
R ESEARCH ARTICLE

doi: 10.2306/scienceasia1513-1874.2011.37.344

ScienceAsia 37 (2011): 344–354

Probabilistic pointer analysis for multithreaded programs
Mohamed A. El-Zawawy

College of Computer and Information Sciences, Al-Imam M.I.-S.I. University, Riyadh 11432,
Kingdom of Saudi Arabia
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

e-mail: maelzawawy@cu.edu.eg

Received 13 Apr 2011
Accepted 3 Nov 2011

ABSTRACT: The use of pointers and data-structures based on pointers results in circular memory references that are
interpreted by a vital compiler analysis, namely pointer analysis. For a pair of memory references at a program point,
a typical pointer analysis specifies if the points-to relation between them may exist, definitely does not exist, or definitely
exists. The “may be” case, which describes the points-to relation for most of the pairs, cannot be dealt with by most compiler
optimizations. This is so to guarantee the soundness of these optimizations. However, the “may be” case can be capitalized
by the modern class of speculative optimizations if the probability that two memory references alias can be measured.
Focusing on multithreading, a prevailing technique of programming, this paper presents a new flow-sensitive technique
for probabilistic pointer analysis of multithreaded programs. The proposed technique has the form of a type system and
calculates the probability of every points-to relation at each program point. The key to our approach is to calculate the
points-to information via a post-type derivation. The use of type systems has the advantage of associating each analysis
results with a justification (proof) for the correctness of the results. This justification has the form of a type derivation and is
very much required in applications like certified code.

KEYWORDS: static analysis, speculative optimizations, probabilistic alias analysis, distributed programs, seman-
tics of multithreaded programs, type systems

INTRODUCTION

Multithreading is enjoying a growing interest and
becoming a prevailing technique of programming.
The use of multiple threads has several advantages:
(a) concealing the delay of commands like reading
from a secondary storage, (b) improving the action
of programs, like web servers, that run on multi-
processors, (c) building complex systems for user
interface, (d) simplifying the process of organizing
huge systems of code. However, the static analysis
of multithreaded programs1–3 is intricate due to the
possible interaction between multiple threads.

Among effective tools of modern programming
languages are pointers, which empower coding intri-
cate data structures. Not only does the uncertainty
of pointer values at compile time complicate analysis
of programs, but also retard program compilation by
compelling the program optimization and analysis to
be conservative. The pointer analysis4–6 of programs
is a challenging problem in which researchers have
trade space and time costs for precision. However,
binary decision diagrams7 have been used to ease the

difficulty of this trade off.
At any program point and for every pair of mem-

ory references, a traditional pointer analysis figures
out whether one of these references may point to,
definitely points to, or definitely does point to the
other reference. For most of pairs of the memory
references the points-to relation is of type “may be”.
This is specially the case for techniques that prefer
speed over accuracy. Traditional optimization tech-
niques are not robust enough to treat the cases “may
be” and “definitely” differently. The idea behind
speculative optimization is to subsidize the “maybe”
case, specially if the probability of “maybe” cab be
specifically quantified8, 9.

Pointer analysis10, 11 is among the most important
program analyses of multithreaded programs. Pointer
analysis of multithreaded programs has many applica-
tions; (a) mechanical binding of file operations that are
in abeyance, (b) optimizations for memory systems
like prefetching and relocating remote data calcula-
tions, (c) equipping compilers with necessary infor-
mation for optimizations like common subexpression
elimination and induction variable elimination, and

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.344
http://www.scienceasia.org/2011.html
mailto:maelzawawy@cu.edu.eg
www.scienceasia.org

ScienceAsia 37 (2011) 345

(d) relaxing the process of developing complex tools
for software engineering like program slicers and race
detectors.

This paper presents a new technique for pointer
analysis of multithreaded programs. The proposed
technique is probabilistic; it anticipates precisely for
every program point the probability of every points-
to relation. Building on a type system, the proposed
approach is control-flow-sensitive. The key to the
presented analysis is to calculate probabilities for
points-to relations through the compositional use of
inference rules of a type system. The proposed
technique associates with every analysis a proof (type
derivation) for the correctness of the analysis.

Among techniques to approach static analysis
of programs is the algorithmic style. However, the
proposed technique of this paper has the form of a
type system. The algorithmic style does not reflect
how the analysis results are obtained because it works
on control-flow graphs of programs; not on phrase
structures as in the case of type systems. Therefore
the type-system approach4, 12–14 is perfect for appli-
cations that require to handle a justifications (proof)
for correctness of analysis results together with each
individual analysis. An example of such applications
is certified code. What contributes to suitability of
type-system tools to produce such proofs is the rela-
tive simplicity of its inference rules. This simplicity
is a much appreciated property in applications that
require justifications. In the type-system approach, the
justifications take the form of type derivations.

Motivation

Fig. 1 presents a motivating example of our work.
This example uses three pointer variables (a, b, and
e) that point at two variables (c and d). We suppose
that (i) the condition of the if statement at line 2 is
true with probability 0.6, (ii) the condition of the if
statement at line 9 is true with probability 0.5, and

1. a := &c;
2. if(. . .) then b := &c
3. else b := &d;
4. par{
5. {a := &c}
6. {a := &d}
7. };
8. while(. . .)
9. if(. . .) then e := &d

10. else e := 5;

Fig. 1 A motivating example.

Table 1 Results of pointer analysis of program in Fig. 1.

Program point Pointer information

first point {t 7→ ∅ | t ∈ Var}
between lines 1 & 2 {a 7→ {(c′, 1)},

t 7→ ∅ | x 6= t}
point between 3 & 4 {a 7→ {(c′, 1)},

b 7→ {(c′, 0.6), (d′, 0.4)},
t 7→ ∅ | t /∈ {a, b}}

point between 7 & 8 {a 7→ {(c′, 0.5), (d′, 0.5)},
b 7→ {(c′, 0.6), (d′, 0.4)},
t 7→ ∅ | t /∈ {a, b}}

last point {a 7→ {(c′, 0.5), (d′, 0.5)},
e 7→ {(d′, 1

100
× Σi=100

i=1 (1
2
)i)},

b 7→ {(c′, 0.6), (d′, 0.4)},
t 7→ ∅ | t /∈ {a, b, c}}

(iii) the loop at line 8 iterates at most 100 times.
These statistical and probabilistic information can be
obtained using edge profiling15–18. In absence of edge
profiling, heuristics can be used. The work presented
in this paper aims at introducing a probabilistic pointer
analysis that produces results like that in Table 1. The
aim is also to associate each such pointer-analysis
result with a justification for the correctness of the
result. This justification takes the form of a type
derivation in our proposed technique which is based
on a type system.

Contributions

Contributions of this paper are the following:
1. A new pointer analysis technique, that is prob-

abilistic and flow-sensitive, for multithreaded pro-
grams.

2. A new probabilistic operational-semantics for
multithreaded programs.

Organization

The remainder of the paper is organized in three
sections as follows. The first of these sections presents
a simple language equipped with parallel and pointer
constructs. This section also presents a new proba-
bilistic operational semantics for the constructs of the
language that we study. The second of these sections
introduces a type system to carry probabilistic pointer
analysis of parallel programs. This involves intro-
ducing suitable notions for pointer types, a subtyping
relation, and a detailed proof for the soundness of the
proposed type system w.r.t. the semantics presented in
the paper. Related work is reviewed in the last section
of the paper.

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

346 ScienceAsia 37 (2011)

n ∈ Z, x ∈ Var, and ⊕ ∈ {+,−,×}
e ∈ Aexprs ::= x | n | e1 ⊕ e2
b ∈ Bexprs ::= true | false | ¬b | e1 = e2 | e1 6 e2 | b1 ∧ b2 | b1 ∨ b2
S ∈ Stmts ::= x := e | x := &y | ∗x := e | x := ∗y | skip | S1;S2 | if b then St else Sf |

while b do St | par{{S1}, . . . , {Sn}} | par-if{(b1, S1), . . . , (bn, Sn)} | par-for{S}.

Fig. 2 The programming language.

PROBABILISTIC OPERATIONAL
SEMANTICS

This section presents the programming language we
study and a probabilistic pointer analysis for its con-
structs. We build our language (Fig. 2) on the while
language, originally presented by Hoare in 1969, by
equipping it with commands dealing with pointers
and parallel computations. The parallel concepts
dealt with in our language are fork-join, conditionally
spawned threads, and parallel loops. These concepts
are represented by the commands par, par-if, and
par-for, respectively. States of our proposed opera-
tional semantics are defined as follows:

Definition 1 1. Addrs = {x′ | x ∈ Var} and Val =
Z ∪ Addrs.

2. γ ∈ Γ = Var→ Val.
3. state ∈ States = {(γ, p) | γ ∈ Γ ∧ p ∈ [0, 1]}

∪ {abort}.
Typically, a state is a function from the set of variables
to the set of values (integers). In our work, we enrich
the set of values with a set of symbolic addresses
and enrich each state with a probabilistic value that is
meant to measure the probability with which this state
is reached. The abort state is there to capture any case
of de-reference that is unsafe; i.e., de-referencing a
variable that contains no address. We assume that the
set of program variables, Var, is finite.

Except that arithmetic and Boolean operations are
not allowed on pointers, the semantics of arithmetic
and Boolean expressions are defined as usual (Fig. 3).
The inference rules of Fig. 4 define the transition
relation of our operational semantics.

We notice that none of the assignment statements
changes the probability component of a given pre-state
to produce the corresponding post-state. The symbol
pif used in the inference rules of the if statement
denotes a number in [0, 1] and measures the proba-
bility that the condition of the statement is true. This
probabilistic information can be obtained using edge
profiling15–18. In absence of edge profiling, heuristics
can be used.

The par command is the main parallel concept.
This concept is also known as cobegin-coend or fork-
join. The execution of this command amounts to
starting concurrently executing the threads of the com-
mand at the beginning of the construct and then to wait
for the completion of these executions at the end of
the construct. Then the subsequent command can be
executed. The inference rule (par-sem) approximates
the execution method of the par command. The
probability p′ in the rule (par-sem) is multiplied by
1/n! (not by 1/n as the reader may expect) because
the permutation θ finds one of the n! ways in which
the threads can be sorted and then executed. As an
example, the reader may consider applying the rule
par-sem when n = 3 and the threads are S1 : a :=
b + c, S2 : b := a × c, andS3 : c := a − b. The
semantics of par-if and par-for commands are defined
using that of the par command.

PROBABILISTIC POINTER ANALYSIS

The purpose of a typical pointer analysis is to assign to
every program point a points-to function. The domain
of this function is the set of all pairs of pointers and
the codomain is the set {definitely exists, definitely
does not exist, may exist}. The codomain describes
the points-to relation between pairs of memory ref-
erences. For most of the pointer pairs, the points-
to relation is “may exist”. This is specially the case
for techniques of pointer analysis that give priority
for speed over efficiency. The common drawback for
most existing program optimization techniques is that
they cannot treat the “maybe” and “definitely does not
exist” cases differently. Speculative optimizations are
meant to overcome this disadvantage via working on
the result of analyses that can measure the probability
that a points-to relation exist between two pointers.

This section presents a new technique for proba-
bilistic pointer analysis for multithreaded programs.
The technique has the form of a type system and
its goal is to accurately calculate the likelihood at
each program point for every points-to relation. The
advantages of the proposed technique include the

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

ScienceAsia 37 (2011) 347

[[n]] γ = n [[&x]] γ = x′ [[x]] γ = γ(x) [[true]] γ = true [[false]] γ = false

[[∗x]] γ =

{
γ(y) if γ(x) = y′,
! otherwise.

[[e1 ⊕ e2]] γ =

{
[[e1]] γ ⊕ [[e2]] γ if [[e1]] γ, [[e2]] γ ∈ Z,
! otherwise.

[[¬A]] γ =

{
¬([[A]] γ) if [[A]] γ ∈ {true, false},
! otherwise.

[[e1 = e2]] γ =


! if[[e1]] γ = ! or [[e2]] γ = !,
true if [[e1]] γ = [[e2]] γ 6= !,
false otherwise.

[[e1 6 e2]] γ =

{
! if [[e1]] γ 6∈ Z or [[e2]] γ 6∈ Z,
[[e1]] γ 6 [[e2]] γ otherwise.

For � ∈ {∧,∨}, [[b1 � b2]] γ =

{
! if [[b1]] γ = ! or [[b2]] γ = !,
[[b1]] γ � [[b2]] γ otherwise.

Fig. 3 Semantics of arithmetic and Boolean expressions.

simplicity of the inference rules of the type system and
that no dependence profile information (information
describing dependencies between threads) is required.
Dependence profile information, required by some
multithreading techniques like Ref. 19, is expensive
to get. The proposed technique is flow-sensitive.
The key to our technique is to calculate points-to
probabilities via a post type derivation for a given
program using the bottom points-to type as a pre type.

The following definition presents some notations
that are used in the rest of the paper.

Definition 2 1. Addrs = {x′ | x ∈ Var} and
Addrsp = Addrs× [0, 1].

2. Pre-PTS = {pts | pts : Var → 2Addrsp s.t.
∀y ∈ Var. (y′, p1), (y′, p2) ∈ pts(x) =⇒ p1 = p2}.

3. For pts ∈ Pre-PTS and x ∈ Var,
∑

pts x =∑
(z′,p)∈pts(x) p.

4. For every pts ∈ Pre-PTS and x ∈ Var,
Apts(x) = {z′ | ∃p > 0. (z′, p) ∈ pts(x)}.

5. For A ∈ Addrsp, pts ∈ Pre-PTS, and
0 6 q 6 1,

(a)A× q = {(y′, p× q) | (y′, p) ∈ A}.
(b)pts × q is the function defined by

(pts × q)(x) = pts(x)× q.

We note that the set of symbolic addresses Addrs
is enriched with probabilities to form the set Addrsp.
In line with real situations, the condition on the ele-
ments of Pre-PTS excludes maps that assign the same
address for a variable with two different probabilities.
The notation

∑
pts x denotes the probability that the

variables x has an address with respect to pts . The no-
tation Apts(x) denotes the set of addresses that have a
non-zero probability to get into x. The multiplication
operations of Definition 2.5 are necessary to join many
points-to types (each with a different probability) into
one type.

A formalization for the concepts of the set of
points-to types PTS, the subtyping relation 6, and
the relation |= ⊆ Γ× PTS are in the subsequent
definition.

Definition 3 1. PTS = {pts ∈ Pre-PTS | ∀x ∈ Var.∑
pts x 6 1}.

2. pts 6 pts ′
def⇐⇒ ∀x. Apts(x) ⊆ Apts′(x).

3. pts ≡ pts ′
def⇐⇒ ∀x. Apts(x) = Apts′(x).

4. (γ, p) |= pts
def⇐⇒ (∀x. γ(x) ∈ Addrs =⇒

∃q > 0. (γ(x), q) ∈ pts(x)).

A way to calculate an upper bound for a set
of n points-to types is introduced in the following
definition.

Definition 4 Suppose pts1, . . . , ptsn is a sequence
of n points-to types and 0 6 q1, . . . , qn 6 1 is
a sequence of n numbers whose sum is less than
or equal to 1. Then ∇((pts1, q1), . . . , (ptsn, qn)) :
Var→ 2Addrsp is the function defined by:

∇((pts1, q1), . . . , (ptsn, qn))(x) =

{(z′, p) | (∃i. z′ ∈ Aptsi(x))∧(p =
∑

(z′,pk)∈ptsk(x)

qk×pk)}.

We note that the order of the points-to lattice
is the point-wise inclusion. However, probabilities
are implicitly taken into account in the definition of
supremum which is based on Definition 4. Letting
the probabilities of points-to relations be involved in
the definition of the order relation complicates the for-
mula of calculating the lattice supremum. Besides that
this complication is not desirable, introducing proba-
bilities apparently does not improve the type system
results. The definition for (γ, p) |= pts makes sure
that a variable that has an address under γ is allowed
(positive probability) to contain the same address

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

348 ScienceAsia 37 (2011)

[[e]] γ = !

x := e : (γ, p) abort

[[e]] γ 6= !

x := e : (γ, p) (γ[x 7→ [[e]] γ], p)

γ(x) = z′ z := e : (γ, p) state

∗x := e : (γ, p) state

γ(x) /∈ Addrs

∗x := e : (γ, p) abort x := &y : (γ, p) (γ[x 7→ y′], p)

γ(y) /∈ Addrs

x := ∗y : (γ, p) abort

γ(y) = z′ x := z : (γ, p) (γ′, p)

x := ∗y : (γ, p) (γ′, p) skip : (γ, p) (γ, p)

S1 : (γ, p) abort

S1;S2 : (γ, p) abort

S1 : (γ, p) (γ′′, p′′) S2 : (γ′′, p′′) state

S1;S2 : (γ, p) state

[[b]] γ = !

if b then St else Sf : (γ, p) abort

[[b]] γ = true St : (γ, p) abort

if b then St else Sf : (γ, p) abort

[[b]] γ = true St : (γ, p) (γ′, p′)

if b then St else Sf : (γ, p) (γ′, pif × p′)
[[b]] γ = false Sf : (γ, p) abort

if b then St else Sf : (γ, p) abort

[[b]] γ = false Sf : (γ, p) (γ′, p′)

if b then St else Sf : (γ, p) (γ′, (1− pif)× p′)
[[b]] γ = !

while b do St : (γ, p) abort

[[b]] γ = false

while b do St : (γ, p) (γ, p)

[[b]] γ = true S : (γ, p) abort

while b do St : (γ, p) abort

[[b]] γ = true S : (γ, p) (γ′′, p′′) while b do St : (γ′′, p′′) state

while b do St : (γ, p) state

• Fork-join:

(∃ θ : {1, . . . , n} → {1, . . . , n}). Sθ(1);Sθ(2); . . . ;Sθ(n) : (γ, p) (γ′, p′)
(par-sem)

par{{S1}, . . . , {Sn}} : (γ, p) (γ′,
1

n!
× p′)

(∃ θ : {1, . . . , n} → {1, . . . , n}). Sθ(1);Sθ(2); . . . ;Sθ(n) : (γ, p) abort

par{{S1}, . . . , {Sn}} : (γ, p) abort

• Conditionally spawned threads:

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (γ, p) state

par-if{(b1, S1), . . . , (bn, Sn)} : (γ, p) state

• Parallel loops:

∃n. par{

n−times︷ ︸︸ ︷
{S}, . . . , {S}} : (γ, p) state

par-for{S} : (γ, p) state

Fig. 4 Inference rules of the semantics.

under pts . As for Definition 4, we can interpret the
elements of the sequence q1, . . . , qn as weights for the
elements of the sequence pts1, . . . , ptsn, respectively.
Therefore the map∇((pts1, q1), . . . , (ptsn, qn)) joins
pts1, . . . , ptsn into one type with respect to the
weights.

The following lemma proves that the upper bound
of the previous definition is indeed a points-to type.

Lemma 1 The map ∇((pts1, q1), . . . , (ptsn, qn)) of
previous definition is a points-to type.

Proof : Suppose that∇((pts1, q1), . . . , (ptsn, qn))(x)
= {(z′1, t1), (z′2, t2), . . . , (z′m, tm)}. To show the
required we need to show that (a) 0 6 ti 6 1 and
(b) 0 6 Σiti 6 1. Since (b) implies (a), it is enough
to show (b). Suppose that ∀1 6 i 6 n, ptsi(x) =

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

ScienceAsia 37 (2011) 349

pts1 pts2 . . . ptsn

z′1
z′2
...
z′m


p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

. . .
...

pm1 pm2 . . . pmn




q1
q2
...
qn

 =


t1
t2
...
tm


Fig. 5 A matrix multiplication needed in the proof of Lemma 1.

{(z′1, p1i), (z′2, p2i), . . . , (z′m, pmi)}, where ∀1 6 j 6
m, pji = 0 if zj /∈ Aptsi(x). Then according to
Definition 4 the values t1, . . . , tm can be equivalently
calculated by the matrix multiplication of Fig. 5.

Then:

Σi ti = (Σi qi × p1i) + (Σi qi × p2i) + . . .

+ (Σi qi × pmi)
= (q1 × Σi pi1) + (q2 × Σi pi2) + . . .

+ (qn × Σi pin).

We note that ∀j, 0 6 Σi pij 6 1 by definition of ptsj
and ∀j, 0 6 qj 6 1. Therefore this last summation is
less than 1. �

Lemma 2 Suppose that A = {pts1, . . . , ptsn} ⊆
PTS and pts = ∇((pts1, 1/n), . . . , (ptsn, 1/n)).
Then with respect to definitions of ∇, the subtyping,
and equality relations introduced in Definitions 3.2,
3.3, and 4, respectively, the set PTS is a complete
lattice where ∨A = pts.

Proof : Clearly pts is an upper bound forA. Moreover
for every x, Apts(x) = ∪iAptsi(x). Therefore pts is
the least upper bound of A. �

The inference rules of our proposed type system
for probabilistic pointer analysis are shown in Fig. 6.

The judgement of an arithmetic expression has the
form e : pts → A. The intuition (Lemma 3) of this
judgement is that any address that e evaluates to in a
state of type pts is included in the set A as the second
component of a pair whose first component is a non-
zero probability. The judgement for a statement S has
the form S : pts → pts ′ and guarantees that if the
execution of S in a state of type pts terminates then
the reached state is of type pts ′. This is proved in
Theorem 1.

Concerning the inference rules, some comments
are in order. In the rule (:= ∗ prob), since there are n
possible ways to modify x, the post-type is calculated
from the pre-type by assigning x its value according
to the upper bound of the n ways. The upper bound
is consider to enable the analysis to cover all possible
executions of the statement. In the rule (∗ := prob),

there are n variables, {z1, . . . , zn}, that have a chance
of getting modified. This produces n post-types in
the pre conditions of the rule. Therefore the post-
type is calculated from the pre-type by assigning
each of the n variables its image under the upper
bound of the n post-types. In the rule (if prob), p is
the probability that the condition of the if statement
is true. The rule (par prob) has this form in order
for the analysis result of any thread Si of the par
statement to consider the fact that any other thread
may have been executed before the thread in hand.
As it is the case in the operational semantics, the
rules for conditionally spawned threads (par-if prob)
and parallel loops (par-for prob) are built on the rule
(par prob). In the following we give an example for the
application of the rule (par prob). Let:

• S1 : if b1 then x := &y else x := 5,
• S2 : x := &z;
• Spar : par{{S1}, {S2}},
• pts = {t 7→ ∅ | t ∈ Var}, pts1 = {x 7→

{(y′, 0.4)}, t 7→ ∅ | x 6= t ∈ Var}, and pts2 = {x 7→
{(z′, 1)}, t 7→ ∅ | x 6= t ∈ Var}.

We suppose that the condition b1 in S1 succeeds
with probability 0.4. Then we have the following:

∇((pts, 1/2), (pts1, 1/2)) =

{x 7→ {(y′, 0.25)}, t 7→ ∅ | x 6= t ∈ Var},
∇((pts, 1/2), (pts2, 1/2)) =

{x 7→ {(z′, 0.5)}, t 7→ ∅ | x 6= t ∈ Var}, and
∇((pts1, 1/2), (pts2, 1/2)) =

{x 7→ {(y′, 0.25), (z′, 0.5)}, t 7→ ∅ | x 6= t ∈ Var}.

Clearly, S1 : ∇((pts, 1/2), (pts2, 1/2)) → pts1
and S2 : ∇((pts, 1/2), (pts1, 1/2)) → pts2.
These two judgements constitute the hypotheses
for the rule (par prob). Therefore using the rule
(par prob), we can conclude that Spar : pts →
∇((pts1, 1/2), (pts2, 1/2)). The post type of Spar

clearly covers all semantics states that can be reached
by executing Spar. Now we give an example for the
application of the rule (par-if prob). Let:

• S1 : x := &y,
• S2 : x := &z,

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

350 ScienceAsia 37 (2011)

n : pts → ∅ x : pts → pts(x) e1 ⊕ e2 : pts → ∅
e : pts → A

(:= prob)
x := e : pts → pts[x 7→ A]

pts(y) = {(z′1, p1), . . . , (z′n, pn)} ∀i. x := zi : pts → ptsi
(:= ∗ prob)

x := ∗y : pts → pts[x 7→ ∇((pts1, p1), . . . , (ptsn, pn))(x)] skip : pts → pts

pts(x) = {(z′1, p1), . . . , (z′n, pn)} ∀z′i ∈ Apts(x). zi := e : pts → ptsi
(∗ := prob)

∗x := e : pts → pts[zi 7→ ∇((pts, 1− pi), (ptsi, pi))(zi) | z
′
i ∈ Apts(x)]

(:= & prob)
x := &y : pts → pts[x 7→ {(y′, 1)}]

S1 : pts → pts ′′ S2 : pts ′′ → pts ′

(seq prob)
S1;S2 : pts → pts ′

St : pts → ptst Sf : pts → ptsf
(if prob)

if b then St else Sf : pts → ∇((ptst, p), (ptsf , 1− p))
Si : ∇{(pts, 1/n), (ptsj , 1/n) | j 6= i} → ptsi

(par prob)
par{{S1}, . . . , {Sn}} : pts → ∇((pts1, 1/n), . . . , (ptsn, 1/n))

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : pts → pts ′

(par-if prob)
par-if{(b1, S1), . . . , (bn, Sn)} : pts → pts ′

∀n. par{

n−times︷ ︸︸ ︷
{S}, . . . , {S}} : pts → pts ′

(par-for prob)
par-for{S} : pts → pts ′

n = 0
(whl prob

1)
while b do St : pts → pts

n > 1 ∀1 6 i 6 n. St : pts →i ptsi
(whl prob

2)
while b do St : pts → ∇((pts1, 1/n), . . . , (ptsn, 1/n))

pts ′1 6 pts1 S : pts1 → pts2 pts2 6 pts ′2
(csq prob)

S : pts ′1 → pts ′2

Fig. 6 The inference rules for the type system for probabilistic pointer analysis.

• Spar-if : par-if{(b1, S1), (true, S2)}, and
• pts ′ = {x 7→ {(y′, 0.25), (z′, 0.5)}, t 7→ ∅ |

x 6= t ∈ Var} and pts = {t 7→ ∅ | t ∈ Var}.
We suppose that the condition b1 succeeds with

probability 0.4. By the previous example it should be
clear that par{{if b1 then S1 else skip},{if true then
S2 else skip}} : pts → pts ′. This last judgement
constitutes the hypothesis for the rule (par-if prob).
Therefore using the rule (par-if prob), we can conclude
that Spar-if : pts → pts ′. The post type of Spar-if

clearly covers all semantics states that can be reached
by executing Spar-if. In rules (whl prob

1) and (whl prob
2),

n represents an upper bound for the trip-count of the
loop. The post-type of (whl prob

2) is an upper bound
for post-types resulting for all number of iterations
bounded by n.

The proof of the following lemma is straightfor-
ward.

Lemma 3 1. pts 6 pts ′ =⇒ (∀(γ, p).(γ, p) |= pts
=⇒ (γ, p) |= pts ′)

2. Suppose e : pts → A and (γ, p) |= pts . Then

[[e]] γ ∈ Addrs implies ([[e]] γ, q) ∈ A, for some q > 0.

Lemma 3.1 formalizes the soundness of points-to
types. Lemma 3.2 shows that for a certain state that
is of a certain type, if the evaluation of an expression
with respect to the state is an address, then this evalu-
ation is surely (positive probability) approximated by
the evaluation of the expression with respect to the
type.

The following theorem proves the soundness of
the type system. The meant soundness implies that the
type system respects the operational semantics with
respect to the relation |= whose definition is based on
probabilities.

Theorem 1 (Soundness) Suppose that S : pts →
pts ′, S : (γ, p) (γ′, p′), and (γ, p) |= pts. Then
(γ′, p′) |= pts ′.

Proof : A structure induction on type derivation can
be used to complete the proof of this theorem. Some
cases are presented below.

• The case of (:= prob): in this case p′ =

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

ScienceAsia 37 (2011) 351

p, pts ′ = pts[x 7→ A], and γ′ = γ[x 7→ [[e]] γ]. Hence
by Lemma 3.2, γ |= (pts, p) implies γ′ |= (pts ′, p′).

• The case of (:= ∗ prob): in this case for some
z ∈ Var, γ(y) = z′ and x := z : (γ, p) (γ′, p).
For some i, z′ = z′i since (γ, p) |= pts . Hence
by assumption x := zi : pts → ptsi. Therefore
by soundness of (:= prob), (γ′, p) |= ptsi 6 pts ′ =
pts[x 7→ ∇((pts1, p1), . . . , (ptsn, pn))(x)].

• The case of (∗ := prob): in this case there exists
z ∈ Var such that γ(x) = z′ and z := e : (γ, p)
(γ′, p). For some i, z′ = z′i since (γ, p) |= pts . Hence
by assumption zi := e : pts → ptsi. Therefore
by soundness of (:= prob), (γ′, p) |= ptsi 6 pts ′ =
pts[zi 7→ ∇((pts, 1 − pi), (ptsi, pi))(zi) | z′i ∈
Apts(x)].

• The case of (par prob): in this case there exists
a permutation θ : {1, . . . , n} → {1, . . . , n}
and n + 1 states (γ1, p1), . . . , (γn+1, pn+1)
such that (γ, p) = (γ1, p1), (γ′, p′) =
(γn+1, (1/n!)× p′n+1), and for every 1 6 i 6 n,
Sθ(i) : (γi, pi)→ (γi+1, pi+1). Also (γ1, p1) |=
pts 6 ∇{(pts, 1/n), (ptsj , 1/n) | j 6= 1}.
Therefore by the induction hypothesis (γ2, p2) |=
pts1 6 ∇{(pts, 1/n), (ptsj , 1/n) | j 6= 2}.
Again by the induction hypothesis we get
(γ3, p3) |= pts2. Therefore by a simple induction
on n, we can show that (γn+1, pn+1) |= ptsn 6
∇((pts1, 1/n), . . . , (ptsn, 1/n)) = pts ′. This
implies (γ′, p′) = (γn+1, (1/n!)× p′n+1) |= pts ′

• The case of (par-for prob): in this case there
exists n such that

par{
n−times︷ ︸︸ ︷

{S}, . . . , {S}} : (γ, p) (γ′, p′).

By induction hypothesis we have

par{
n−times︷ ︸︸ ︷

{S}, . . . , {S}} : pts → pts ′.

Therefore by the soundness of (par prob), (γ′, p′) |=
pts ′.

• The case of (whl prob
2): in this case there exist

m 6 n and m+ 1 states, (γ1, p1), . . . , (γm+1, pm+1),
such that (γ, p) = (γ1, p1), (γ′, p′) = (γm+1, pm+1),
and ∀1 6 i 6 m. S : (γi, pi) (γi+1, pi+1).
By induction hypothesis we have (γ′, p′) |=
ptsm 6 ∇((pts1, 1/n), . . . , (ptsn, 1/n)). Therefore
(γ′, p′) |= pts ′ as required. �

We note that probabilities are mentioned implic-
itly in Theorem 1. This is in the condition that
(γ, p) |= pts. Some of the implications of this
implicit consideration of probabilities are explicit in
Lemma 3.2. As an example for the theorem, executing

the statement Spar, defined above, from the semantics
state γ = {t 7→ 0 | t ∈ Var} may result in the
state γ′ = {t 7→ 0, x 7→ z′ | x 6= t ∈ Var}. This
happens if S2 is executed after S1. Clearly we have
that γ |= {t 7→ ∅ | t ∈ Var} and γ′ |= {x 7→
{(y′, 0.25), (z′, 0.5)}, t 7→ ∅ | x 6= t ∈ Var}.

One source of attraction in the use of type systems
for program analysis is the relative simplicity of the in-
ference rules. This simplicity is very important when
practical implementation is concerned. The simplicity
of the rules naturally simplifies implementations of
rules and hence the type system. In particular, from
experience related to coding similar type systems, we
believe that the implementation of the type system
presented in this paper is straightforward and efficient
in terms of space and time.

RELATED WORK

Analysis of multithreaded programs:

Typically, analyses of multithreaded programs are
classified into two main categories: (a) techniques
that were originally designed for sequential programs
and later extended to analyse multithreaded programs
and (b) techniques that were designed specifically
for analysing, optimizing, or correcting multithreaded
programs.

The first category includes flow-insensitive ap-
proaches providing an easy way to analyse multi-
threaded programs. This is done via considering all
possible combinations of statements used in a parallel
structure. The drawback of this approach is that it
is not practical enough due to the huge number of
combinations. However, flow-sensitive approaches
of sequential programs were also extended to cover
multithreaded programs. Examples of these tech-
niques are constant propagation20, code motion21, and
reaching definitions22.

The category of techniques that were designed
specifically for multithreaded programs include dead-
lock detection, data race detection, and weak memory
consistency. A round abeyance to gain resources
usually results in a deadlock situation3, 23, 24. Synchro-
nization analysis is a typical start to study deadlock
detection for multithreaded programs. In absence of
synchronization, if two parallel threads write to the
same memory location, a situation of a data race2 re-
sults. Data race analyses aim at eliminating data race
situations as they are mainly programmer error. Mod-
els of weak memory consistency1 aim at improving
performance of hardware. This improvement usually
results in complicating parallel programs construction
and analysis.

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

352 ScienceAsia 37 (2011)

Probabilistic pointer analysis and speculative opti-
mizations:

Although pointer analysis is a well-established pro-
gram analysis and many techniques have been sug-
gested, there is no single technique that is believed to
be the best choice25. The trade-off between accuracy
and time costs hinders a universal pointer analy-
sis and motivates application-directed techniques for
pointer analysis26. A probabilistic pointer analysis
that is flow-sensitive and context-insensitive has been
presented for Java programs27. While our work
is based on type systems, previous work is based
on interprocedural control flow graphs whose edges
are enriched with probabilities. While our work
treats multithreaded programs, the work in Ref. 27
treats only sequential programs. Context-sensitive
and control-flow-sensitive pointer analyses4, 10, 28, 29

are known to be accurate but not scalable. On the other
hand the context-insensitive control-flow-insensitive
techniques6, 11 are scalable but excessively conserva-
tive. A convenient mixture of accuracy and scalability
is introduced by some technique7, 30, 31 to optimize
the trade-off mentioned above. The probabilistic
pointer analysis of a simple imperative language8, 9

and the pointer analysis of multithreaded programs32

have been studied. However, none of these typical
techniques for pointer analysis study the probabilistic
pointer analysis of multithreaded programs.

Speculative optimizations33–36 are considered by
many program analyses. A probabilistic technique
for memory disambiguation was proposed34. This
technique measures the probability that two array
references alias. Nevertheless this approach is not
convenient to pointers. By lessening the safety of
analysis, a pointer analysis that considers speculation
was introduced35. Another unsafe analysis, which
achieves scalability using transfer functions, was pro-
posed36. The problem with these last two approaches
is that they do not compute the probability information
required by speculative optimizations.

Type systems in program analysis:

There are general algorithms4, 13, 14, 37–39 for using type
systems to present data flow analyses, which are
monotone and forward or backward. While a way14, 37

to reason about program pairs using relational Hoare
logic exists, program optimizations14, 38 as types sys-
tems also exist. Type systems were also used to
cast safety policies for resource usage, information
flow, and carrying-code abstraction40, 41. Proving the
soundness of compiler optimizations for imperative

languages, using type systems, gained much inter-
est12–14 of many researchers. Other work studies
translating proofs of functional correctness using wp-
calculus42 and using a Hoare logic14. There are other
optimizations43 that boost program quality besides
maintaining program semantics.

Edge and path profiling:

Edge (path) profiling research simply aims at profiling
programs edges (paths). The profiling process can be
done statically or dynamically. Profiling techniques
can be classified into:

• Sample-based techniques16, 17 which profile
representative parts of active edges and paths,

• One-time profiling methods which profile only
part of the execution of the program to cut down the
overhead17, 44,

• Instrumentation-based techniques45 which are
more convenient for programs with comparably antic-
ipated behaviour, and

• Hardware profiling which employs hardware
to gather edge profiles using existing hardware for
branch anticipation18.

Using a parallel data-flow diagram46, many of
these techniques are applicable to the language studied
in this paper. In particular, a hybrid sampling and
instrumentation approach15 is a convenient choice
giving its simplicity and powerful.

Acknowledgements: This work was started during the
author’s sabbatical at Institute of Cybernetics, Estonia in the
year 2009. The author is grateful to T. Uustalu for fruitful
discussions. This work was partially supported by the EU
FP6 IST project MOBIUS. The author is also indebted
to the anonymous reviewers whose queries and comments
improved the paper.

REFERENCES
1. Gelado I, Cabezas J, Navarro N, Stone JE, Patel SJ,

Hwu WW (2010) An asymmetric distributed shared
memory model for heterogeneous parallel systems. In:
Hoe JC, Adve VS (eds) ASPLOS, ACM, pp 347–58.

2. Leung K, Huang Z, Huang Q, Werstein P (2009) Mao-
tai 2.0: Data race prevention in view-oriented parallel
programming. In: PDCAT, IEEE Computer Society,
pp 263–71.

3. Xiao X, Lee JJ (2010) A true o(1) parallel deadlock
detection algorithm for single-unit resource systems
and its hardware implementation. IEEE Trans Parallel
Distr Syst 21, 4–19.

4. El-Zawawy MA (2011) Program optimization based
pointer analysis and live stack-heap analysis. Int J
Comput Sci Issues 8, 98–107.

www.scienceasia.org

http://www.scienceasia.org/2011.html
http://dx.doi.org/10.1109/TPDS.2009.38
http://dx.doi.org/10.1109/TPDS.2009.38
http://dx.doi.org/10.1109/TPDS.2009.38
http://dx.doi.org/10.1109/TPDS.2009.38
www.scienceasia.org

ScienceAsia 37 (2011) 353

5. El-Zawawy MA (2011) Flow sensitive-insensitive
pointer analysis based memory safety for multithreaded
programs. In: Murgante B, Gervasi O, Iglesias A,
Taniar D, Apduhan BO (eds) ICCSA (5), Springer,
vol 6786 of Lecture Notes in Computer Science,
pp 355–69.

6. Adams S, Ball T, Das M, Lerner S, Rajamani SK,
Seigle M, Weimer W (2002) Speeding up dataflow
analysis using flow-insensitive pointer analysis. In:
Hermenegildo MV, Puebla G (eds) SAS, Springer,
vol 2477 of Lecture Notes in Computer Science,
pp 230–46.

7. Berndl M, Lhoták O, Qian F, Hendren LJ, Umanee N
(2003) Points-to analysis using bdds. In: PLDI, ACM,
pp 103–14.

8. Chen PS, Hwang YS, Ju RDC, Lee JK (2004) Inter-
procedural probabilistic pointer analysis. IEEE Trans
Parallel Distr Syst 15, 893–907.

9. Silva JD, Steffan JG (2006) A probabilistic pointer
analysis for speculative optimizations. In: Shen JP,
Martonosi M (eds) ASPLOS, ACM, pp 416–25.

10. Yu H, Xue J, Huo W, Feng X, Zhang Z (2010) Level
by level: making flow- and context-sensitive pointer
analysis scalable for millions of lines of code. In:
Moshovos A, Steffan JG, Hazelwood KM, Kaeli DR
(eds) CGO, ACM, pp 218–29.

11. Anderson P, Binkley D, Rosay G, Teitelbaum T (2002)
Flow insensitive points-to sets. Inform Software Tech
44, 743–54.

12. Bertot Y, Grégoire B, Leroy X (2004) A structured
approach to proving compiler optimizations based on
dataflow analysis. In: Filliatre JC, Paulin Mohring C,
Werner B (eds) TYPES, Springer, vol 3839 of Lecture
Notes in Computer Science, pp 66–81.

13. Laud P, Uustalu T, Vene V (2006) Type systems equiv-
alent to data-flow analyses for imperative languages.
Theor Comput Sci 364, 292–310.

14. Saabas A, Uustalu T (2008) Program and proof opti-
mizations with type systems. J Logic Algebr Program
77, 131–54.

15. Bond MD, McKinley KS (2005) Continuous path and
edge profiling. In: MICRO, IEEE Computer Society,
pp 130–40.

16. Anderson JAM, Berc LM, Dean J, Ghemawat S, Hen-
zinger MR, Leung ST, Sites RL, Vandevoorde MT, et al
(1997) Continuous profiling: Where have all the cycles
gone? ACM Trans Comput Syst 15, 357–90.

17. Suganuma T, Yasue T, Kawahito M, Komatsu H,
Nakatani T (2005) Design and evaluation of dynamic
optimizations for a java just-in-time compiler. ACM
Trans Program Lang Syst 27, 732–85.

18. Vaswani K, Thazhuthaveetil MJ, Srikant YN (2005) A
programmable hardware path profiler. In: CGO, IEEE
Computer Society, pp 217–28.

19. Steffan JG, Colohan CB, Zhai A,Mowry TC (2005) The
stampede approach to thread-level speculation. ACM
Trans Comput Syst 23, 253–300.

20. Lee J, Midkiff SP, Padua DA (1997) Concurrent static
single assignment form and constant propagation for
explicitly parallel programs. In: Li Z, Yew PC, Chatter-
jee S, Huang CH, Sadayappan P, Sehr DC (eds) LCPC,
Springer, vol 1366 of Lecture Notes in Computer Sci-
ence, pp 114–30.

21. Knoop J, Steffen B (1999) Code motion for explicitly
parallel programs. In: PPOPP, pp 13–24.

22. Sarkar V (2009) Challenges in code optimization of
parallel programs. In: de Moor O, Schwartzbach MI
(eds) CC, Springer, vol 5501 of Lecture Notes in
Computer Science, p 1.

23. Kim BC, Jun SW, Hwang DJ, Jun YK (2009) Visualiz-
ing potential deadlocks in multithreaded programs. In:
Malyshkin V (ed) PaCT, Springer, vol 5698 of Lecture
Notes in Computer Science, pp 321–30.

24. Wang Y, Kelly T, Kudlur M, Lafortune S, Mahlke
SA (2008) Gadara: Dynamic deadlock avoidance for
multithreaded programs. In: Draves R, van Renesse R
(eds) OSDI, USENIX Association, pp 281–94.

25. Hind M, Pioli A (2000) Which pointer analysis should
I use? In: ISSTA, pp 113–23.

26. Hind M (2001) Pointer analysis: haven’t we solved this
problem yet? In: PASTE, pp 54–61.

27. Sun Q, Zhao J, Chen Y (2011) Probabilistic points-to
analysis for java. In: Knoop J (ed) CC, Springer, vol
6601 of Lecture Notes in Computer Science, pp 62–81.

28. Hardekopf B, Lin C (2009) Semi-sparse flow-sensitive
pointer analysis. In: Shao Z, Pierce BC (eds) POPL,
ACM, pp 226–38.

29. Wang J, Ma X, Dong W, Xu HF, Liu W (2009)
Demand-driven memory leak detection based on flow-
and context-sensitive pointer analysis. J Comput Sci
Tech 24, 347–56.

30. Whaley J, Lam MS (2004) Cloning-based context-
sensitive pointer alias analysis using binary decision
diagrams. In: Pugh and Chambers 47, pp 131–44.

31. Zhu J, Calman S (2004) Symbolic pointer analysis
revisited. In: Pugh and Chambers 47, pp 145–57.

32. Rugina R, Rinard MC (2003) Pointer analysis for struc-
tured parallel programs. ACM Trans Program Lang
Syst 25, 70–116.

33. Ramalingam G (1996) Data flow frequency analysis.
In: PLDI, pp 267–77.

34. Ju RDC, Collard JF, Oukbir K (1999) Probabilistic
memory disambiguation and its application to data
speculation. Comput Architect News 27, 27–30.

35. Fernández M, Espasa R (2002) Speculative alias anal-
ysis for executable code. In: IEEE PACT, IEEE Com-
puter Society, pp 222–31.

36. Bhowmik A, Franklin M (2003) A fast approximate
interprocedural analysis for speculative multithreading
compilers. In: Banerjee U, Gallivan K, Gonzalez A
(eds) ICS, ACM, pp 32–41.

37. Benton N (2004) Simple relational correctness proofs
for static analyses and program transformations. In:
Jones ND, Leroy X (eds) POPL, ACM, pp 14–25.

www.scienceasia.org

http://www.scienceasia.org/2011.html
http://dx.doi.org/10.1109/TPDS.2004.56
http://dx.doi.org/10.1109/TPDS.2004.56
http://dx.doi.org/10.1109/TPDS.2004.56
http://dx.doi.org/10.1016/S0950-5849(02)00105-2
http://dx.doi.org/10.1016/S0950-5849(02)00105-2
http://dx.doi.org/10.1016/S0950-5849(02)00105-2
http://dx.doi.org/10.1016/j.tcs.2006.08.013
http://dx.doi.org/10.1016/j.tcs.2006.08.013
http://dx.doi.org/10.1016/j.tcs.2006.08.013
http://dx.doi.org/10.1016/j.jlap.2008.05.007
http://dx.doi.org/10.1016/j.jlap.2008.05.007
http://dx.doi.org/10.1016/j.jlap.2008.05.007
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1145/1075382.1075386
http://dx.doi.org/10.1145/1075382.1075386
http://dx.doi.org/10.1145/1075382.1075386
http://dx.doi.org/10.1145/1075382.1075386
http://dx.doi.org/10.1145/1082469.1082471
http://dx.doi.org/10.1145/1082469.1082471
http://dx.doi.org/10.1145/1082469.1082471
http://dx.doi.org/10.1007/s11390-009-9229-0
http://dx.doi.org/10.1007/s11390-009-9229-0
http://dx.doi.org/10.1007/s11390-009-9229-0
http://dx.doi.org/10.1007/s11390-009-9229-0
http://dx.doi.org/10.1145/596980.596982
http://dx.doi.org/10.1145/596980.596982
http://dx.doi.org/10.1145/596980.596982
http://dx.doi.org/10.1145/309758.309769
http://dx.doi.org/10.1145/309758.309769
http://dx.doi.org/10.1145/309758.309769
www.scienceasia.org

354 ScienceAsia 37 (2011)

38. Nielson HR, Nielson F (2002) Flow logic: A multi-
paradigmatic approach to static analysis. In: Mogensen
TAE, Schmidt DA, Sudborough IH (eds) The Essence
of Computation, Springer, vol 2566 of Lecture Notes in
Computer Science, pp 223–44.

39. Nicola RD, Gorla D, Hansen RR, Nielson F, Nielson
HR, Probst CW, Pugliese R (2010) From flow logic
to static type systems for coordination languages. Sci
Comput Program 75, 376–97.

40. Beringer L, Hofmann M, Momigliano A, Shkaravska
O (2004) Automatic certification of heap consump-
tion. In: Baader F, Voronkov A (eds) LPAR, Springer,
vol 3452 of Lecture Notes in Computer Science,
pp 347–62.

41. Besson F, Jensen TP, Pichardie D (2006) Proof-
carrying code fromcertified abstract interpretation and
fixpoint compression. Theor Comput Sci 364, 273–91.

42. Barthe G, Grégoire B, Kunz C, Rezk T (2009) Certifi-
cate translation for optimizing compilers. ACM Trans
Program Lang Syst 31, Article 18.

43. Aspinall D, Beringer L, Momigliano A (2007) Opti-
misation validation. Electron Notes Theor Comput Sci
176, 37–59.

44. Zilles CB, Sohi GS (2002) Master/slave speculative
parallelization. In: MICRO, ACM/IEEE, pp 85–96.

45. Joshi R, Bond MD, Zilles CB (2004) Targeted path
profiling: Lower overhead path profiling for staged dy-
namic optimization systems. In: CGO, IEEE Computer
Society, pp 239–50.

46. Grunwald D, Srinivasan H (1993) Data flow equa-
tions for explicitly parallel programs. In: PPOPP,
pp 159–68.

47. Pugh W, Chambers C (eds) (2004) Proceedings of
the ACMSIGPLAN 2004 Conference on Programming
Language Design and Implementation 2004, Washing-
ton DC, USA, June 9–11, 2004, ACM.

www.scienceasia.org

http://www.scienceasia.org/2011.html
http://dx.doi.org/10.1016/j.scico.2009.07.009
http://dx.doi.org/10.1016/j.scico.2009.07.009
http://dx.doi.org/10.1016/j.scico.2009.07.009
http://dx.doi.org/10.1016/j.scico.2009.07.009
http://dx.doi.org/10.1016/j.tcs.2006.08.012
http://dx.doi.org/10.1016/j.tcs.2006.08.012
http://dx.doi.org/10.1016/j.tcs.2006.08.012
http://dx.doi.org/10.1145/1538917.1538919
http://dx.doi.org/10.1145/1538917.1538919
http://dx.doi.org/10.1145/1538917.1538919
http://dx.doi.org/10.1016/j.entcs.2006.06.017
http://dx.doi.org/10.1016/j.entcs.2006.06.017
http://dx.doi.org/10.1016/j.entcs.2006.06.017
www.scienceasia.org

