
Journal of Artificial Intelligence Research 30 (2007) 565-620 Submitted 3/07; published 12/07

Probabilistic Planning via Heuristic Forward Search
and Weighted Model Counting

Carmel Domshlak DCARMEL@IE.TECHNION.AC.IL
Technion - Israel Institute of Technology,
Haifa, Israel
Jörg Hoffmann JOERG.HOFFMANN@DERI.AT

University of Innsbruck, DERI,
Innsbruck, Austria

Abstract
We present a new algorithm for probabilistic planning with no observability. Our algorithm,

called Probabilistic-FF, extends the heuristic forward-search machinery of Conformant-FF to prob-
lems with probabilistic uncertainty about both the initialstate and action effects. Specifically,
Probabilistic-FF combines Conformant-FF’s techniques with a powerful machinery for weighted
model counting in (weighted) CNFs, serving to elegantly define both the search space and the
heuristic function. Our evaluation of Probabilistic-FF shows its fine scalability in a range of prob-
abilistic domains, constituting a several orders of magnitude improvement over previous results in
this area. We use a problematic case to point out the main openissue to be addressed by further
research.

1. Introduction

In this paper we address the problem ofprobabilistic planning with no observability(Kushmerick,
Hanks, & Weld, 1995), also known in the AI planning communityas conditional (Majercik &
Littman, 2003) or conformant (Hyafil & Bacchus, 2004) probabilistic planning. In such problems
we are given an initial belief state in the form of a probability distribution over the world statesW ,
a set of actions (possibly) having probabilistic effects, and a set of alternative goal statesWG ⊆ W .
A solution to such a problem is a single sequence of actions that transforms the system into one
of the goal states with probability exceeding a given threshold θ. The basic assumption of the
problem is that the system cannot be observed at the time of plan execution. Such a setting is
useful in controlling systems with uncertain initial stateand non-deterministic actions, if sensing is
expensive or unreliable. Non-probabilistic conformant planning may fail due to non-existence of a
plan that achieves the goals with 100% certainty. Even if there is such a plan, that plan does not
necessarily contain information about what actions are most useful to achieve only the requested
thresholdθ.

The state-of-the-art performance of probabilistic planners has been advancing much more slowly
than that of deterministic planners, scaling from 5-10 stepplans for problems with≈20 world states
to 15-20 step plans for problems with≈100 world states (Kushmerick et al., 1995; Majercik &
Littman, 1998; Hyafil & Bacchus, 2004). Since probabilisticplanning is inherently harder than its
deterministic counterpart (Littman, Goldsmith, & Mundhenk, 1998), such a difference in evolution
rates is by itself not surprising. However, recent developments in the area (Onder, Whelan, & Li,
2006; Bryce, Kambhampati, & Smith, 2006; Huang, 2006), and in particular our work here, show
that dramatic improvements in probabilistic planningcanbe obtained.

c©2007 AI Access Foundation. All rights reserved.

DOMSHLAK & H OFFMANN

In this paper we introduce Probabilistic-FF, a new probabilistic planner based onheuristic for-
ward searchin the space ofimplicitly representedprobabilistic belief states. The planner is a natural
extension of the recent (non-probabilistic) conformant planner Conformant-FF (Hoffmann & Braf-
man, 2006). The main trick is to replace Conformant-FF’s SAT-based techniques with a recent
powerful technique for probabilistic reasoning by weighted model counting (WMC) in proposi-
tional CNFs (Sang, Beame, & Kautz, 2005). In more detail, Conformant-FF does a forward search
in a belief space in which each belief state corresponds to a set of world states considered to be
possible. The main trick of Conformant-FF is the use of CNF formulas for an implicit represen-
tation of belief states. Implicit, in this context, means that formulasφ(a) encode the semantics of
executing action sequencea in the initial belief state, with propositional variables corresponding to
facts with time-stamps. Any actual knowledge about the belief states has to be (and can be) inferred
from these formulas. Most particularly, a factp is known to be true in a belief state if and only if
φ(a) → p(m), wherem is the time endpoint of the formula. The only knowledge computed by
Conformant-FF about belief states are theseknown facts, as well as (symmetrically) the facts that
are known to be false. This suffices to do STRIPS-style planning, that is, to determine applicable
actions and goal belief states. In the heuristic function, FF’s (Hoffmann & Nebel, 2001) relaxed
planning graph technique is enriched with approximate SAT reasoning.

The basic ideas underlying Probabilistic-FF are:

(i) Define time-stamped Bayesian networks (BNs) describingprobabilistic belief states.

(ii) Extend Conformant-FF’s belief state CNFs to model these BNs.

(iii) In addition to the SAT reasoning used by Conformant-FF, use weighted model-counting to
determine whether the probability of the (unknown) goals ina belief state is high enough.

(iv) Introduce approximate probabilistic reasoning into Conformant-FF’s heuristic function.

Note the synergetic effect: Probabilistic-FF re-uses all of Conformant-FF’s technology to recognize
facts that are true or false with probability1. This fully serves to determine applicable actions, as
well as detect whether part of the goal is already known. In fact, it is as if Conformant-FF’s CNF-
based techniques were specifically made to suit the probabilistic setting: while without probabilities
one could imagine successfully replacing the CNFs with BDDs, with probabilities this seems much
more problematic.

The algorithms we present cover probabilistic initial belief states given as Bayesian networks,
deterministic and probabilistic actions, conditional effects, and standard action preconditions. Our
experiments show that our approach is quite effective in a range of domains. In contrast to the
SAT and CSP based approaches mentioned above (Majercik & Littman, 1998; Hyafil & Bacchus,
2004), Probabilistic-FF can find100-step plans for problem instances with billions of worldstates.
However, such a comparison is not entirely fair due to the different nature of the results provided; the
SAT and CSP based approaches provide guarantees on the length of the solution. The approach most
closely related to Probabilistic-FF is implemented in POND(Bryce et al., 2006): this system, like
Probabilistic-FF, does conformant probabilistic planning for a thresholdθ, using a non-admissible,
planning-graph based heuristic to guide the search. Hence acomparison between Probabilistic-FF
and POND is fair, and in our experiments we perform a comparative evaluation of Probabilistic-FF
and POND. While the two approaches are related, there are significant differences in the search

566

PROBABILISTIC-FF

space representation, as well as in the definition and computation of the heuristic function.1 We run
the two approaches on a range of domains partly taken from theprobabilistic planning literature,
partly obtained by enriching conformant benchmarks with probabilities, and partly obtained by
enriching classical benchmarks with probabilistic uncertainty. In almost all cases, Conformant-FF
outperforms POND by at least an order of magnitude. We make some interesting observations
regarding the behavior of the two planners; in particular weidentify a domain – derived from the
classical Logistics domain – where both approaches fail to scale. The apparent reason is that neither
approach is good enough at detecting how many times, at an early point in the plan, a probabilistic
action must be applied in order to sufficiently support a highgoal threshold at the end of the plan.
Devising methods that are better in this regard is the most pressing open issue in this line of work.

The paper is structured as follows. The next section provides the technical background, formally
defining the problem we address and illustrating it with our running example. Section 3 details how
probabilistic belief states are represented as time-stamped Bayesian networks, how these Bayesian
networks are encoded as weighted CNF formulas, and how the necessary reasoning is performed
on this representation. Section 4 explains and illustratesour extension of Conformant-FF’s heuris-
tic function to the probabilistic settings. Section 5 provides the empirical results, and Section 6
concludes. All proofs are moved into Appendix A.

2. Background

The probabilistic planning framework we consider adds probabilistic uncertainty to a subset of
the classical ADL language, namely (sequential) STRIPS with conditional effects. Such STRIPS
planning tasks are described over a set of propositionsP as triples(A, I,G), corresponding to the
action set, initial world state, andgoals. I andG are sets of propositions, whereI describes a
concrete initial statewI , while G describes the set of goal statesw ⊇ G. Actions a are pairs
(pre(a), E(a)) of the preconditionand the(conditional) effects. A conditional effecte is a triple
(con(e), add(e), del(e)) of (possibly empty) proposition sets, corresponding to theeffect’s con-
dition, add, anddeletelists, respectively. The preconditionpre(a) is also a proposition set, and
an actiona is applicable in a world statew if w ⊇ pre(a). If a is not applicable inw, then
the result of applyinga to w is undefined. Ifa is applicable inw, then all conditional effects
e ∈ E(a) with w ⊇ con(e) occur. Occurrence of a conditional effecte in w results in the world
statew ∪ add(e) \ del(e).

If an actiona is applied tow, and there is a propositionq such thatq ∈ add(e) ∩ del(e′) for
(possibly the same) occurringe, e′ ∈ E(a), then the result of applyinga in w is undefined. Thus,
we require the actions to be not self-contradictory, that is, for eacha ∈ A, and everye, e′ ∈ E(a),
if there exists a world statew ⊇ con(e) ∪ con(e′), thenadd(e) ∩ del(e′) = ∅. Finally, an action
sequencea is aplan if the world state that results from iterative execution ofa’s actions, starting in
wI , leads to agoal statew ⊇ G.

2.1 Probabilistic Planning

Our probabilistic planning setting extends the above with (i) probabilistic uncertainty about the
initial state, and (ii) actions that can have probabilisticeffects. In general, probabilistic planning

1. POND does not use implicit belief states, and the probabilistic part of its heuristic function uses sampling techniques,
rather than the probabilistic reasoning techniques we employ.

567

DOMSHLAK & H OFFMANN

tasks are quadruples(A, bI , G, θ), corresponding to theaction set, initial belief state, goals, and
acceptable goal satisfaction probability. As before,G is a set of propositions. The initial state is
no longer assumed to be known precisely. Instead, we are given a probability distribution over the
world states,bI , wherebI(w) describes the likelihood ofw being the initial world state.

Similarly to classical planning, actionsa ∈ A are pairs(pre(a), E(a)), but the effect setE(a)
for sucha has richer structure and semantics. Eache ∈ E(a) is a pair(con(e),Λ(e)) of a propo-
sitional condition and a set ofprobabilistic outcomes. Each probabilistic outcomeε ∈ Λ(e) is a
triplet (Pr(ε), add(ε), del(ε)), whereadd anddeletelists are as before, andPr(ε) is the proba-
bility that outcomeε occurs as a result of effecte. Naturally, we require that probabilistic effects
define probability distributions over their outcomes, thatis,

∑

ε∈Λ(e) Pr(ε) = 1. The special case of
deterministic effectse is modeled this way viaΛ(e) = {ε} andPr(ε) = 1. Unconditional actions
are modeled as having a single effecte with con(e) = ∅. As before, ifa is not applicable inw,
then the result of applyinga to w is undefined. Otherwise, ifa is applicable inw, then there exists
exactly one effecte ∈ E(a) such thatcon(e) ⊆ w, and for eachε ∈ Λ(e), applyinga to w results
in w ∪ add(ε) \ del(ε) with probabilityPr(ε). The likelihood[b, a] (w′) of a world statew′ in the
belief state[b, a], resulting from applying a probabilistic actiona in b, is given by

[b, a] (w′) =
∑

w⊇pre(a)

b(w)
∑

ε∈Λ(e)

Pr(ε) · δ
(

w′ = w ∪ s \ s′, s ⊆ add(ε), s′ ⊆ del(ε)
)

, (1)

wheree is the effect ofa such thatcon(e) ⊆ w, andδ(·) is the Kronecker step function that takes
the value1 if the argument predicate evaluates to TRUE, and0 otherwise.

Our formalism covers all the problem-description featuressupported by the previously proposed
formalisms for conformant probabilistic planning (Kushmerick et al., 1995; Majercik & Littman,
1998; Hyafil & Bacchus, 2004; Onder et al., 2006; Bryce et al.,2006; Huang, 2006), and it cor-
responds to what is called Unary Nondeterminism (1ND) normal form (Rintanen, 2003). We note
that there are more succinct forms for specifying probabilistic planning problems (Rintanen, 2003),
yet 1ND normal form appears to be most intuitive from the perspective of knowledge engineering.

Example 1 Say we have a robot and a block that physically can be at one of two locations. This
information is captured by the propositionsr1, r2 for the robot, andb1, b2 for the block, respec-
tively. The robot can either move from one location to another, or do it while carrying the block.
If the robot moves without the block, then its move is guaranteed to succeed. This provides us
with a pair of symmetrically defined deterministic actions{move-right,move-left}. The ac-
tion move-right has an empty precondition, and a single conditional effecte = ({r1}, {ε}) with
Pr(ε) = 1, add(ε) = {r2}, anddel(ε) = {r1}. If the robot tries to move while carrying the block,
then this move succeeds with probability0.7, while with probability0.2 the robot ends up moving
without the block, and with probability0.1 this move of the robot fails completely. This provides us
with a pair of (again, symmetrically defined) probabilisticactions{move-b-right,move-b-left}.
The actionmove-b-right has an empty precondition, and two conditional effects specified as in
Table 1.

Having specified the semantics and structure of all the components of(A, bI , G, θ) butθ, we are
now ready to specify the actual task of probabilistic planning in our setting. Recall that our actions
transform probabilistic belief states to belief states. For any action sequencea ∈ A∗, and any belief

568

PROBABILISTIC-FF

E(a) con(e) Λ(e) Pr(ε) add(ε) del(ε)

ε1 0.7 {r2, b2} {r1, b1}

e r1 ∧ b1 ε2 0.2 {r2} {r1}

ε3 0.1 ∅ ∅

e′ ¬r1 ∨ ¬b1 ε′1 1.0 ∅ ∅

Table 1: Possible effects and outcomes of the actionmove-b-right in Example 1.

stateb, the new belief state[b, a] resulting from applyinga at b is given by

[b, a] =











b, a = 〈〉

[b, a] , a = 〈a〉, a ∈ A

[[b, a] , a′] , a = 〈a〉 · a′, a ∈ A, a′ 6= ∅

. (2)

In such setting, achievingG with certainty is typically unrealistic. Hence,θ specifies the required
lower boundon the probability of achievingG. A sequence of actionsa is called aplan if we have
ba(G) ≥ θ for the belief stateba = [bI , a].

2.2 Specifying the Initial Belief State

Considering the initial belief state, practical considerations force us to limit our attention only to
compactly representable probability distributionsbI . While there are numerous alternatives for
compact representation of structured probability distributions, Bayes networks (BNs) (Pearl, 1988)
to date is by far the most popular such representation model.2 Therefore, in Probabilistic-FF we
assume that the initial belief statebI is described by a BNNbI

over our set of propositionsP.
As excellent introductions to BNs abound (e.g., see Jensen,1996), it suffices here to briefly

define our notation. A BNN = (G,T) represents a probability distribution as a directed acyclic
graphG, where its set of nodesX stands for random variables (assumed discrete in this paper),
andT , a set of tables of conditional probabilities (CPTs)—one table TX for each nodeX ∈ X .
For each possible valuex ∈ Dom(X) (whereDom(X) denotes the domain ofX), the tableTX

lists the probability of the eventX = x given each possible value assignment to all of its immediate
ancestors (parents)Pa(X) in G. Thus, the table size is exponential in the in-degree ofX. Usually, it
is assumed either that this in-degree is small (Pearl, 1988), or that the probabilistic dependence ofX
onPa(X) induces a significant local structure allowing a compact representation ofTX (Shimony,
1993, 1995; Boutilier, Friedman, Goldszmidt, & Koller, 1996). (Otherwise, representation of the
distribution as a BN would not be a good idea in the first place.) The joint probability of a complete
assignmentϑ to the variablesX is given by the product of|X | terms taken from the respective
CPTs (Pearl, 1988):

Pr(ϑ) =
∏

X∈X

Pr (ϑ[X] | ϑ[Pa(X)]) =
∏

X∈X

TX (ϑ[X] | ϑ[Pa(X)]) ,

whereϑ[·] stands for the partial assignment provided byϑ to the corresponding subset ofX .

2. While BNs are our choice here, our framework can support other models as well, e.g. stochastic decision trees.

569

DOMSHLAK & H OFFMANN

In Probabilistic-FF we allowNbI
to be described over the multi-valued variables underlying

the planning problem. This significantly simplifies the process of specifyingNbI
since the STRIPS

propositionsP do not correspond to the true random variables underlying problem specification.3

Specifically, let
⋃k

i=1 Pi be a partition ofP such that each proposition setPi uniquely corresponds
to the domain of a multi-valued variable underlying our problem. That is, for every world statew
and everyPi, if |Pi| > 1, then there isexactly onepropositionq ∈ Pi that holds inw. The variables
of the BNNbI

describing our initial belief statebI areX = {X1, . . . ,Xk}, whereDom(Xi) = Pi

if |Pi| > 1, andDom(Xi) = {q,¬q} if Pi = {q}.

Example 2 For an illustration of suchNbI
, consider our running example, and say the robot is

known to be initially at one of the two possible locations with probability Pr(r1) = 0.9 and
Pr(r2) = 0.1. Suppose there is a correlation in our belief about the initial locations of the robot and
the block. We believe that, if the robot is atr1, thenPr(b1) = 0.7 (andPr(b2) = 0.3), while if the
robot is atr2, thenPr(b1) = 0.2 (andPr(b2) = 0.8). The initial belief state BNNbI

is then defined
over two variablesR (“robot”) andB (“block”) with Dom(R) = {r1, r2} andDom(B) = {b1, b2},
respectively, and it is depicted in Figure 1.

r1 r2

0.9 0.1
R // B

b1 b2

r1 0.7 0.3

r2 0.2 0.8

Figure 1: Bayes networkNbI
for Example 1.

It is not hard to see that our STRIPS-style actionsa ∈ A can be equivalently specified in terms
of the multi-valued variablesX . Specifically, if|Pi| > 1, then no actiona can add a proposition
q ∈ Pi without deleting some other propositionq′ ∈ Pi, and thus, we can considera as setting
Xi = q. If |Pi| = 1, then adding and deletingq ∈ Pi has the standard semantics of settingXi = q
andXi = ¬q, respectively. For simplicity of presentation, we assume that our actions are not self-
contradictory at the level ofX as well—if two conditional effectse, e′ ∈ E(a) can possibly occur in
some world statew, then the subsets ofX affected by these two effects have to be disjoint. Finally,
our goalG directly corresponds to a partial assignment toX (unless ourG is self-contradictory,
requiringq ∧ q′ for someq, q′ ∈ Pi.)

3. Belief States

In this section, we explain our representation of, and reasoning about, belief states. We first explain
how probabilistic belief states are represented as time-stamped BNs, then we explain how those
BNs are encoded and reasoned about in the form of weighted CNFformulas. This representation
of belief states by weighted CNFs is then illustrated on the belief state from our running example in
Figure 2. We finally provide the details about how this works in Probabilistic-FF.

3. SpecifyingNbI
directly overP would require identifying the multi-valued variables anyway, followed by connecting

all the propositions corresponding to a multi-valued variable by a complete DAG, and then normalizing the CPTs of
these propositions in a certain manner.

570

PROBABILISTIC-FF

r1 r2

0.9 0.1

r1 r2

ε1 ∨ ε2 0 1

ε3∨ε′1
r1 1 0
r2 0 1

r1 r2

r1 1 0
r2 1 0

R(0)

��

//

$$IIIIIIIIII
R(1) // R(2)

Y(1)

66nnnnnnnnnnnnnnnn

((PPPPPPPPPPPPPPPP

ε1 ε2 ε3 ε′1
r1 ∧ b1 0.7 0.2 0.1 0
othrw 0 0 0 1

B(0) //

::uuuuuuuuuu
B(1) // B(2)

b1 b2

r1 0.7 0.3
r2 0.2 0.8

b1 b2

ε1 0 1

¬ε1
b1 1 0
b2 0 1

b1 b2

b1 1 0

b2 0 1

Figure 2: Bayes networkNba
for our running Example 1-2 and action sequence

a = 〈move-b-right,move-left〉.

3.1 Bayesian Networks

Probabilistic-FF performs a forward search in a space of belief states. The search states are belief
states (that is, probability distributions over the world statesw), and the search is restricted to belief
states reachable from the initial belief statebI through some sequences of actionsa. A key decision
one should make is the actual representation of the belief states. LetbI be our initial belief state
captured by the BNNbI

, and letba be a belief state resulting from applying tobI a sequence of
actionsa. One of the well-known problems in the area of decision-theoretic planning is that the
description ofba directly over the state variablesX becomes less and less structured as the number
of (especially stochastic) actions ina increases. To overcome this limitation, we represent belief
statesba as a BNNba

thatexplicitly captures the sequential application ofa starting frombI , trading
the representation size for the cost of inference, comparedto representing belief states directly as
distributions over world states. Below we formally specifythe structure of such a BNNba

, assuming
that all the actionsa are applicable in the corresponding belief states of their application, and later
showing that Probabilistic-FF makes sure this is indeed thecase. We note that these belief-state
BNs are similar in spirit and structure to those proposed in the AI literature for verifying that a
probabilistic plan achieves its goals with a certain probability (Dean & Kanazawa, 1989; Hanks &
McDermott, 1994; Kushmerick et al., 1995).

Figure 2 illustrates the construction ofNba
for our running example witha = 〈move-b-right,

move-left〉. In general, leta = 〈a1, . . . , am〉 be a sequence of actions, numbered according to their
appearance ona. For 0 ≤ t ≤ m, let X(t) be a replica of our state variablesX , with X(t) ∈ X(t)

571

DOMSHLAK & H OFFMANN

corresponding toX ∈ X . The variable set ofNba
is the union ofX(0), . . . ,X(m), plus some

additional variables that we introduce for the actions ina.
First, for eachX(0) ∈ X(0), we set the parentsPa(X(0)) and conditional probability tables

TX(0)
to simply copy these of the state variableX in NbI

. Now, consider an actionat from a, and
let at = a. For each such action we introduce a discrete variableY(t) that “mediates” between the
variable layersX(t−1) andX(t). The domain ofY(t) is set toDom(Y(t)) =

⋃

e∈E(a) Λ(e), that is, to
the union of probabilistic outcomes of all possible effectsof a. The parents ofY(t) in Nba

are set to

Pa(Y(t)) =
⋃

e∈E(a)

{

X(i−1) | con(e) ∩ Dom(X) 6= ∅
}

, (3)

and, for eachπ ∈ Dom(Pa(Y(t))), we set

TY (t)(Y(i) = ε | π) =

{

Pr(ε), con (e(ε)) ⊆ π

0, otherwise
, (4)

wheree(ε) denotes the effecte of a such thatε ∈ Λ(e).
We refer to the set of all such variablesY(t) created for the actions ofa asY. Now, letEX(a) ⊆

E(a) be the probabilistic effects ofa that affect a variableX ∈ X . If EX(a) = ∅, then we set
Pa(X(t)) = {X(t−1)}, and

TX(t)(X(t) = x | X(t−1) = x′) =

{

1, x = x′,

0, otherwise
. (5)

Otherwise, ifEX(a) 6= ∅, let xε ∈ Dom(X) be the value provided toX by ε ∈ Λ(e), e ∈ EX(a).
Recall that the outcomes of effectsE(a) areall mutually exclusive. Hence, we setPa(X(t)) =
{X(t−1), Y(t−1)}, and

TX(i)
(X(i) = x | X(i−1) = x′, Y(i−1) = ε) =











1, e(ε) ∈ EX(a) ∧ x = xε,

1, e(ε) 6∈ EX(a) ∧ x = x′,

0, otherwise

, (6)

wheree(ε) denotes the effect responsible for the outcomeε.
It is not hard to verify that Equations 4-6 capture the frame axioms and probabilistic seman-

tics of our actions. In principle, this accomplishes our construction ofNba
over the variables

Xba
= Y

⋃m
t=0 X(t). We note, however, that the mediating variableY(t) are really needed only

for truly probabilistic actions. Specifically, ifat is a deterministic actiona, let EX(a) ⊆ E(a) be
the conditional effects ofa that add and/or delete propositions associated with the domain of a vari-
ableX ∈ X . If EX(a) = ∅, then we setPa(X(t)) = {X(t−1)}, andTX(t) according to Equation 5.
Otherwise, we set

Pa(X(t)) = {X(t−1)}
⋃

e∈EX(a)

{

X ′
(t−1) | con(e) ∩ Dom(X) 6= ∅

}

, (7)

and specifyTX(t)
as follows. Letxe ∈ Dom(X) be the value that (the only deterministic outcome

of) the effecte ∈ EX(a) provides toX. For eachπ ∈ Dom(Pa(X(t))), if there existse ∈ EX(a)

572

PROBABILISTIC-FF

such thatcon(e) ⊆ π, then we set

TX(t)(X(t) = x | π) =

{

1, x = xe,

0, otherwise
(8)

Otherwise, we set

TX(t)(X(t) = x | π) =

{

1, x = π[X(t−1)],

0, otherwise
(9)

Due to the self-consistency of the action, it is not hard to verify that Equations 8-9 are consistent,
and, together with Equation 5, capture the semantics of the conditional deterministic actions. This
special treatment of deterministic actions is illustratedin Figure 2 by the direct dependencies of
X(2) onX(1).

Proposition 1 Let(A,NbI
, G, θ) be a probabilistic planning problem, anda be anm-step sequence

of actions applicable inbI . Let Pr be the joint probability distribution induced byNba
on its

variablesXba
. The belief stateba corresponds to the marginal distribution ofPr onX(m), that is:

ba(X) = Pr(X(m)), and ifG(m) is a partial assignment provided byG toX(m), then the probability
ba(G) thata achievesG starting frombI is equal toPr(G(m)).

As we already mentioned, our belief-state BNs are constructed along the principles outlined
and used by Dean and Kanazawa (1989), Hanks and McDermott (1994), and Kushmerick et al.
(1995), and thus the correctness of Proposition 1 is immediate from these previous results. At this
point, it is worth bringing attention to the fact that all thevariables inX(1), . . . ,X(m) are completely
deterministic. Moreover, the CPTs of all the variables ofNba

are allcompactly representabledue to
either a low number of parents, or some local structure induced by a large amount of context-specific
independence, or both. This compactness of the CPTs inNba

is implied by the compactness of the
STRIPS-style specification of the planning actions. By exploiting this compactness of the action
specification, the size of theNba

’s description can be kept linear in the size of the input and the
number of actions ina.

Proposition 2 Let (A,NbI
, G, θ) be a probabilistic planning problem described overk state vari-

ables, anda be anm-step sequence of actions fromA. Then, we have|Nba
| = O(|NbI

|+mα(k+1))
whereα is the largest description size of an action inA.

The proof of Proposition 2, as well as the proofs of other formal claims in the paper, are relegated
to Appendix A, pp. 613.

3.2 Weighted CNFs

Given the representation of belief states as BNs, next we should select a mechanism for reasoning
about these BNs. In general, computing the probability of a query in BNs is known to be #P-
complete (Roth, 1996). In addition, it is not hard to verify,using an analysis similar to the ones
of Darwiche (2001) and Brafman and Domshlak (2006), that thenetworks arising in our work
will typically exhibit large tree-width. While numerous exact algorithms for inference with BNs
have been proposed in the literature (Darwiche, 2000; Dechter, 1999; Zhang & Poole, 1994), the
classical algorithms do not scale well on large networks exhibiting high tree-width. On the positive

573

DOMSHLAK & H OFFMANN

side, however, an observation that guides some recent advances in the area of probabilistic reasoning
is that real-world domains typically exhibit a significant degree of deterministic dependencies and
context-specific independencies between the problem variables. Targeting this property of practical
BNs already resulted in powerful inference techniques (Chavira & Darwiche, 2005; Sang et al.,
2005). The general principle underlying these techniques is to

(i) Compile a BNN into aweighted propositional logic formulaφ(N) in CNF, and

(ii) Perform an efficientweighted model countingfor φ(N) by reusing (and adapting) certain
techniques that appear powerful in enhancing backtrackingDPLL-style search for SAT.

One observation we had at the early stages of developing Probabilistic-FF is that the type of
networks and type of queries we have in our problems make thismachinery for solving BNs by
weighted CNF model counting very attractive for our needs. First, in Section 3.1 we have already
shown that the BNs representing our belief states exhibit a large amount of both deterministic nodes
and context-specific independence. Second, the queries of our interest correspond to computing
probability of the “evidence”G(m) in Nba

, and this type of query has a clear interpretation in terms
of model counting (Sang et al., 2005). Hence, taking this route in Probabilistic-FF, we compile our
belief state BNs to weighted CNFs following the encoding scheme proposed by Sang et al. (2005),
and answer probabilistic queries using Cachet (Sang, Bacchus, Beame, Kautz, & Pitassi, 2004), one
of the most powerful systems to date for exact weighted modelcounting in CNFs.

In general, the weighted CNFs and the weights of such formulas are specified as follows. Let
V = {V1, . . . , Vn} be a set of propositional variables withDom(Vi) = {vi,¬vi}, and let̟ :
⋃

i Dom(Vi) → R
0+ be a non-negative, real-valuedweightfunction from the literals ofV. For any

partial assignmentπ toV, the weight̟ (π) of this assignment is defined as the product of its literals’
weights, that is,̟ (π) =

∏

l∈π ̟(l). Finally, a propositional logic formulaφ is calledweightedif it
is defined over such a weighted set of propositional variables. For any weighted formulaφ overV,
the weight̟ (φ) is defined as the sum of the weights of all the complete assignments toV satisfying
φ, that is,

̟(φ) =
∑

π∈Dom(V)

̟(π)δ (π |= φ),

whereDom(V) = ×iDom(Vi). For instance, if for all variablesVi we have̟ (vi) = ̟(¬vi) = 1,
then̟(φ) simply stands for the number of complete assignments toV that satisfyφ.

Given an initial belief state BNNbI
, and a sequence of actionsa = 〈a1, . . . , am〉 applicable in

bI , here we describe how the weighted CNF encodingφ(Nba
) (or φ(ba), for short) of the belief state

ba is built and used in Probabilistic-FF. First, we formally specify the generic scheme introduced
by Sang et al. (2005) for encoding a BNN over variablesX into a weighted CNFφ(N). The
encoding formulaφ(N) contains two sets of variables. First, for each variableZ ∈ X and each
valuez ∈ Dom(Z), the formulaφ(N) contains astate propositionwith literals{z,¬z}, weighted
as̟(z) = ̟(¬z) = 1. These state propositions act inφ(ba) as regular SAT propositions. Now,
for each variableZ ∈ Xba

, let Dom(Z) = {z1, . . . , zk} be an arbitrary fixed ordering ofDom(Z).
Recall that each rowTZ [i] in the CPT ofZ corresponds to an assignmentζi (or a set of such as-
signments) toPa(Z). Thus, the number of rows inTZ is upper bounded by the number of different
assignments toPa(Z), but (as it happens in our case) it can be significantly lower if the depen-
dence ofZ on Pa(Z) induces a substantial local structure. Following the ordering of Dom(Z) as
above, the entryTZ [i, j] contains the conditional probability ofPr(zj | ζi). For every CPT entry

574

PROBABILISTIC-FF

procedurebasic-WMC(φ)
if φ = ∅ return 1
if φ has an empty clausereturn 0
selecta variableV ∈ φ

return basic-WMC(φ|v) · ̟(v) + basic-WMC(φ|¬v) · ̟(¬v)

Figure 3: Basic DPPL-style weighted model counting.

TZ [i, j] but the last one (i.e.,TZ [i, k]), the formulaφ(N) contains achance propositionwith literals
{〈zi

j〉,¬〈z
i
j〉}. These chance variables aim at capturing the probabilisticinformation from the CPTs

of Nba
. Specifically, the weight of the literal〈zi

j〉 is set toPr(zj | ζi,¬z1, . . . ,¬zj−1), that is to
conditional probability that the entry is true, given that the row is true, and no prior entry in the row
is true:

̟
(

〈zi
j〉

)

=
TZ [i, j]

1 −
∑j−1

k=1 TZ [i, k]

̟
(

¬〈zi
j〉

)

= 1 − ̟
(

〈zi
j〉

)

(10)

Considering the clauses ofφ(N), for each variableZ ∈ X , and each CPT entryTZ [i, j], the
formulaφ(N) contains a clause

(

ζi ∧ ¬〈zi
1〉 ∧ · · · ∧ ¬〈zi

j−1〉 ∧ 〈zi
j〉

)

→ zj , (11)

whereζi is a conjunction of the literals forming the assignmentζi ∈ Dom(Pa(Z)). These clauses
ensure that the weights of the complete assignments to the variables ofφ(N) are equal to the prob-
ability of the corresponding atomic events as postulated bythe BNN . To illustrate the construction
in Equations 10-11, let boolean variablesA andB be the parents of a ternary variableC (with
Dom(C) = {C1, C2, C3}) in some BN, and letPr(C1|A,¬B) = 0.2, Pr(C2|A,¬B) = 0.4, and
Pr(C3|A,¬B) = 0.4. Let the raw corresponding to the assignmentA,¬B to Pa(C) be thei-th
row of the CPTTC . In the encoding of this BN, the first two entries of this raw ofTC are captured
by a pair of respective chance propositions〈Ci

1〉, and〈Ci
2〉. According to Equation 10, the weights

of these propositions are set to̟
(

〈Ci
1〉

)

= 0.2, and̟
(

〈Ci
1〉

)

= 0.4
1−0.2 = 0.5. Then, according to

Equation 11, the encoding contains three clauses
(

¬A ∨ B ∨ ¬〈Ci
1〉 ∨ C1

)

(

¬A ∨ B ∨ 〈Ci
1〉 ∨ ¬〈Ci

2〉 ∨ C2

)

(

¬A ∨ B ∨ 〈Ci
1〉 ∨ 〈Ci

2〉 ∨ C3

)

Finally, for each variableZ ∈ X , the formulaφ(N) contains a standard set of clauses encoding
the “exactly one” relationship between the state propositions capturing the value ofZ. This accom-
plishes the encoding ofN into φ(N). In the next Section 3.3 we illustrate this encoding on the
belief state BN from our running example.

The weighted CNF encodingφ(ba) of the belief state BNNba
provides the input to a weighted

model counting procedure. A simple recursive DPPL-style procedurebasic-WMC underlying Ca-
chet (Sang et al., 2004) is depicted in Figure 3, where the formulaφ|v is obtained fromφ by setting

575

DOMSHLAK & H OFFMANN

the literalv to true. Theorem 3 by Sang et al. (2005) shows that ifφ is a weighted CNF encoding
of a BNN , andPr(Q|E) is a general query with respect toN , queryQ, and evidenceE, then we
have:

Pr(Q|E) =
basic-WMC(φ ∧ Q ∧ E)

basic-WMC(φ ∧ E)
, (12)

where queryQ and evidenceE can in fact be arbitrary formulas in propositional logic. Note that,
in a special (and very relevant to us) case of empty evidence,Equation 12 reduces toPr(Q) =
basic-WMC(φ∧Q), that is, a single call to thebasic-WMC procedure. Corollary 3 is then immediate
from our Proposition 1 and Theorem 3 by Sang et al. (2005).

Corollary 3 Let (A, bI , G, θ) be a probabilistic planning task with a BNNbI
describingbI , anda

be anm-step sequence of actions applicable inbI . The probabilityba(G) thata achievesG starting
from bI is given by:

ba(G) = WMC (φ(ba) ∧ G(m)) , (13)

whereG(m) is a conjunction of the goal literals time-stamped with the time endpointm of a.

3.3 Example: Weighted CNF Encoding of Belief States

We now illustrate the generic BN-to-WCNF encoding scheme ofSang et al. (2005) on the belief
state BNNba

from our running example in Figure 2.
For0 ≤ i ≤ 2, we introduce time-stamped state propositionsr1(i), r2(i), b1(i), b2(i). Likewise,

we introduce four state propositionsε1(1), ε2(1), ε3(1), ε
′
1(1) corresponding to the values of the

variableY(1). The first set of clauses inφ(ba) ensure the “exactly one” relationship between the
state propositions capturing the value of a variable inNba

:

(

ε1(1) ∨ ε2(1) ∨ ε3(1) ∨ ε′1(1)
)

,

1 ≤ i < j ≤ 4 :

(¬yi(1) ∨ ¬yj(1)) ,

0 ≤ i ≤ 2 :

(r1(i) ∨ r2(i)) , (¬r1(i) ∨ ¬r2(i))

(b1(i) ∨ b2(i)) , (¬b1(i) ∨ ¬b2(i))

(14)

Now we proceed with encoding the CPTs ofNba
. The root nodes have only one row in their

CPTs so their chance propositions can be identified with the corresponding state variables (Sang
et al., 2005). Hence, for the root variableR(0) we need neither additional clauses nor special
chance propositions, but the state propositionr1(0) of φ(ba) is treated as a chance proposition
with ̟ (r1(0)) = 0.9.

Encoding of the variableB(0) is a bit more involved. The CPTTB(0)
contains two (content-wise

different) rows corresponding to the “givenr1” and “given r2” cases, and both these cases induce
a non-deterministic dependence ofB(0) on R(0). To encode the content ofTB(0)

we introduce
two chance variables〈b1(0)

1〉 and〈b1(0)
2〉 with ̟(〈b1(0)

1〉) = 0.7 and̟(〈b1(0)
2〉) = 0.2. The

positive literals of〈b1(0)
1〉 and〈b1(0)

2〉 capture the events “b1 givenr1” and “b1 givenr2”, while
the negations¬〈b1(0)

1〉 and¬〈b1(0)
2〉 capture the complementary events “b2 given r2” and “b2

given r2”, respectively. Now consider the “givenr1” row in TB(0)
. To encode this row, we need

576

PROBABILISTIC-FF

φ(ba) to contain
(

r1(0) ∧ 〈b1(0)
1〉

)

→ b1(0) and
(

r1(0) ∧ ¬〈b1(0)
1〉

)

→ b2(0). Similar encoding
is required for the row “givenr2”, and thus the encoding ofTB0 introduces four additional clauses:

(

¬r1(0) ∨ ¬〈b1(0)
1〉 ∨ b1(0)

)

,
(

¬r1(0) ∨ 〈b1(0)
1〉 ∨ b2(0)

)

(

¬r2(0) ∨ ¬〈b1(0)
2〉 ∨ b1(0)

)

,
(

¬r2(0) ∨ 〈b1(0)
2〉 ∨ b2(0)

) (15)

Having finished with theNbI
part of Nba

, we proceed with encoding the variableY(1) cor-
responding to the probabilistic actionmove-b-right. To encode the first row ofTY(1)

we in-
troduce three chance propositions〈ε1(1)

1〉, 〈ε2(1)
1〉, and 〈ε3(1)

1〉; in general, no chance vari-
ables are needed for the last entries of the CPT rows. The weights of these chance propositions
are set according to Equation 10 to̟

(

〈ε1(1)
1〉

)

= 0.7, ̟
(

〈ε2(1)
1〉

)

= 0.2
1−0.7 = 0.6(6), and

̟
(

〈ε3(1)
1〉

)

= 0.1
1−0.9 = 0.1. Using these chance propositions, we add toφ(ba) four clauses as in

Equation 11, notably the first four clauses of Equation 16 below.
Proceeding the second row ofTY(1)

, observe that the value ofR(0) andB(0) in this case fully
determines the value ofY(1). This deterministic dependence can be encoded without using any
chance propositions using the last two clauses in Equation 16.

(

¬r1(0) ∨ ¬b1(0) ∨ ¬〈ε1(1)
1〉 ∨ ε1(1)

)

,
(

¬r1(0) ∨ ¬b1(0) ∨ 〈ε1(1)
1〉 ∨ ¬〈ε2(1)

1〉 ∨ ε2(1)
)

,
(

¬r1(0) ∨ ¬b1(0) ∨ 〈ε1(1)
1〉 ∨ 〈ε2(1)

1〉 ∨ ¬〈ε3(1)
1〉 ∨ ε3(1)

)

,
(

¬r1(0) ∨ ¬b1(0) ∨ 〈ε1(1)
1〉 ∨ 〈ε2(1)

1〉 ∨ 〈ε3(1)
1〉 ∨ ε′1(1)

)

,

(

r1(0) ∨ ¬ε′1(1)
)

,
(

b1(0) ∨ ¬ε′1(1)
)

(16)

Using the state/chance variables introduced forR0, B0, andY(1), we encode the CPTs ofR(1)

andB(1) as:

R(1) : (¬ε1(1) ∨ r2(1)) , (¬ε2(1) ∨ r2(1)) ,

(¬ε3(1) ∨ ¬r1(0) ∨ r1(1)) ,
(

¬ε′1(1) ∨ ¬r1(0) ∨ r1(1)
)

,

(¬ε3(1) ∨ ¬r1(0) ∨ r1(1)) ,
(

¬ε′1(1) ∨ ¬r2(0) ∨ r2(1)
)

B(1) : (¬ε1(1) ∨ b2(1)) ,

(ε1(1) ∨ ¬b1(0) ∨ b1(1)) ,

(ε1(1) ∨ ¬b2(0) ∨ b2(1))

(17)

Since the CPTs of bothR(1) andB(1) are completely deterministic, their encoding as well is using
no chance propositions. Finally, we encode the (deterministic) CPTs ofR(2) andB(2) as:

R(2) : (r1(2))

B(2) : (¬b1(1) ∨ b1(2))

(¬b2(1) ∨ b2(2))

(18)

where the unary clause(r1(2)) is a reduction of(¬r1(1) ∨ r1(2)) and(¬r2(1) ∨ r1(2)). This ac-
complishes our encoding ofφ(ba).

577

DOMSHLAK & H OFFMANN

3.4 From Conformant-FF to Probabilistic-FF

Besides the fact that weighted model counting is attractivefor the kinds of BNs arising in our con-
text, the weighted CNF representation of belief states works extremely well with the ideas underly-
ing Conformant-FF (Hoffmann & Brafman, 2006). This was outlined in the introduction already;
here we give a few more details.

As stated, Conformant-FF does a forward search in a non-probabilistic belief space in which
each belief state corresponds to a set of world states considered to be possible. The main trick of
Conformant-FF is the use of CNF formulas for an implicit representation of belief states, where
formulasφ(a) encode the semantics of executing action sequencea in the initial belief state. Facts
known to be true or false are inferred from these formulas. This computation of only a partial
knowledge constitutes alazykind of belief state representation, in comparison to otherapproaches
that use explicit enumeration (Bonet & Geffner, 2000) or BDDs (Bertoli, Cimatti, Pistore, Roveri,
& Traverso, 2001) to fully represent belief states. The basic ideas underlying Probabilistic-FF are:

(i) Define time-stamped Bayesian Networks (BN) describing probabilistic belief states (Sec-
tion 3.1 above).

(ii) Extend Conformant-FF’s belief state CNFs to model these BN (Section 3.2 above).

(iii) In addition to the SAT reasoning used by Conformant-FF, use weighted model-counting to
determine whether the probability of the (unknown) goals ina belief state is high enough
(directly below).

(iv) Introduce approximate probabilistic reasoning into Conformant-FF’s heuristic function (Sec-
tion 4 below).

In more detail, given a probabilistic planning task(A, bI , G, θ), a belief stateba corresponding to
some applicable inbI m-step action sequencea, and a propositionq ∈ P, we say thatq is known
in ba if ba(q) = 1, negatively knownin ba if ba(q) = 0, andunknownin ba, otherwise. We begin
with determining whether eachq is known, negatively known, or unknown at timem. Re-using the
Conformant-FF machinery, this classification requires up to two SAT tests ofφ(ba) ∧ ¬q(m) and
φ(ba) ∧ q(m), respectively. The information provided by this classification is used threefold. First,
if a subgoalg ∈ G is negatively known at timem, then we haveba(G) = 0. On the other extreme,
if all the subgoals ofG are known at timem, then we haveba(G) = 1. Finally, if some subgoals of
G are known and the rest are unknown at timem, then we accomplish evaluating the belief stateba

by testing whether

ba(G) = WMC (φ(ba) ∧ G(m)) ≥ θ. (19)

Note also that having the sets of all (positively/negatively) known propositions at all time steps up
to m allows us tosignificantlysimplify the CNF formulaφ(ba) ∧ G(m) by inserting into it the
corresponding values of known propositions.

After evaluating the considered action sequencea, if we get ba(G) ≥ θ, then we are done.
Otherwise, the forward search continues, and the actions that are applicable inba (and thus used to
generate the successor belief states) are actions whose preconditions are all known inba.

578

PROBABILISTIC-FF

4. Heuristic Function

The key component of any heuristic search procedure is the heuristic function. The quality (in-
formedness) and computational cost of that function determine the performance of the search. The
heuristic function is usually obtained from solutions to a relaxation of the actual problem of in-
terest (Pearl, 1984; Russell & Norvig, 2004). In classical planning, a successful idea has been to
use a relaxation that ignores the delete effects of the actions (McDermott, 1999; Bonet & Geffner,
2001; Hoffmann & Nebel, 2001). In particular, the heuristicof the FF planning system is based on
the notion ofrelaxed plan, which is a plan that achieves the goals while assuming that all delete
lists of actions are empty. The relaxed plan is computed using a Graphplan-style (Blum & Furst,
1997) technique combining a forward chaining graph construction phase with a backward chaining
plan extraction phase. The heuristic valueh(w) that FF provides to a world statew encountered
during the search is the length of the relaxed plan fromw. In Conformant-FF, this methodology was
extended to the setting of conformant planning under initial state uncertainty (without uncertainty
about action effects). Herein, we extend Conformant-FF’s machinery to handle probabilistic initial
states and effects. Section 4.1 provides background on the techniques used in FF and Conformant-
FF, then Sections 4.2 and 4.4 detail our algorithms for the forward and backward chaining phases in
Probabilistic-FF, respectively. These algorithms for thetwo phases of the Probabilistic-FF heuristic
computation are illustrated on our running example in Sections 4.3 and 4.5, respectively.

4.1 FF and Conformant-FF

We specify how relaxed plans are computed in FF; we provide a coarse sketch of how they are
computed in Conformant-FF. The purpose of the latter is onlyto slowly prepare the reader for what
is to come: Conformant-FF’s techniques are re-used for Probabilistic-FF anyway, and hence will be
described in full detail as part of Sections 4.2 and 4.4.

Formally, relaxed plans in classical planning are computedas follows. Starting fromw, FF
builds arelaxed planning graphas a sequence of alternating proposition layersP (t) and action
layersA(t), whereP (0) is the same asw, A(t) is the set of all actions whose preconditions are
contained inP (t), andP (t + 1) is obtained fromP (t) by including the add effects (with fulfilled
conditions) of the actions inA(t). That is,P (t) always contains those facts that will be true if one
would execute (the relaxed versions of) all actions at the earlier layers up toA(t − 1). The relaxed
planning graph is constructed either until it reaches a propositional layerP (m) that contains all
the goals, or until the construction reaches a fixpointP (t) = P (t + 1) without reaching the goals.
The latter case corresponds to (all) situations in which a relaxed plan does not exist, and because
existence of a relaxed plan is a necessary condition for the existence of a real plan, the statew is
excluded from the search space by settingh(w) = ∞. In the former case ofG ⊆ P (m), a relaxed
plan is a subset of actions inA(1), . . . , A(m) that suffices to achieve the goals (under ignoring the
delete lists), and it can be extracted by a simple backchaining loop: For each goal inP (m), select
an action inA(1), . . . , A(m) that achieves this goal, and iterate the process by considering those
actions’ preconditions and the respective effect conditions as new subgoals. The heuristic estimate
h(w) is then set to the length of the extracted relaxed plan, that is, to the number of actions selected
in this backchaining process.

Aiming at extending the machinery of FF to conformant planning, in Conformant-FF, Hoff-
mann and Brafman (2006) suggested to extend the relaxed planning graph with additional fact lay-
ersuP (t) containing the factsunknownat time t, and then to reason about when such unknown

579

DOMSHLAK & H OFFMANN

facts become known in the relaxed planning graph. As the complexity of this type of reasoning is
prohibitive, Conformant-FF further relaxes the planning task by ignoring not only the delete lists,
but also all but one of the unknown conditions of each action effect. That is, if actiona appears
in layer A(t), and for effecte of a we havecon(e) ⊆ P (t) ∪ uP (t) and con(e) ∩ uP (t) 6= ∅,
thencon(e) ∩ uP (t) is arbitrarily reduced to contain exactly one literal, and reasoning is done as if
con(e) had this reduced form from the beginning.

This relaxation converts implications(
∧

c∈con(e)∩uP (t) c(t)) → q(t + 1) that the action effects
induce between unknown propositions into their 2-projections that take the form ofbinary impli-
cationsc(t) → q(t + 1), for arbitraryc ∈ con(e) ∩ uP (t). Due to the layered structure of the
planning graph, the set of all these binary implicationsc(t) → q(t + 1) can be seen as forming a
directed acyclic graphImp. Under the given relaxations, this graph captures exactly all dependen-
cies between the truth of propositions over time. Hence, checking whether a propositionq becomes
known at timet can be done as follows. First, backchain over the implication edges ofImp that end
in q(t), and collect the setsupport(q(t)) of leafs4 that are reached. Then, ifΦ is the CNF formula
describing the possible initial states, test by a SAT check whether

Φ →
∨

l∈support(q(t))

l

This test will succeed if and only if at least one of the leafs in support(q(t)) is true in every possible
initial state. Under the given relaxations, this is the caseif and only if, when applying all actions in
the relaxed planning graph,q will always be true at timet.5

The process of extracting a relaxed plan from the constructed conformant relaxed planning
graph is an extension of FF’s respective process with machinery that selects actions responsible for
relevant paths inImp. The overall Conformant-FF heuristic machinery is sound and complete for
relaxed tasks, and yields a heuristic function that is highly informative across a range of challenging
domains (Hoffmann & Brafman, 2006).

In this work, we adopt Conformant-FF’s relaxations, ignoring the delete lists of the action ef-
fects, as well as all but one of the propositions in the effect’s condition. Accordingly, we adopt the
following notations from Conformant-FF. Given a set of actionsA, we denote by|+1 any function
from A into the set of all possible actions, such that|+1 maps eacha ∈ A to the action similar toa
but with empty delete lists and with all but one conditioningpropositions of each effect removed;
for |+1 (a), we writea|+1 . By A|+1 we denote the action set obtained by applying|+1 to all the actions
of A, that is,A|+1 =

{

a|+1 | a ∈ A
}

. For an action sequencea we denote bya|+1 the sequence of
actions obtained by applying|+1 to every action alonga, that is,

a|+1 =

{

〈〉, a = 〈〉

〈a|+1 〉 · a
′|+1 , a = 〈a〉 · a′

.

For a probabilistic planning task(A, bI , G, θ), the task(A|+1 , bI , G, θ) is called a relaxation of
(A, bI , G, θ). Finally, if a|+1 is a plan for(A|+1 , bI , G, θ), then a is called a relaxed plan for
(A, bI , G, θ).

4. Following the Conformant-FF terminology, by “leafs” we refer to the nodes having zero in-degree.
5. Note here that it would be possible to do a full SAT check, without any 2-projection (without relying onImp), to see

whetherq becomes known att. However, as indicated above, doing such a full check for every unknown proposition
at every level of the relaxed planning graph for every searchstate would very likely be too expensive, computationally.

580

PROBABILISTIC-FF

In the next two sections we describe the machinery underlying the Probabilistic-FF heuristic
estimation. Due to the similarity between the conceptual relaxations used in Probabilistic-FF and
Conformant-FF, Probabilistic-FF inherits almost all of Conformant-FF’s machinery. Of course,
the new contributions are those algorithms dealing with probabilistic belief states and probabilistic
actions.

4.2 Probabilistic Relaxed Planning Graphs

Like FF and Conformant-FF, Probabilistic-FF computes its heuristic function in two steps, the first
one chaining forward to build a relaxed planning graph, and the second step chaining backward to
extract a relaxed plan. In this section, we describe in detail Probabilistic-FF’s forward chaining step,
building aprobabilistic relaxed planning graph(or PRPG, for short). In Section 4.4, we then show
how one can extract a (probabilistic) relaxed plan from the PRPG. We provide a detailed illustration
of the PRPG construction process on the basis of our running example; since the illustration is
lengthy, it is moved to a separate Section 4.3.

The algorithms building a PRPG are quite involved; it is instructive to first consider (some
of) the key points before delving into the details. The main issue is, of course, that we need to
extend Conformant-FF’s machinery with the ability to determine when the goal set is sufficiently
likely, rather than when it is known to be true for sure. To achieve that, we must introduce into
relaxed planning some effective reasoning about both the probabilistic initial state, and the effects
of probabilistic actions. It turns out that such a reasoningcan be obtained by a certainweighted
extension of the implication graph. In a nutshell, if we wantto determine how likely it is that a fact
q is true at a timet, then we propagate certain weights backwards through the implication graph,
starting inq(t); the weight ofq(t) is set to1, and the weight for anyp(t′) gives an estimate ofthe
probability of achievingq at t given thatp holds att′. Computing this probability exactly would,
of course, be too expensive. Our estimation is based onassuming independence of the various
probabilistic events involved.This is a choice that we made very carefully; we experimentedwidely
with various other options before deciding in favor of this technique.

Any simplifying assumption in the weight propagation constitutes, of course, another relaxation,
on top of the relaxations we already inherited from Conformant-FF. The particularly problematic
aspect of assuming independence is that it is not an under-estimating technique. The actual weight
of a nodep(t′) – the probability of achievingq at t given thatp holds att′ – may be lower than our
estimate. In effect, the PRPG may decide wrongly that a relaxed plan exists: even if we execute
all relaxed actions contained in the successful PRPG, the probability of achieving the goal by this
execution may be less than the required threshold. In other words, we lose the soundness (relative
to relaxed tasks) of the relaxed planning process.

We experimented with an alternative weight propagation method, based on an opposite assump-
tion, that the relevant probabilistic events always co-occur, and that hence the weights must be
propagated according to simple maximization operations. This propagation method yielded very
uninformative heuristic values, and hence inacceptable empirical behaviour of Probabilistic-FF,
even in very simple benchmarks. In our view, it seems unlikely that an under-estimating yet in-
formative and efficient weight computation exists. We further experimented with some alternative
non under-estimating propagation schemes, in particular one based on assuming that the probabilis-
tic events are completely disjoint (and hence weights should beadded); these schemes gave better

581

DOMSHLAK & H OFFMANN

performance than maximization, but lagged far behind the independence assumption in the more
challenging benchmarks.

Let us now get into the actual algorithm building a PRPG. A coarse outline of the algorithm is as
follows. The PRPG is built in a layer-wise fashion, in each iteration extending the PRPG, reaching
up to timet, by another layer, reaching up to timet+1. The actions in the new step are those whose
preconditions are known to hold att. Effects conditioned on unknown facts (note here the reduction
of effect conditions to a single fact) constitute new edges in the implication graph. In difference to
Conformant-FF, we don’t obtain a single edge from conditionto add effect; instead, we obtain edges
from the condition to “chance nodes”, where each chance noderepresents a probabilistic outcome of
the effect; the chance nodes, in turn, are linked by edges to their respective add effects. The weights
of the chance nodes are set to the probabilities of the respective outcomes, the weights of all other
nodes are set to1. These weights are “static weights” which are not “dynamically” modified by
weight propagation; rather, the static weights form an input to the propagation.

Once all implication graph edges are inserted at a layer, thealgorithm checks whether any new
facts become known. This check is done very much like the corresponding check in Conformant-FF,
by testing whether the disjunction of the support leafs for apropositionp at t + 1 is implied by the
initial state formula. The two differences to Conformant-FF are: (1) Only leafs are relevant whose
dynamic weight is1 (otherwise, achieving a leaf is not guaranteed to accomplish p at t + 1). (2)
Another reason forp to become known may be that all outcomes of an unconditional effect (or an
effect with known condition) result in achievement ofp at timet + 1. We elegantly formulate the
overall test by a single implication test over support leafswhose dynamic weight equals their own
weight.

Like FF’s and Conformant-FF’s algorithms, the PRPG processhas two termination criteria. The
PRPG terminates positively if the goal probability is high enough at timet; the PRPG terminates
negatively if, fromt to t + 1, nothing has changed that may result in a higher goal propability at
some futuret′. The goal probability in a layert is computed based on weighted model counting over
a formula derived from the support leafs of all goals not known to be true. The criteria for negative
termination check: whether any new facts have become known or unknown (not negatively known);
whether any possibly relevant new support leafs have appeared; and whether the goal probability
has increased. If neither is the case, then we can stop safely—if the PRPG terminates unsuccessfully
then we have a guarantee that there is no relaxed plan, and that the corresponding belief is hence a
dead end.

Let us get into the details. Figure 4 depicts the main routinefor building the PRPG for a belief
stateba. As we already specified, the setsP (t), uP (t), andA(t) contain the propositions that are
known to hold at timet (hold att with probability1), the propositions that are unknown to hold at
time t (hold att with probability less than1 but greater than0), and actions that are known to be
applicable at timet, respectively. The layerst ≥ 0 of PRPG capture applying the relaxed actions
starting fromba. The layers−m to−1 of PRPG correspond to them-step action sequencea leading
from the initial belief state to the belief state in questionba. We inherit the latter technique from
Conformant-FF; in a sense, the PRPG “reasons about the past”. This may look confusing at first
sight, but it has a simple reason. Imagine the PRPG starts at level0 instead. Then, to check whether
a proposition becomes known, we have to do SAT tests regarding support leafsagainst the belief
state formula,φ(ba), instead of the initial state formula(similarly for weighted model counting
to test whether the goal is likely enough). Testing againstφ(ba) is possible, but very expensive

582

PROBABILISTIC-FF

procedurebuild-PRPG(a, A, φ(NbI
), G, θ, |+1),

returns a Bool saying if there is a relaxed plan for the beliefstate
given bya = 〈a−m, . . . , a−1〉, and

builds data structures from which a relaxed plan can be extracted
Φ := φ(NbI

), Imp := ∅
P (−m) := {p | p is known inΦ}, uP (−m) := {p | p is unknown inΦ}
for t := −m · · · − 1 do

A(t) := {at|+1 } ∪ NOOPS
build-timestep(t, A(t))

endfor
t := 0
while get-P(t, G) < θ do

A(t) := {a|+1 | a ∈ A, pre(a) ⊆ P (t)} ∪ NOOPS
build-timestep(t, A(t))
if P (t + 1) = P (t) and

uP (t + 1) = uP (t) and
∀p ∈ uP (t + 1) : uP (−m) ∩ support(p(t + 1)) = uP (−m) ∩ support(p(t)) and
get-P(t + 1, G) = get-P(t, G) then
return FALSE

endif
t := t + 1

endwhile
T := t, return TRUE

Figure 4: Main routine for building a probabilistic relaxedplanning graph (PRPG).

computationally.6 The negative-index layers chain the implication graph all the way back to the
initial state, and hence enable us to perform SAT tests against the – typically much smaller – initial
state formula.

Returning to Figure 4, the PRPG is initialized with an empty implication setImp, P (−m)
anduP (−m) are assigned the propositions that are known and unknown in the initial belief state,
and a weighted CNF formulaΦ is initialized withφ(NbI

). Φ is the formula against which implica-
tion/weighted model checking tests are run when asking whether a proposition becomes known/whether
the goal is likely enough. While the PRPG is built,Φ is incrementally extended with further clauses
to capture the behavior of different effect outcomes.

Thefor loop builds the setsP anduP for thea’s time steps−m · · · − 1 by iterative invocation
of the build-timestep procedure that each time expands PRPG by a single time level.At each
iteration−m ≤ t ≤ −1, the setsP (t + 1) anduP (t + 1) are made to contain the propositions
that are known/unknown after applying the relaxed version of the actionat ∈ a (remember that
a = 〈a1, . . . , am〉). To simplify the presentation, each action setA(t) contains a set of dummy
actionsNOOPS that simply transport all the propositions from time layert to time layert+1. More
formally, NOOPS =

{

noopp | p ∈ P
}

, wherepre(noopp) = ∅, E(noopp) = {({p}, {ε})}, and
ε = (1.0, {p}, ∅)}).

6. In Conformant-FF, this configuration is implemented as anoption; it significantly slows down the search in most
domains, and brings advantages only in a few cases.

583

DOMSHLAK & H OFFMANN

The subsequentwhile loop constructs the relaxed planning graph from layer0 onwards by,
again, iterative invocation of thebuild-timestep procedure. The actions in each layert ≥ 0 are
relaxations of those actions whose preconditions are knownto hold at timet with certainty. This
iterative construction is controlled by two termination tests. First, if the goal is estimated to hold at
layer t with probability higher thanθ, then we know that a relaxed plan estimate can be extracted.
Otherwise, if the graph reaches a fix point, then we know that no relaxed (and thus, no real) plan
from bI exists. We postpone the discussion of these two terminationcriteria, and now focus on the
time layer construction procedurebuild-timestep.

procedurebuild-timestep(t, A),
buildsP (t + 1), uP (t + 1), and the implication edges fromt to t + 1,
as induced by the action setA

P (t + 1) := P (t), uP (t + 1) := ∅
for all effectse of an actiona ∈ A, con(e) ∈ P (t) ∪ uP (t) do

for all ε ∈ Λ(e) do
uP (t + 1) := uP (t + 1) ∪ add(ε)
introduce new factε(t) with ̟(ε(t)) = Pr(ε)
Imp := Imp∪ {(ε(t), p(t + 1)) | p ∈ add(ε)}

endfor
if con(e) ∈ uP (t) then

Imp := Imp∪
⋃

ε∈Λ(e){(con(e)(t), ε(t))}

else
Φ := Φ ∧

(

∨ε∈Λ(e)ε(t)
)

∧
∧

ε,ε′∈Λ(e) (¬ε(t) ∨ ¬ε′(t))

endif
endfor
for all p ∈ uP (t + 1) do

build-w-impleafs(p(t + 1), Imp)
support(p(t + 1)) := {l | l ∈ leafs(Imp→p(t+1)) ∧ ̟p(t+1)(l) = ̟(l)}
if Φ →

∨

l∈support(p(t+1)) l then P (t + 1) := P (t + 1) ∪ {p} endif
endfor
uP (t + 1) := uP (t + 1) \ P (t + 1)

Figure 5: Building a time step of the PRPG.

Thebuild-timestep procedure is shown in Figure 5. The firstfor loop ofbuild-timestep proceeds
over all outcomes of (relaxed) actions in the given setA that may occur at timet. For each such
probabilistic outcome we introduce a new chance proposition weighted by the conditional likelihood
of that outcome.7 Having that, we extendImp with binary implications from this new chance
proposition to the add list of the outcome. If we are uncertain about the conditioncon(e) of the
corresponding effect at timet, that is, we havecon(e) ∈ uP (t), then we also add implications
from con(e) to the chance propositions created for the outcomes ofe. Otherwise, ifcon(e) is
known at timet, then there is no uncertainty about our ability to make the effect e to hold at time
t. In this case, we do not “ground” the chance propositions created for the outcomes ofe into the
implication graph, but simply extend the running formulaΦ with clauses capturing the “exactly
one” relationship between these chance propositions corresponding to the alternative outcomes ofe

7. Of course, in our implementation we have a special case treatment for deterministic actions, using no chance nodes
(rather than a single “chance node” with static weight1).

584

PROBABILISTIC-FF

at timet. This way, the probabilistic uncertainty about the outcomeof e can be treated as if being a
property of the initial belief statebI ; This is the only type of knowledge we add into the knowledge
base formulaΦ after initializing it inbuild-PRPG to φ(NbI

).

Notation Description
Impv→u The graph containing exactly all the paths from nodev to nodeu in Imp.
Imp→u The subgraph ofImp formed by nodeu and all the ancestors ofu in Imp.

leafs(Imp′) The set of all zero in-degree nodes in the subgraphImp′ of Imp.
E(Imp′) The set of time-stamped action effects responsible for the implication edges

of the subgraphImp′ of Imp.

Table 2: Overview of notations around the implication graph.

The secondfor loop checks whether a propositionp, unknown at timet, becomes known at
time t + 1. This part of thebuild-timestep procedure is somewhat more involved; Table 2 provides
an overview of the main notations used in the follows when discussing the various uses of the
implication graphImp.

First thing in the secondfor loop of build-timestep, a call tobuild-w-impleafs procedure asso-
ciates each nodev(t′) in Imp→p(t+1) with an estimate̟ p(t+1)(v(t′)) on the probability of achieving
p at timet + 1 by the effectsE(Impv(t′)→p(t+1)), given thatv holds at timet′. In other words, the
dynamic weight (according top(t + 1)) of the implication graph nodes is computed. Note thatv(t′)
can be either a time-stamped propositionq(t′) for someq ∈ P, or a chance propositionε(t′) for
some probabilistic outcomeε.

We will discuss thebuild-w-impleafs procedure in detail below. For proceeding to understand
the secondfor loop ofbuild-timestep, the main thing we need to know is the following lemma:

Lemma 4 Given a nodev(t′) ∈ Imp→p(t+1), we have̟ p(t+1) (v(t′)) = ̟ (v(t′)) if and only if,
givenv at timet′, the sequence of effects E(Impv(t′)→p(t+1)) achievesp at t + 1 with probability1.

In words,v(t′) leads top(t + 1) with certainty iff the dynamic weight ofv(t′) equals its static
weight. This is a simple consequence of how the weight propagation is arranged; it should hold true
for any reasonable weight propagation scheme (“do not mark anode as certain if it is not”). A full
proof of the lemma appears in Appendix A on pp. 613.

Re-consider the secondfor loop of build-timestep. What happens is the following. Having
finished thebuild-w-impleafs weight propagation forp at timet + 1, we

1. collect all the leafssupport(p(t + 1)) of Imp→p(t) that meet the criteria of Lemma 4, and

2. check (by a call to a SAT solver) whether the knowledge-base formulaΦ implies the disjunc-
tion of these leafs.

If the implication holds, then the examined factp at timet is added to the set of facts known at time
t. Finally, the procedure removes from the set of facts that are known to possibly hold at timet + 1
all those facts that were just proven to hold at timet + 1 with certainty.

To understand the above, consider the following. With Lemma4, support(p(t + 1)) contains
exactly the set of leafs achieving which will lead top(t + 1) with certainty. Hence we can basically

585

DOMSHLAK & H OFFMANN

procedurebuild-w-impleafs (p(t), Imp)

top-down propagation of weights̟p(t) from p(t) to all nodes inImp→p(t)

̟p(t) (p(t)) := 1
for decreasing time stepst′ := (t − 1) . . . (−m) do

for all chance nodesε(t′) ∈ Imp→p(t) do
α :=

∏

r∈add(ε),r(t′+1)∈Imp
→p(t)

[

1 − ̟p(t) (r(t′ + 1))
]

̟p(t) (ε(t′)) := ̟ (ε(t′)) · (1 − α)
endfor
for all fact nodesq(t′) ∈ Imp→p(t) do

α := 1
for all a ∈ A(t′), e ∈ E(a), con(e) = q do

α := α ·
[

1 −
∑

ε∈Λ(e),ε(t′)∈Imp
→p(t)

̟p(t) (ε(t′))
]

endfor
̟p(t) (q(t′)) := 1 − α

endfor
endfor

Figure 6: Thebuild-w-impleafsprocedure for weight back-propagation over the implication graph.

use the same implication test as in Conformant-FF. Note, however, that the word “basically” in the
previous sentence hides a subtle but important detail. In difference to the situation in Conformant-
FF, support(p(t + 1)) may contain two kinds of nodes: (1) proposition nodes at the start layer of
the PRPG, i.e., at layer−m corresponding to the initial belief; (2) chance nodes at later layers of
the PRPG, corresponding to outcomes of effects that have no unknown conditions. This is the point
where the discussed above updates on the formulaΦ are needed—those keep track of alternative
effect outcomes. Hence testingΦ →

∨

l∈support(p(t+1)) l is the same as testing whether either: (1)p
is known att + 1 because it is always triggered with certainty by at least oneproposition true in the
initial world; or (2)p is known att + 1 because it is triggered by all outcomes of an effect that will
appear with certainty. We get the following result:

Lemma 5 Let(A,NbI
, G, θ) be a probabilistic planning task,a be a sequence of actions applicable

in bI , and|+1 be a relaxation function forA. For each time stept ≥ −m, and each propositionp ∈
P, if P (t) is constructed bybuild-PRPG(a,A, φ(NbI

), G, θ, |+1), thenp at timet can be achieved
by a relaxed plan starting witha|+1

(1) with probability> 0 (that is,p is not negatively known at timet) if and only ifp ∈ uP (t)∪P (t),
and

(2) with probability1 (that is,p is known at timet) if and only ifp ∈ P (t).

This is a consequence of the arguments outlined above. The full proof of Lemma 5 is given in
Appendix A on pp. 614.

Let us now consider the weight-propagating8 procedurebuild-w-impleafs depicted in Figure 6.
This procedure performs a layered, top-down weight propagation from a given node9 p(t) ∈ Imp

8. The weight propagation scheme of thebuild-w-impleafs procedure is similar in nature to this used in the heuristics
module of the recent probabilistic temporal planner Prottle of Little, Aberdeen, and Thiébaux (2005).

9. Note that the “t” here will be instantiated witht + 1 when called frombuild-timestep.

586

PROBABILISTIC-FF

down to the leafs ofImp→p(t). This order of traversal ensures that each node ofImp→p(t) is pro-
cessed only after all its successors inImp→p(t). For the chance nodesε(t′), the dynamic weight
̟p(t) (ε(t′)) is set to

1. the probability that the outcomeε takes place at timet′ given that the corresponding action
effecte(ε) does take place att′, times

2. an estimate of the probability of achievingp at timet by the effectsE(Impε(t′)→p(t)).

The first quantity is given by the “global”, static weight̟(ε(t′)) assigned toε(t′) in the firstfor
loop ofbuild-timestep. The second quantity is derived from the dynamic weights̟p(t) (r(t′ + 1))
for r ∈ add(ε), computed in the previous iteration of the outermostfor loop of build-w-impleafs.
Making a heuristic assumption that the effect setsE(Impr(t′+1)→p(t)) for different r ∈ add(ε) are
all pairwise independent,α is then set to the probability of failure to achievep at t by the effects
E(Impε(t′)→p(t)). This computation ofα for ε(t′) is decomposed over the artifacts ofε, and this
is where the weight propagation starts taking place. For thefact nodesq(t′), the dynamic weight
̟p(t) (q(t′)) is set to the probability that some action effect conditioned on q at time t′ allows
(possibly indirectly) achieving the desired factp at timet. Making again the heuristic assumption
of independence between various such effects conditioned on q at t′, computing̟p(t) (q(t′)) is
decomposed over the outcomes of these effects.

procedureget-P (t,G)

estimates the probability of achievingG at timep.
if G 6⊆ P (t) ∪ uP (t) then return 0 endif
if G ⊆ P (t) then return 1 endif
for g ∈ G \ P (t) do

for eachl ∈ leafs(Imp→g(t)), introduce a chance proposition〈lg〉 with weight̟g(t) (l)

ϕg := (
∨

l∈leafs(Imp
→g(t))

l) ∧
∧

l∈leafs(Imp
→g(t))∩uP (−m) (¬l ∨ 〈lg〉)

endfor
return WMC(Φ ∧

∧

g∈G\P (t) ϕg)

Figure 7: Estimating the goal likelihood at a given time step.

What remains to be explained of thebuild-PRPG procedure are the two termination criteria of
thewhile loop constructing the planning graph from the layer0 onwards. The first test is made by
a call to theget-P procedure, and it checks whether the PRPG built to the time layer T contains
a relaxed plan for(A,NbI

, G, θ). Theget-P procedure is shown in Figure 7. First, if one of the
subgoals is negatively known at timet, then, from Lemma 5, the overall probability of achieving
the goal is0. On the other extreme, if all the subgoals are known at timet, then the probability of
achieving the goal is1. The correctness of the latter test is implied by Lemma 5 and non-interference
of relaxed actions. This leaves us with the main case in whichwe are uncertain about some of the
subgoals. This uncertainty is either due to dependence of these subgoals on the actual initial world
state, or due to achieving these subgoals using probabilistic actions, or due to both. The uncertainty
about the initial state is fully captured by our weighted CNFformulaφ(NbI

) ⊆ Φ. Likewise, the
outcomes’ chance propositionsε(t′) introduced into the implication graph by thebuild-timestep

procedure are “chained up” inImp to the propositions on the add lists of these outcomes, and

587

DOMSHLAK & H OFFMANN

“chained down” inImp to the unknown (relaxed) conditions of these outcomes, if any. Therefore,
if some action outcomeε at timet′ < t is relevant to achieving a subgoalg ∈ G at timet, then
the corresponding nodeε(t′) must appear inImp→g(t), and its weight will be back-propagated by
build-w-impleafs(g(t), Imp) down to the leafs ofImp→g(t). The get-P procedure then exploits
these back-propagated estimates by, again, taking a heuristic assumption of independence between
achieving different subgoals. Namely, the probability of achieving the unknown sub-goalsG\P (t)
is estimated by weighted model counting over the formulaΦ, conjoined with probabilistic theories
ϕg of achieving each unknown goalg in isolation. To understand the formulasϕg, consider that, in
order to makeg true att, we must achieve at least one of the leafsl of Imp→g(t); hence the left part of
the conjunction. On the other hand, if we makel true, then this achievesg(t) only with (estimated)
probability̟g(t) (l); hence the right part of the conjunction requires us to “pay the price” if we set
l to true.10

As was explained at the start of this section, the positive PRPG termination test may fire even if
the real goal probability isnot high enough. That is,get-P may return a value higher than the real
goal probability, due to the approximation (independence assumption) done in the weight propaga-
tion. Of course, due to the same approximation, it may also happen thatget-P returns a value lower
than the real goal probability.

The second PRPPG termination test comes to check whether we have reached a point in the
construction of PRPG that allows us to conclude that there isno relaxed plan for(A,NbI

, G, θ) that
starts with the given action sequencea. This termination criterion asks whether, from time stept
to time stept + 1, any potentially relevant changes have occurred. A potentially relevant change
would be if the goal-satisfaction probability estimateget-P grows, or if the known and unknown
propositions grow, of if the support leafs of the latter propositions inImp that correspond to the
initial belief state grow.11 If none occurs, then the same would hold in all future iterationst′ > t,
implying that the required goal satisfaction probabilityθ would never be reached. In other words,
the PRPG construction is complete.

Theorem 6 Let (A,NbI
, G, θ) be a probabilistic planning task,a be a sequence of actions appli-

cable inbI , and |+1 be a relaxation function forA. If build-PRPG(a,A, φ(NbI
), G, θ, |+1) returns

FALSE, then there is no relaxed plan for(A, bI , G, θ) that starts witha|+1 .

Note that Theorem 6 holds despite the approximation done during weight propagation, making
the assumption of probabilistic independence. For Theorem6 to hold, the only requirement on the
weight propagation is this:if the real weight still grows, then the estimated weight still grows. This
requirement is met under the independence assumption. It would not be met under the assumption of
co-occurence, propagating weights by maximization operations, and thereby conservatively under-
estimating the weights. With that propagation, if the PRPG fails then we cannot conclude that there
is no plan for the respective belief. This is another good argument (besides the bad quality heuristics
we observed empirically) against using the conservative estimation.

10. If we do not introduce the extra chance propositions〈lg〉, and instead assign the weight̟g(t) (l) to l itself, then the
outcome is not correct: we have to “pay” also for settingl to false.

11. To understand the latter, note that PRPG can always be added with more and more replicas of probabilistic actions
irrelevant to achieving the goals, and having effects withknownconditions. While these action effects (since they are
irrelevant) will not influence our estimate of goal-satisfaction probability, the chance propositions correspondingto
the outcomes of these effects may become the support leafs ofsome unknown propositionp. In the latter case, the
set of support leafssupport(p(t′)) will infinitely grow with t′ → ∞, while the projection ofsupport(p(t′)) on the
initial belief state (that is,support(p(t)) ∩ uP (t)) is guaranteed to reach a fix point.

588

PROBABILISTIC-FF

The full proof to Theorem 6 is given in Appendix A on pp. 615. The theorem finalizes our
presentation and analysis of the process of constructing probabilistic relaxed planning graphs.

4.3 Example: PRPG Construction

To illustrate the construction of a PRPG by the algorithm in Figures 4-7, let us consider a simplifi-
cation of our running Examples 1-2 in which

(i) only the actions{move-b-right,move-left} constitute the action setA,

(ii) the goal isG = {r1, b2}, and the required lower bound on the probability of successθ = 0.9,

(iii) the initial belief statebI is given by the BNNbI
as in Example 2, and

(iv) the belief stateba evaluated by the heuristic function corresponds to the actions sequence
a = 〈move-b-right〉.

The effects/outcomes of the actionsA considered in the construction of PRPG are described in
Table 3, whereembr is a re-notation of the effecte in Table 1, the effecte′ in Table 1 is effectively
ignored due to the emptiness of its add effects.

a E(a) con(e) con(e)|+1 Λ(e) Pr(ε) add(ε)

εmbr
1 0.7 {r2, b2}

ambr (move-b-right) embr {r1, b1} {r1} εmbr
2 0.2 {r2}

εmbr
3 0.1 ∅

aml (move-left) eml {r2} {r2} εml 1.0 {r1}

noopr1
er1 {r1} {r1} εr1 1.0 {r1}

noopr2
er2 {r2} {r2} εr2 1.0 {r2}

noopb1 eb1 {b1} {b1} εb1 1.0 {b1}

noopb2
eb2 {b2} {b2} εb2 1.0 {b2}

Table 3: Actions and their|+1 relaxation for the PRPG construction example.

The initialization phase of thebuild-PRPG procedure results inΦ = φ(NbI
), Imp := ∅,

P (−1) = ∅, anduP (−1) = {r1, r2, b1, b2}. The content ofuP (−1) is depicted in the first column
of nodes in Figure 8. The firstfor loop of build-PRPG (constructing PRPG for the “past” layers
corresponding toa) makes a single iteration, and calls thebuild-timestep procedure witht = −1
andA(-1) = {ambr} ∪ NOOPS. (In what follows, using the names of the actions we refer to their
|+1 relaxations as given in Table 3.) The add list of the outcomeεmbr

3 is empty, and thus it adds no
nodes to the implication graph. Other than that, the chance nodes introduced toImp by this call to
build-timestep appear in the second column of Figure 8. The first outerfor loop of build-timestep

results inImp given by columns 1-3 of Figure 8,uP (0) = uP (−1), and no extension ofΦ.
In the second outerfor loop ofbuild-timestep, the weight propagating procedurebuild-w-impleafs

is called for each unknown factp(0) ∈ uP (0) = {r1(0), r2(0), b1(0), b2(0)}, generating the “p(0)-
oriented” weights as in Table 4. For eachp(0) ∈ uP (0), the set of supporting leafssupport(p(0)) =

589

DOMSHLAK & H OFFMANN

�� ��
�� ��εml(0) 54

01
//

�� ��
�� ��εmbr

1 (-1)
ML

HI
//

]\

 !
//

�� ��
�� ��εmbr

1 (0)
ML

HI
//

]\

 !
//

�� ��
�� ��εmbr

1 (1)
ML

HI
//

]\

 !
//

�� ��
�� ��εmbr

2 (-1)

��;
;;

;;
;;

;;
;;

;;
;;

;

�� ��
�� ��εmbr

2 (0)

��;
;;

;;
;;

;;
;;

;;
;;

;

�� ��
�� ��εmbr

2 (1)

��;
;;

;;
;;

;;
;;

;;
;;

;

r1(-1)

AA����������������

88qqqqqqqqq
//
�� ��
�� ��εr1(-1) // r1(0)

AA����������������

88rrrrrrrr
//
�� ��
�� ��εr1(0) // r1(1)

r2(-1) //
�� ��
�� ��εr2(-1) // r2(0)

RS

WV�������������������������

00

//
�� ��
�� ��εr2(0) // r2(1) //

�� ��
�� ��εr2(1) // r2(2)

b1(-1) //
�� ��
�� ��εb1(-1) // b1(0) //

�� ��
�� ��εb1(0) // b1(1) //

�� ��
�� ��εb1(1) // b1(2)

b2(-1) //
�� ��
�� ��εb2(-1) // b2(0) //

�� ��
�� ��εb2(0) // b2(1) //

�� ��
�� ��εb2(1) // b2(2)

Figure 8: The implication graphImp. The odd columns of nodes depict the sets of unknown propo-
sitionsuP (t). The even columns of nodes depict the change propositions introduced for
the probabilistic outcomes of the actionsA(t).

{p(−1)}, none of them is implied byΦ = NbI
, and thus the set of known factsP (0) remains equal

to P (−1) = ∅, anduP (−1) equal to= uP (−1).

t′ = 0 t′ = −1
r1 r2 b1 b2 εmbr

1 εmbr
2 εr1 εr2 εb1 εb2 r1 r2 b1 b2

̟r1(0) 1 1 1
̟r2(0) 1 0.7 0.2 1 0.9 1
̟b1(0) 1 1 1
̟b2(0) 1 0.7 1 0.7 1

Table 4: The columns in the table correspond to the nodes in the implication graphImp, and each
row provides the weights̟ p(0) for somep(0) ∈ uP (0). An entry in the row ofp(0) is
empty if and only if the node associated with the corresponding column does not belong
to the implication subgraphImp→p(0).

Having finished with thefor loop, thebuild-PRPG procedure proceeds with thewhile loop that
builds the “future” layers of PRPG. The test of goal (un)satisficing get-P(0, G) < θ evaluates to
TRUE as we getget-P(0, G) = 0.63 < 0.9, and thus the loop proceeds with its first iteration.
To see the former, consider the implication graphImp constructed so far (columns 1-3 in Fig-

590

PROBABILISTIC-FF

ure 8). For our goalG = {r1, b2} we haveleafs(Imp→r1(0)) = {r1(−1)}, andleafs(Imp→b2(0)) =
{r1(−1), b2(−1)}. As {r1(0), b2(0)} ⊂ uP (0) andΦ = φ(NbI

), we have

get-P(0, G) = WMC (φ(NbI
) ∧ ϕr1 ∧ ϕb2) ,

where

ϕr1 = (〈r1,r1〉) ∧ (r1 ↔ 〈r1,r1〉) ,

ϕb2 = (〈r1,b2〉 ∨ 〈b2,b2〉) ∧ (r1(−1) ↔ 〈r1,b2〉) ∧ (b2(−1) ↔ 〈b2,b2〉) ,
(20)

and

̟ (〈r1,r1〉) = ̟r1(0) (r1(−1)) = 1

̟ (〈b2,b2〉) = ̟b2(0) (b2(−1)) = 1 .

̟ (〈r1,b2〉) = ̟b2(0) (r1(−1)) = 0.7

(21)

Observe that the two models ofφ(NbI
) consistent withr2 immediately falsify the sub-formula

φ(NbI
) ∧ ϕr1 . Hence, we have

get-P(0, G) = WMC
(

φ(NbI
) ∧ ϕr1 ∧ ϕb2 |r1(−1)=1,b1(−1)=1

)

+

WMC
(

φ(NbI
) ∧ ϕr1 ∧ ϕb2 |r1(−1)=1,b2(−1)=1

)

= bI(r1, b1) · ̟ (〈r1,r1〉) · ̟ (〈r1,b2〉) + bI(r1, b2) · ̟ (〈r1,r1〉) · ̟ (〈r1,b2〉) · ̟ (〈b2,b2〉)

= 0.63 · 1 · 0.7 + 0.27 · 1 · 0.7 · 1

= 0.63

In the first iteration of thewhile loop, build-PRPG calls thebuild-timestep procedure with
t = 0 andA(0) = {ambr, aml} ∪ NOOPS. The chance nodes introduced toImp by this call to
build-timestep appear in the forth column of Figure 8. The first outerfor loop of build-timestep

results inImp given by columns 1-5 of Figure 8,uP (1) = uP (0), and no extension ofΦ. As
before, in the secondfor loop of build-timestep, thebuild-w-impleafs procedure is called for each
unknown factp(1) ∈ uP (1) = {r1(1), r2(1), b1(1), b2(1)}, generating the “p(1)-oriented” weights.
The interesting case here is the case of weight propagationbuild-w-impleafs(r1(1), Imp), resulting
in weights

̟r1(1)(r1(1)) = 1

̟r1(1)(ε
ml(0)) = 1

̟r1(1)(ε
r1(0)) = 1

̟r1(1)(r1(0)) = 1

̟r1(1)(r2(0)) = 1

⇒

̟r1(1)(ε
r1(-1)) = 1

̟r1(1)(ε
r2(-1)) = 1

̟r1(1)(ε
mbr

1 (-1)) = 0.7

̟r1(1)(ε
mbr

2 (-1)) = 0.2

⇒ ̟r1(1)(r1(-1)) = 1

̟r1(1)(r2(-1)) = 1

for the nodes inImp→r1(1). From that, the set of supporting leafs ofr1(1) is assigned tosupport(r1(1)) =
{r1(−1), r2(−1)}, and sinceΦ = φ(NbI

) does impliesr1(−1) ∨ r2(−1), the factr1 is concluded
to be known at time1, and is added toP (1). For all other nodesp(1) ∈ uP (1) we still have
support(p(1)) = {p(−1)}, and thus they all remain unknown at timet = 1 as well. Putting
things together, this call to thebuild-w-impleafs procedure results withP (1) = {r1(1)}, and

591

DOMSHLAK & H OFFMANN

uP (1) = {r2(1), b1(1), b2(1)}. Thewhile loop of thebuild-PRPG procedure proceeds with check-
ing the fixpoint termination test, and this immediately fails due toP (1) 6= P (0). Hence, thewhile
loop proceeds with the next iteration corresponding tot = 1.

The test of goal (un)satisficingget-P(1, G) < θ still evaluates to TRUE because we have
get-P(1, G) = 0.899 < 0.9. Let us follow this evaluation ofget-P(1, G) in detail as well. Consid-
ering the implication graphImp constructed so far up to timet = 1 (columns 1-5 in Figure 8), and
havingG ∩ uP (1) = {b2(1)}, leafs(Imp→b2(1)) = {r1(−1), b2(−1)}, and (still)Φ = φ(NbI

), we
obtain

get-P(1, G) = WMC (φ(NbI
) ∧ ϕb2) ,

with

ϕb2 = (〈r1,b2〉 ∨ 〈b2,b2〉) ∧ (r1(−1) ↔ 〈r1,b2〉) ∧ (b2(−1) ↔ 〈b2,b2〉) , (22)

While the structure ofϕb2 in Equation 22 is identical to this in Equation 20, the weights associated
with the auxiliary chance propositions are different, notably

̟ (〈b2,b2〉) = ̟b2(1) (b2(−1)) = 1 .

̟ (〈r1,b2〉) = ̟b2(1) (r1(−1)) = 0.91
(23)

The difference in̟ (〈r1,b2〉) between Equation 21 and Equation 23 stems from the fact thatr1(−1)
supportsb2(1) not only via the effectembr at time−1 but also via the a different instance of the
same effect at time0. Now, the only model ofφ(NbI

) that falsifyϕb2 is the one that sets bothr1

andb2 to false. Hence, we have

get-P(1, G) = bI(r1, b1) · ̟ (〈r1,b2〉) +

bI(r1, b2) · ̟ (〈r1,b2〉) · ̟ (〈b2,b2〉) +

bI(r2, b2) · ̟ (〈b2,b2〉)

= 0.63 · 0.91 + 0.27 · 0.91 · 1 + 0.08 · 1

= 0.899

Having verifiedget-P(1, G) < θ, thewhile loop proceeds with the construction for timet = 2,
and calls thebuild-timestep procedure witht = 1 andA(1) = {ambr, aml}∪NOOPS. The chance
nodes introduced toImp by this call tobuild-timestep appear in the sixth column of Figure 8. The
first outerfor loop ofbuild-timestep results inImp given by columns 1-7 of Figure 8, and

Φ = φ(NbI
) ∧

(

εmbr

1 (1) ∨ εmbr

2 (1) ∨ εmbr

3 (1)
)

∧

∧
(

¬εmbr

1 (1) ∨ ¬εmbr

2 (1)
)

∧
(

¬εmbr

1 (1) ∨ ¬εmbr

3 (1)
)

∧
(

¬εmbr

2 (0) ∨ ¬εmbr

3 (0)
)

(24)

Next, thebuild-w-impleafs procedure is called as usual for each unknown factp(2) ∈ uP (2) =
{r2(2), b1(2), b2(2)}. The information worth detailing here is that now we haveleafs(Imp→b2(2)) =

{b2(−1), r1(−1), εmbr
1 (1)}, andsupport(b2(2)) = {b2(−1), εmbr

1 (1)}. However, we still haveΦ →
∨

l∈support(p(2)) l for no p(2) ∈ uP (2), and thus the set of known factsP (2) remains equal to
P (1) = {r1}.

592

PROBABILISTIC-FF

Returning from the call to thebuild-w-impleafs procedure,build-PRPG proceeds with checking
the fixpoint termination condition. This time, the first three equalities of the condition do hold, yet
the condition is not satisfied due toget-P(2, G) > get-P(t,G). To see the latter, notice that we have

get-P(2, G) = WMC (Φ ∧ ϕb2) ,

whereΦ is given by Equation 24,

ϕb2 =
(

〈r1,b2〉 ∨ 〈b2,b2〉 ∨ εmbr

1 (1)
)

∧ (r1(−1) ↔ 〈r1,b2〉) ∧ (b2(−1) ↔ 〈b2,b2〉) , (25)

and

̟ (〈b2,b2〉) = ̟b2(1) (b2(−1)) = 1 .

̟ (〈r1,b2〉) = ̟b2(1) (r1(−1)) = 0.91

̟(εmbr

1 (1)) = ̟b2(1)(ε
mbr

1 (1)) = 0.7

(26)

It is not hard to verify that

get-P(2, G) = get-P(1, G) + bI(r2, b1) · ̟(εmbr

1 (1))

= 0.899 + 0.02 · 0.7

= 0.913

Note that now we do haveget-P(2, G) ≥ θ, and thereforebuild-PRPG aborts thewhile loop by
passing the goal satisficing test, and setsT = 2. This finalizes the construction of PRPG, and thus,
our example.

4.4 Extracting a Probabilistic Relaxed Plan

If the construction of the PRPG succeeds in reaching the goals with the estimated probability of suc-
cessget-P(T,G) exceedingθ, then we extract a relaxed plan consisting ofA′ ⊆ A(0), . . . , A(T −
1), and use the size ofA′ as the heuristic value of the evaluated belief stateba.

Before we get into the technical details, consider that there are some key differences between
relaxed (no delete lists) probabilistic planning on the onehand, and both relaxed classical and re-
laxed qualitative conformant planning on the other hand. Inrelaxed probabilistic planning, it might
make sense to execute the same action numerous times in consecutive time steps. In fact, this
might be essential – just think of throwing a dice in a game until a “6” appears. In contrast, in the
relaxed classical and qualitatively uncertain settings this is not needed – once an effect has been
executed, it remains true forever. Another complication inprobabilistic planning is that the required
goal-achievement probability is specified over a conjunction (or, possibly, some more complicated
logical combination) of different facts. While increasingthe probability of achieving each individ-
ual sub-goalg ∈ G in relaxed planning will always increase the overall probability of achievingG,
choosing the right distribution of effort among the sub-goals to pass the required thresholdθ for the
whole goalG is a non-trivial problem.

A fundamental problem is the aforementioned lack of guarantees of the weight propagation.
On the one hand, the construction of PRPG and Lemma 5 imply that a|+1 concatenated with an
arbitrary linearizationaR of A(0), . . . , A(T − 1) is executable inbI . On the other hand, due to
the independence assumption made in thebuild-w-impleafs procedure,get-P(T,G) ≥ θ doesnot

593

DOMSHLAK & H OFFMANN

imply that the probability of achievingG by a|+1 concatenated withaR exceedsθ. A “real” relaxed
plan, in that sense, might not even exist in the constructed PRPG.

Our answer to the above difficulties is to extract relaxed plans that are correctrelative to the
weight propagation.Namely, we use an implication graph “reduction” algorithm that computes
a minimal subset of that graph which still – according to the weight propagation – sufficiently
supports the goal. The relaxed plan then corresponds to thatsubset. Obviously, this “solves” the
difficulty with the lack of “real” relaxed plans; we just do the relaxed plan extraction according to
the independence assumption (besides ignoring deletes andremoving all but one condition of each
effect). The mechanism also naturally takes care of the needto apply the same action several times:
this corresponds to several implication graph edges which are all needed in order to obtain sufficient
weight. The choice of how effort is distributed among sub-goals is circumvented in the sense that
all sub-goals are considered in conjunction, that is, the reduction is performed once and for all. Of
course, there remains a choice in which parts of the implication graph should be removed. We have
found that it is a useful heuristic to make this choice based on which actions have already been
applied on the path to the belief. We will detail this below.

Making another assumption on top of the previous relaxations can of course be bad for heuristic
quality. The “relaxed plans” we extract are not guaranteed to actually achieve the desired goal prob-
ability. Since the relaxed plans are used only for search guidance, per se this theoretical weakness is
only of marginal importance. However, an over-estimation of goal probability might result in a bad
heuristic because the relaxed plan does not include the right actions, or does not apply them often
enough. In Section 5, we will discuss an example domain whereProbabilistic-FF fails to scale for
precisely this reason.

Figure 9 shows the main routineextract-PRPlan for extracting a relaxed plan from a given
PRPG (note thatT is the index of the highest PRPG layer, c.f. Figure 4). The sub-routines of
extract-PRPlan are shown in Figures 10-11. At a high level, theextract-PRPlan procedure consists
of two parts:

1. Reductionof the implication graph, aiming at identifying a set of time-stamped action effects
that can be ignored without decreasing our estimate of goal-achievement probabilityget-P(T,G)
below the desired thresholdθ, and

2. Extractionof a valid relaxed planar such that (schematically) constructing PRPG withar instead
of the full set ofA(0), . . . , A(T) would still result inget-P(T,G) ≥ θ.

The first part is accomplished by thereduce-implication-graph procedure, depicted in Figure 10.
As of the first step in the algorithm, the procedure considersonly the parts of the implication graph
that are relevant to achieving the unknown sub-goals. Next,reduce-implication-graph performs a
greedy iterative elimination of actions from the “future” layers0, . . . , T−1 of PRPG until the proba-
bility estimateget-P(T,G) over the reduced set of actions goes belowθ. While, in principle, any ac-
tion fromA(0), . . . , A(T−1) can be considered for elimination, inreduce-implication-graph we ex-
amine onlyrepetitions of the actions that already appear ina. Specifically,reduce-implication-graph

iterates over the actionsa in a|+1 , and ifa repeats somewhere in the “future” layers of PRPG, then
one such repetitiona(t′) is considered for removal. If removing this repetition ofa is found safe
with respect to achievingθ,12 then it is effectively removed by eliminating all the edges in Imp that
are induced bya(t′). Then the procedure considers the next repetition ofa. If removing another

12. Note here that the formula forWMC is constructed exactly as for theget-P function, c.f. Figure 7.

594

PROBABILISTIC-FF

procedureextract-PRPlan(PRPG(a, A, φ(NbI
), G, θ, |+1)),

selects actions fromA(0), . . . , A(T − 1)
Imp′ := reduce-implication-graph()
extract-subplan(Imp′)
sub-goal(G ∩ P (T))
for decreasing time stepst := T, . . . , 1 do

for all g ∈ G(t) do
if ∃a ∈ A(t − 1), e ∈ E(a), con(e) ∈ P (t − 1), ∀ε ∈ Λ(e) : g ∈ add(ε) then

add-to-relaxed-planone sucha at timet
sub-goal(pre(a) ∪ con(e))

else
Imp g(t) := construct-support-graph(support(g(t)))

extract-subplan(Imp g(t))
endif

endfor
endfor

Figure 9: Extracting a probabilistic relaxed plan.

copy of a is not safe anymore, then the procedure breaks the inner loopand considers the next
action.

procedure reduce-implication-graph()

operates on the PRPG;
returns a sub-graph ofImp.

Imp′ := ∪g∈G\P (T)Imp→g(T)

for all actionsa ∈ a|+1 do
for all edges(ε(t′), p(t′ + 1)) ∈ Imp′′, induced bya(t′) ∈ A(t′), for somet′ ≥ 0 do

Imp′′ := Imp′

remove fromImp′′ all the edges induced bya ∈ A(t′)
for all g ∈ G \ P (t) do

for eachl ∈ leafs(Imp′′→g(T)), introduce a chance proposition〈lg〉 with weight̟g(T) (l)

ϕg := (
∨

l∈leafs(Imp′′
→g(T))

l) ∧
∧

l∈leafs(Imp′′
→g(T))∩uP (−m) (¬l ∨ 〈lg〉)

endfor
if WMC(Φ ∧

∧

g∈G\P (T) ϕg) ≥ θ then Imp′ := Imp′′ else break endif
endfor

endfor
return Imp′

Figure 10: The procedure reducing the implication graph.

To illustrate the intuition behind our focus on the repetitions of the actions froma, let us con-
sider the following example of a simple logistics-style planning problem with probabilistic actions.
Suppose we have two locationsA andB, a truck that is known to be initially inA, and a heavy and
uneasy to grab package that is known to be initially on the truck. The goal is to have the package
unloaded inB with a reasonably high probability, and there are two actions we can use – moving
the truck fromA to B (am), and unloading the package (au). Moving the truck does not necessarily

595

DOMSHLAK & H OFFMANN

move the truck toB, but it does that with an extremely high probability. On the other hand, unload-
ing the bothersome package succeeds with an extremely low probability, leaving the package on the
truck otherwise. Given this data, consider the belief stateba corresponding to “after trying to move
the truck once”, that is, to the action sequence〈am〉. To achieve the desired probability of success,
the PRPG will have to be expanded to a very large time horizonT , allowing the actionau to be
applied sufficiently many times. However, the fact “truck inB” is not known in the belief stateba,
and thus the implication graph will also contain the same amount of applications ofam. Trimming
away most of these applications ofam will still keep the probability sufficiently high.

The reader might ask at this point what we hope to achieve by “trimming away most of the
applications ofam”. The point is, intuitively, that the implication graph reduction mechanism is
a means tounderstand what has been accomplished already, on the path to ba. Without such an
understanding, the relaxed planning can be quite indiscriminative between search states. Consider
the above example, and assume we have not one but two troubledpackages,P1 andP2, on the
truck, with unload actionsau1 andau2. The PRPG forba contains copies ofau1 andau2 at layers up
to the large horizonT . Now, say our search starts to unloadP1. In the resulting belief, the PRPG
still hasT steps because the situation has not changed forP2. Each step of the PRPG still contains
copies of bothau1 andau2 – and hence the heuristic value remains the same as before! Inother
words, without an implication graph reduction technique, relevant things that are accomplished
may remain hidden behind other things that have not yet been accomplished. In the above example,
this is not really critical because, as soon as we have tried an unload foreachof P1 andP2, the
time horizonT decreases by one step, and the heuristic value is reduced. Itis, however, often
the case that some sub-task must be accomplished before someother sub-task can be attacked. In
such situations, without implication graph reduction, thesearch staggers across a huge plateau until
the first task is completed. We observed this in a variety of benchmarks, and hence designed the
implication graph reduction to make the relaxed planning aware of what has already been done.

Of course, since our weight propagation may over-estimate true probabilities, and hence over-
estimate what was achieved in the past, the implication graph reduction may conclude prematurely
that a sub-task has been “completed”. This leads us to the main open question in this research; we
will get back to this at the end of Section 5, where we discuss this in the context of an example
where Probabilistic-FF’s performance is bad.

Let us get back to explaining theextract-PRPlan procedure. After the implication graph reduc-
tion, the procedure proceeds with the relaxed plan extraction. The process makes use of proposition
setsG(1), . . . , G(T), which are used to store time-stamped sub-goals arising at layers1 ≤ t ≤ T
during the relaxed plan extraction. The sub-routineextract-subplan (Figure 11)

1. adds to the constructed relaxed plan all the time-stampedactions responsible for the edges of the
reduced implication graphImp′, and

2. subgoals everything outside the implication graph that condition the applicability of the effects
responsible for the edges ofImp′.

Here and in the later phases of the process, the sub-goals areadded into the setsG(1), . . . , G(T) by
thesub-goal procedure that simply inserts each given proposition as a sub-goal at the first layer of
its appearance in the PRPG. Having accomplished this extract-and-subgoal pass ofextract-subplan

over Imp′, we also subgoal all the goal conjuncts known at timeT .
In the next phase of the process, the sub-goals are considered layer by layer in decreasing order

of time stepsT ≥ t ≥ 1. For each sub-goalg at timet, certain supporting actions are selected into

596

PROBABILISTIC-FF

procedureextract-subplan(Imp′)
actions that are helpful for achieving uncertain goalsG ∩ uP (T) and
subgoals all the essential conditions of these actions

for each edge(ε(t), p(t + 1)) ∈ Imp′ such thatt ≥ 0 do
if actiona and its effecte ∈ E(a) be responsible forε at timet time

add-to-relaxed-plana at timet
sub-goal((pre(a) ∪ con(e)) ∩ P (t))

endif endfor

proceduresub-goal(P)

inserts the propositions inP as sub-goals
at the layers of their first appearance in the PRPG

for all p ∈ P do
t0 := argmint {p ∈ P (t)}
if t0 ≥ 1 then G(t0) := G(t0) ∪ {p} endif

endfor

procedureconstruct-support-graph(support(g(t)))

takes a subsetsupport(g(t)) of leafs(Imp→g(t)) weighted according tog(t);
returns a sub-graphImp′ of Imp.

Imp′ := ∅
open := support(g(t))
while open 6= ∅ do

open := open \ {p(t′)}
choosea ∈ A(t′), e ∈ E(a), con(e) = {p} such that

∀ε ∈ Λ(e) : (p(t′), ε(t′)) ∈ Impg(t) ∧ ̟g(t)(ε(t
′)) = ̟(ε(t′))

for eachε ∈ Λ(e) do
chooseq ∈ add(ε) such that̟ g(t)(q(t

′ + 1)) = 1
Imp′ := Imp′ ∪ {(p(t′), ε(t′)), (ε(t′), q(t′ + 1))}
open := open ∪ {q(t′ + 1)}

endfor endwhile
return Imp′

Figure 11: Sub-routines forextract-PRPlan.

the relaxed plan. If there is an actiona and some effecte ∈ E(a) that are known to be applicable
at timet − 1, and guarantee to achieveg with certainty, thena is added to the constructed relaxed
plan att − 1. Otherwise, we

1. use theconstruct-support-graph procedure to extract a sub-graphImp g(t) consisting of a set of
implications that together ensure achievingg at timet, and

2. use the already discussed procedureextract-subplan to

(a) add to the constructed relaxed plan all the time-stampedactions responsible for the edges
of Imp g(t), and

(b) subgoal everything outside this implication graphImp g(t) that condition the applicability
of the effects responsible for the edges ofImp g(t).

597

DOMSHLAK & H OFFMANN

Processing this way all the sub-goals down toG(1) finalizes the extraction of the relaxed plan
estimate. Section 4.5 provides a detailed illustration of this process on the PRPG constructed in
Section 4.3. In any event, it is easy to verify that the relaxed plan we extract is sound relative to our
weight propagation, in the following sense.

Proposition 7 Let (A,NbI
, G, θ) be a probabilistic planning task,a be a sequence of actions ap-

plicable inbI , and |+1 be a relaxation function forA such thatbuild-PRPG(a,A, φ(NbI
), G, θ, |+1)

returns TRUE. LetA(0)s, . . . , A(T − 1)s be the actions selected fromA(0), . . . , A(T − 1) by
extract-PRPlan. When constructing a relaxed planning graph using onlyA(0)s, . . . , A(T − 1)s,
thenget-P(T,G) ≥ θ.

Proof: By construction: reduce-implication-graph leaves enough edges in the graph so that the
weight propagation underlyingget-P still concludes that the goal probability is high enough.

4.5 Example: Extracting a Relaxed Plan from PRPG

We illustrate the process of the relaxed plan extraction on the PRPG as in Figure 8, constructed for
the belief state and problem specification as in example in Section 4.3. In this example we have
T = 2, G ∩ uP (2) = {b2}, and thus the implication graphImp gets immediately reduced to its
sub-graphImp′ depicted in Figure 12a. As the plana to the belief state in question consists of only a
single actionambr, the only action instances that are considered for elimination by the outerfor loop
of reduce-implication-graph areambr(0) andambr(1). If ambr(0) is chosen to be examined, then the
implication sub-graphImp′′ = Imp′ is further reduced by removing all the edges due toambr(0),
and the resultingImp′′ appears13 in Figure 12b. TheΦ andϕb2 components of the evaluated formula
Φ ∧ ϕb2 are given by Equation 24 and Equation 25, respectively, and the weights associated with
the chance propositions in Equation 25 over the reduced implication graphImp′′ are

̟ (〈b2,b2〉) = ̟b2(1) (b2(−1)) = 1

̟ (〈r1,b2〉) = ̟b2(1) (r1(−1)) = 0.7 .

̟(εmbr

1 (1)) = ̟b2(1)(ε
mbr

1 (1)) = 0.7

(27)

The weight model counting ofΦ∧ϕb2 evaluates to0.724 < θ, and thusImp′′ does not replaceImp′.
The only alternative action removal is this ofambr(1), and it can be seen from the example in Sec-
tion 4.3 that this attempt for action elimination will also result in probability estimate lower thanθ.
Hence, the only effect ofreduce-implication-graph on the PRPG processed by theextract-PRPlan

procedure is the reduction of the implication graph to only the edges relevant to achieving{b2} at
time T = 2. The reduced implication sub-graphImp′ returned by thereduce-implication-graph

procedure is depicted in Figure 12a.
Next, theextract-subplan procedure iterates over the edges ofImp′ and adds to the initially

empty relaxed plan applications ofambr at times0 and1. The actionambr has no preconditions,
and the conditionr1 of the effectεmbr

1 ∈ E(ambr) is known at time1. Hence,extract-subplan

invokes thesub-goal procedure on{r(1)}, and the latter is added into the proposition setG(1). The
subsequent callsub-goal(G∩P (T)) = sub-goal({r1}) leads to no further extensions ofG(2), G(1)

13. The dashed edges in Figure 12b can be removed fromImp′′ either now or at a latter stage ifImp′′ is chosen to replace
Imp′.

598

PROBABILISTIC-FF

�� ��
�� ��εmbr

1 (-1)
]\

 !
//

�� ��
�� ��εmbr

1 (0)

]\

 !
//

�� ��
�� ��εmbr

1 (1)

]\

 !
//

r1(-1)

88qqqqqqqqq
//
�� ��
�� ��εr1(-1) // r1(0)

88rrrrrrrr

b2(-1) //
�� ��
�� ��εb2(-1) // b2(0) //

�� ��
�� ��εb2(0) // b2(1) //

�� ��
�� ��εb2(1) // b2(2)

(a)

�� ��
�� ��εmbr

1 (-1)
]\

 !
//

�� ��
�� ��εmbr

1 (1)

]\

 !
//

r1(-1)

88qqqqqqqqq
//____
�� ��
�� ��εr1(-1) //____ r1(0)

b2(-1) //
�� ��
�� ��εb2(-1) // b2(0) //

�� ��
�� ��εb2(0) // b2(1) //

�� ��
�� ��εb2(1) // b2(2)

(b)

�� ��
�� ��εml(0) 54

01
//r1(-1) //

�� ��
�� ��εr1(-1) // r1(0) //

�� ��
�� ��εr1(0) // r1(1)

r2(-1) //
�� ��
�� ��εr2(-1) // r2(0)

RS

WV���������

00

(c)

Figure 12: Illustrations for various steps of the relaxed plan extraction from the PRPG constructed
in Section 4.3, and, in particular, from the implication graph of the latter, depicted in
Figure 8.

as we already haver1 ∈ G(1). Hence, the outerfor loop of extract-PRPlan starts withG(2) = ∅,
andG(1) = {r1}.

SinceG(2) is empty, the first sub-goal considered byextract-PRPlanis r1 from G(1). For r1

at time1, no action effect at time0 passes the test of theif statement—the conditionr2 of εml

is not known at time0, and the same is true14 for εr1 . Hence, the subgoalr1(1) is processed
by extracting a sub-plan to support achieving it with certainty. First, theconstruct-support-graph

procedure is called withsupport(r1(1)) = {r1(−1), r2(−1)} (see Section 4.3). The extracted sub-

14. In fact, it is easy to see from the construction of thesub-goal procedure that ifp belongs toG(t), then the condition
of the noop’s effectεp cannot be known at timet − 1.

599

DOMSHLAK & H OFFMANN

graphImp r1(1) of the original implication graphImp is depicted in Figure 12c, and invoking the
procedureextract-subplan on Imp r1(1) results in adding (i) application ofaml at time0, and (ii)
no new subgoals. Hence, the proposition setsG(1), G(2) get emptied, and thus we end up with
extracting a relaxed plan〈ambr(0), aml(0), ambr(1)〉.

5. Empirical Evaluation

We have implemented Probabilistic-FF in C, starting from the Conformant-FF code. Withθ = 1.0,
Probabilistic-FF behaves exactly like Conformant-FF (except that Conformant-FF cannot handle
non-deterministic effects). Otherwise, Probabilistic-FF behaves as described in the previous sec-
tions, and uses Cachet (Sang et al., 2005) for the weighted model counting. To better home in on
strengths and weaknesses of our approach, the empirical evaluation of Probabilistic-FF has been
done in two steps. In Section 5.1 we evaluate Probabilistic-FF on problems having non-trivial un-
certain initial states, but only deterministic actions. InSection 5.2 we examine Probabilistic-FF
on problems with probabilistic action effects, and with both sources of uncertainty. We compare
Probabilistic-FF’s performance to that of the probabilistic planner POND (Bryce et al., 2006). The
reasons for choosing POND as the reference point are twofold. First, similarly to Probabilistic-FF,
POND constitutes a forward-search planner guided by a non-admissible heuristic function based
on (relaxed) planning graph computations. Second, to our knowledge, POND clearly is the most
efficient probabilistic planner reported in the literature.15

The experiments were run on a PC running at 3GHz with 2GB main memory and 2MB cache
running Linux. Unless stated otherwise, each domain/problem pair was tried at four levels of de-
sired probability of successθ ∈ {0.25, 0.5, 0.75, 1.0}. Each run of a planner was time-limited by
1800 seconds of user time. Probabilistic-FF was run in the default configuration inherited from FF,
performing one trial of enforced hill-climbing and switching to best-first search in case of failure. In
domains without probabilistic effects, we found that Probabilistic-FF’s simpler relaxed plan extrac-
tion developed for that case (Domshlak & Hoffmann, 2006), performs better than the one described
in here. We hence switch to the simpler version in these domains.16

Unlike Probabilistic-FF, the heuristic computation in POND has an element of randomization;
namely, the probability of goal achievement is estimated via sending a set of random particles
through the relaxed planning graph (the number of particlesis an input parameter). For each prob-
lem instance, we averaged the runtime performance of POND over 10 independent runs. In special
cases where POND timed out on some runs for a certain problem instance, yet not on all of the
10 runs, the average we report for POND uses the lower-bounding time threshold of 1800s to re-
place the missing time points. In some cases, POND’s best-case performance differs a lot from
its average performance; in these cases, the best-case performance is also reported. We note that,
following the suggestion of Dan Bryce, POND was run in its default parameter setting, and, in par-

15. In our experiments we have used a recent version 2.1 of POND that significantly enhances POND2.0 (Bryce et al.,
2006). The authors would like to thank Dan Bryce and Rao Kambhampati for providing us with a binary distribution
of POND2.1.

16. Without probabilistic effects, relaxed plan extraction proceeds very much like in Conformant-FF, with an additional
straightforward backchaining selecting support for the unknown goals. The more complicated techniques developed
in here to deal with relaxed plan extraction under probabilistic effects appear to have a more unstable behavior than
the simpler techniques. If thereare probabilistic effects, then the simple backchaining is notmeaningful because it
has no information on how many times an action must be appliedin order to sufficiently support the goal.

600

PROBABILISTIC-FF

θ = 0.25 θ = 0.5 θ = 0.75 θ = 1.0
Instance #actions/#facts/#states t/|S|/l t/|S|/l t/|S|/l t/|S|/l

Safe-uni-70 70/71/140 1.39/19 /18 4.02/36/35 8.06/54/53 4.62/71 /70
Safe-cub-70 70/70/138 0.28/6/5 0.76/13/12 1.54/22/21 4.32/70/69

Cube-uni-15 6/90/3375 3.25/145/26 3.94/150/34 5.00/169/38 25.71/296/42
Cube-cub-15 6/90/3375 0.56/41/8 1.16/70/13 1.95/109/18 26.35/365/42

Bomb-50-50 2550/200/> 2100 0.01/1/0 0.10/17/16 0.25/37/36 0.14/51/50
Bomb-50-10 510/120/> 260 0.00/1/0 0.89/248/22 4.04/778/62 1.74/911/90
Bomb-50-5 255/110/> 255 0.00/1/0 1.70/468/27 4.80/998/67 2.17/1131/95
Bomb-50-1 51/102/> 251 0.00/1/0 2.12/662/31 6.19/1192/71 2.58/1325/99

Log-2 3440/1040/> 2010 0.90/117/54 1.07/152/62 1.69/205/69 1.84/295/78
Log-3 3690/1260 /> 3010 2.85/159/64 8.80/328/98 4.60/336/99 4.14/364/105
Log-4 3960/1480/> 4010 2.46/138/75 8.77/391/81 6.20/377/95 8.26/554/107

Grid-2 2040/825 /> 3610 0.07/39/21 1.35/221/48 6.11/1207/69 6.14/1207/69
Grid-3 2040/841 /> 3610 16.01/1629/76 15.8/1119/89 82.24/3974/123 66.26/3974/123
Grid-4 2040/857 /> 3610 28.15/2167/96 51.58/2541/111 50.80/2541/115 193.47/6341/155

Rovers-7 393/97 /> 63 ∗ 38 0.01/ 37/18 0.01/ 37/18 0.01/ 37/18 0.01/ 37/18
RoversP-7 393/133 /> 63 ∗ 38 2.15/942/65 2.23/983/75 2.37/1008/83 2.29/1008/83
RoversPP-7 393/133 /> 63 ∗ 38 8.21/948/65 12.48/989/75 12.53/994/77 16.20/1014/83
RoversPPP-7 395/140 /> 63 ∗ 38 25.77/950/67 41.18/996/79 0.01/UNSAT 0.01/UNSAT

Table 5: Empirical results for problems with probabilisticinitial states. Timest in seconds, search
space size|S| (number of calls to the heuristic function), plan lengthl.

ticular, this includes the number of random particles (64) selected for computing POND’s heuristic
estimate (Bryce et al., 2006).

5.1 Initial State Uncertainty and Deterministic Actions

We now examine the performance of Probabilistic-FF and PONDin a collection of domains with
probabilistic initial states, but with deterministic action effects. We will consider the domains one
by one, discussing for each a set of runtime plots. For some ofthe problem instances, Table 5 shows
more details, providing features of the instance size as well as detailed results for Probabilistic-FF,
including the number of explored search states and the plan length.

Our first three domains are probabilistic versions of traditional conformant benchmarks: “Safe”,
“Cube”, and “Bomb”. In Safe, out ofn combinations one opens the safe. We are given a probability
distribution over which combination is the right one. The only type of action in Safe is trying a
combination, and the objective is to open the safe with probability ≥ θ. We experimented with
two probability distributions over then combinations, a uniform one (“Safe-uni”) and a distribution
that declines according to a cubic function (“Safe-cub”). Table 5 shows that Probabilistic-FF can
solve this very efficiently even withn = 70. Figure 13 compares between Probabilistic-FF and
POND, plotting their time performance on an identical linear scale, wherex-axes show the number
of combinations.

From the graphs it is easy to see that Probabilistic-FF outperforms POND by at least an order of
magnitude on both Safe-uni and Safe-cub. But a more interesting observation here is not necessarily
the difference in time performance, but the relative performance of each planner on Safe-uni and
Safe-cub. Note that Safe-cub is somewhat “easier” than Safe-uni in the sense that, in Safe-cub, fewer
combinations must be tried to guarantee a given probabilityθ of opening the safe. This because the

601

DOMSHLAK & H OFFMANN

 0

 10

 20

 30

 40

 50

 60

 70

 70 50 30 10

T
im

e
(s

ec
)

#combinations

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0

 10

 20

 30

 40

 50

 60

 70

 70 50 30 10

T
im

e
(s

ec
)

#combinations

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(a) Uniform prior distribution over the combinations.

 0

 10

 20

 30

 40

 50

 60

 70

 70 50 30 10

T
im

e
(s

ec
)

#combinations

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0

 10

 20

 30

 40

 50

 60

 70

 70 50 30 10

T
im

e
(s

ec
)

#combinations

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(b) Cubic decay prior distribution over the combinations.

Figure 13: The Safe domain, Probabilistic-FF (left) vs. POND (right).

dominant part of the probability mass lies on the combinations at the head of the cubic distribution
(the last combination has probability0 to be the right combination, and thus it needs not be tried
even whenθ = 1.0). The question is now whether the heuristic functions of Probabilistic-FF and
POND exploit this difference between Safe-uni and Safe-cub. Table 5 and Figure 13 provide an
affirmative answer for this question for the heuristic function of Probabilistic-FF. The picture with
POND was less clear as the times spent by POND on (otherwise identical) instances of Safe-uni and
Safe-cub were roughly the same.17

Another interesting observation is that, for both Probabilistic-FF and POND, moving fromθ =
1.0 to θ < 1.0, that is, from planning with qualitative uncertainty to truly probabilistic planning,

17. On Safe-cub withn = 70 andθ ∈ {0.75, 1.0}, POND undergoes an exponential blow-up that is not shown in the
graphs since these data points would obscure the other data points; anyway, we believe that this blow-up is due only
to some unfortunate troubles with numerics.

602

PROBABILISTIC-FF

 0

 5

 10

 15

 20

 25

 30

 15 13 11 9 7 5

T
im

e
(s

ec
)

N for Grid NxNxN

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 15 13 11 9 7 5

T
im

e
(s

ec
)

N for Grid NxNxN

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(a) Uniform prior distribution over the initial position.

 0

 5

 10

 15

 20

 25

 30

 15 13 11 9 7 5

T
im

e
(s

ec
)

N for Grid NxNxN

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 15 13 11 9 7 5

T
im

e
(s

ec
)

N for Grid NxNxN

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(b) Cubic decay prior distribution over the initial position.

Figure 14: The Cube domain, Probabilistic-FF (left) vs. POND (right).

typically did not result in a performance decline. We even get improvedperformance (except for
θ = 0.75 in Safe-uni). The reason seems to be that the plans become shorter. This trend can be
observed also in most other domains. The trend is particularly remarkable for Probabilistic-FF, since
moving fromθ = 1.0 to θ < 1.0 means to move from a case where no model counting is needed
to a case where it is needed. (In other words, Probabilistic-FF automatically “specializes” itself for
the qualitative uncertainty, by not using the model counting. To our knowledge, the same is not true
of POND, which uses the same techniques in both cases.)

In Cube, the task is to move into a corner of a3-dimensional grid, and the actions correspond
to moving from the current cube cell to one of the (up to 6) adjacent cube cells. Again, we created
problem instances with uniform and cubic distributions (over the initial position in each dimension),
and again, Probabilistic-FF scales well, easily solving instances on a15 × 15 × 15 cube. Within
our time limit, POND was capable of solving Cube problems with cube width≤ 13. Figure 14

603

DOMSHLAK & H OFFMANN

compares between Probabilistic-FF and POND in more detail,plotting their time performance on
differentlinear scales (withx-axes capturing the width of the grid in each dimension), andshowing
at least an order of magnitude advantage for Probabilistic-FF. Note that,

• Probabilistic-FF generally becomes faster with decreasing θ (with decreasing hardness of
achieving the objective), whileθ does not seem to have a substantial effect on the performance
of POND,

• Probabilistic-FF exploits the relative easiness of Cube-cub (e.g., see Table 5), while the time
performance of POND on Cube-cub and Cube-uni is qualitatively identical.

We also tried a version of Cube where the task is to move into the gridcenter. Probabilistic-FF is
bad at doing so, reaching its performance limit atn = 7. This weakness in the Cube-center domain
is inherited from Conformant-FF. As detailed by Hoffmann and Brafman (2006), the reason for the
weakness lies in the inaccuracy of the heuristic function inthis domain. There are two sources of
this inaccuracy. First, to solve Cube-center in reality, one must start with moving into a corner in
order to establish her position; in the relaxation, withoutdelete lists, this is not necessary. Second,
the relaxed planning graph computation over-approximatesnot only what can be achieved in future
steps, but also what has already been achieved on the path to the considered belief state. For even
moderately long paths of actions, the relaxed planning graph comes to the (wrong) conclusion that
the goal has already been achieved, so the relaxed plan becomes empty and there is no heuristic
information.

Next we consider the famous Bomb-in-the-Toilet domain (or Bomb, for short). Our version
of Bomb containsn bombs andm toilets, where each bomb may be armed or not armedindepen-
dentlywith probability1/n, resulting in huge numbers of initially possible world states. Dunking a
bomb into an unclogged toilet disarms the bomb, but clogs thetoilet. A toilet can be unclogged by
flushing it. Table 5 shows that Probabilistic-FF scales nicely to n = 50, and becomes faster asm
increases. The latter is logical and desirable as having more toilets means having more “disarming
devices”, resulting in shorter plans needed. Figures 15 and16 compare between Probabilistic-FF
and POND, plotting the time performance of Probabilistic-FF on a linear scale, and that of POND
on a logarithmic scale. The four pairs of graphs correspond to four choices of number of toilets
m ∈ {50, 10, 5, 1}. Thex-axes in all these graphs correspond to the number of potentially armed
bombs, where we checked problems withn ∈ {5, 10, 25, 50}. Figure 15 shows that this time
Probabilistic-FF is at least four orders of magnitude faster than POND; At the extremes, while the
hardest combination ofn = 50, m = 1, andθ = 0.75 took Probabilistic-FF less than 7 seconds,
POND timed-out on most of the problem instances. In addition,

• In Bomb as well, Probabilistic-FF exhibit the nice pattern of improved performance as we
move from non-probabilistic (θ = 1.0) to probabilistic planning (specifically,θ ≤ 0.5; for
θ ≤ 0.25, the initial state is good enough already).

• While the performance of Probabilistic-FF improves with the number of toilets, POND seems
to exhibit the inverse dependence, that is, being more sensitive to the number of states in the
problem (see Table 5) rather to the optimal solution depth.

Finally, we remark that, though length-optimality is not explicitly required in probabilistic confor-
mant planning, for all of Safe, Cube, and Bomb, Probabilistic-FF’s plans are optimal (the shortest
possible).

604

PROBABILISTIC-FF

 0

 2

 4

 6

 8

 10

 50 25 10 5

T
im

e
(s

ec
)

bombs

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0.01

 0.1

 1

 10

 100

 1000

 50 25 10 5

T
im

e
(s

ec
)

bombs

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(a) 50 toilets

 0

 2

 4

 6

 8

 10

 50 25 10 5

T
im

e
(s

ec
)

bombs

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0.01

 0.1

 1

 10

 100

 1000

 50 25 10 5

T
im

e
(s

ec
)

bombs

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(b) 10 toilets

Figure 15: The Bomb domain, Probabilistic-FF (left) vs. POND (right).

Our next three domains are adaptations of benchmarks from deterministic planning: “Logistics”,
“Grid”, and “Rovers”. We assume that the reader is familiar with these domains. Each Logistics-x
instance contains 10 cities, 10 airplanes, and 10 packages,where each city hasx locations. The
packages are with chance0.88 at the airport of their origin city, and uniformly at any of the other
locations in that city. The effects of all loading and unloading actions are conditional on the (right)
position of the package. Note that higher values ofx increase not only the space of world states, but
also the initial uncertainty. Grid is the complex grid worldrun in the AIPS’98 planning competi-
tion (McDermott, 1998), featuring locked positions that must be opened with matching keys. Each
Grid-x here is a modification of instance nr. 2 (of 5) run at AIPS’98, with a 6 × 6 grid, 8 locked
positions, and 10 keys of which 3 must be transported to a goalposition. Each lock hasx possi-
ble, uniformly distributed shapes, and each of the 3 goal keys hasx possible, uniformly distributed
initial positions. The effects of pickup-key, putdown-key, and open-lock actions are conditional.

605

DOMSHLAK & H OFFMANN

 0

 2

 4

 6

 8

 10

 50 25 10 5

T
im

e
(s

ec
)

bombs

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0.01

 0.1

 1

 10

 100

 1000

 50 25 10 5

T
im

e
(s

ec
)

bombs

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(c) 5 toilets

 0

 2

 4

 6

 8

 10

 50 25 10 5

T
im

e
(s

ec
)

bombs

PFF

p=0.25
p=0.50
p=0.75
p=1.00

 0.01

 0.1

 1

 10

 100

 1000

 50 25 10 5

T
im

e
(s

ec
)

bombs

POND2.1

p=0.25
p=0.50
p=0.75
p=1.00

(d) 1 toilet

Figure 16: The Bomb domain, Probabilistic-FF (left) vs. POND (right).

Finally, our last set of problems comes from three cascadingmodifications of instance nr. 7 (of
20) of the Rovers domain used at the AIPS’02 planning competition. This problem instance has 6
waypoints, 3 rovers, 2 objectives, and 6 rock/soil samples.From Rovers to RoversPPP we modify
the instance/domain as follows.

• Rovers is the original AIPS’02 problem instance nr. 7, and weuse it hear mainly for compar-
ison.

• In RoversP, each sample is with chance0.8 at its original waypoint, and with chance0.1
at each of the others two waypoints. Each objective may be visible from 3 waypoints with
uniform distribution (this is a probabilistic adaptation of the domain suggested by Bryce &
Kambhampati, 2004).

606

PROBABILISTIC-FF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

ec
)

θ

Sandcastle

PFF
POND

 0.01

 0.1

 1

 10

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

ec
)

θ

Sandcastle

PFF
POND (min)
POND (avg)

(a) (b)

Figure 17: Probabilistic-FF and POND on problems from (a) Sand-Castle, and (b) Slippery-
Gripper.

• RoversPP enhances RoversP byconditionalprobabilities in the initial state, stating that whether
or not an objective is visible from a waypoint depends on whether or not a rock sample (intu-
ition: a large piece of rock) is located at the waypoint. The probability of visibility is much
higher if the latter is not the case. Specifically, the visibility of each objective depends on the
locations of two rock samples, and if a rock sample is present, then the visibility probability
drops to0.1.

• RoversPPP extends RoversPP by introducing the need to collect data about water existence.
Each of the soil samples has a certain probability (< 1) to be “wet”. For communicated
sample data, an additional operator tests whether the sample was wet. If so, a fact “know-
that-water” contained in the goal is set to true. The probability of being wet depends on the
location of the sample.

We show no runtime plots for Logistics, Grid, and Rovers, since POND runs out of either time or
memory on all considered instances of these domains. Table 5shows that the scaling behavior of
Probabilistic-FF in these three domains is similar to that observed in the previous domains. The
goals in the RoversPPP problem cannot be achieved with probabilities θ ∈ {0.75, 1.0}. This is
proved by Probabilistic-FF’sheuristic function, providing the correct answer in split seconds.

5.2 Probabilistic Actions

Our first two domains with probabilistic actions are the famous “Sand-Castle” (Majercik & Littman,
1998) and “Slippery-Gripper” (Kushmerick et al., 1995) domains. The domains are simple, but they
posed the first challenges for probabilistic planners; our performance in these domains serves an
indicator of the progress relative to previous ideas for probabilistic planning.

In Sand-Castle, the states are specified by two boolean variablesmoat andcastle, and state
transitions are given by two actionsdig-moat anderect-castle. The goal is to erect the castle.

607

DOMSHLAK & H OFFMANN

 0.01

 0.1

 1

 10

 100

 1000

 10 9 8 7 6 5

T
im

e
(s

ec
)

Grid width

1D-walkgrid

PFF
POND

 0.01

 0.1

 1

 10

 100

 1000

 10 9 8 7 6 5 4 3

T
im

e
(s

ec
)

Grid width

2D-walkgrid

PFF
POND

(a) (b)

Figure 18: Probabilistic-FF and POND on problems from (a) 1D-WalkGrid with θ = 0.9, and (b)
2D-WalkGrid withθ = 0.01.

Building a moat withdig-moat might fail with probability0.5. Erecting a castle witherect-castle
succeeds with probability0.67 if the moat has already been built, and with probability0.25, other-
wise. If failed,erect-castle also destroys the moat with probability0.5. Figure 17(a) shows that
both Probabilistic-FF and POND solve this problem in less than a second for arbitrary high values
of θ, with the performance of both planners being almost independent of the required probability of
success.

Slippery-Gripper is already a bit more complicated domain.The states in Slippery-Gripper
are specified by four boolean variablesgrip-dry, grip-dirty, block-painted, andblock-held, and
there are four actionsdry, clean, paint, andpickup. In the initial state, the block is neither painted
nor held, the gripper is clean, and the gripper is dry with probability 0.7. The goal is to have a
clean gripper holding a painted block. Actiondry dries the gripper with probability0.8. Action
clean cleans the gripper with probability0.85. Action paint paints the block with probability1,
but makes the gripper dirty with probability1 if the block was held, and with probability0.1 if it
was not. Actionpickup picks up the block with probability0.95 if the gripper is dry, and with
probability0.5 if the gripper is wet.

Figure 17(b) depicts (on a log-scale) the relative performance of Probabilistic-FF and POND
on Slippery-Gripper as a function of growingθ. The performance of Probabilistic-FF is nicely flat
around0.06 seconds. This time, the comparison with POND was somewhat problematic, because,
for any fixedθ, POND on Slippery-Gripper exhibited a huge variance in runtime. In Figure 17(b)
we plot the best runtimes for POND, as well as its average runtimes. The best run-times for POND
for different values ofθ vary around a couple of seconds, but the average runtimes aresignificantly
worse. (For some high values ofθ POND timed-out on some sample runs, and thus the plot provides
a lower bound on the average runtimes.)

In the next two domains, “1D-WalkGrid” and “2D-WalkGrid”, the robot has to pre-plan a se-
quence of conditional movements taking it from a corner of the grid to the farthest (from the initial

608

PROBABILISTIC-FF

position) corner (Hyafil & Bacchus, 2004). In 1D-WalkGrid the grid is one-dimensional, while
in 2D-WalkGrid the grid is two-dimensional. Figure 18(a) depicts (on a log-scale) a snapshot of
the relative performance of Probabilistic-FF and POND on one-dimensional grids of widthn and
θ = 0.9. The robot is initially at(1, 1), should get to(1, n), and it can try moving in each of the two
possible directions. Each of the two movement actions movesthe robot in the right direction with
probability0.8, and keeps it in place with probability0.2. It is easy to see from Figure 18(a) that the
difference between the two planners in this domain is substantial—while runtime of Probabilistic-
FF grows only linearly withx, the same dependence for POND is seemingly exponential.

The 2D-WalkGrid domain is already much more challenging forprobabilistic planning. In all
2D-WalkGrid problems withn × n grids the robot is initially at(1, 1), should get to(n, n), and it
can try moving in each of the four possible directions. Each of the four movement actions advances
the robot in the right direction with probability0.8, in the opposite direction with probability0,
and in either of the other two directions with probability0.1. Figure 18(a) depicts (on a log-scale)
a snapshot of the relative performance of Probabilistic-FFand POND on 2D-WalkGrid with very
low required probability of successθ = 0.01, and this as a function of the grid’s widthn. The
plot shows that Probabilistic-FF still scales well with increasingn (though not linearly anymore),
while POND time-outs for all grid widthsn > 3. For higher values ofθ, however, Probabilistic-FF
does reach the time-out limit on rather small grids, notablyn = 6 andn = 5 for θ = 0.25 and
θ = 0.5, respectively. The reason for this is that Probabilistic-FF’s heuristic function is not good
enough at estimating how many times, at an early point in the plan, a probabilistic action must be
applied in order to sufficiently support a high goal threshold at the end of the plan. We explain this
phenomenon in more detail at the end of this section, where wefind that it also appears in a variant
of the well-known Logistics domain.

Our last set of problems comes from the standard Logistics domain. Each problem instance
x-y-z containsx locations per city,y cities, andz packages. We will see that Probabilistic-FF
scales much worse, in Logistics, in the presence of probabilistic effects than if there is “only” initial
state uncertainty (we will explain the reason for this at theend of this section). Hence we use much
smaller instances than the ones used above in Section 5.1. Namely, to allow a direct comparison to
previous results in this domain, we closely follow the specification of Hyafil and Bacchus (2004).
We use instances with configurationsx-y-z = 2-2-2, 4-2-2, and2-2-4, and distinguish between two
levels of uncertainty.

• L-x-y-z correspond to problems with uncertainty only in the outcomeof theload andunload
actions. Specifically, the probabilities of success forload are0.875 for trucks and0.9 for
airplanes, and forunload, 0.75 and0.8, respectively.

• LL-x-y-z extendsL-x-y-z with independent uniform priors for each initial location of a
package within its start city.

Figure 19 depicts (on a log scale) runtimes of Probabilistic-FF and POND onL-2-2-2, L-4-2-2,
andL-2-2-4, as a function of growingθ. On these problems, both planners appear to scale well,
with the runtime of Probabilistic-FF and the optimal runtime of POND being roughly the same,
and the average runtime of POND somewhat degrading from2-2-2 to 4-2-2 to 2-2-4. This shows
that both planners are much more efficient in this domain thanthe previously known SAT and CSP
based techniques. However, moving toLL-x-y-z changes the picture for both planners. The results
are as follows:

609

DOMSHLAK & H OFFMANN

 0.01

 0.1

 1

 10

 100

 0.95 0.75 0.5 0.25 0.01

T
im

e
(s

ec
)

θ

L-2-2-2

PFF
POND (min)
POND (avg)

 0.01

 0.1

 1

 10

 100

 0.95 0.75 0.5 0.25 0.01

T
im

e
(s

ec
)

θ

L-4-2-2

PFF
POND (min)
POND (avg)

 0.01

 0.1

 1

 10

 100

 0.95 0.75 0.5 0.25 0.01

T
im

e
(s

ec
)

θ

L-2-2-4

PFF
POND (min)
POND (avg)

(a) (b) (c)

Figure 19: Probabilistic-FF and POND on problems from Logistics (a)L-2-2-2, (b) L-4-2-2, and
(c) L-2-2-4.

1. OnLL-2-2-2, the runtimes of Probabilistic-FF were identical to those on L-2-2-2, and the
optimal runtimes of POND only slightly degraded to2−8 seconds. However, for all examined
values ofθ, some runs of POND resulted in timeouts.

2. OnLL-4-2-2, the runtimes of Probabilistic-FF were identical to those on L-4-2-2 for θ ∈
{0.01, 0.25, 0.5, 0.75}, yet Probabilistic-FF time-outed onθ = 0.95. The optimal runtimes
of POND degraded from those forL-4-2-2 only to 9 − 18 seconds, and again, for all values
of θ, some runs of POND resulted in timeouts.

3. On LL-2-2-4, Probabilistic-FF experienced hard times, finishing in0.19 seconds forθ =
0.01, and time-outing for all other examined values ofθ. The optimal runtimes of POND
degraded from those forL-2-2-4 to 120 − 700 seconds, and here as well, for all values ofθ,
some runs of POND resulted in timeouts.

We also tried a variant ofLL-x-y-z with non-uniform priors over the initial locations of the pack-
ages, but this resulted in a qualitatively similar picture of absolute and relative performance.

TheLL-x-y-z domain remains challenging, and deserves close attention in the future develop-
ments for probabilistic planning. In this context, it is interesting to have a close look at what the
reasons for the failure of Probabilistic-FF is. It turns outthat Probabilistic-FF is not good enough
at estimating how many times, at an early point in the plan, a probabilistic action must be applied
in order to sufficiently support a high goal threshold at the end of the plan. To make this concrete,
consider a Logistics example with uncertain effects of all load and unload actions. Consider a pack-
age P that must go from a city A to a city B. Let’s say that P is initially not at A’s airport. If the
goal threshold is high, this means that, to be able to succeed, the package has to be brought to A’s
airport with a high probabilitybeforeloading it onto an airplane. This is exactly the point where
Probabilistic-FF’s heuristic function fails. The relaxedplan contains too few actions unloading P
at A’s airport. The effect is that the search proceeds too quickly to loading P onto a plane and
bringing it to B. Once the search gets to the point where B should be unloaded to its goal loca-
tion, the goal threshold cannot be achieved no matter how many times one unloads P. At this point,

610

PROBABILISTIC-FF

Probabilistic-FF’s enforced hill-climbing enters a loop and eventually fails because the relaxed plan
(which over-estimates the past achievements) becomes empty.18

The challenge here is to devise methods that are better at recognizing how many times P has
to be unloaded at A’s airport in order to sufficiently supportthe goal threshold. The error made by
Probabilistic-FF lies in that our propagation of weights onthe implication graph over-estimates the
goal probability. Note here that this is much more critical for actions that must be applied early on
in the plan, than for actions that are applied later. If an action a appears early on in a plan, then
the relaxed plan, whena is executed, will be long. Recall that the weight propagation proceeds
backwards, from the goal towards the current state. At each single backwards step, the propagation
makes an approximation that might lose precision of the results. Over several backwards steps,
these imprecisions accumulate. Hence the quality of the approximation decreases quickly over the
number of backwards steps. The longer the distance between goal and current state is, the more
information is lost. We have observed this phenomenon in detailed experiments with different
weight propagation schemes, that is, with different underlying assumptions. Of the propagation
schemes we tried, the independence assumption, as presented in this paper, was by far the most
accurate one. All other schemes failed to deliver good results even for much shorter distances
between the goal and the current state.

It is interesting to consider how this issue affects POND, which uses a very different method for
estimating the probability of goal achievement: instead ofperforming a backwards propagation and
aggregation of weight values, POND sends a set of random particles through the relaxed planning
graph in a forward fashion, and stops the graph building if enough particles end up in the goal. From
our empirical results, it seems that this method suffers from similar difficulties as Probabilistic-FF,
but not to such a large extent. POND’s optimal runtimes forLL-x-y-z are much higher than those
for L-x-y-z. This indicates that it is always challenging for POND to “recognize” the need for
applying some actiona many times early on in the plan. More interestingly, POND never times-out
in L-x-y-z, but it does often time-out inLL-x-y-z. This indicates that, to some extent, it is a matter
of chance whether or not POND’s random particles recognize the need for applying an actiona
many times early on in the plan. An intuitive explanation is that the “good cases” are those where
sufficiently many of the particles failed to reach the goal due to taking the “wrong effect” ofa.
Based on this intuition, one would expect that it helps to increase the number of random particles in
POND’s heuristic function. We did so, running POND onLL-x-y-z with an increased number of
particles,200 and600 instead of the default value of64. To our surprise, the qualitative behavior of
POND did not change, time-outing in a similar number of cases. It is unclear to us what the reason
for this phenomenon is. Certainly, it can be observed that the situation encoded inLL-x-y-z is not
solved to satisfaction by either of Probabilistic-FF’s weight propagation or POND’s random particle
methods, in their current configurations.

At the time of writing, it is unclear to the authors how bettermethods could be devised. It seems
unlikely that a weight propagation – at least one that does not resort to expensive reasoning – exists
which manages long distances better than the independence assumption. An alternative way out
might be to simply define a weaker notion of plans that allows to repeat certain kinds of actions –

18. This does not happen in the aboveL-2-2-2, L-4-2-2, andL-2-2-4 instances simply because they are too small and a
high goal probability can be achieved without thinking too much about the above problem; if one increases the size
of these instances, the problem appears. The problem appears earlier in the presence of initial state uncertainty – even
in small instances such asLL-2-2-2, LL-4-2-2, andLL-2-2-4 – because with uncertainty about the start position of
the packages one needs to try unloading them at the start airports more often.

611

DOMSHLAK & H OFFMANN

throwing a dice or unloading a package – arbitrarily many times. However, since our assumption is
that we do not have any observability during plan execution,when executing such a plan there would
still arise the question how often an action should be tried.Since Logistics is a fairly well-solved
domain in simpler formalisms – by virtue of Probabilistic-FF, even in the probabilistic setting as
long as the effects are deterministic – we consider addressing this problem as a quite pressing open
question.

6. Conclusion

We developed a probabilistic extension of Conformant-FF’ssearch space representation, using
a synergetic combination of Conformant-FF’s SAT-based techniques with recent techniques for
weighted model counting. We further provided an extension of conformant relaxed planning with
approximate probabilistic reasoning. The resulting planner scales well on a range of benchmark do-
mains. In particular it outperforms its only close relative, POND, by at least an order of magnitude
in almost all of the cases we tried.

While this point may be somewhat obvious, we would like to emphasize that our achievements
do not solve the (this particular) problem once and for all. Probabilistic-FF inherits strengthsand
weaknesses from FF and Conformant-FF, like domains where FF’s or Conformant-FF’s heuristic
functions yield bad estimates (e.g. the mentioned Cube-center variant). What’s more, the proba-
bilistic setting introduces several new potential impediments for FF’s performance. For one thing,
weighted model counting is inherently harder than SAT testing. Though this did not happen in our
set of benchmarks, there are bound to be cases where the cost for exact model counting becomes
prohibitive even in small examples. A promising way to address this issue lies in recent methods
for approximatemodel counting (Gomes, Sabharwal, & Selman, 2006; Gomes, Hoffmann, Sabhar-
wal, & Selman, 2007). Such methods are much more efficient than exact model counters. They
provide high-confidence lower bounds on the number of models. The lower bounds can be used in
Probabilistic-FF in place of the exact counts. It has been shown that good lower bounds with very
high confidecne can be achieved quickly. The challenge here is to extend the methods – which are
currently designed for non-weighted CNFs – to handleweightedmodel counting.

More importantly perhaps, in the presence of probabilisticeffects there is a fundamental weak-
ness in Probabilistic-FF’s – and POND’s – heuristic information. This becomes a pitfall for perfor-
mance even in a straightforward adaptation of the Logisticsdomain, which is otherwise very easy
for this kind of planners. As outlined, the key problem is that, to obtain a high enough confidence
of goal achievement, one may have to apply particular actions several times early on in the plan.
Neither Probabilistic-FF’s nor POND’s heuristics are goodenough at identifyinghow manytimes.
In our view, finding techniques that address this issue is currently the most important open topic in
this area.

Apart from addressing the latter challenge, we intend to work towards applicability in real-word
settings. Particularly, we will look at the space application settings that our Rovers domain hints at,
at medication-type treatment planning domains, and at the power supply restoration domain (Bertoli,
Cimatti, Slaney, & Thiébaux, 2002).

612

PROBABILISTIC-FF

Acknowledgments

The authors would like to thank Dan Bryce and Rao Kambhampatifor providing a binary distri-
bution of POND2.1. Carmel Domshlak was partially supportedby the Israel Science Foundations
grant 2008100, as well as by the C. Wellner Research Fund. Some major parts of this research have
been accomplished at the time that Jörg Hoffmann was employed at the Intelligent Information
Systems Institute, Cornell University.

Appendix A. Proofs

Proposition 2 Let (A,NbI
, G, θ) be a probabilistic planning problem described overk state vari-

ables, anda be anm-step sequence of actions fromA. Then, we have|Nba
| = O(|NbI

|+mα(k+1))
whereα is the largest description size of an action inA.

Proof: The proof is rather straightforward, and it exploits the local structure ofNba
’s CPTs. The

first nodes/CPTs layerX(0) of Nba
constitutes an exact copy ofNbI

. Then, for each1 ≤ t ≤ m, the
t-th layer ofNba

containsk + 1 node{Y(t)} ∪ X(t).
First, let us consider the “action node”Y(t). While specifying the CPTTY (t) in a straightforward

manner as if prescribed by Eq. 4 might result in an exponential blow up, the same Eq. 4 suggests
that the original description ofat is by itself a compact specification ofTY (t). Therefore,TY (t)

can be described in spaceO(α), and this description can be efficiently used for answering queries
TY (t)(Y(i) = ε | π) as in Eq. 4. Next, consider the CPTTX(t) of a state-variable nodeX(t) ∈ X(t).
This time, it is rather evident from Eq. 5 thatTX(t) can be described in spaceO(α) so that queries
TX(t)(X(t) = x | X(t−1) = x′) could be efficiently answered. Thus, summing up for all layers
1 ≤ t ≤ m, the description size of|Nba

| = O(|NbI
| + mα(k + 1))

Lemma 4 Given a nodev(t′) ∈ Imp→p(t), we have̟ p(t) (v(t′)) = ̟ (v(t′)) if and only if, givenv
at timet′, the sequence of effects E(Impv(t′)→p(t)) achievesp at t with probability1.

Proof: The proof of Lemma 4 is by a backward induction on the time layers of Impv(t′)→p(t). For
time t, the only node ofImp→p(t) time-stamped witht is p(t) itself. For this node we do have
̟p(t) (p(t)) = ̟ (p(t)) = 1, but, givenp at time t, an empty plan corresponding to (empty)
E(Impp(t)→p(t)) trivially “re-establishes”p at t with certainty. Assuming now that the claim holds
for all nodes ofImp→p(t) time stamped witht′ + 1, . . . , t, we now show that it holds for the nodes
time stamped witht′.

It is easy to see that, for any nodev(t′) ∈ Imp→p(t), we get̟p(t) (v(t′)) = ̟ (v(t′)) only if
α goes down to zero. First, consider the chance nodesε(t′) ∈ Impv→p(t). For such a node,lb is
set to zero if and only if we have̟ p(t) (r(t′ + 1)) = 1 for somer ∈ add(ε). However, by our
inductive assumption, in this and only in this case the effects E(Impε(t′)→p(t+1)) achievep at t with
probability1, given the occurrence ofε at timet′.

Now, consider the fact nodesq(t′) ∈ Impv→p(t). For such a node,α can get nullified only by
some effecte ∈ E(a), a ∈ A(t′), con(e) = q. The latter happens if only if, forall possible out-
comes ofe, (i) the nodeε(t′) belongs toImp→p(t), and (ii) and the estimate̟p(t) (ε(t′)) = ̟(ε(t′)).
In other words, by our inductive assumption, givenany outcomeε ∈ Λ(e) at time t′, the ef-
fects E(Impε(t′)→p(t)) achievep at t with probability 1. Thus, givenq at time t′, the effects
E(Impq(t′)→p(t)) achievep at t with probability 1 independentlyof the actual outcome ofe. Al-
ternatively, if forq(t′) we havelb > 0, then for each effecte conditioned onq(t), there exists an

613

DOMSHLAK & H OFFMANN

outcomeε of e such that, according to what we just proved for the chance nodes time-stamped with
t′, the effectsE(Impε(t′)→p(t+1)) do not achievep at t with probability 1. Hence, the whole set of
effectsE(Impq(t′)→p(t+1)) does not achievep at t with probability1.

Lemma 5 Let(A,NbI
, G, θ) be a probabilistic planning task,a be a sequence of actions applicable

in bI , and|+1 be a relaxation function forA. For each time stept ≥ −m, and each propositionp ∈
P, if P (t) is constructed bybuild-PRPG(a,A, φ(NbI

), G, θ, |+1), thenp at timet can be achieved
by a relaxed plan starting witha|+1

(1) with probability> 0 (that is,p is not negatively known at timet) if and only ifp ∈ uP (t)∪P (t),
and

(2) with probability1 (that is,p is known at timet) if and only ifp ∈ P (t).

Proof: The proof of the “if” direction is by a straightforward induction ont. Fort = −m the claim
is immediate by the direct initialization ofuP (−m) andP (−m). Assume that, for−m ≤ t′ < t,
if p ∈ uP (t′) ∪ P (t′), thenp is not negatively known at timet′, and ifp ∈ P (t′), thenp is known
at timet′.

First, consider somep(t) ∈ uP (t) ∪ P (t), and suppose thatp is egatively know at timet. By
the inductive assumption, and the property of the PRPG construction thatuP (t − 1) ∪ P (t − 1) ⊆
uP (t) ∪ P (t), we havep 6∈ uP (t − 1) ∪ P (t − 1). Therefore,p has to be added intouP (t) (and
then, possibly, moved from there toP (t)) in the first for loop of thebuild-timestep procedure.
However, if so, then there exists an actiona ∈ A(t − 1), e ∈ E(a), andε ∈ Λ(e) such that (i)
con(e) ∈ uP (t− 1)∪P (t− 1), and (ii)p ∈ add(ε). Again, by the assumption of the induction we
have thatpre(a) is known at timet−1, andcon(e) is not negatively known at timet−1. Hence, the
non-zero probability ofε occurring at timet implies thatp can be achieved at timet with probability
greater than0, contradicting thatp is negatively know at timet.

Now, let us consider somep(t) ∈ P (t). Notice that, fort > −m, we havep(t) ∈ P (t) if and
only if

Φ −→
∨

l∈support(p(t))

l . (28)

Thus, for each world statew consistent withbI , we have eitherq ∈ w for some fact proposition
q(−m) ∈ support(p(t)), or, for some effecte of an actiona(t′) ∈ A(t′), t′ < t, we havecon(e) ∈
P (t′) and{ε(t′) | ε ∈ Λ(e)} ⊆ support(p(t)). In this first case, Lemma 4 immediately implies that
the concatenation ofa|+1 with an arbitrary linearization of the (relaxed) actionsA(0), . . . , A(t − 1)
achievesp at t with probability1, and thusp is known at timet. In the second case, our inductive
assumption implies thatcon(e) is known at timet, and together with Lemma 4 this again implies that
the concatenation ofa|+1 with an arbitrary linearization of the (relaxed) actionsA(0), . . . , A(t − 1)
achievesp at t with probability1.

The proof of the “only if” direction is by induction ont as well. Fort = −m this claim is
again immediate by the direct initialization ofP (−m). Assume that, for−m ≤ t′ < t, if p is not
negatively known at timet′, thenp ∈ uP (t′) ∪ P (t′), and ifp is known at timet′, thenp ∈ P (t′).
First, suppose thatp is not negatively known at timet, and yet we havep 6∈ uP (t) ∪ P (t). From
our inductive assumption plus thatA(t − 1) containing all the NOOP actions for propositions in
uP (t − 1) ∪ P (t − 1), we know thatp is negatively known at timet − 1. If so, thenp can become
not negatively known at timet only due to someε ∈ Λ(e), e ∈ E(a), such thatpre(a) is known

614

PROBABILISTIC-FF

at timet − 1, andcon(e) is not negatively known at timet − 1. By our inductive assumption, the
latter conditions implycon(e) ∈ uP (t − 1) ∪ P (t − 1), andpre(a) ∈ P (t − 1). But if so, thenp
has to be added touP (t)∪P (t) by the firstfor loop of thebuild-timestep procedure, contradicting
our assumption thatp 6∈ uP (t) ∪ P (t).

Now, let us consider somep known at timet. By our inductive assumption,P (t − 1) contains
all the facts known at timet− 1, and thusA(t− 1) is the maximal subset of actionsA|+1 applicable
at timet − 1. Let us begin with an exhaustive classification of the effects e of the actionsA(t − 1)
with respect to ourp at timet.

(I) ∀ε ∈ Λ(e) : p ∈ add(ε), andcon(e) ∈ P (t − 1)

(II) ∀ε ∈ Λ(e) : p ∈ add(ε), andcon(e) ∈ uP (t − 1)

(III) ∃ε ∈ Λ(e) : p 6∈ add(ε) or con(e) 6∈ P (t − 1) ∪ uP (t − 1)

If the set (I) is not empty, then, by the construction ofbuild-w-impleafs(p(t), Imp), we have

{ε(t − 1) | ε ∈ Λ(e)} ⊆ support(p(t)),

for eache ∈ (I). Likewise, by the construction ofbuild-timestep (notably, by the update ofΦ), for
eache ∈ (I), we have

Φ −→
∨

{ε(t−1)|ε∈Λ(e)}

ε(t − 1).

Putting these two facts together, we have that Eq. 28 holds for p at timet, and thus we havep ∈ P (t).
Now, suppose that the set (I) is empty. It is not hard to verifythat no subset ofonly effects (III)

makesp known at timet. Thus, the event “at least one of the effects (II) occurs” must hold with
probability1. First, by the construction ofbuild-w-impleafs(p(t), Imp), we have

support(p(t)) ⊇
⋃

e∈(II)

support(con(e)(t − 1))

Then, and 4 from Lemma 4 we have that the event “at least one of the effects (II) occurs” holds with
probability1 if and only if

Φ −→
∨

e∈(II)
l∈support(con(e)(t−1))

l

Putting these two facts together, we have that Eq. 28 holds for p at timet, and thus we havep ∈ P (t).

Theorem 6 Let (A,NbI
, G, θ) be a probabilistic planning task,a be a sequence of actions appli-

cable inbI , and |+1 be a relaxation function forA. If build-PRPG(a,A, φ(NbI
), G, θ, |+1) returns

FALSE, then there is no relaxed plan for(A, bI , G, θ) that starts witha|+1 .

Proof: Let t > 0 be the last layer of the PRPG upon the termination ofbuild-PRPG. For every
−m ≤ t′ ≤ t, by the construction of PRPG and Lemma 5, the setsP (t′) anduP (t′) contain all
(and only all) propositions that are known (respectively unknown) after executing all the actions in
the action layers up to and includingA(t′ − 1).

615

DOMSHLAK & H OFFMANN

First, let us show that ifbuild-PRPG returns FALSE, then the corresponding termination cri-
terion would hold in all future iterations. IfP (t + 1) = P (t), then we haveA(t + 1) = A(t).
Subsequently, sinceP (t + 1) ∪ uP (t + 1) = P (t) ∪ uP (t) and A(t + 1) = A(t), we have
P (t + 2)∪uP (t + 2) = P (t + 1)∪uP (t + 1). Given that, we now show thatP (t + 2) = P (t + 1)
anduP (t + 2) = uP (t + 1).

Assume to the contrary that there existsp(t + 2) ∈ P (t + 2) such thatp(t + 1) 6∈ P (t + 1), that
is p(t+1) ∈ uP (t+1). By the construction of the setsP (t+1) andP (t+2) in thebuild-timestep

procedure, we have

Φ −→
∨

l∈support(p(t+2))

l ,

Φ 6−→
∨

l∈support(p(t+1))

l
(29)

Consider an exhaustive classification of the effectse of the actionsA(t + 1) with respect to ourp at
time t + 2.

(I) ∀ε ∈ Λ(e) : p ∈ add(ε), andcon(e) ∈ P (t + 1)

(II) ∀ε ∈ Λ(e) : p ∈ add(ε), andcon(e) ∈ uP (t + 1)

(III) ∃ε ∈ Λ(e) : p 6∈ add(ε) or con(e) 6∈ P (t + 1) ∪ uP (t + 1)

Suppose that the set (I) is not empty, and lete ∈ (I). FromP (t) = P (t + 1) we have thatcon(e) ∈
P (t), and thus{ε(t) | ε ∈ Λ(e)} ⊆ support(p(t + 1)). By the update ofΦ in build-timestep we
then haveΦ −→

∨

{ε(t)|ε∈Λ(e)} ε(t), and thusΦ −→
∨

l∈support(p(t+1)) l, contradicting Eq. 29.
Alternatively, assume that the set (I) is empty. Using the arguments similar to these in the proof

of Lemma 5,p(t + 2) ∈ P (t + 2) andp(t + 1) 6∈ P (t + 1) in this case imply that

Φ −→
∨

e∈(II)
l∈support(con(e)(t+1))

l

Φ 6−→
∨

e∈(II)
l∈support(con(e)(t))

l
(30)

However,A(t + 1) = A(t), uP (t + 1) = uP (t), andP (t + 1) = P (t) together imply that all
the action effects that can possibly take place at timet + 1 are also feasible to take place at time
t. Therefore, since for eache ∈ (II) we havecon(e) ∈ uP (t + 1) by the definition of (II), Eq. 30
implies that

⋃

e∈(II)

support(con(e)(t + 1)) ∩ uP (−m) 6=
⋃

e∈(II)

support(con(e)(t)) ∩ uP (−m), (31)

contradicting our termination condition. Hence, we arrived into contradiction with our assumption
thatp(t + 1) 6∈ P (t + 1).

Having shown thatP (t + 2) = P (t + 1) anduP (t + 2) = uP (t + 1), we now show that the
termination criteria implies that, for eachq(t + 2) ∈ uP (t + 2), we have

uP (−m) ∩ support(p(t + 2)) = uP (−m) ∩ support(p(t + 1)).

616

PROBABILISTIC-FF

Let Ep(t+2) be the set of all effects of actionsA(t + 1) such thatcon(e) ∈ uP (t + 1), and, for each
outcomeε ∈ Λ(e), we havep ∈ add(ε). Given that, we have

uP (−m) ∩ support(p(t + 2)) = uP (−m) ∩
⋃

e∈Ep(t+2)

support(con(e)(t + 1))

= uP (−m) ∩
⋃

e∈Ep(t+2)

support(con(e)(t))

= uP (−m) ∩ support(p(t + 1))

, (32)

where the first and third equalities are by the definition ofsupportsets via Lemma 4, and the second
equation is by our termination condition.

The last things that remains to be shown is that our termination criteria impliesget-P(t +
2, G) =get-P(t + 1, G). Considering the simple cases first, ifG 6⊆ P (t + 1) ∪ uP (t + 1), from
P (t+2)∪uP (t+2) = P (t+1)∪uP (t+1) we haveget-P(t+2, G) =get-P(t+1, G) = 0. Oth-
erwise, ifG ⊆ P (t+1), fromP (t+2) = P (t+1) we haveget-P(t+2, G) =get-P(t+1, G) = 1.

This leaves us with the case ofG ⊆ P (t + 1) ∪ uP (t + 1) andG ∩ uP (t + 1) 6= ∅. From
P (t + 2) = P (t + 1), uP (t + 2) = uP (t + 1), and the termination condition, we have

G ∩ uP (t) = G ∩ uP (t + 1) = G ∩ uP (t + 2).

Fromget-P(t + 1, G) =get-P(t,G) we know that action effects that become feasible only inA(t)
do not increase our estimate of probability of achieving anyg ∈ G ∩ uP (t + 1) from timet to time
t + 1. However, fromP (t + 1) = P (t), uP (t + 1) = uP (t), andA(t + 1) = A(t), we have that
no action effect will become feasible at timet + 1 if it is not already feasible at timet, and thus
get-P(t + 1, G) =get-P(t,G) will imply get-P(t + 2, G) =get-P(t + 1, G).

To this point we have shown that ifbuild-PRPG returns FALSE, then the corresponding ter-
mination criterion would hold in all future iterations. Now, assume to the contrary to the claim of
the theorem thatbuild-PRPG returns FALSE at some iterationt, yet there exists a relaxed plan for
(A, bI , G, θ) that starts witha|+1 . First, if θ = 1, then Lemma 5 implies that there exists timeT
such thatG ⊆ P (T). If so, then the persistence of our “negative” termination condition implies
G ⊆ P (t). However, in this case we would haveget-P(t,G) = 1 (see the secondif of theget-P
procedure), and thusbuild-PRPG would return TRUE before ever getting to check the “negative”
termination condition in iterationt. Alternatively, ifθ = 0, thenbuild-PRPG would have terminated
with returning TRUE before the “negative” termination condition is checked even once.

This leaves us with the case of0 < θ < 1 and get-P(t,G) < θ. (get-P(t,G) ≥ θ will
again contradict reaching the negative termination condition at iterationt.) We can also assume that
G ⊆ P (t)∪uP (t) becauseP (t)∪uP (t) contains all the facts that are not negatively known at time
t, and thus persistence of the negative termination condition together withG 6⊆ P (t)∪uP (t) would
imply that there is no relaxed plan for anyθ > 0. Let us consider the sub-goalsG ∩ uP (t) 6= ∅.

(1) If for all subgoalsg ∈ G ∩ uP (t), the implications inImp→g(t) areonly due to deterministic
outcomes of the effectsE(Imp→g(t)), then the uncertainty about achievingG ∩ uP (t) at time
t is only due to the uncertainty about the initial state. Since the initial belief state is reasoned
about with no relaxation, in this caseget-P(t,G) = WMC(Φ ∧

∧

g∈G\P (t) ϕg) provides us

with an upper boundon the probability of achieving our goalG by a|+1 concatenated with

617

DOMSHLAK & H OFFMANN

an arbitrary linearization of an arbitrary subset ofA(0), . . . , A(t − 1). The termination sub-
conditionget-P(t + 1, G) =get-P(t,G) and the persistence of the action setsA(T), T ≥ t,
imply then thatget-P(t,G) provides us with an upper bound on the probability of achieving G
by a|+1 concatenated with an arbitrary linearization of an arbitrary subset ofA(0), . . . , A(T),
for all T ≥ t. Together withget-P(t,G) < θ, the latter conclusion contradicts our assumption
that a desired relaxed plan exists.

(2) If there exists a subgoalg ∈ G∩uP (t) such that some implications inImp→g(t) are due to truly
probabilistic outcomes of the effectsE(Imp→g(t)), then repeating the (relaxed) actionsA(t) in
A(t + 1) will necessarilyresult inWMC(Φ ∧

∧

g∈G\P (t+1) ϕg) > WMC(Φ ∧
∧

g∈G\P (t) ϕg),
contradicting our termination sub-condition conditionget-P(t + 1, G) =get-P(t,G).

Hence, we arrived into contradiction that our assumption thatbuild-PRPG returns FALSE at timet,
yet there exists a relaxed plan for(A, bI , G, θ) that starts witha|+1 .

References

Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., & Traverso, P. (2001). MBP: a model based planner.
In Proc. IJCAI’01 Workshop on Planning under Uncertainty and Incomplete Information,
Seattle, WA.

Bertoli, P., Cimatti, A., Slaney, J., & Thiébaux, S. (2002). Solving power supply restoration prob-
lems with planning via symbolic model-checking. InProceedings of the 15th European Con-
ference on Artificial Intelligence (ECAI), pp. 576–580, Lion, France.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis.Artificial
Intelligence, 90(1-2), 279–298.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1–2),
5–33.

Bonet, B., & Geffner, H. (2000). Planning with incomplete information as heuristic search in belief
space. InProceedings of the 5th International Conference on Artificial Intelligence Planning
and Scheduling Systems (AIPS), pp. 52–61, Breckenridge, CO.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific independence
in Bayesian networks. InProceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 115–123, Portland, OR.

Brafman, R. I., & Domshlak, C. (2006). Factored planning: How, when, and when not. InProceed-
ings of the 18th National Conference on Artificial Intelligence (AAAI), pp. 809–814, Boston,
MA.

Bryce, D., & Kambhampati, S. (2004). Heuristic guidance measures for conformant planning. In
Proceedings of the 14th International Conference on Automated Planning and Scheduling
(ICAPS), pp. 365–374, Whistler, BC, Canada.

Bryce, D., Kambhampati, S., & Smith, D. (2006). Sequential Monte Carlo in probabilistic planning
reachability heuristics. InProceedings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS), pp. 233–242, Cumbria, UK.

618

PROBABILISTIC-FF

Chavira, M., & Darwiche, A. (2005). Compiling Bayesian networks with local structure. InPro-
ceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pp.
1306–1312, Edinburgh, Scotland.

Darwiche, A. (2000). Recursive conditioning.Artificial Intelligence, 125(1-2), 5–41.

Darwiche, A. (2001). Constant-space reasoning in dynamic Bayesian networks.International Jour-
nal of Approximate Reasoning, 26(3), 161–178.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation.Compu-
tational Intelligence, 5, 142–150.

Dechter, R. (1999). Bucket elimination: A unified frameworkfor reasoning.Artificial Intelligence,
113, 41–85.

Domshlak, C., & Hoffmann, J. (2006). Fast probabilistic planning through weighted model count-
ing. In Proceedings of the 16th International Conference on Automated Planning and
Scheduling (ICAPS), pp. 243–252, Cumbria, UK.

Gomes, C. P., Hoffmann, J., Sabharwal, A., & Selman, B. (2007). From sampling to model counting.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-
07), Hyderabad, India.

Gomes, C. P., Sabharwal, A., & Selman, B. (2006). Model counting: A new strategy for obtain-
ing good bounds. InProceedings of the 21th National Conference on Artificial Intelligence
(AAAI-06), pp. 54–61, Boston, MA.

Hanks, S., & McDermott, D. (1994). Modeling a dynamic and uncertain world I: Symbolic and
probabilistic reasoning about change.Artificial Intelligence, 66(1), 1–55.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search.Journal of Artificial Intelligence Research, 14, 253–302.

Hoffmann, J., & Brafman, R. (2006). Conformant planning viaheuristic forward search: A new
approach.Artificial Intelligence, 170(6–7), 507–541.

Huang, J. (2006). Combining knowledge compilation and search for efficient conformant proba-
bilistic planning. InProceedings of the 16th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 253–262, Cumbria, UK.

Hyafil, N., & Bacchus, F. (2004). Utilizing structured representations and CSPs in conformant
probabilistic planning. InProceedings of the European Conference on Artificial Intelligence
(ECAI), pp. 1033–1034, Valencia, Spain.

Jensen, F. (1996).An Introduction to Bayesian Networks. Springer Verlag, New York.

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithm for probabilistic planning.Artificial
Intelligence, 78(1-2), 239–286.

Little, I., Aberdeen, D., & Thiébaux, S. (2005). Prottle: Aprobabilistic temporal planner. InPro-
ceedings of the 20th National Conference on Artificial Intelligence (AAAI-05), pp. 1181–
1186, Pittsburgh, PA.

Littman, M. L., Goldsmith, J., & Mundhenk, M. (1998). The computational complexity of proba-
bilistic planning.Journal of Artificial Intelligence Research, 9, 1–36.

619

DOMSHLAK & H OFFMANN

Majercik, S. M., & Littman, M. L. (1998). MAXPLAN: A new approach to probabilistic plan-
ning. In Proceedings of the 4th International Conference on Artificial Intelligence Planning
Systems (AIPS), pp. 86–93, Pittsburgh, PA.

Majercik, S. M., & Littman, M. L. (2003). Contingent planning under uncertainty via stochastic
satisfiability. Artificial Intelligence, 147(1-2), 119–162.

McDermott, D. (1998). The 1998 AI Planning Systems Competition. AI Magazine, 2(2), 35–55.

McDermott, D. V. (1999). Using regression-match graphs to control search in planning.Artificial
Intelligence, 109(1-2), 111–159.

Onder, N., Whelan, G. C., & Li, L. (2006). Engineering a conformant probabilistic planner.Journal
of Artificial Intelligence Research, 25, 1–15.

Pearl, J. (1984).Heuristics - Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley.

Pearl, J. (1988).Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

Rintanen, J. (2003). Expressive equivalence of formalismsfor planning with sensing. InProceed-
ings of the 13th International Conference on Automated Planning and Scheduling (ICAPS),
pp. 185–194, Trento, Italy.

Roth, D. (1996). On the hardness of approximate reasoning.Artificial Intelligence, 82(1-2), 273–
302.

Russell, S., & Norvig, P. (2004).Artificial Intelligence: A Modern Approach(2 edition). Pearson.

Sang, T., Bacchus, F., Beame, P., Kautz, H., & Pitassi, T. (2004). Combining component caching
and clause learning for effective model counting. In(Online) Proceedings of the 7th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT), Vancouver, BC,
Canada.

Sang, T., Beame, P., & Kautz, H. (2005). Solving Bayes networks by weighted model counting. In
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI), pp. 475–482,
Pittsburgh, PA.

Shimony, S. E. (1993). The role of relevance in explanation I: Irrelevance as statistical indepen-
dence.International Journal of Approximate Reasoning, 8(4), 281–324.

Shimony, S. E. (1995). The role of relevance in explanation II: Disjunctive assignments and approx-
imate independence.International Journal of Approximate Reasoning, 13(1), 27–60.

Zhang, N. L., & Poole, D. (1994). A simple approach to Bayesian network computations. In
Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178, Banff,
Alberta, Canada.

620

