—‘E(t) v _'El(t))
endif
endfor
forallp € uP(t+ 1) do
build-w-impleafs(p(t + 1), Imp)
supportp(t + 1)) := {1 | 1 € leafsImp_, 1)) A @pen) (1) = @ (1)}
it ® — Viesupportpi+1)) L then P(t + 1) := P(t + 1) U {p} endif
endfor
uP(t+1):=uP{t+1)\ Pt+1)

Figure 5: Building a time step of the PRPG.

Thebuild-timestep procedure is shown in Figure 5. The fifst loop ofbuild-timestep proceeds
over all outcomes of (relaxed) actions in the given 4dhat may occur at timé. For each such
probabilistic outcome we introduce a new chance propaesitieighted by the conditional likelihood
of that outcomé€. Having that, we extendmp with binary implications from this new chance
proposition to the add list of the outcome. If we are uncertbout the conditiomon(e) of the
corresponding effect at timg that is, we haveon(e) € uwP(t), then we also add implications
from con(e) to the chance propositions created for the outcomes oDtherwise, ifcon(e) is
known at timet, then there is no uncertainty about our ability to make tlecet to hold at time
t. In this case, we do not “ground” the chance propositionatexefor the outcomes efinto the
implication graph, but simply extend the running formdiawith clauses capturing the “exactly
one” relationship between these chance propositions goraling to the alternative outcomeseof

7. Of course, in our implementation we have a special caggntient for deterministic actions, using no chance nodes
(rather than a single “chance node” with static weitht

584

PROBABILISTIC-FF

at timet. This way, the probabilistic uncertainty about the outcahe can be treated as if being a
property of the initial belief statg;; This is the only type of knowledge we add into the knowledge
base formulap after initializing it in build-PRPG to ¢(N},).

Notation | Description

Imp,_,,, | The graph containing exactly all the paths from nede nodeu in Imp.

Imp_,,, The subgraph ofmp formed by node: and all the ancestors afin Imp.
leafgImp’) | The set of all zero in-degree nodes in the subgriamtt of Imp.

E(Imp) | The set of time-stamped action effects responsible fortimi¢ation edges
of the subgraptimp’ of Imp.

Table 2: Overview of notations around the implication graph

The secondor loop checks whether a propositign unknown at timef, becomes known at
timet¢ + 1. This part of thebuild-timestep procedure is somewhat more involved; Table 2 provides
an overview of the main notations used in the follows whermudising the various uses of the
implication graphimp.

First thing in the secontbr loop of build-timestep, a call tobuild-w-impleafs procedure asso-
ciates each nodgt’) in Imp_, ;1) With an estimateo,,; 1) (v(t")) on the probability of achieving
p at timet + 1 by the eﬁectf(lmpv(t,)ép(tﬂ)), given thatv holds at time’. In other words, the
dynamic weight (according to(t + 1)) of the implication graph nodes is computed. Note tHat)
can be either a time-stamped propositigt) for someq € P, or a chance propositiof(t') for
some probabilistic outcome

We will discuss thebuild-w-impleafs procedure in detail below. For proceeding to understand
the secondor loop of build-timestep, the main thing we need to know is the following lemma:

Lemma 4 Given a nodev(t') € Imp_,,;;1), We havew, 1) (v(t')) = @ (v(t')) if and only if,
givenv at timet', the sequence of effect$/Bp,) _,.+1)) achievegp att + 1 with probability 1.

In words,v(t") leads top(¢ + 1) with certainty iff the dynamic weight of(¢') equals its static
weight. This is a simple consequence of how the weight prafiag is arranged; it should hold true
for any reasonable weight propagation scheme (“do not madde as certain if it is not”). A full
proof of the lemma appears in Appendix A on pp. 613.

Re-consider the secorfdr loop of build-timestep. What happens is the following. Having
finished thebuild-w-impleafs weight propagation fop at timet + 1, we

1. collect all the leafsupportp(t + 1)) of Imp_ ;) that meet the criteria of Lemma 4, and

2. check (by a call to a SAT solver) whether the knowledgesfasmula® implies the disjunc-
tion of these leafs.

If the implication holds, then the examined facat timet is added to the set of facts known at time
t. Finally, the procedure removes from the set of facts ttekapwn to possibly hold at time+ 1
all those facts that were just proven to hold at tilmie 1 with certainty.

To understand the above, consider the following. With Lerdmsupportp(t + 1)) contains
exactly the set of leafs achieving which will leadit@ + 1) with certainty. Hence we can basically

585

DOMSHLAK & H OFFMANN

procedure build-w-impleafs (p(t), Imp)
top-down propagation of weights,,,, fromp(t) to all nodes inlmp_}p(t)
@) (p(t)) =1
for decreasing time steps:= (¢t — 1)...(—m) do
for all chance nodes(t’) € Impﬂp(tf do
1

Q= HrEadd(s),r(t/Jrl)Glmpap(t) — @) (r(t' + 1))}
@p() (6(t)) =@ (e(t')) - (1 — a)

endfor

for all fact nodes(t') € Imp_, ;) do
a:=1

for alla € A(t'),e € E(a),con(e) =g do

o= a (1= T caemp.,, @oo)

endfor
@y (q(t) =1—a
endfor
endfor

—p(t)

Figure 6: Thebuild-w-impleafsprocedure for weight back-propagation over the implicaticaph.

use the same implication test as in Conformant-FF. Noteghiew that the word “basically” in the
previous sentence hides a subtle but important detail.flerdnce to the situation in Conformant-
FF, supportp(t + 1)) may contain two kinds of nodes: (1) proposition nodes at tag kyer of
the PRPG, i.e., at layerm corresponding to the initial belief; (2) chance nodes arl&yers of
the PRPG, corresponding to outcomes of effects that havekmown conditions. This is the point
where the discussed above updates on the forrmudae needed—those keep track of alternative
effect outcomes. Hence testifg— \/,csypportp(+1)) ¢ IS the same as testing whether either: (1)
is known att + 1 because it is always triggered with certainty by at leastgogosition true in the
initial world; or (2) p is known att 4+ 1 because it is triggered by all outcomes of an effect that will
appear with certainty. We get the following result:

Lemma5 Let(A4,MN;,,G,0) be a probabilistic planning task, be a sequence of actions applicable
in by, and|;” be a relaxation function forl. For each time step > —m, and each propositiop €

P, if P(t) is constructed byuild-PRPG(a, A, p(Ny,), G, 0,|1), thenp at timet can be achieved
by a relaxed plan starting with|;

(1) with probability> 0 (that is,p is not negatively known at timgif and only ifp € uP(t) U P(t),
and

(2) with probability1 (that is,p is known at time) if and only ifp € P(t).

This is a consequence of the arguments outlined above. Tihadof of Lemma 5 is given in
Appendix A on pp. 614.

Let us now consider the weight-propagafimmocedurebuild-w-impleafs depicted in Figure 6.
This procedure performs a layered, top-down weight prof@gdrom a given nodep(t) € Imp

8. The weight propagation scheme of theéld-w-impleafs procedure is similar in nature to this used in the heuristics
module of the recent probabilistic temporal planner PeaiflLittle, Aberdeen, and Thiébaux (2005).
9. Note that the¢” here will be instantiated with + 1 when called fronbuild-timestep.

586

PROBABILISTIC-FF

down to the leafs ofmp_,,. This order of traversal ensures that each nodempf, ;) is pro-
cessed only after all its successorslrbnp_)p(t). For the chance nodegt’), the dynamic weight
Wp(t) (E(t/)) is set to

1. the probability that the outcometakes place at timé given that the corresponding action
effecte(e) does take place at, times

2. an estimate of the probability of achievip@t timet by the eﬁectf(lmpe(t,)qp(t)).

The first quantity is given by the “global”, static weight(c(¢')) assigned te(t’) in the firstfor
loop of build-timestep. The second quantity is derived from the dynamic weighgg) (r(t' + 1))
for r € add(e), computed in the previous iteration of the outermfostioop of build-w-impleafs.
Making a heuristic assumption that the effect $881p,. /1)) for differentr € add(e) are
all pairwise independenty is then set to the probability of failure to achievet ¢ by the effects
E(IMP. 11— p))- This computation ofx for (') is decomposed over the artifactsgfand this
is where the weight propagation starts taking place. Fofabenodes;(t'), the dynamic weight
@y (q(t')) is set to the probability that some action effect condittbram ¢ at time ¢ allows
(possibly indirectly) achieving the desired facat timet¢. Making again the heuristic assumption
of independence between various such effects conditioneg ai ¢, computingz, (¢(t')) is
decomposed over the outcomes of these effects.

procedure get-P (¢, G)
estimates the probability of achievirgat timep.
if G Z P(t) UuP(t) then return 0 endif
if G C P(t) then return 1 endif
for g € G\ P(t)do
for eachl € leafsImp_,), introduce a chance propositigh) with weightzo, ;) ()

g = (\/leleafs(lmpﬁg(t)) A /\leleafS(lmpﬂgm)ﬂuP(—m) (=1v ()
endfor
return WMC(® A A e p(r) Po)

Figure 7: Estimating the goal likelihood at a given time step

What remains to be explained of theild-PRPG procedure are the two termination criteria of
thewhile loop constructing the planning graph from the lagemwards. The first test is made by
a call to theget-P procedure, and it checks whether the PRPG built to the tiyer [A contains
a relaxed plan fof A, \;,, G, 0). Theget-P procedure is shown in Figure 7. First, if one of the
subgoals is negatively known at timiethen, from Lemma 5, the overall probability of achieving
the goal is0. On the other extreme, if all the subgoals are known at tintkeen the probability of
achieving the goal i$. The correctness of the latter test is implied by Lemma 5 amdinterference
of relaxed actions. This leaves us with the main case in wivelare uncertain about some of the
subgoals. This uncertainty is either due to dependenceeséthubgoals on the actual initial world
state, or due to achieving these subgoals using probabdistions, or due to both. The uncertainty
about the initial state is fully captured by our weighted ChdFnula ¢(N,,) C ®. Likewise, the
outcomes’ chance proposition$t’) introduced into the implication graph by ti@ild-timestep
procedure are “chained up” ifimp to the propositions on the add lists of these outcomes, and

587

DOMSHLAK & H OFFMANN

“chained down” inimp to the unknown (relaxed) conditions of these outcomes,\if dimerefore,

if some action outcome at timet’ < ¢ is relevant to achieving a subgogle G at timet, then
the corresponding nodgt’) must appear irimpqg(t), and its weight will be back-propagated by
build-w-impleafs(g(t), Imp) down to the leafs ofmp_,). The get-P procedure then exploits
these back-propagated estimates by, again, taking a tie@ssumption of independence between
achieving different subgoals. Namely, the probability cifi@ving the unknown sub-goals\ P(t)

is estimated by weighted model counting over the formii@onjoined with probabilistic theories
4 Of achieving each unknown goalin isolation. To understand the formulag, consider that, in
order to makey true atf, we must achieve at least one of the Ielafv’slmpqg(t); hence the left part of
the conjunction. On the other hand, if we mdkeue, then this achievegt) only with (estimated)
probability) (1); hence the right part of the conjunction requires us to “feyprice” if we set

[to truel®

As was explained at the start of this section, the positive BRermination test may fire even if
the real goal probability isot high enough. That igget-P may return a value higher than the real
goal probability, due to the approximation (independerssimption) done in the weight propaga-
tion. Of course, due to the same approximation, it may alppéa thaget-P returns a value lower
than the real goal probability.

The second PRPPG termination test comes to check whetheaweerbached a point in the
construction of PRPG that allows us to conclude that thene iglaxed plan fofA, N, , G, 0) that
starts with the given action sequernzeThis termination criterion asks whether, from time step
to time stept + 1, any potentially relevant changes have occurred. A patliytielevant change
would be if the goal-satisfaction probability estimatg-P grows, or if the known and unknown
propositions grow, of if the support leafs of the latter pysiions in/mp that correspond to the
initial belief state grow! If none occurs, then the same would hold in all future iterait’ > ¢,
implying that the required goal satisfaction probabilityvould never be reached. In other words,
the PRPG construction is complete.

Theorem 6 Let (A, N;,, G, 0) be a probabilistic planning task; be a sequence of actions appli-
cable inby, and|; be a relaxation function for. If build-PRPG(a, A, (N,), G, 0,|) returns
FALSE, then there is no relaxed plan fot, b;, G, §) that starts witha|.

Note that Theorem 6 holds despite the approximation doniegiweight propagation, making
the assumption of probabilistic independence. For Thedémhold, the only requirement on the
weight propagation is thigf the real weight still grows, then the estimated weigHt gtbws. This
requirement is met under the independence assumptionultwot be met under the assumption of
co-occurence, propagating weights by maximization ofmrat and thereby conservatively under-
estimating the weights. With that propagation, if the PRBI3 then we cannot conclude that there
is no plan for the respective belief. This is another goodment (besides the bad quality heuristics
we observed empirically) against using the conservatitienaton.

10. If we do not introduce the extra chance propositidgs, and instead assign the weight, ;) (1) to [itself, then the
outcome is not correct: we have to “pay” also for settirng false.

11. To understand the latter, note that PRPG can always tealasith more and more replicas of probabilistic actions
irrelevant to achieving the goals, and having effects witbwnconditions. While these action effects (since they are
irrelevant) will not influence our estimate of goal-satefan probability, the chance propositions corresponding
the outcomes of these effects may become the support leafsy unknown propositiop. In the latter case, the
set of support leafsupportp(t')) will infinitely grow with ¢ — oo, while the projection oupportp(t')) on the
initial belief state (that issupportp(t)) N wP(t)) is guaranteed to reach a fix point.

588

PROBABILISTIC-FF

The full proof to Theorem 6 is given in Appendix A on pp. 615. €Ttneorem finalizes our
presentation and analysis of the process of constructioiggbilistic relaxed planning graphs.

4.3 Example: PRPG Construction

To illustrate the construction of a PRPG by the algorithmiguFes 4-7, let us consider a simplifi-
cation of our running Examples 1-2 in which

(i) only the actions{move-b-right, move-le ft} constitute the action set,
(i) the goal isG = {r1, b, }, and the required lower bound on the probability of sucéess0.9,
(iii) the initial belief stateb; is given by the BNV}, as in Example 2, and

(iv) the belief stateby evaluated by the heuristic function corresponds to theomstsequence
a = (move-b-right).

The effects/outcomes of the actiodsconsidered in the construction of PRPG are described in
Table 3, where™™" is a re-notation of the effeetin Table 1, the effect’ in Table 1 is effectively
ignored due to the emptiness of its add effects.

‘ a ‘E(a) ‘ con(e) ‘ con(e)|f ‘ Ale) ‘ Pr(e) ‘ add(e) ‘
eTP | 0.7 | {ro,bo}
a™" (move-b-right) | e™" | {ry, b1} {r1} embr | 0.2 {ra}
erbr | 0.1 0
a™ (move-left) em! {rs} {re} gm! 1.0 {r1}
noop,, e’ {r} {r1} en 1.0 {r}
noop,., e {ra} {rs} g2 1.0 {ra}
noopy, b {b1} {b1} gh 1.0 {b1}
noopy, eb2 {ba2} {b2} b2 1.0 {b2}

Table 3: Actions and thejii” relaxation for the PRPG construction example.

The initialization phase of théuild-PRPG procedure results i@ = ¢(N;,), Imp = 0,
P(—1) =0, anduP(—1) = {r1,72,b1,b2}. The content of.P(—1) is depicted in the first column
of nodes in Figure 8. The firdor loop of build-PRPG (constructing PRPG for the “past” layers
corresponding t@) makes a single iteration, and calls thald-timestep procedure witht = —1
andA(-1) = {a™"} U NOOPS. (In what follows, using the names of the actions we refeheirt
\f relaxations as given in Table 3.) The add list of the outcefff& is empty, and thus it adds no
nodes to the implication graph. Other than that, the chandesiintroduced témp by this call to
build-timestep appear in the second column of Figure 8. The first ofttetoop of build-timestep
results inlmp given by columns 1-3 of Figure 8,(0) = uP(—1), and no extension cb.

In the second outdor loop ofbuild-timestep, the weight propagating procedureild-w-impleafs
is called for each unknown fag(0) € uP(0) = {r1(0),73(0,b1(0),b2(0)}, generating thep(0)-
oriented” weights as in Table 4. For egef)) € wP(0), the set of supporting lea&ipportp(0)) =

589

DOMSHLAK & H OFFMANN

e (1)

ey (1)

7“1(0)
ro(-1) £ (-1) = 2(0) ("2 (0) = r2 (1) F——{"2 (1)} ra(2)

b (1) F—{= (1) {51 O f——{" 0}~ b (O f—{" () @)
ba (1) {2 (1) = 22(0) {2 (0) | ——{ba(1) {2 (1) |——~{22(2)

Figure 8: The implication grapimp. The odd columns of nodes depict the sets of unknown propo-
sitionsuP(t). The even columns of nodes depict the change propositidoreslirced for
the probabilistic outcomes of the actioAst).

{p(—1)}, none of them is implied by = N}, and thus the set of known fack0) remains equal
to P(—1) = 0, anduP(—1) equal to= uP(—1).

=0 t=—1
Ty [[by [by [€T el [em [em2 [l [b2] vy [ro | by [b2
@r0) | 1 1 1
ey | | 1 0.7]02 1 0.9 1
@, (0) 1 1 1
T (0) 107 107 1

Table 4: The columns in the table correspond to the nodesiimplication graphimp, and each
row provides the weightsz,) for somep(0) € uP(0). An entry in the row ofp(0) is
empty if and only if the node associated with the correspamdiolumn does not belong
to the implication subgraprmp_,p(o).

Having finished with thdor loop, thebuild-PRPG procedure proceeds with théhile loop that
builds the “future” layers of PRPG. The test of goal (un)dfating get-P(0, G) < 6 evaluates to
TRUE as we geget-P(0,G) = 0.63 < 0.9, and thus the loop proceeds with its first iteration.
To see the former, consider the implication graptp constructed so far (columns 1-3 in Fig-

590

PROBABILISTIC-FF

ure 8). For our goal = {r1, b2} we haveleafs(iImp_,,) = {r1(—1)}, andleafsImp_,,) =
{r1(—=1),b2(—1)}. As{ri(0),b2(0)} C wP(0) and® = (N},), we have

get'P(0> G) =WMC (¢(Nb1) A Prq A Sobz))

where
Pry = (<T1,7‘1>) A (Tl = <T1,7"1>)> (20)
Py = ((T1,02) V (b2,05)) A (11(=1) > (rip,)) A (b2(—1) < (bap,)),
and
@ ({r1,m1)) = @ry(0) (11 (=1)) =
@ ((b2,b,)) = @iy (0) (b2(—1)) =1 : (21)

@ ((T1,65)) = @y(0) (r1(—1)) = 0.7

Observe that the two models @f\;,) consistent withr, immediately falsify the sub-formula
®(Np,) A or, . Hence, we have

get-P(0,G) = WMC (¢(Ny,) A @ry A by lry (—1)=1,61 (~=1)=1) +
WMC (¢(No,) A ©ri A @py iy (—1)=1,bs (—1)=1)
= br(r1,b1) - @ ((ri,m)) - @ ((r1)) +01(r1,02) - @ ((11,04)) - @ ((r1,65)) - @ ((b2,p,)
= 063-1-0.74+027-1-0.7-1
= 0.63

In the first iteration of thewhile loop, build-PRPG calls thebuild-timestep procedure with
t = 0andA(0) = {a™",a™} U NOOPS. The chance nodes introduced/top by this call to
build-timestep appear in the forth column of Figure 8. The first ouf@r loop of build-timestep
results inImp given by columns 1-5 of Figure 8,P(1) = «wP(0), and no extension ob. As
before, in the seconfibr loop of build-timestep, the build-w-impleafs procedure is called for each
unknown factp(1) € uP(1) = {r1(1), 751y, b1(1), b2(1)}, generating thep(1)-oriented” weights.
The interesting case here is the case of weight propaghbtibdrw-impleafs(r1 (1), Imp), resulting
in weights

wwmué:lg;i - 1 D (D) = 1
wm(l)(sﬁ(o)) =1 = wnpEt) =1 = @ (ri(-1) = 1
wm(li (r(0) = 1 @) (e (1) = 0.7 @y (r2(-1)) = 1
w:;;(m(O)) =1 @y (57 (1) = 0.2

for the nodes inmp_,., ;. Fromthat, the set of supporting leafs9f1) is assigned tsupportr, (1)) =
{ri(=1),r2(—1)}, and sinced = ¢(N,,) does implies-;(—1) V ro(—1), the factr; is concluded
to be known at timel, and is added td’(1). For all other node®(1) € uP(1) we still have
supportp(1)) = {p(—1)}, and thus they all remain unknown at time= 1 as well. Putting
things together, this call to theuild-w-impleafs procedure results wittP(1) = {r;(1)}, and

591

DOMSHLAK & H OFFMANN

uP(1) = {ry1),b1(1),b2(1)}. Thewhile loop of thebuild-PRPG procedure proceeds with check-
ing the fixpoint termination test, and this immediatelydaiue toP(1) # P(0). Hence, thavhile
loop proceeds with the next iteration corresponding to1.

The test of goal (un)satisficinget-P(1,G) < 6 still evaluates to TRUE because we have
get-P(1,G) = 0.899 < 0.9. Let us follow this evaluation ofet-P(1, G) in detail as well. Consid-
ering the implication graplfmp constructed so far up to tinte= 1 (columns 1-5 in Figure 8), and
havingG N uP(1) = {b2(1)}, leafsImp_,, 1)) = {ri1(—1),b2(—1)}, and (still) @ = #(N;,), we
obtain

get-P(1,G) = WMC (¢(Nb1) N ‘pb2))

with
Pby = ((T1,55) V (b2,p5)) A (11(=1) < (T1,6,)) A (b2(=1) < (b2p,)) s (22)

While the structure ofy, in Equation 22 is identical to this in Equation 20, the wesgh$sociated
with the auxiliary chance propositions are different, hbta

@ ((b2,b,)) = @y(1) (b2(—1)) =1
@ ((T1,b5)) = @py(1) (11(—=1)) = 0.91

The difference inw ((r15,)) between Equation 21 and Equation 23 stems from the factthatl)
supportsby (1) not only via the effece™ at time —1 but also via the a different instance of the
same effect at timé. Now, the only model ofp(V;,) that falsify ¢, is the one that sets boih
andb, to false. Hence, we have

(23)

get—P(l, G) = b[(?”l, bl) - w (<T17b2>) +
br(r1,b2) - @ ((r1,6,)) - @ ({b2p,)) +
br(ra, b2) - @ ({b2,5,))
= 0.63-091+027-091-1+0.08-1
= 0.899

Having verifiedget-P(1, G) < 6, thewhile loop proceeds with the construction for tirhe- 2,
and calls thebuild-timestep procedure witht = 1 andA(1) = {a™",a™} U NOOPS. The chance
nodes introduced tbmp by this call tobuild-timestep appear in the sixth column of Figure 8. The
first outerfor loop of build-timestep results inlmp given by columns 1-7 of Figure 8, and

D = 6(Noy) A (27 (1) v (1) v ™ (1)) A

A (=T (1) v =™ (1) A (=T (1) v = (1) A (—eFt(0) v —eF(0))
(24)
Next, thebuild-w-impleafs procedure is called as usual for each unknown f&2) € uwP(2) =
{ra(2), b1(2),b2(2)}. The information worth detailing here is that now we héeefsImp_;,,) =

{ba(—1),71(=1),eTPr (1)}, andsupportba(2)) = {ba(—1),eT?"(1)}. However, we still havé —
Vzesupportp(z))l for no p(2) € uwP(2), and thus the set of known fact3(2) remains equal to

P(1) = {r}.

592

PROBABILISTIC-FF

Returning from the call to theuild-w-impleafs procedurebpuild-PRPG proceeds with checking
the fixpoint termination condition. This time, the first threqualities of the condition do hold, yet
the condition is not satisfied dueget-P (2, G) > get-P(t, G). To see the latter, notice that we have

get-P(2,G) = WMC(® A),

where® is given by Equation 24,

Prr = (112 V (b2a) VT (1) A (ra(=1) = (r1)) A (ba(=1) = (bos)), (25)
and

@ ((b2,0)) = @y (1) (b2(—1)) =1
@ ((T1,b2)) = @py(1) (11(=1)) = 0.91 (26)
@ (e (1)) = @hy1) (€7 (1)) = 0.7

It is not hard to verify that

get-P(2,G) = get-P(1,G) + by(re,by) - w(e—:&"br(l))
= 0.899 +0.02-0.7
= 0.913

Note that now we do havget-P(2,G) > 6, and thereforéuild-PRPG aborts thewhile loop by
passing the goal satisficing test, and §éts 2. This finalizes the construction of PRPG, and thus,
our example.

4.4 Extracting a Probabilistic Relaxed Plan

If the construction of the PRPG succeeds in reaching thesguitth the estimated probability of suc-
cessget-P(T, G) exceeding, then we extract a relaxed plan consisting4fC A(0),..., A(T —
1), and use the size of’ as the heuristic value of the evaluated belief state

Before we get into the technical details, consider thatettzse some key differences between
relaxed (no delete lists) probabilistic planning on the baad, and both relaxed classical and re-
laxed qualitative conformant planning on the other handelaxed probabilistic planning, it might
make sense to execute the same action numerous times incatimsdime steps. In fact, this
might be essential — just think of throwing a dice in a gamd arit6” appears. In contrast, in the
relaxed classical and gualitatively uncertain settings i1 not needed — once an effect has been
executed, it remains true forever. Another complicatioprwbabilistic planning is that the required
goal-achievement probability is specified over a conjumc{or, possibly, some more complicated
logical combination) of different facts. While increasitigg probability of achieving each individ-
ual sub-goaly € G in relaxed planning will always increase the overall praligiof achieving G,
choosing the right distribution of effort among the subigda pass the required threshdéldor the
whole goalG is a non-trivial problem.

A fundamental problem is the aforementioned lack of guaesibf the weight propagation.
On the one hand, the construction of PRPG and Lemma 5 imptyatijaconcatenated with an
arbitrary linearizatiora™ of A(0),..., A(T — 1) is executable irb;. On the other hand, due to
the independence assumption made inkihiéd-w-impleafs procedureget-P(7', G) > 6 doesnot

593

DOMSHLAK & H OFFMANN

imply that the probability of achieving' by a|;” concatenated with” exceed®. A “real” relaxed
plan, in that sense, might not even exist in the construckREe®.

Our answer to the above difficulties is to extract relaxedchpldnat are correaelative to the
weight propagation. Namely, we use an implication graph “reduction” algorithinatt computes
a minimal subset of that graph which still — according to theight propagation — sufficiently
supports the goal. The relaxed plan then corresponds testiset. Obviously, this “solves” the
difficulty with the lack of “real” relaxed plans; we just doghelaxed plan extraction according to
the independence assumption (besides ignoring deletesaraing all but one condition of each
effect). The mechanism also naturally takes care of the tweagdply the same action several times:
this corresponds to several implication graph edges whiehlaneeded in order to obtain sufficient
weight. The choice of how effort is distributed among sulbdgas circumvented in the sense that
all sub-goals are considered in conjunction, that is, tdecgon is performed once and for all. Of
course, there remains a choice in which parts of the impdinagraph should be removed. We have
found that it is a useful heuristic to make this choice basedvhich actions have already been
applied on the path to the belief. We will detail this below.

Making another assumption on top of the previous relaxat@an of course be bad for heuristic
quality. The “relaxed plans” we extract are not guaranteeattually achieve the desired goal prob-
ability. Since the relaxed plans are used only for searctiagusie, per se this theoretical weakness is
only of marginal importance. However, an over-estimatibgaal probability might result in a bad
heuristic because the relaxed plan does not include theaiglons, or does not apply them often
enough. In Section 5, we will discuss an example domain wRepbabilistic-FF fails to scale for
precisely this reason.

Figure 9 shows the main routinextract-PRPlan for extracting a relaxed plan from a given
PRPG (note thaf’ is the index of the highest PRPG layer, c.f. Figure 4). Thersuitines of
extract-PRPlan are shown in Figures 10-11. At a high level, #xeract-PRPlan procedure consists
of two parts:

1. Reductionof the implication graph, aiming at identifying a set of tissmped action effects
that can be ignored without decreasing our estimate of gclailevement probabilityget-P(7, G)
below the desired threshof and

2. Extractionof a valid relaxed pla@” such that (schematically) constructing PRPG witlnstead
of the full set ofA(0), ..., A(T") would still result inget-P (T, G) > 6.

The first part is accomplished by theluce-implication-graph procedure, depicted in Figure 10.
As of the first step in the algorithm, the procedure considaig the parts of the implication graph
that are relevant to achieving the unknown sub-goals. Nedtice-implication-graph performs a
greedy iterative elimination of actions from the “futur@ykers), . .. ,7—1 of PRPG until the proba-
bility estimateget-P(T", G) over the reduced set of actions goes beflowvhile, in principle, any ac-
tion from A(0), ..., A(T—1) can be considered for elimination,ieduce-implication-graph we ex-
amine onlyrepetitions of the actions that already appeaRinSpecifically,reduce-implication-graph
iterates over the actionsin al{, and ifa repeats somewhere in the “future” layers of PRPG, then
one such repetition(t') is considered for removal. If removing this repetitioncofs found safe
with respect to achieving,*? then it is effectively removed by eliminating all the edgesgrp that
are induced byi(¢'). Then the procedure considers the next repetition. off removing another

12. Note here that the formula fo¥MC is constructed exactly as for tiget-P function, c.f. Figure 7.

594

PROBABILISTIC-FF

procedure extract-PRPlan(PRPG(a, A, p(Ny,), G, 0, 17)),
selects actions from(0), ..., A(T — 1)
Imp' := reduce-implication-graph()
extract-subplan(Imp)
sub-goal(G N P(T))
for decreasing time steps=1T,...,1do
for all g € G(t) do
if Ja € A(t —1),e € E(a),con(e) € P(t —1),Ve € A(e) : g € add(e) then
add-to-relaxed-planone suchu at timet
sub-goal(pre(a) U con(e))
else
Imp 9™ := construct-support-graph(supportg(t)))
extract-subplan(Imp9®)
endif
endfor
endfor

Figure 9: Extracting a probabilistic relaxed plan.

copy of a is not safe anymore, then the procedure breaks the innerdondpconsiders the next
action.

procedure reduce-implication-graph()
operates on the PRPG;
returns a sub-graph émp.
Imp == Ugep(r)IMp_ 41
for all actionsa € @} do
for all edges(e(t'), p(t' + 1)) € Imp’, induced bya(t') € A(t'), for somet’ > 0 do
Imp’ .= Imp
remove from/mp” all the edges induced by < A(t')
forallg e G\ P(t) do
for eachl Ieafs(lmp”ﬁg(T)), introduce a chance propositidhy) with weighte (1) ()
Pg = (Vleleafs(lmp/’ﬂg(T)) 1) A /\zeleafs(lmp’;gm)ﬂuP(—m) (= V ()
endfor
it WMC(® A A e\ pery $9) = 0 then Imp’ .= Imp” else break endif
endfor
endfor
return Imp

Figure 10: The procedure reducing the implication graph.

To illustrate the intuition behind our focus on the repetis of the actions from, let us con-
sider the following example of a simple logistics-stylempiang problem with probabilistic actions.
Suppose we have two locatiodsand B, a truck that is known to be initially i, and a heavy and
uneasy to grab package that is known to be initially on thekirhe goal is to have the package
unloaded inB with a reasonably high probability, and there are two astime can use — moving
the truck fromA to B (a™), and unloading the package"]. Moving the truck does not necessarily

595

DOMSHLAK & H OFFMANN

move the truck taB, but it does that with an extremely high probability. On thiees hand, unload-
ing the bothersome package succeeds with an extremely whvability, leaving the package on the
truck otherwise. Given this data, consider the belief iateorresponding to “after trying to move
the truck once”, that is, to the action sequeKi¢®). To achieve the desired probability of success,
the PRPG will have to be expanded to a very large time horiZpallowing the actions" to be
applied sufficiently many times. However, the fact “truckBr is not known in the belief staté;,
and thus the implication graph will also contain the samewahof applications o&™. Trimming
away most of these applications &F will still keep the probability sufficiently high.

The reader might ask at this point what we hope to achieve fiprtting away most of the
applications ofa™”. The point is, intuitively, that the implication graph nection mechanism is
a means taunderstand what has been accomplished already, on the path tWithout such an
understanding, the relaxed planning can be quite indiscative between search states. Consider
the above example, and assume we have not one but two tropatédiges,P1 and P2, on the
truck, with unload actiong"! anda"?. The PRPG fob, contains copies af'! anda"? at layers up
to the large horizo". Now, say our search starts to unlo&d. In the resulting belief, the PRPG
still hasT steps because the situation has not changeffZoiEach step of the PRPG still contains
copies of bothu'! anda“? — and hence the heuristic value remains the same as beforahén
words, without an implication graph reduction techniqualevant things that are accomplished
may remain hidden behind other things that have not yet besmaplished. In the above example,
this is not really critical because, as soon as we have tmegnéoad foreachof P1 and P2, the
time horizonT decreases by one step, and the heuristic value is reducad, hibwever, often
the case that some sub-task must be accomplished beforeatbenesub-task can be attacked. In
such situations, without implication graph reduction, skarch staggers across a huge plateau until
the first task is completed. We observed this in a variety othmarks, and hence designed the
implication graph reduction to make the relaxed planningravof what has already been done.

Of course, since our weight propagation may over-estinrate grobabilities, and hence over-
estimate what was achieved in the past, the implicationfgraguction may conclude prematurely
that a sub-task has been “completed”. This leads us to the opgin question in this research; we
will get back to this at the end of Section 5, where we disch&sih the context of an example
where Probabilistic-FF’s performance is bad.

Let us get back to explaining thetract-PRPlan procedure. After the implication graph reduc-
tion, the procedure proceeds with the relaxed plan extnacihe process makes use of proposition
setsG(1),...,G(T), which are used to store time-stamped sub-goals arisirayeatdl < ¢ < T
during the relaxed plan extraction. The sub-routirgact-subplan (Figure 11)

1. adds to the constructed relaxed plan all the time-starapohs responsible for the edges of the
reduced implication graphmp/, and

2. subgoals everything outside the implication graph tbatdiion the applicability of the effects
responsible for the edges bhp'.

Here and in the later phases of the process, the sub-goaisi@ed into the sets(1),...,G(T) by
thesub-goal procedure that simply inserts each given proposition abagsal at the first layer of
its appearance in the PRPG. Having accomplished this e&vdratsubgoal pass ektract-subplan
overImp/, we also subgoal all the goal conjuncts known at tifhe

In the next phase of the process, the sub-goals are cordildger by layer in decreasing order
of time stepsl” > ¢ > 1. For each sub-goal at timet, certain supporting actions are selected into

596

PROBABILISTIC-FF

procedure extract-subplan(/mp')
actions that are helpful for achieving uncertain gd@ais « P(T") and
subgoals all the essential conditions of these actions
for each edgé=(t), p(t + 1)) € Imp such that > 0 do
if actiona and its effect € E(a) be responsible for at timet time
add-to-relaxed-plana at timet
sub-goal((pre(a) U con(e)) N P(t))
endif endfor

procedure sub-goal(P)
inserts the propositions iR as sub-goals
at the layers of their first appearance in the PRPG
for all p € P do
to := argmin, {p € P(t)}
if to > 1then G(to) := G(tp) U {p} endif
endfor

procedure construct-support-graph(supportg(t)))
takes a subsestupporty(t)) of leafgImp_ ,,)) weighted according to(¢);
returns a sub-graptmg of Imp.

Imp =0
open 1= supportg(t))
while open # () do
open = open \ {p(t')}
choosen € A(t'),e € E(a), con(e) = {p} such that
Ve € Ae) : (p(t'),e(t')) € IMPypy A @y (e(t)) = w(e(t'))
for eachz € A(e) do
choosey € add(e) such thatoy) (¢(t' +1)) =1
Img = Imp U{(p(¢'), <(t')), (=(¢'), a(t’ + 1))}
open :=open U {q(t' + 1)}
endfor endwhile
return Img

Figure 11: Sub-routines faxtract-PRPlan.

the relaxed plan. If there is an actierand some effeat € F(a) that are known to be applicable
at timet — 1, and guarantee to achieyewith certainty, theru is added to the constructed relaxed

plan att — 1. Otherwise, we

1. use theconstruct-support-graph procedure to extract a sub-grapthp?() consisting of a set of

implications that together ensure achievipgt timet, and

2. use the already discussed procedutteact-subplan to

(a) add to the constructed relaxed plan all the time-stanaptidns responsible for the edges

of Imp9®), and

(b) subgoal everything outside this implication graptp?(*) that condition the applicability

of the effects responsible for the edgedrap 9.

597

DOMSHLAK & H OFFMANN

Processing this way all the sub-goals downd(l) finalizes the extraction of the relaxed plan
estimate. Section 4.5 provides a detailed illustrationhid process on the PRPG constructed in
Section 4.3. In any event, it is easy to verify that the relgplan we extract is sound relative to our
weight propagation, in the following sense.

Proposition 7 Let (A, N,,, G, 6) be a probabilistic planning tasks be a sequence of actions ap-
plicable inb;, and|{ be a relaxation function forl such thatuild-PRPG(@, A, (Ny,), G, 0, 17)
returns TRUE. LetA(0)%,..., A(T — 1)° be the actions selected from(0),..., A(T — 1) by
extract-PRPlan. When constructing a relaxed planning graph using aalY)®, ..., A(T — 1)%,
thenget-P(T,G) > 6.

Proof. By construction: reduce-implication-graph leaves enough edges in the graph so that the
weight propagation underlyinggt-P still concludes that the goal probability is high enough. =

4.5 Example: Extracting a Relaxed Plan from PRPG

We illustrate the process of the relaxed plan extractiorherPRPG as in Figure 8, constructed for
the belief state and problem specification as in example ati®e4.3. In this example we have
T = 2, GNnuP(2) = {b2}, and thus the implication graptmp gets immediately reduced to its
sub-graphmp’ depicted in Figure 12a. As the plarto the belief state in question consists of only a
single actioru™®", the only action instances that are considered for elirgndty the outefor loop

of reduce-implication-graph area™® (0) anda™>" (1). If a™""(0) is chosen to be examined, then the
implication sub-grapimp’ = Imp' is further reduced by removing all the edges due't'(0),
and the resultingmp”’ appear$® in Figure 12b. The andy,, components of the evaluated formula
® A ¢, are given by Equation 24 and Equation 25, respectively, hadveights associated with
the chance propositions in Equation 25 over the reduceddatjun graphWmp’ are

@ ({b2,b5)) = @, (1) (b2(—1)) =1
@ ((T1,65)) = @py1) (11(—1)) = 0.7 : (27)
@ (7™ (1)) = @1 (7™ (1)) = 0.7

The weight model counting @b A ¢, evaluates t0.724 < 6, and thudmp’ does not replacénp’.
The only alternative action removal is this@?® (1), and it can be seen from the example in Sec-
tion 4.3 that this attempt for action elimination will alsssult in probability estimate lower thah
Hence, the only effect akduce-implication-graph on the PRPG processed by #heract-PRPlan
procedure is the reduction of the implication graph to ohly ¢dges relevant to achievifg, } at
time 7' = 2. The reduced implication sub-grapmp’ returned by theeduce-implication-graph
procedure is depicted in Figure 12a.

Next, theextract-subplan procedure iterates over the edges/mfy and adds to the initially
empty relaxed plan applications of"®" at times0 and1. The actiona™®" has no preconditions,
and the condition; of the effecteT™ ¢ E(a™) is known at timel. Hence,extract-subplan
invokes thesub-goal procedure or{r (1)}, and the latter is added into the proposition&ét). The
subsequent caub-goal(G N P(T")) = sub-goal({r }) leads to no further extensions 6{2), G(1)

13. The dashed edges in Figure 12b can be removedfrgh either now or at a latter stagelifip” is chosen to replace

Imp.

598

PROBABILISTIC-FF

()

Figure 12: lllustrations for various steps of the relaxeahptxtraction from the PRPG constructed
in Section 4.3, and, in particular, from the implication gjneof the latter, depicted in
Figure 8.

as we already have, € G(1). Hence, the outefor loop of extract-PRPlan starts withG(2) = 0,
andG(1) = {r1}.

SinceG(2) is empty, the first sub-goal considered dx¢ract-PRPlanis r; from G(1). Forr;
at time 1, no action effect at timé® passes the test of thie statement—the condition, of ™
is not known at timed, and the same is trfor £™1. Hence, the subgoat (1) is processed
by extracting a sub-plan to support achieving it with certiai First, theconstruct-support-graph
procedure is called witsupportr, (1)) = {r1(—1),72(—1)} (see Section 4.3). The extracted sub-

14. In fact, it is easy to see from the construction ofdiie-goal procedure that ip belongs taG(¢), then the condition
of the noop’s effect? cannot be known at time— 1.

599

DOMSHLAK & H OFFMANN

graph/mp™ ™) of the original implication graptmp is depicted in Figure 12c, and invoking the
procedureextract-subplan on Imp™ () results in adding (i) application af™ at time0, and (ii)
no new subgoals. Hence, the proposition $&($), G(2) get emptied, and thus we end up with
extracting a relaxed pla@™ (0),a™ (0),a™"(1)).

5. Empirical Evaluation

We have implemented Probabilistic-FF in C, starting from @onformant-FF code. With = 1.0,
Probabilistic-FF behaves exactly like Conformant-FF émtchat Conformant-FF cannot handle
non-deterministic effects). Otherwise, Probabilistie-behaves as described in the previous sec-
tions, and uses Cachet (Sang et al., 2005) for the weightetkincounting. To better home in on
strengths and weaknesses of our approach, the empiridalagea of Probabilistic-FF has been
done in two steps. In Section 5.1 we evaluate Probabiligimn problems having non-trivial un-
certain initial states, but only deterministic actions. Saction 5.2 we examine Probabilistic-FF
on problems with probabilistic action effects, and withtbeburces of uncertainty. We compare
Probabilistic-FF’s performance to that of the probabdigianner POND (Bryce et al., 2006). The
reasons for choosing POND as the reference point are twdfatst, similarly to Probabilistic-FF,
POND constitutes a forward-search planner guided by a daomssible heuristic function based
on (relaxed) planning graph computations. Second, to oawladge, POND clearly is the most
efficient probabilistic planner reported in the literattire

The experiments were run on a PC running at 3GHz with 2GB ma&many and 2MB cache
running Linux. Unless stated otherwise, each domain/prabpair was tried at four levels of de-
sired probability of success € {0.25,0.5,0.75,1.0}. Each run of a planner was time-limited by
1800 seconds of user time. Probabilistic-FF was run in tii@uteconfiguration inherited from FF,
performing one trial of enforced hill-climbing and switalito best-first search in case of failure. In
domains without probabilistic effects, we found that Ptulistic-FF's simpler relaxed plan extrac-
tion developed for that case (Domshlak & Hoffmann, 2006)fges better than the one described
in here. We hence switch to the simpler version in these dusti

Unlike Probabilistic-FF, the heuristic computation in PDRas an element of randomization;
namely, the probability of goal achievement is estimateal sending a set of random particles
through the relaxed planning graph (the number of partisles input parameter). For each prob-
lem instance, we averaged the runtime performance of PONDI®¥independent runs. In special
cases where POND timed out on some runs for a certain prolstanice, yet not on all of the
10 runs, the average we report for POND uses the lower-bogrtithe threshold of 1800s to re-
place the missing time points. In some cases, POND’s bast-parformance differs a lot from
its average performance; in these cases, the best-casenpanice is also reported. We note that,
following the suggestion of Dan Bryce, POND was run in itsadéif parameter setting, and, in par-

15. In our experiments we have used a recent version 2.1 offPthat significantly enhances POND2.0 (Bryce et al.,
2006). The authors would like to thank Dan Bryce and Rao Kanigati for providing us with a binary distribution
of POND2.1.

16. Without probabilistic effects, relaxed plan extraotfiroceeds very much like in Conformant-FF, with an addaion
straightforward backchaining selecting support for thkenavn goals. The more complicated techniques developed
in here to deal with relaxed plan extraction under probstiilieffects appear to have a more unstable behavior than
the simpler techniques. If theeze probabilistic effects, then the simple backchaining ismeaningful because it
has no information on how many times an action must be apjliedder to sufficiently support the goal.

600

PROBABILISTIC-FF

0 =0.25 0=0.5 6 =0.75 6=1.0
Instance #actions/#facts/#states t/| S|/ t/|S|1 t/|S|I t/|S|I
Safe-uni-70 | 70/71/140 1.39/19/18 4.02/36/35 8.06/54/53 4.62/71 /70
Safe-cub-70 | 70/70/138 0.28/6/5 0.76/13/12 1.54/22/21 4.32/70/69
Cube-uni-15 | 6/90/3375 3.25/145/26 3.94/150/34 5.00/169/38 25.71/296/42
Cube-cub-15| 6/90/3375 0.56/41/8 1.16/70/13 1.95/109/18 26.35/365/42
Bomb-50-50 | 2550/200% 2100 0.01/1/0 0.10/17/16 0.25/37/36 0.14/51/50
Bomb-50-10 | 510/1205 20 0.00/1/0 0.89/248/22 4.04/778/62 1.74/911/90
Bomb-50-5 255/110% 255 0.00/1/0 1.70/468/27 4.80/998/67 2.17/1131/95
Bomb-50-1 | 51/1025 25T 0.00/1/0 2.12/662/31 6.19/1192/71 2.58/1325/99
Log-2 3440/10404 2010 0.90/117/54 1.07/152/62 1.69/205/69 1.84/295/78
Log-3 3690/1260 3010 2.85/159/64 8.80/328/98 4.60/336/99 4.14/364/105
Log-4 3960/1480% 4010 2.46/138/75 8.77/391/81 6.20/377/95 8.26/554/107
Grid-2 2040/825 > 3610 0.07/39/21 1.35/221/48 6.11/1207/69 6.14/1207/69
Grid-3 2040/841 % 3610 16.01/1629/76| 15.8/1119/89 || 82.24/3974/123|| 66.26/3974/123
Grid-4 2040/857 + 3610 28.15/2167/96| 51.58/2541/111|| 50.80/2541/115|| 193.47/6341/155
Rovers-7 393/97 & 63 % 3% 0.01/37/18 0.01/37/18 0.01/37/18 0.01/37/18
RoversP-7 393/133 & 63 « 3% 2.15/942/65 2.23/983/75 2.37/1008/83 2.29/1008/83
RoversPP-7 | 393/133 & 6° * 3° 8.21/948/65 12.48/989/75 12.53/994/77 16.20/1014/83
RoversPPP-7| 395/140 5 63 x 3% 25.77/950/67 41.18/996/79 0.01/UNSAT 0.01/UNSAT

Table 5: Empirical results for problems with probabilisitidtial states. Times in seconds, search
space sizéS| (hnumber of calls to the heuristic function), plan length

ticular, this includes the number of random particles (@&¢cted for computing POND'’s heuristic
estimate (Bryce et al., 2006).

5.1 Initial State Uncertainty and Deterministic Actions

We now examine the performance of Probabilistic-FF and P@N® collection of domains with
probabilistic initial states, but with deterministic amtieffects. We will consider the domains one
by one, discussing for each a set of runtime plots. For sortteegfroblem instances, Table 5 shows
more details, providing features of the instance size akasaletailed results for Probabilistic-FF,
including the number of explored search states and the etayth.

Our first three domains are probabilistic versions of tiaddl conformant benchmarks: “Safe”,
“Cube”, and “Bomb”. In Safe, out of combinations one opens the safe. We are given a probability
distribution over which combination is the right one. Thdyotype of action in Safe is trying a
combination, and the objective is to open the safe with driiba > 6. We experimented with
two probability distributions over the combinations, a uniform one (“Safe-uni”) and a distribatio
that declines according to a cubic function (“Safe-cub”abl€ 5 shows that Probabilistic-FF can
solve this very efficiently even with, = 70. Figure 13 compares between Probabilistic-FF and
POND, plotting their time performance on an identical linseale, where:-axes show the number
of combinations.

From the graphs it is easy to see that Probabilistic-FF ofspas POND by at least an order of
magnitude on both Safe-uni and Safe-cub. But a more integesbservation here is not necessarily
the difference in time performance, but the relative penfamce of each planner on Safe-uni and
Safe-cub. Note that Safe-cub is somewhat “easier” than@af|m the sense that, in Safe-cub, fewer
combinations must be tried to guarantee a given probalfilitiyopening the safe. This because the

601

70

DOMSHLAK & H OFFMANN

PFF

POND2.1

10

P=1.00 @

30 50 70
#combinations

(a) Uniform prior distribution over the combinations.

p=0.25 ——
p=0.50 ---l---
p=0.75 @
60 [p=1.00 @ d 60
50 4
5 40 | =
t [7)
5 K
2 (]
= g
F 30t i E
20 -
10
ol Ly
10 30
#combinations
PFF
70 T T 70
p=0.25 —F—
p=050 ---fl---
p=0.75 -
60 I p=1.00 @ i 60
50 i 50
2 or B 5 40
& Q
e &
g [
= g
= 30 i £ 30
20 i 20
10 i 10
ol i
10 30

#combinations

POND2.1

T T
p=025 —g—

p=050 --Mll--- @

p=0.75 -

p=1.00 @

ol
10

30 50 70
#combinations

(b) Cubic decay prior distribution over the combinations.

Figure 13: The Safe domain, Probabilistic-FF (left) vs. HID{Kght).

dominant part of the probability mass lies on the combimetiat the head of the cubic distribution
(the last combination has probabilifyto be the right combination, and thus it needs not be tried
even whery = 1.0). The question is now whether the heuristic functions obRhalistic-FF and
POND exploit this difference between Safe-uni and Safe-ctdble 5 and Figure 13 provide an
affirmative answer for this question for the heuristic fumetof Probabilistic-FF. The picture with
POND was less clear as the times spent by POND on (othervweséicdl) instances of Safe-uni and
Safe-cub were roughly the sarhe.
Another interesting observation is that, for both ProbstiitFF and POND, moving frori =
1.0to § < 1.0, that is, from planning with qualitative uncertainty tolyryprobabilistic planning,

17. On Safe-cub wit = 70 and@ € {0.75, 1.0}, POND undergoes an exponential blow-up that is not showhen t
graphs since these data points would obscure the other diaits;panyway, we believe that this blow-up is due only
to some unfortunate troubles with numerics.

602

PROBABILISTIC-FF

POND2.1

1800

1600

1400

1200

1000

Time (sec)
Time (sec)

800

600

400

200

5 7 9 1n 13 15 5 7 9 1 13 15
N for Grid NxNxN N for Grid NxNxN
(a) Uniform prior distribution over the initial position.
PFF POND2.1
30 1800
p=0.25 —E— j j j
p=0.50 ---ll---
p=0.75 - Q- 'Y 1600
95 | PLOO @ E
; 1400
20 B 1200
g : ‘S 1000
9 9
o 15F | e
£ £
£ £ 800
.
10 g 600
400
st o 1
............... 200
...................... P
L e fpcassaii 0
5 7 9 11 13 15 5 7 9 11 13 15
N for Grid NxNxN N for Grid NxNxN

(b) Cubic decay prior distribution over the initial positio

Figure 14: The Cube domain, Probabilistic-FF (left) vs. HD(Kght).

typically did not result in a performance decline. We evehiggrovedperformance (except for

= 0.75 in Safe-uni). The reason seems to be that the plans becomershbhis trend can be
observed also in most other domains. The trend is partigulamarkable for Probabilistic-FF, since
moving from# = 1.0 to # < 1.0 means to move from a case where no model counting is needed
to a case where it is needed. (In other words, Probabilsti@utomatically “specializes” itself for

the qualitative uncertainty, by not using the model countifio our knowledge, the same is not true
of POND, which uses the same techniques in both cases.)

In Cube, the task is to move into a corner a3-dimensional grid, and the actions correspond
to moving from the current cube cell to one of the (up to 6) eelje. cube cells. Again, we created
problem instances with uniform and cubic distributionsefothe initial position in each dimension),
and again, Probabilistic-FF scales well, easily solvirggdnces on a5 x 15 x 15 cube. Within
our time limit, POND was capable of solving Cube problemshwetibe width< 13. Figure 14

603

DOMSHLAK & H OFFMANN

compares between Probabilistic-FF and POND in more dgtiaitting their time performance on
differentlinear scales (with:-axes capturing the width of the grid in each dimension), shlving
at least an order of magnitude advantage for ProbabikdficNote that,

e Probabilistic-FF generally becomes faster with decrep8irfwith decreasing hardness of
achieving the objective), whil@does not seem to have a substantial effect on the performance
of POND,

e Probabilistic-FF exploits the relative easiness of Cuble{&.g., see Table 5), while the time
performance of POND on Cube-cub and Cube-uni is qualitigtidentical.

We also tried a version of Cube where the task is to move iregthd center Probabilistic-FF is
bad at doing so, reaching its performance limitat 7. This weakness in the Cube-center domain
is inherited from Conformant-FF. As detailed by Hoffmanmnl &rafman (2006), the reason for the
weakness lies in the inaccuracy of the heuristic functiothis domain. There are two sources of
this inaccuracy. First, to solve Cube-center in realitye amust start with moving into a corner in
order to establish her position; in the relaxation, withdelete lists, this is not necessary. Second,
the relaxed planning graph computation over-approximade¢®nly what can be achieved in future
steps, but also what has already been achieved on the pétbd tonsidered belief state. For even
moderately long paths of actions, the relaxed planningtgcapnes to the (wrong) conclusion that
the goal has already been achieved, so the relaxed plan becempty and there is no heuristic
information.

Next we consider the famous Bomb-in-the-Toilet domain (om®, for short). Our version
of Bomb contains: bombs andn toilets, where each bomb may be armed or not armeddpen-
dentlywith probability 1 /n, resulting in huge numbers of initially possible world e&atDunking a
bomb into an unclogged toilet disarms the bomb, but clogsdifiet. A toilet can be unclogged by
flushing it. Table 5 shows that Probabilistic-FF scaleslgite n» = 50, and becomes faster as
increases. The latter is logical and desirable as having todets means having more “disarming
devices”, resulting in shorter plans needed. Figures 151&ncdompare between Probabilistic-FF
and POND, plotting the time performance of Probabilisticdh a linear scale, and that of POND
on a logarithmic scale. The four pairs of graphs corresponidur choices of number of toilets
m € {50,10,5,1}. Thez-axes in all these graphs correspond to the number of paligrérmed
bombs, where we checked problems withe {5,10,25,50}. Figure 15 shows that this time
Probabilistic-FF is at least four orders of magnitude faian POND; At the extremes, while the
hardest combination of = 50, m = 1, andd = 0.75 took Probabilistic-FF less than 7 seconds,
POND timed-out on most of the problem instances. In addition

e In Bomb as well, Probabilistic-FF exhibit the nice pattefriroproved performance as we
move from non-probabilisticd(= 1.0) to probabilistic planning (specifically < 0.5; for
f < 0.25, the initial state is good enough already).

e While the performance of Probabilistic-FF improves with ttumber of toilets, POND seems
to exhibit the inverse dependence, that is, being moretsensgd the number of states in the
problem (see Table 5) rather to the optimal solution depth.

Finally, we remark that, though length-optimality is nop#gitly required in probabilistic confor-
mant planning, for all of Safe, Cube, and Bomb, Probabilif’s plans are optimal (the shortest
possible).

604

PROBABILISTIC-FF

PFF POND2.1
10 T T o—8 L
p=0.25 —& 1000 i
p=0.50 ---ll---
p=0.75 -~
P=1.00 i@
8l 4
100
6 4
iy iy 10
[7) [7)
& &
@ @
E E
= =
Ar b 1
2r 1 01
ol —i = . _g 001))
5 10 25 50 5 10 25 50
bombs # bombs
(a) 50 toilets
PFF POND2.1
10 T T
p=0.25 —F—
p=0.50 ---ll--- 1000
p=0.75 ===
p=1.00 i@
8 4
100 |7
6 4
N - 10
Q Q
))
[[
£ £
- -
4+ '..,Q) i
2r 0.1
oll— R 001))
5 10 25 5 10 25 50
bombs # bombs

(b) 10 toilets

Figure 15: The Bomb domain, Probabilistic-FF (left) vs. AD{ight).

Our next three domains are adaptations of benchmarks fregmaimistic planning: “Logistics”,
“Grid”, and “Rovers”. We assume that the reader is familifthwhese domains. Each Logistie¢s-
instance contains 10 cities, 10 airplanes, and 10 packagese each city has locations. The
packages are with chanées8 at the airport of their origin city, and uniformly at any ofetlother
locations in that city. The effects of all loading and unlivgdactions are conditional on the (right)
position of the package. Note that higher values ofcrease not only the space of world states, but
also the initial uncertainty. Grid is the complex grid worlgh in the AIPS’98 planning competi-
tion (McDermott, 1998), featuring locked positions thatgnlbe opened with matching keys. Each
Grid-z here is a modification of instance nr. 2 (of 5) run at AIPS'9&hva 6 x 6 grid, 8 locked
positions, and 10 keys of which 3 must be transported to a gosition. Each lock has possi-
ble, uniformly distributed shapes, and each of the 3 goas kexgr possible, uniformly distributed
initial positions. The effects of pickup-key, putdown-keyd open-lock actions are conditional.

605

DOMSHLAK & H OFFMANN

PFF POND2.1
10 - T —® 1
p=0.25 —5— 1000 H 1
p=0.50 ---l--- i s
P=0.75 -~ i /
p=1.00 - @
s |
6
T T 1
[7) [7)
o o
© ©
£ £
= =
4r -
2 b |
. » o
Y S — E,. oo))
5 10 %5 50 5 10 25 50
bombs # bombs
(c) 5 toilets
PFF POND2.1
10 T T
p=0.25 —F—
p=0.50 ---ll--- 1000
p=0.75 - @+~
p=1.00 @

100

10

Time (sec)
Time (sec)

01 Lo

0.01
5 10 25 50 5 10 25 50

bombs # bombs

(d) 1 toilet

Figure 16: The Bomb domain, Probabilistic-FF (left) vs. AD{ight).

Finally, our last set of problems comes from three cascanfindifications of instance nr. 7 (of
20) of the Rovers domain used at the AIPS’02 planning conipeti This problem instance has 6
waypoints, 3 rovers, 2 objectives, and 6 rock/soil samgfeem Rovers to RoversPPP we modify
the instance/domain as follows.

e Rovers is the original AIPS’02 problem instance nr. 7, anduge it hear mainly for compar-
ison.

¢ In RoversP, each sample is with charic@ at its original waypoint, and with chandel
at each of the others two waypoints. Each objective may bbleifrom 3 waypoints with
uniform distribution (this is a probabilistic adaptatiohtbe domain suggested by Bryce &
Kambhampati, 2004).

606

PROBABILISTIC-FF

Sandcastle Sandcastle

05 T T T T T T T T T T T
PFF PFF ——
POND ---Il--- POND (min) ---l-- .. Q, g
POND (avg) =@ .7
100 froo o
04 e, ®
10 ?
03 q j H
& 8 . . H
g g m o
S [1k - 2N
e ." |
01
0.01 L L L L L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
¢]]
(a) (b)

Figure 17: Probabilistic-FF and POND on problems from (ahds@astle, and (b) Slippery-
Gripper.

¢ RoversPP enhances RoversRbyditionalprobabilities in the initial state, stating that whether
or not an objective is visible from a waypoint depends on Wwéebr not a rock sample (intu-
ition: a large piece of rock) is located at the waypoint. Thebability of visibility is much
higher if the latter is not the case. Specifically, the vigipbf each objective depends on the
locations of two rock samples, and if a rock sample is pregkah the visibility probability
drops t00.1.

e RoversPPP extends RoversPP by introducing the need tetcddta about water existence.
Each of the soil samples has a certain probability 1) to be “wet”. For communicated
sample data, an additional operator tests whether the sangd wet. If so, a fact “know-
that-water” contained in the goal is set to true. The prdiigtif being wet depends on the
location of the sample.

We show no runtime plots for Logistics, Grid, and RoversegiROND runs out of either time or
memory on all considered instances of these domains. Tasf®ws that the scaling behavior of
Probabilistic-FF in these three domains is similar to tHagdewsved in the previous domains. The
goals in the RoversPPP problem cannot be achieved with bilitless 6 < {0.75,1.0}. This is
proved by Probabilistic-FF’keuristic function providing the correct answer in split seconds.

5.2 Probabilistic Actions

Our first two domains with probabilistic actions are the famtSand-Castle” (Majercik & Littman,
1998) and “Slippery-Gripper” (Kushmerick et al., 1995) dwns. The domains are simple, but they
posed the first challenges for probabilistic planners; arfggmance in these domains serves an
indicator of the progress relative to previous ideas fobphilistic planning.

In Sand-Castle, the states are specified by two booleanblesiaoat and castle, and state
transitions are given by two action8g-moat and erect-castle. The goal is to erect the castle.

607

DOMSHLAK & H OFFMANN

1D-walkgrid 2D-walkgrid

T T T ——— i — ———a—a—a——A
L PFF —F— J d H 3 1
1000 £, 00 B 1000 /

s I
100 |- e 100

i
o
T

Time (sec)
=
Time (sec)
-
o
T

01 ~:I 01|
0 i

0.01 L L L L 0.01 L L
5 6 7 8 9 10 3 4 5 6 7 8 9 10

Grid width Grid width

(a) (b)

PFF
_ POND ------

Figure 18: Probabilistic-FF and POND on problems from (a)\WBIkGrid with & = 0.9, and (b)
2D-WalkGrid with6 = 0.01.

Building a moat withdig-moat might fail with probability0.5. Erecting a castle withrect-castle
succeeds with probability.67 if the moat has already been built, and with probability5, other-
wise. If failed, erect-castle also destroys the moat with probabilitys. Figure 17(a) shows that
both Probabilistic-FF and POND solve this problem in lessith second for arbitrary high values
of 4, with the performance of both planners being almost inddeehof the required probability of
success.

Slippery-Gripper is already a bit more complicated domairhe states in Slippery-Gripper
are specified by four boolean variabl@esp-dry, grip-dirty, block-painted, andblock-held, and
there are four actiongry, clean, paint, andpickup. In the initial state, the block is neither painted
nor held, the gripper is clean, and the gripper is dry withoplmlity 0.7. The goal is to have a
clean gripper holding a painted block. Actidny dries the gripper with probabilitp.8. Action
clean cleans the gripper with probability.85. Action paint paints the block with probability,
but makes the gripper dirty with probabilityif the block was held, and with probabilify.1 if it
was not. Actionpickup picks up the block with probability.95 if the gripper is dry, and with
probability 0.5 if the gripper is wet.

Figure 17(b) depicts (on a log-scale) the relative perforceaof Probabilistic-FF and POND
on Slippery-Gripper as a function of growirlg The performance of Probabilistic-FF is nicely flat
around0.06 seconds. This time, the comparison with POND was somewlbatgmatic, because,
for any fixedd, POND on Slippery-Gripper exhibited a huge variance inimet In Figure 17(b)
we plot the best runtimes for POND, as well as its averagemast The best run-times for POND
for different values of) vary around a couple of seconds, but the average runtimesgmiécantly
worse. (For some high values®POND timed-out on some sample runs, and thus the plot previde
a lower bound on the average runtimes.)

In the next two domains, “1D-WalkGrid” and “2D-WalkGrid"h¢ robot has to pre-plan a se-
guence of conditional movements taking it from a corner efdhd to the farthest (from the initial

608

PROBABILISTIC-FF

position) corner (Hyafil & Bacchus, 2004). In 1D-WalkGridetlgrid is one-dimensional, while
in 2D-WalkGrid the grid is two-dimensional. Figure 18(a)dgs (on a log-scale) a snapshot of
the relative performance of Probabilistic-FF and POND oae-dimensional grids of width and

6 = 0.9. The robot is initially at(1, 1), should get td1, n), and it can try moving in each of the two
possible directions. Each of the two movement actions mthasobot in the right direction with
probability 0.8, and keeps it in place with probability2. It is easy to see from Figure 18(a) that the
difference between the two planners in this domain is satista—while runtime of Probabilistic-
FF grows only linearly withe, the same dependence for POND is seemingly exponential.

The 2D-WalkGrid domain is already much more challengingpiababilistic planning. In all
2D-WalkGrid problems witth x n grids the robot is initially at1, 1), should get tqn,n), and it
can try moving in each of the four possible directions. Eddh®four movement actions advances
the robot in the right direction with probability.8, in the opposite direction with probabilitf,
and in either of the other two directions with probability. Figure 18(a) depicts (on a log-scale)
a snapshot of the relative performance of ProbabilistiaR& POND on 2D-WalkGrid with very
low required probability of succegs = 0.01, and this as a function of the grid’s width The
plot shows that Probabilistic-FF still scales well withiieasingn (though not linearly anymore),
while POND time-outs for all grid widtha > 3. For higher values of, however, Probabilistic-FF
does reach the time-out limit on rather small grids, notably¥ 6 andn = 5 for § = 0.25 and
= 0.5, respectively. The reason for this is that Probabilisti¢csFheuristic function is not good
enough at estimating how many times, at an early point in the, @ probabilistic action must be
applied in order to sufficiently support a high goal thredhat the end of the plan. We explain this
phenomenon in more detail at the end of this section, wheringi¢hat it also appears in a variant
of the well-known Logistics domain.

Our last set of problems comes from the standard Logisticsaite. Each problem instance
z-y-z containsz locations per cityy cities, andz packages. We will see that Probabilistic-FF
scales much worse, in Logistics, in the presence of prabk#bieffects than if there is “only” initial
state uncertainty (we will explain the reason for this atehd of this section). Hence we use much
smaller instances than the ones used above in Section 5melijdo allow a direct comparison to
previous results in this domain, we closely follow the sfieation of Hyafil and Bacchus (2004).
We use instances with configurations)-z = 2-2-2, 4-2-2, and2-2-4, and distinguish between two
levels of uncertainty.

e [-z-y-z correspond to problems with uncertainty only in the outcarfitbeload andunload
actions. Specifically, the probabilities of successltard are 0.875 for trucks and0.9 for
airplanes, and founload, 0.75 and0.8, respectively.

o LL-x-y-z extendsL-z-y-z with independent uniform priors for each initial locatioh a
package within its start city.

Figure 19 depicts (on a log scale) runtimes of Probabitisiicand POND orl-2-2-2, L-4-2-2,
and L-2-2-4, as a function of growing. On these problems, both planners appear to scale well,
with the runtime of Probabilistic-FF and the optimal rurgirmf POND being roughly the same,
and the average runtime of POND somewhat degrading fan® to 4-2-2 to 2-2-4. This shows
that both planners are much more efficient in this domain tharpreviously known SAT and CSP
based techniques. However, moving/th-z-y-z changes the picture for both planners. The results
are as follows:

609

DOMSHLAK & H OFFMANN

L2222 L-4-2:2 L-2-2:4

PFF ‘—E— PFF ‘—E— PFF
POND (min) ---fll--- POND (min) =--l--- POND (min) -l
POND (avg) @+ POND (avg) @+ POND (avg) @+

)
)
°
)

Time (sec)

i R

Time (sec)
Time (sec)

0.01 L L L 0.01 L L L 0.01

(@) (b) ()

Figure 19: Probabilistic-FF and POND on problems from Logss(a) L-2-2-2, (b) L-4-2-2, and
(c) L-2-2-4.

1. On LL-2-2-2, the runtimes of Probabilistic-FF were identical to thosele2-2-2, and the
optimal runtimes of POND only slightly degradede 8 seconds. However, for all examined
values off, some runs of POND resulted in timeouts.

2. On LL-4-2-2, the runtimes of Probabilistic-FF were identical to thosele4-2-2 for 6 €
{0.01,0.25,0.5,0.75}, yet Probabilistic-FF time-outed gh= 0.95. The optimal runtimes
of POND degraded from those fdér-4-2-2 only to 9 — 18 seconds, and again, for all values
of 8, some runs of POND resulted in timeouts.

3. On LL-2-2-4, Probabilistic-FF experienced hard times, finishing)ih9 seconds fol® =
0.01, and time-outing for all other examined valuesfof The optimal runtimes of POND
degraded from those fadt-2-2-4 to 120 — 700 seconds, and here as well, for all values of
some runs of POND resulted in timeouts.

We also tried a variant of L-z-y-z with non-uniform priors over the initial locations of thegha
ages, but this resulted in a qualitatively similar pictuf@losolute and relative performance.
The L L-x-y-z domain remains challenging, and deserves close attemtithe ifuture develop-
ments for probabilistic planning. In this context, it isengsting to have a close look at what the
reasons for the failure of Probabilistic-FF is. It turns that Probabilistic-FF is not good enough
at estimating how many times, at an early point in the plamodailistic action must be applied
in order to sufficiently support a high goal threshold at thd ef the plan. To make this concrete,
consider a Logistics example with uncertain effects ofadl and unload actions. Consider a pack-
age P that must go from a city A to a city B. Let's say that P iidlly not at A's airport. If the
goal threshold is high, this means that, to be able to su¢ctkegackage has to be brought to A's
airport with a high probabilitpbeforeloading it onto an airplane. This is exactly the point where
Probabilistic-FF’s heuristic function fails. The relaxpldn contains too few actions unloading P
at As airport. The effect is that the search proceeds toclkdyito loading P onto a plane and
bringing it to B. Once the search gets to the point where B lshba unloaded to its goal loca-
tion, the goal threshold cannot be achieved no matter hovy miaies one unloads P. At this point,

610

PROBABILISTIC-FF

Probabilistic-FF's enforced hill-climbing enters a loapeeventually fails because the relaxed plan
(which over-estimates the past achievements) becomeg &fnpt

The challenge here is to devise methods that are better @gmizing how many times P has
to be unloaded at A's airport in order to sufficiently suppbeg goal threshold. The error made by
Probabilistic-FF lies in that our propagation of weightstioa implication graph over-estimates the
goal probability. Note here that this is much more critigal dctions that must be applied early on
in the plan, than for actions that are applied later. If amoact appears early on in a plan, then
the relaxed plan, whea is executed, will be long. Recall that the weight propagatiwoceeds
backwards, from the goal towards the current state. At eiacjresbackwards step, the propagation
makes an approximation that might lose precision of theltesver several backwards steps,
these imprecisions accumulate. Hence the quality of theoappation decreases quickly over the
number of backwards steps. The longer the distance betwaadragd current state is, the more
information is lost. We have observed this phenomenon iaildet experiments with different
weight propagation schemes, that is, with different undegl assumptions. Of the propagation
schemes we tried, the independence assumption, as pik$erités paper, was by far the most
accurate one. All other schemes failed to deliver good tesuen for much shorter distances
between the goal and the current state.

It is interesting to consider how this issue affects PONDicWhises a very different method for
estimating the probability of goal achievement: insteageforming a backwards propagation and
aggregation of weight values, POND sends a set of randoritlgarthrough the relaxed planning
graph in a forward fashion, and stops the graph buildingaigih particles end up in the goal. From
our empirical results, it seems that this method suffemifsamilar difficulties as Probabilistic-FF,
but not to such a large extent. POND’s optimal runtimeslférx-y-z are much higher than those
for L-z-y-z. This indicates that it is always challenging for POND toctignize” the need for
applying some action many times early on in the plan. More interestingly, PONDandimes-out
in L-x-y-z, but it does often time-out ih L-z-y-z. This indicates that, to some extent, it is a matter
of chance whether or not POND’s random particles recogrizeneed for applying an actian
many times early on in the plan. An intuitive explanationhattthe “good cases” are those where
sufficiently many of the particles failed to reach the goat do taking the “wrong effect” ofi.
Based on this intuition, one would expect that it helps toéase the number of random patrticles in
POND'’s heuristic function. We did so, running POND bii-z-y-z with an increased number of
particles,200 and600 instead of the default value 6f.. To our surprise, the qualitative behavior of
POND did not change, time-outing in a similar number of calids unclear to us what the reason
for this phenomenon is. Certainly, it can be observed thasituation encoded ih L-z-y-z is not
solved to satisfaction by either of Probabilistic-FF's glgipropagation or POND’s random particle
methods, in their current configurations.

At the time of writing, it is unclear to the authors how beti@ethods could be devised. It seems
unlikely that a weight propagation — at least one that doésasort to expensive reasoning — exists
which manages long distances better than the independssoenption. An alternative way out
might be to simply define a weaker notion of plans that alloweepeat certain kinds of actions —

18. This does not happen in the abdve-2-2, [-4-2-2, and L-2-2-4 instances simply because they are too small and a
high goal probability can be achieved without thinking tooain about the above problem; if one increases the size
of these instances, the problem appears. The problem apgedier in the presence of initial state uncertainty — even
in small instances such dg.-2-2-2, LL-4-2-2, and L L-2-2-4 — because with uncertainty about the start position of
the packages one needs to try unloading them at the staot@imore often.

611

DOMSHLAK & H OFFMANN

throwing a dice or unloading a package — arbitrarily manyesmHowever, since our assumption is
that we do not have any observability during plan executidren executing such a plan there would
still arise the question how often an action should be trfgithce Logistics is a fairly well-solved
domain in simpler formalisms — by virtue of ProbabilistiEsFeven in the probabilistic setting as
long as the effects are deterministic — we consider adarg$kis problem as a quite pressing open
guestion.

6. Conclusion

We developed a probabilistic extension of Conformant-F€arch space representation, using
a synergetic combination of Conformant-FF's SAT-basedhn@gies with recent techniques for
weighted model counting. We further provided an extensiocoaformant relaxed planning with
approximate probabilistic reasoning. The resulting péaratales well on a range of benchmark do-
mains. In particular it outperforms its only close relatiP®©ND, by at least an order of magnitude
in almost all of the cases we tried.

While this point may be somewhat obvious, we would like to bagize that our achievements
do not solve the (this particular) problem once and for all. Prdlisile-FF inherits strengthand
weaknesses from FF and Conformant-FF, like domains whedfFConformant-FF's heuristic
functions yield bad estimates (e.g. the mentioned Cub&ecenariant). What's more, the proba-
bilistic setting introduces several new potential impestits for FF’s performance. For one thing,
weighted model counting is inherently harder than SAT tgstiThough this did not happen in our
set of benchmarks, there are bound to be cases where theocesiatt model counting becomes
prohibitive even in small examples. A promising way to addréhis issue lies in recent methods
for approximatemodel counting (Gomes, Sabharwal, & Selman, 2006; Gomeénidan, Sabhar-
wal, & Selman, 2007). Such methods are much more efficiemt éxact model counters. They
provide high-confidence lower bounds on the number of moddie lower bounds can be used in
Probabilistic-FF in place of the exact counts. It has beemwshthat good lower bounds with very
high confidecne can be achieved quickly. The challenge Bdredxtend the methods — which are
currently designed for non-weighted CNFs — to hanaéightedmodel counting.

More importantly perhaps, in the presence of probabilisfiects there is a fundamental weak-
ness in Probabilistic-FF’s — and POND’s — heuristic infotiora This becomes a pitfall for perfor-
mance even in a straightforward adaptation of the Logist@m®ain, which is otherwise very easy
for this kind of planners. As outlined, the key problem isttlta obtain a high enough confidence
of goal achievement, one may have to apply particular astgmveral times early on in the plan.
Neither Probabilistic-FF’s nor POND’s heuristics are gepdugh at identifyindiow manytimes.

In our view, finding techniques that address this issue igeatly the most important open topic in
this area.

Apart from addressing the latter challenge, we intend tdamvards applicability in real-word
settings. Particularly, we will look at the space applisatsettings that our Rovers domain hints at,
at medication-type treatment planning domains, and atdfhepsupply restoration domain (Bertoli,
Cimatti, Slaney, & Thiébaux, 2002).

612

PROBABILISTIC-FF

Acknowledgments

The authors would like to thank Dan Bryce and Rao Kambhanfpatproviding a binary distri-
bution of POND2.1. Carmel Domshlak was partially suppofigdhe Israel Science Foundations
grant 2008100, as well as by the C. Wellner Research Funde Smajor parts of this research have
been accomplished at the time that Jorg Hoffmann was eraglay the Intelligent Information
Systems Institute, Cornell University.

Appendix A. Proofs

Proposition 2 Let (A4, N, , G, 6) be a probabilistic planning problem described ovestate vari-
ables, and: be anm-step sequence of actions frotn Then, we haveV,,_| = O(|N, |[+ma(k+1))
whereq is the largest description size of an actionAn

Proof: The proof is rather straightforward, and it exploits thealostructure of\;,_'s CPTs. The
first nodes/CPTs layet/) of Ny, constitutes an exact copy &f;,. Then, for each <t < m, the
t-th layer of V;, containsk + 1 node{Y{;} U &y).

First, let us consider the “action nodg;). While specifying the CPTy ;) in a straightforward
manner as if prescribed by Eqg. 4 might result in an exponeblitav up, the same Eq. 4 suggests
that the original description of’ is by itself a compact specification @k (). Therefore, Ty,
can be described in spacg«), and this description can be efficiently used for answernerigs
Ty) (Y = € |) asin Eq. 4. Next, consider the CH ;) of a state-variable nod& () € ().
This time, it is rather evident from Eq. 5 th&k ;) can be described in spacka) so that queries
Txu)(X@ = x| X—1) = 2’) could be efficiently answered. Thus, summing up for all layer
1 <t < m, the description size df\;,_| = O(|Ny, | + ma(k + 1)) u

Lemma 4 Given anode (') € Imp_,,,), we havew,) (v(t')) = @ (v(t)) if and only if, giverw
at timet’, the sequence of effect:sIE)pv(t,)qp(t)) achieveg at ¢t with probability 1.

Proof: The proof of Lemma 4 is by a backward induction on the time ey Impy,) —pr)- FOT
time ¢, the only node ofimp_,,,, time-stamped witht is p(¢) itself. For this node we do have
@y (p(t)) = @ (p(t)) = 1, but, givenp at timet, an empty plan corresponding to (empty)
E(Impp(t)ﬁp(t)) trivially “re-establishes™ at ¢ with certainty. Assuming now that the claim holds
for all nodes oflmp_,p(t) time stamped with’ + 1, ..., ¢, we now show that it holds for the nodes
time stamped with'.

Itis easy to see that, for any nodé’) € Imp_,,), we getw,) (v(t')) = @ (v(t')) only if
a goes down to zero. First, consider the chance ne@gs Imp,_,,;)- For such a noddp is
set to zero if and only if we have,) (r(t' + 1)) = 1 for somer € add(e). However, by our
inductive assumption, in this and only in this case the Efl’é(:lmpe(t,)qp(tﬂ)) achievep att with
probability 1, given the occurrence aefat timet’.

Now, consider the fact nodegt’) € Imp,_,,,. For such a nodey can get nullified only by
some effece € E(a),a € A(t'),con(e) = ¢. The latter happens if only if, foall possible out-
comes ok, (i) the nodes(¢') belongs tdmp_,,,), and (ii) and the estimate, ;) (¢(t')) = w(e(t')).

In other words, by our inductive assumption, givemy outcomes € A(e) at timet/, the ef-
fects E(Impg(t,)_,p(t)) achievep at ¢t with probability 1. Thus, giveng at timet/, the effects
E(Impq(t,)ﬁp(t)) achievep at t with probability 1 independentlyof the actual outcome aof. Al-

ternatively, if forq(¢") we havelb > 0, then for each effect conditioned ory(t), there exists an

613

DOMSHLAK & H OFFMANN

outcomes of e such that, according to what we just proved for the chancestiche-stamped with
t', the effectsE(Imp. 1), :41)) do not achievey att with probability 1. Hence, the whole set of
eﬁectsE(Impq(t,)ﬁp(tH)) does not achievg att with probability 1. u

Lemma5 Let(A4, N, ,G,0) be a probabilistic planning task, be a sequence of actions applicable
in by, and]f be a relaxation function fod. For each time step > —m, and each propositiop &

P, if P(t) is constructed byuild-PRPG(a, A, p(Ny,), G, 0,|1), thenp at timet can be achieved
by a relaxed plan starting Witﬁ\jr

(1) with probability> 0 (that is,p is not negatively known at timi¢if and only ifp € wP(t) U P(t),
and

(2) with probability1 (that is,p is known at time) if and only ifp € P(t).

Proof: The proof of the “if” direction is by a straightforward indimn ont¢. Fort = —m the claim
is immediate by the direct initialization afP(—m) and P(—m). Assume that, form < t' < ¢,
if p € uP(t') U P(t'), thenp is not negatively known at timé&, and ifp € P(t’), thenp is known
at timet’.

First, consider somg(t) € uP(t) U P(t), and suppose thatis egatively know at time. By
the inductive assumption, and the property of the PRPG naigin thatuP(t — 1) U P(t — 1) C
uP(t) U P(t), we havep ¢ uP(t — 1) U P(t — 1). Thereforep has to be added inteP(t) (and
then, possibly, moved from there #®(¢)) in the firstfor loop of thebuild-timestep procedure.
However, if so, then there exists an actiore A(t — 1), e € E(a), ande € A(e) such that (i)
con(e) € uP(t—1)UP(t—1),and (ii)p € add(e). Again, by the assumption of the induction we
have thapre(a) is known at timef — 1, andcon(e) is not negatively known at time— 1. Hence, the
non-zero probability of occurring at time implies thatp can be achieved at timevith probability
greater tha, contradicting thap is negatively know at time.

Now, let us consider somgt) € P(t). Notice that, fort > —m, we havep(t) € P(t) if and
only if

o— \/ 1. (28)
lesupportp(t))

Thus, for each world state consistent withb;, we have either € w for some fact proposition
q(—m) € supportp(t)), or, for some effect of an actiona(t') € A(t'), t' < ¢, we havecon(e) €
P(t") and{e(t') | e € A(e)} C supportp(t)). In this first case, Lemma 4 immediately implies that
the concatenation af|;” with an arbitrary linearization of the (relaxed) actio#)), ..., A(t — 1)
achievesg at ¢ with probability 1, and thusp is known at timet. In the second case, our inductive
assumption implies thabn(e) is known at time, and together with Lemma 4 this again implies that

the concatenation af|;” with an arbitrary linearization of the (relaxed) actio)), ..., A(t — 1)
achieveg att with probability 1.
The proof of the “only if” direction is by induction on as well. Fort = —m this claim is

again immediate by the direct initialization &f(—m). Assume that, for-m < ¢’ < ¢, if p is not
negatively known at timé, thenp € uP(¢') U P(t'), and ifp is known at time’, thenp € P(t').
First, suppose that is not negatively known at timg and yet we have ¢ wP(t) U P(t). From
our inductive assumption plus that(t — 1) containing all the NOOP actions for propositions in
uP(t — 1)U P(t — 1), we know thafp is negatively known at time — 1. If so, thenp can become
not negatively known at timeonly due to some € A(e), e € E(a), such thapre(a) is known

614

PROBABILISTIC-FF

at timet — 1, andcon(e) is not negatively known at time— 1. By our inductive assumption, the
latter conditions implycon(e) € uP(t — 1) U P(t — 1), andpre(a) € P(t — 1). But if so, thenp
has to be added toP(t) U P(t) by the firstfor loop of thebuild-timestep procedure, contradicting
our assumption that ¢ uP(t) U P(t).

Now, let us consider someknown at timet. By our inductive assumptior? (¢ — 1) contains
all the facts known at time— 1, and thusA(t — 1) is the maximal subset of action§;” applicable
attimet — 1. Let us begin with an exhaustive classification of the effeaf the actionsA(t — 1)
with respect to oup at timet.

() Ve € Ae) : p € add(e), andcon(e) € P(t — 1)
(1) Ve € A(e) : p € add(e), andcon(e) € uP(t — 1)
() Je € Ale) : p & add(e) orcon(e) ¢ P(t —1) UuP(t — 1)

If the set (I) is not empty, then, by the constructiorbofld-w-impleafs(p(t), Imp), we have

{e(t = 1) [e € Ale)} < supportp(t)),

for eache € (1). Likewise, by the construction dfuild-timestep (notably, by the update ab), for
eache € (1), we have
o — \/ et —1).
{e(t=1)leeA(e)}
Putting these two facts together, we have that Eq. 28 hotgsdbttimet, and thus we have € P(t).
Now, suppose that the set (I) is empty. It is not hard to vehit no subset abnly effects (lII)

makesp known at timet. Thus, the event “at least one of the effects (Il) occurs” niadd with
probability 1. First, by the construction dfuild-w-impleafs(p(t), Imp), we have

supportp(t)) 2 |) supportcon(e)(t — 1))
ec(ll)

Then, and 4 from Lemma 4 we have that the event “at least oreaffects (I1) occurs” holds with
probability 1 if and only if
b — \/ l

ec(ll)
lesupporfcon(e)(t—1))

Putting these two facts together, we have that Eq. 28 hotgsdbtimet, and thus we have € P(t).
|

Theorem 6 Let (A, N;,, G, 0) be a probabilistic planning task; be a sequence of actions appli-
cable inb;, and|{ be a relaxation function for. If build-PRPG(a, A, ¢(N,,), G, 0,|]) returns
FALSE, then there is no relaxed plan fot, b;, G, §) that starts witha|] .

Proof: Lett > 0 be the last layer of the PRPG upon the terminatiomwfd-PRPG. For every
—m < t' < t, by the construction of PRPG and Lemma 5, the $&t8) anduP(¢') contain all
(and only all) propositions that are known (respectiveliknown) after executing all the actions in
the action layers up to and including(t’ — 1).

615

DOMSHLAK & H OFFMANN

First, let us show that ibuild-PRPG returns FALSE, then the corresponding termination cri-
terion would hold in all future iterations. P(t + 1) = P(t), then we haveA(t + 1) = A(t).
Subsequently, sinc®(t + 1) U uP(t + 1) = P(t) UuP(t) and A(t + 1) = A(t), we have
P(t+2)UuP(t+2) = P(t+1)UuP(t+ 1). Given that, we now show th& (¢t +2) = P(t+ 1)
anduP(t+2) = uP(t + 1).

Assume to the contrary that there exigts+ 2) € P(t + 2) such thap(t+ 1) ¢ P(t+ 1), that
isp(t+1) € uP(t+1). By the construction of the sef3(¢t + 1) and P(t + 2) in the build-timestep
procedure, we have

P — \/l,

lesupportp(t+2))

P £ \ 1

lesupportp(t+1))

(29)

Consider an exhaustive classification of the effeat§the actionsA (¢ + 1) with respect to oup at
timet + 2.

() Ve € Ae) : p € add(e), andcon(e) € P(t + 1)
(1) Ve € A(e) : p € add(e), andcon(e) € uP(t + 1)
() Je € Ale) : p & add(e) orcon(e) & P(t+ 1) UuP(t + 1)
Suppose that the set (I) is not empty, ancklet (1). From P(t) = P(t + 1) we have thaton(e) €
P(t), and thus{e(t) | € € A(e)} C supportp(t + 1)). By the update ofP in build-timestep we
then haved — \/(_)cen(e)y €(1), @nd thust — /. gnnorpi41y) 1 coNtradicting Eq. 29.

Alternatively, assume that the set (1) is empty. Using tlggiarents similar to these in the proof
of Lemma5p(t +2) € P(t+2) andp(t + 1) ¢ P(t + 1) in this case imply that

P — \/ l
ec(ll)
lesupporfcon(e)(t+1))
b /- \/ l
ec(ll)
lesupporfcon(e)(t))

(30)

However, A(t + 1) = A(t), uP(t + 1) = uP(t), andP(t + 1) = P(t) together imply that all
the action effects that can possibly take place at timel are also feasible to take place at time
t. Therefore, since for eache (Il) we havecon(e) € uP(t + 1) by the definition of (Il), Eq. 30
implies that

U supportcon(e)(t + 1)) NuP(—m) # U supporfcon(e)(t)) NuP(—m), (31)
ec(ll) e€(ll)

contradicting our termination condition. Hence, we aivieto contradiction with our assumption
thatp(t + 1) & P(t + 1).

Having shown thaP (¢ + 2) = P(t + 1) anduP(t 4+ 2) = uP(t + 1), we now show that the
termination criteria implies that, for eagfit + 2) € uP(t + 2), we have

uP(—m) N supportp(t + 2)) = uP(—m) N supportp(t + 1)).

616

PROBABILISTIC-FF

Let £, .19y be the set of all effects of action§(t + 1) such thaton(e) € uP(t + 1), and, for each
outcomes € A(e), we havep € add(¢). Given that, we have

uP(—m) N supportp(t +2)) = uP(—m) N U supportcon(e)(t + 1))

e€Ep(142)

=uP(-m)n | supportcon(e)(t)) - (32)
e€Ep(142)
= uP(—m) N supportp(t + 1))

where the first and third equalities are by the definitiosupportsets via Lemma 4, and the second
equation is by our termination condition.

The last things that remains to be shown is that our ternunatriteria impliesget-P (¢ +
2,G) =get-P(t + 1, G). Considering the simple cases firstdfZ P(t + 1) U uP(t + 1), from
P(t+2)UuP(t+2) = P(t+1)UuP(t+1) we haveget-P(t+2,G) =get-P(t+1,G) = 0. Oth-
erwise, ifG C P(t+1), from P(t+2) = P(t+ 1) we haveget-P(t +2,G) =get-P(t+1,G) = 1.

This leaves us with the case 6f C P(t + 1) UuP(t + 1) andG N uP(t + 1) # 0. From
P(t+2)=P(t+1),uP(t+2) = uP(t + 1), and the termination condition, we have

GNuP(t)=GNuP(t+1) =GNuP(t+2).

Fromget-P(t + 1, G) =get-P(t, G) we know that action effects that become feasible only {n)
do not increase our estimate of probability of achieving @ayG NuP(t + 1) from timet to time
t + 1. However, fromP(t + 1) = P(t), uP(t + 1) = uP(t), andA(t + 1) = A(¢t), we have that
no action effect will become feasible at timer 1 if it is not already feasible at timg and thus
get-P(t + 1, G) =get-P(t, G) will imply get-P(t + 2,G) =get-P(t + 1, G).

To this point we have shown that biuild-PRPG returns FALSE, then the corresponding ter-
mination criterion would hold in all future iterations. Npassume to the contrary to the claim of
the theorem thaltuild-PRPG returns FALSE at some iteratignyet there exists a relaxed plan for
(A, b1, G, 0) that starts witha|{. First, if @ = 1, then Lemma 5 implies that there exists tiffie
such thatG C P(T). If so, then the persistence of our “negative” terminationdition implies
G C P(t). However, in this case we would haget-P (¢, G) = 1 (see the seconi of the get-P
procedure), and thusuild-PRPG would return TRUE before ever getting to check the “negétive
termination condition in iteration Alternatively, ifd = 0, thenbuild-PRPG would have terminated
with returning TRUE before the “negative” termination cdruh is checked even once.

This leaves us with the case 6f < 0 < 1 andget-P(t,G) < 6. (get-P(t,G) > 0 will
again contradict reaching the negative termination c@rdt iterations.) We can also assume that
G C P(t)UuP(t) becauseP(t) UuP(t) contains all the facts that are not negatively known at time
t, and thus persistence of the negative termination comditigether withG ¢ P(t) UuP(t) would
imply that there is no relaxed plan for afly> 0. Let us consider the sub-goalsn uP(t) # 0.

(1) If for all subgoalsy € G N uP(t), the implications inmp_, ,,y areonly due to deterministic
outcomes of the effect&(/mp_, (), then the uncertainty about achievign uP(t) at time
t is only due to the uncertainty about the initial state. Since thiairtbelief state is reasoned
about with no relaxation, in this caget-P(t,G) = WMC(® A A pry ¢g) Provides us
with an upper boundon the probability of achieving our go& by a|{ concatenated with

617

DOMSHLAK & H OFFMANN

an arbitrary linearization of an arbitrary subset4ff0),..., A(t — 1). The termination sub-
conditionget-P(t + 1,G) =get-P(¢,G) and the persistence of the action sé&{§"), T > ¢,
imply then thatget-P(¢, G) provides us with an upper bound on the probability of achig

by a|{” concatenated with an arbitrary linearization of an arbjtrsubset ofA(0), ..., A(T),

for all T > t. Together withget-P(¢, G) < 0, the latter conclusion contradicts our assumption
that a desired relaxed plan exists.

(2) Ifthere exists a subgogle GNuP(t) such that some implications imp_ ;) are due to truly
probabilistic outcomes of the effed&/mp_,), then repeating the (relaxed) actioAgt) in
A(t + 1) will necessarilyresult INWMC(® A A e piy1) ©g) > WMC(R A A e py ©9)
contradicting our termination sub-condition conditigat-P(¢ + 1, G) =get-P(¢, G).

Hence, we arrived into contradiction that our assumptiethhild-PRPG returns FALSE at time,
yet there exists a relaxed plan fot, b;, G, 0) that starts witta|] . =

References

Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., & TraversP. (2001). MBP: a model based planner.
In Proc. IJCAI'01 Workshop on Planning under Uncertainty amg¢dmplete Informatian
Seattle, WA.

Bertoli, P., Cimatti, A., Slaney, J., & Thieébaux, S. (2008olving power supply restoration prob-
lems with planning via symbolic model-checking. Rroceedings of the 15th European Con-
ference on Artificial Intelligence (ECAIpp. 576-580, Lion, France.

Blum, A. L., & Furst, M. L. (1997). Fast planning through plang graph analysis.Artificial
Intelligence 90(1-2), 279-298.

Bonet, B., & Geffner, H. (2001). Planning as heuristic skaraurtificial Intelligence 1291-2),
5-33.

Bonet, B., & Geffner, H. (2000). Planning with incompletéammation as heuristic search in belief
space. IrProceedings of the 5th International Conference on Aréfititelligence Planning
and Scheduling Systems (AIP&). 5261, Breckenridge, CO.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. 996). Context-specific independence
in Bayesian networks. IRroceedings of the Twelfth Conference on Uncertainty iifigigl
Intelligence (UAI) pp. 115-123, Portland, OR.

Brafman, R. ., & Domshlak, C. (2006). Factored planningw-when, and when not. IRroceed-
ings of the 18th National Conference on Atrtificial Intelige (AAAI) pp. 809-814, Boston,
MA.

Bryce, D., & Kambhampati, S. (2004). Heuristic guidance sueas for conformant planning. In
Proceedings of the 14th International Conference on Auteth®lanning and Scheduling
(ICAPS) pp. 365-374, Whistler, BC, Canada.

Bryce, D., Kambhampati, S., & Smith, D. (2006). Sequentiaint® Carlo in probabilistic planning
reachability heuristics. IfProceedings of the 16th International Conference on Autetha
Planning and Scheduling (ICAP3)p. 233—-242, Cumbria, UK.

618

PROBABILISTIC-FF

Chavira, M., & Darwiche, A. (2005). Compiling Bayesian netks with local structure. IfPro-
ceedings of the 19th International Joint Conference onfiaidil Intelligence (IJCAI) pp.
1306-1312, Edinburgh, Scotland.

Darwiche, A. (2000). Recursive conditioningrtificial Intelligence 1251-2), 5-41.

Darwiche, A. (2001). Constant-space reasoning in dynaraieBian networkdnternational Jour-
nal of Approximate Reasoning6(3), 161-178.

Dean, T., & Kanazawa, K. (1989). A model for reasoning abausistence and causatiocBompu-
tational Intelligence 5, 142—-150.

Dechter, R. (1999). Bucket elimination: A unified framewdok reasoning Artificial Intelligence
113 41-85.

Domshlak, C., & Hoffmann, J. (2006). Fast probabilisticrplang through weighted model count-
ing. In Proceedings of the 16th International Conference on Autech&lanning and
Scheduling (ICAPSPpp. 243-252, Cumbria, UK.

Gomes, C. P., Hoffmann, J., Sabharwal, A., & Selman, B. (20&dm sampling to model counting.
In Proceedings of the 20th International Joint Conference difiéial Intelligence (IJCAI-
07), Hyderabad, India.

Gomes, C. P., Sabharwal, A., & Selman, B. (2006). Model daogntA new strategy for obtain-
ing good bounds. IfProceedings of the 21th National Conference on Atrtificiaélligence
(AAAI-06) pp. 54-61, Boston, MA.

Hanks, S., & McDermott, D. (1994). Modeling a dynamic andeanein world I: Symbolic and
probabilistic reasoning about chandtificial Intelligence 66(1), 1-55.

Hoffmann, J., & Nebel, B. (2001). The FF planning systemt & generation through heuristic
search.Journal of Artificial Intelligence Researcth4, 253—302.

Hoffmann, J., & Brafman, R. (2006). Conformant planning kiuristic forward search: A new
approach Artificial Intelligence 170(6—7), 507-541.

Huang, J. (2006). Combining knowledge compilation and@eéor efficient conformant proba-
bilistic planning. InProceedings of the 16th International Conference on AutethRlanning
and Scheduling (ICAPSpp. 253262, Cumbria, UK.

Hyafil, N., & Bacchus, F. (2004). Utilizing structured repeatations and CSPs in conformant
probabilistic planning. IfProceedings of the European Conference on Artificial ligefice
(ECAI), pp. 10331034, Valencia, Spain.

Jensen, F. (1996 An Introduction to Bayesian NetworkSpringer Verlag, New York.

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithnt fsobabilistic planning Artificial
Intelligence 78(1-2), 239-286.

Little, 1., Aberdeen, D., & Thiébaux, S. (2005). Prottle:phobabilistic temporal planner. Iaro-
ceedings of the 20th National Conference on Artificial ligehce (AAAI-05)pp. 1181—
1186, Pittsburgh, PA.

Littman, M. L., Goldsmith, J., & Mundhenk, M. (1998). The cpuatational complexity of proba-
bilistic planning.Journal of Artificial Intelligence Research, 1-36.

619

DOMSHLAK & H OFFMANN

Majercik, S. M., & Littman, M. L. (1998). MAXPLAN: A new appiach to probabilistic plan-
ning. InProceedings of the 4th International Conference on Artfititelligence Planning
Systems (AIPSpp. 86—93, Pittsburgh, PA.

Majercik, S. M., & Littman, M. L. (2003). Contingent planmjrunder uncertainty via stochastic
satisfiability. Artificial Intelligence 147(1-2), 119-162.

McDermott, D. (1998). The 1998 Al Planning Systems ComjgetitAl Magazine 2(2), 35-55.

McDermott, D. V. (1999). Using regression-match graphsaistiol search in planningAtrtificial
Intelligence 1091-2), 111-159.

Onder, N., Whelan, G. C., & Li, L. (2006). Engineering a canfiant probabilistic plannedournal
of Artificial Intelligence Researgl25, 1-15.

Pearl, J. (1984)Heuristics - Intelligent Search Strategies for Computestiem Solving Addison-
Wesley.

Pearl, J. (1988).Probabilistic Reasoning in Intelligent Systems: Netwark®lausible Inference
Morgan Kaufmann, San Mateo, CA.

Rintanen, J. (2003). Expressive equivalence of formalinplanning with sensing. IProceed-
ings of the 13th International Conference on Automated Ritegnand Scheduling (ICAPS)
pp. 185-194, Trento, Italy.

Roth, D. (1996). On the hardness of approximate reasormtificial Intelligence 82(1-2), 273—
302.

Russell, S., & Norvig, P. (2004 Artificial Intelligence: A Modern Approact® edition). Pearson.

Sang, T., Bacchus, F., Beame, P., Kautz, H., & Pitassi, 04p0Combining component caching
and clause learning for effective model counting(@nline) Proceedings of the 7th Interna-
tional Conference on Theory and Applications of Satisfigbilesting (SAT,)Vancouver, BC,
Canada.

Sang, T., Beame, P., & Kautz, H. (2005). Solving Bayes neta/by weighted model counting. In
Proceedings of the 20th National Conference on Artificiaélligence (AAAl)pp. 475-482,
Pittsburgh, PA.

Shimony, S. E. (1993). The role of relevance in explanatidnrélevance as statistical indepen-
dence.International Journal of Approximate Reason|i@§4), 281-324.

Shimony, S. E. (1995). The role of relevance in explanatioDikjunctive assignments and approx-
imate independenceénternational Journal of Approximate Reasonjdg(1), 27-60.

Zhang, N. L., & Poole, D. (1994). A simple approach to Bayesietwork computations. In
Proceedings of the 10th Canadian Conference on Artificilligence pp. 171-178, Banff,
Alberta, Canada.

620

