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Abstract. Probabilistic points-to analysis is an analysis technique for defining
the probabilities on the points-to relations in programs. It provides the compiler
with some optimization chances such as speculative dead store elimination, spec-
ulative redundancy elimination, and speculative code scheduling. Although sev-
eral static probabilistic points-to analysis techniques have been developed for C
language, they cannot be applied directly to Java because they do not handle the
classes, objects, inheritances and invocations of virtual methods. In this paper,
we propose a context-insensitive and flow-sensitive probabilistic points-to anal-
ysis for Java (JPPA) for statically predicting the probability of points-to relations
at all program points (i.e., points before or after statements) of a Java program.
JPPA first constructs an interprocedural control flow graph (ICFG) for a Java pro-
gram, whose edges are labeled with the probabilities calculated by an algorithm
based on a static branch prediction approach, and then calculates the probabilistic
points-to relations of the program based upon the ICFG. We have also developed
a tool called Lukewarm to support JPPA and conducted an experiment to com-
pare JPPA with a traditional context-insensitive and flow-sensitive points-to anal-
ysis approach. The experimental results show that JPPA is a precise and effective
probabilistic points-to analysis technique for Java.
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1 Introduction

Points-to analysis is an analysis technique which is widely used in compiler opti-
mization and software engineering [1,2]. The goal of points-to analysis is to compute
points-to relations between variables of pointer types and their allocation sites. Context-
sensitivity and flow-sensitivity are two major aspects of points-to analysis for improv-
ing the precision of the analysis [3]. While the context-sensitive points-to analysis [4,5]
distinguishes the different contexts in which a method is invoked and then analyzes the
method individually for each context, the flow-sensitive points-to analysis [6,7] takes
into account the control flows inside a program or a method, and computes the solutions
(i.e., points-to relations) for the program points on the control flow of each method. Es-
pecially, a flow-sensitive points-to analysis helps deduce that for each points-to relation
whether it definitely exists or maybe exists at any program point.

Probabilistic points-to analysis [8], which defines the probability of each points-to
relation, provides the compiler with some optimization chances. With the probabilistic

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 62–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Probabilistic Points-to Analysis for Java 63

points-to relations, a compiler may perform speculative dead store elimination, redun-
dancy elimination, and code scheduling [9,10,11]. For example, by speculation a com-
piler with a recovery mechanism may characterize a variable as redundant if its points-to
relation is of high probability of the same as those of other variables. A probabilistic
points-to analysis usually follows two steps to compute, during the executions of a pro-
gram, the quantitative information of the likelihood a points-to relation maybe holds.
First, all the execution paths and their frequencies are collected at runtime. Second, the
points-to relations are deduced and the probabilities of points-to relations are computed
according to the path frequencies. However, a challenge about decreasing the costs of
computation of the probabilities in a large-scale program still exists because a program
may run hundreds of times and a large amount of time and memory can be consumed.

One possible solution to above problem is to conduct static probabilistic points-to
analyses of programs. Although several static probabilistic points-to analysis techniques
have been developed for C language, they cannot be applied directly to the analysis
of Java programs due to the differences between Java and C languages. For example,
the techniques for analyzing C function pointers usually compute the points-to set for
each function pointer and the probabilities of the elements inside. We could not use
these techniques to analyze the invocation of Java virtual methods, while a Java virtual
method is invoked by an object, and an analysis of the invocation of the method re-
quires the determination of the receiver and the exploration of the distributions over the
points-to set for the receiver.

In this paper, we propose a context-insensitive and flow-sensitive probabilistic
points-to analysis for Java (JPPA) for statically predicting the probability of each
points-to relation at each program point of a Java program. JPPA first constructs a call
graph through the traditional static analysis [12,13,14], and then builds an intraproce-
dural control flow graph (CFG) with probabilities for each method in the call graph.
The probabilities can be computed according to the result of a static branch prediction.
After that JPPA combines the call graph and CFGs to construct an interprocedural CFG
(ICFG), and then carries out the data-flow analysis on the ICFG for constructing the
probabilistic points-to graph at each program point. In JPPA, a points-to relation is not
confined to yes/no but is associated with a real number representing the probability. We
have also implemented JPPA with a tool called Lukewarm and conducted an experiment
to evaluate the effectiveness of JPPA. The experimental results show that, for our bench-
mark programs, JPPA provides a cost-effective manner in computing the probabilistic
points-to relations in Java programs.

This paper makes the following contributions:

– Abstraction. We define the probabilities on the edges of ICFG, and these probabil-
ities, which share one destination node, forms a distribution. We also use a discrete
probability distribution to represent a points-to set with probabilities.

– Analysis Approach. We develop a probabilistic points-to analysis technique for
Java named JPPA, which takes into account the object-oriented features such as
inheritance and polymorphism. Especially, in order to improve the performance
of analysis, JPPA computes a partial probabilistic points-to graph before parameter
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1 public class Shape {
2 public Double area = null;
3 public Double set(Double s) {
4 this.area = s;
5 return s;
6     }
7 public static void main(String args[]) {
8 int a = randomInt();
9 int b = randomInt();
10      Shape p = null;
11 if(a>0 && b>0) {
12 p = new Circle(); //o1
13      }
14 else {
15 p = new Square(); //o2
16      }
17      Double q = 

new Double(Math.abs(a*b)); //o3
18      Double r = p.set(q);
19          System.out.println(p.area);
20     }
21 private static double randomInt() {
22 return Math.floor(Math.

random()*11-5);
23     }
24 }

25 public class Circle extends Shape {
26 public Double area = null;
27 public Double radius = null;
28 public Double set(Double s) {
29 super.area = new Double(0); //o4
30 this.area = s;
31 this.radius =

new Double(Math.sqrt(s/3.14)); //o5
32 return this.radius;
33     }
34 }

35 public class Square extends Shape {
36 public Double sideLength = null;
37 public Double set(Double s) {
38 this.area = s;
39 this.sideLength =

new Double(Math.sqrt(s)); //o6
40 return this.sideLength;
41     }
42 }

Fig. 1. A sample Java program

passing; in order to improve the precision of analysis, JPPA computes the probabil-
ities over the edges of ICFG dynamically. We have also developed a tool to support
the JPPA approach.

– Analysis Results. We have conducted an experiment to evaluate JPPA, and the
experimental results show that our analysis can be used to compute precisely the
probabilistic points-to information in Java programs.

2 Example

We next present an example to illustrate how our static probabilistic points-to anal-
ysis works. Fig. 1 shows a Java program with three classes: Shape, Circle, and
Square. Class Shape declares shapes and their sizes, and classes Circle and Square
extend Shape with two fields radius and sideLength respectively. The method
randomRealNum() in class Shape randomly generates values to simulate the inputs
from the real world. The main() method in class Shape receives an input and then
creates a shape (either a circle or a square) and prints its field of area.

Suppose randomRealNum() generates the real numbers complying to the uniform
distribution in the range [−5, +5]. The probabilities of the if-else branches (see lines
11-16) in the main() method can be easily referred: the if branch is of a probability
of 0.25 and the else branch a probability of 0.75. Suppose the objects created in the
sample program in Fig. 1 are oi (i=1..6).

Our JPPA analysis consists of four steps. At the beginning, a call graph is constructed
through the traditional static analysis [12,13,14] in order to remove the unreachable
methods to reduce the analyzing costs. Although the call graph built by static anal-
ysis may not be precise enough as it still contains some unreachable methods, JPPA
can refine it based on the points-to information. The points-to set {o1, o2} of variable
p at line 18 can be computed through analyzing the statements at lines 12 and 15.
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Circle.set

1.0

1.0

1.0

29: super.area = new
Double(0);

30: this.area = s;

31: this.radius =
new

Double(Math.sqrt(s/
3.14));

32: return
this.radius;

Square.set

1.0

1.0

38: this.area = s;

39: this.sideLength =
new

Double(Math.sqrt(s));

40: return
this.sideLength;

18: Double r = 
p.set(q);

main

1.0

1.0 1.0

0.250.75

10: Shape p = null;

11: if(a>0 && b>0)

12: p = new
Round();

15: p = new
Square();

17: Double q = new
Double(Math.abs(a*b));

1.0

19: System.out.println
(p.area);

Return

1.0

1.0

(a) The CFGs for methods main, Circle.set and Square.set

(b) The ICFG for the whole sample program

Fig. 2. The CFGs and ICFG of the sample program in Fig. 1
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Fig. 3. The probabilistic points-to analysis for method main (part I)
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Fig. 4. The probabilistic points-to analysis for methods Circle.set and Square.set

Through identifying the classes of o1 and o2, both the methods Circle.set() and
Square.set() can be invoked at line 18. Therefore, the analyzed methods includes
main(), Circle.set(), and Square.set().

The second step is to construct a CFG for each method in the call graph. Fig. 2 (a)
shows the CFGs for methods main(), Circle.set() and Square.set(), in which
each node in the CFG represents a statement and each edge is labeled with a real number
for the predecessor-dependent probability (see Section 3). Since the traverse of node 15
must be preceded by the traverse of node 11, the probability of the edge from node
11 to node 15 is 1.0; a traverse of node 17 may succeed the traverse of node either 12
or 15 and the probabilities of the if-else branches are 0.75 and 0.25, and therefore the
probabilities of the edges from nodes 15 and 12 to 17 are 0.75 and 0.25, respectively.

The third step is to combine the CFGs of the methods of interests into an interproce-
dural CFG (ICFG) according to the call graph. Fig. 2 (b) shows the ICFG of the sample
program with the probabilities on the edges. Note that we add some new nodes to the
ICFG in order to simplify our discussion. Node 18’ copies the node 18 in order to re-
ceive the return values of the method invocation Circle.set() or Square.set().
For each method, an entry node and a return node are added to assign the parameters
and return values, respectively. The probabilities on the interprocedural return edges are
initialized by 0.0 at first and then adjusted in the final step.
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Fig. 5. The probabilistic points-to analysis for method main (part II)

The final step is to analyze each node in the ICFG to compute the probabilistic points-
to graph. Fig. 3 illustrates the probabilistic points-to analysis of the statements between
lines 11 and 17. The probabilistic points-to graphs (Fig. 3 (a) and Fig. 3 (b)) are cal-
culated after analyzing the statements at lines 12 and 15, respectively. Before line 17,
Fig. 3 (c) is calculated by merging the two graphs in Fig. 3 (a) and 3 (b). After analyzing
the statement at line 17, the graph in Fig. 3 (d) is generated. Because of the analysis in
the first step, either Circle.set() or Square.set() can be invoked in line 18. The
probabilities on the interprocedural edges are adjusted according to the points-to prob-
abilities of the receiver objects. The variable p points to the objects o1 and o2 with the
probabilities 0.25 and 0.75 respectively. The probabilities of the edges from the return
nodes of methods Circle.set() and Square.set() to the node 18’ are adjusted by
0.25 and 0.75. A detailed algorithm about the calculation of the probabilistic points-to
graphs is given in Section 3.

Since the field area is overloaded in the class Circle, the field declared in class
Shape is marked as Shape.area. The problem does not occur in class Square because
it inherits area from class Shape. Fig. 4 manifests the analysis of Circle.set() and
Square.set(), and Fig. 5 shows the analysis from the end of method call to the end
of method main(). In Fig. 5, the graph (l) is built by merging the two graphs (h) and
(k), in which the local variables are eliminated and the return value is marked by the
dish square node. The graph (m) represents the points-to graph after the method call
that is generated by updating the graph (d) before the method call uses the graph (l) and
replacing the return node by r node.

3 Probabilistic Points-to Analysis for Java

3.1 Probabilistic Points-to Graph

Traditionally, in order to conduct a points-to analysis of a Java program, three sets are
defined [4]:

– Ref : a set containing all reference variables in the program and all static fields in
its classes.
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– Obj: a set containing the names of all objects created at the object allocation sites.
– Field: a set containing instance fields but not the static fields in the classes.

In addition, we define R ⊆ Ref ∪Obj ×Field containing all object references if they
belong to Ref or have a form of 〈o, f〉 ∈ Obj × Field. Two relations are defined on
the three sets: (r, o) ∈ Ref × Obj representing that a reference variable r points to an
object o and (〈o, f〉, o′) ∈ (Obj×Field)×Obj representing that a field f of the object
o points to an object o′.

The goal of probabilistic points-to analysis is to compute the probability of each
points-to relation holding at every program point. A program point is a code location
before or after a statement executed. In order to do this, we define an expected proba-
bility as follows:

Prob(l, d) =

{
Expected(l,d)
Expected(l) Expected(l) �= 0,

0 Expected(l) = 0.

where d is a points-to relationship, Expected(l) is the times which a program point l
is expected to turn up on the program execution paths and Expected(l,d) is the times
which d is expected to hold dynamically at a program point l [15].

For a given program point l, the points-to set of a reference r or 〈o, f〉 with proba-
bilities satisfies a discrete probability distribution over the object set Obj, and the prob-
abilistic points-to relationships at l is a set of the distributions. A discrete probability
distribution over a set Obj is a mapping

Δ : Obj �→ [0, 1],
∑

o∈Obj

Δ(o) = 1.

The support of Δ is 
Δ� := {o ∈ Obj | Δ(o) > 0}. If a points-to relation d is in the
form of (r, o) or (〈o1, f〉, o2) at the program point l, the distributions of the references
satisfy Δr(o) = Prob(l, (r, o)) or Δo1.f (o2) = Prob(l, (〈o1, f〉, o2)).
o is the point distribution over Obj satisfying

o(t) =

{
1 t = o, t ∈ Obj,

0 otherwise.

If Δi is a distribution for each i in some finite index set I and
∑
i∈I

pi = 1,
∑
i∈I

pi · Δi

is also a distribution (
∑
i∈I

pi · Δi)(o) =
∑
i∈I

pi · Δi(o), o ∈ Obj. Every distribution

can be represented as a linear combination of the point distributions with the form of
Δ =

∑
o∈�Δ�

Δ(o) · o.

� Example. The distribution of variable p before line 18 is represented by Δp =
0.25o1 + 0.75o2. �
In our research, we use probabilistic points-to graph (PPG) for probabilistic points-
to analysis of Java programs. A PPG is a directed multi-graph whose nodes are the
elements belonging to Ref and Obj. Each edge has a probability and represents a
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probabilistic points-to relation either from a variable to an object or from an object to
another object. Specially, an edge from an object o1 to another o2 (e.g., the edge from
node o2 to node o3 in Fig. 4(j)) means a field of o1 points to o2, and holds the field
information. Thus a PPG contains a distribution set of the reference variables.

� Example. For the program point after line 18 in Fig. 1, the PPG (see Fig. 5(m))
shows the distributions of p, q, r and all field references.

Δp = 0.25o1 + 0.75o2 Δr = 0.25o5 + 0.75o6 Δq = 1.0o3

Δo1.radius = 1.0o5 Δo1.Shape.area = 1.0o4 Δo1.area = 1.0o3

Δo2.area = 1.0o3 Δo2.sideLength = 1.0o6 �
In the research we provide a program with predecessor-dependent probabilities in-
formation so that PPGs can be precisely calculated. In order to perform probabilistic
points-to analysis, a program is represented by a ICFG (e.g., Fig. 2 (b)) whose edges are
labeled with probabilities. We call this probability predecessor-dependent probability to
distinguish the branch probability. A branch probability [16] (edge prob(si → sj)) is
an estimate of the likelihood that a branch will be taken. For any two statement s1 and
s2 in a method, the predecessor-dependent probability is an estimate of the likelihood
that s1 directly reaches s2. The branch probabilities calculated by the branch prediction
algorithm [16] can not be directly applied to the merge operation in our framework.
The branch probabilities on the edges of the intra-method CFG can be used to compute
the predecessor-dependent probabilities. Given a path (s0, ..., sn), the path probability
is computed by

path prob(s0, ..., sn) =
n∏

i=0

edge prob(si → si+1)

where s0 represents the method entry statement. The predecessor-dependent probability
for the edge (si, sj) is computed by

EP ((si, sj)) =
∑

path prob(s0, ..., si)∑
path prob(s0, ..., si, sj)

� Example. After the branch prediction analysis, we have
edge prob(10 → 11) = 1.0, edge prob(15 → 17) = 1.0, edge prob(12 → 17) = 1.0,
edge prob(11 → 12) = 0.25, edge prob(11 → 15) = 0.75.
The predecessor-dependent probability of the edge from 15 to 17 is calculated as fol-
lows:

EP ((15, 17)) =
path prob(10, 11, 15, 17)

path prob(10, 11, 15, 17) + path prob(10, 11, 12, 17)

=
1.0 × 0.75 × 1.0

1.0 × 0.75 × 1.0 + 1.0 × 0.25 × 1.0
= 0.75 �

Since in Java there are four ways to assign a value to a reference variable that may
change a points-to relation. The statements in these four forms should be analyzed.
These forms are:

– Create an object: v = new C;
– Assign a value: v = r;
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– Read an instance field : v = r.f ;
– Write an instance field : v.f = r.

� Example. Nodes 32 and 21 in Fig. 2 (b) create an object and write an instance
field, respectively. �

3.2 Intraprocedural Analysis

A points-to analysis can be formulated as a data flow framework which includes transfer
functions formulating the effect of statements on points-to relations [6]. As a result, our
probabilistic points-to analysis framework can be represented by a tuple

(L,�, Fun, P, Q, E, ι, M, EP )

where:

– L is a lattice and a PPG can be regarded as an element of L
– � is the meet operator
– Fun ⊆ L �→ L is a set of monotonic functions
– P is the set of the statements
– Q ⊆ P × P is the set of flows between statements
– E is the initial set of statements
– ι specifies the initial analysis information
– M : P �→ Fun is a map from statements to transfer functions
– EP : Q �→ [0, 1] is an predecessor-dependent probability function

The partial order over L is determined by

∀G1, G2 ∈ L, G1 � G2 iff ∀r ∈ R, 
ΔG1
r � ⊆ 
ΔG2

r �.
And the meet operation of two graphs G1 and G2 is

G1 � G2 = {p · ΔG1
r + (1 − p) · ΔG2

r | r ∈ R, p ∈ [0, 1]}.
Let fs ∈ Fun be the transfer function of the statement s, and Gin(s) and Gout(s)
represent the PPGs at the program points before and after the statement s, respectively,
we have

Gin(s) =

{
ι if s ∈ E⊔{Gout(s′) | (s′, s) ∈ Q} otherwise

Gout(s) = fs(Gin(s))

The statement s is associated with the transfer function that transforms Gin(s) to
Gout(s), and the analysis iteratively computes the Gin(s) and Gout(s) for all nodes
until convergence.

In a probabilistic points-to analysis, E only contains the first statement during the
program execution and ι is a special probabilistic points-to graph in which all the ref-
erence variables point to undefined target (i.e., UND) with total probabilities. Next we
describe the transfer functions for assignments and branches.
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Table 1. Computing distributions

Statement Updating the distributions of Gout(s)

v = new C Δ
Gout(s)
v ← o

v = r Δ
Gout(s)
v ← Δ

Gin(s)
r

v = r.f Δ
Gout(s)
v ← ∑

o∈�Δ
Gin(s)
r �

Δ
Gin(s)
r (o) ·ΔGin(s)

o.f

v.f = r Δ
Gout(s)
o.f ← Δ

Gin(s)
v (o) ·ΔGin(s)

r + (1−Δ
Gin(s)
v (o)) ·ΔGin(s)

o.f , o ∈ �ΔGin(s)
v �

Assignments. For any assignment statement s, there is a corresponding transfer func-
tion Fs. Fs takes Gin(s) as input and computes the result Gout(s). A transfer function
first copies Gin(s) to Gout(s) and then updates Gout(s). Table 1 describes transfer
functions for assignment statements: the transfer function for v = new C updates the
distribution Δ

Gout(s)
v with the point distribution of o created by new C expression;

the transfer function for v = r replaces the distribution Δ
Gout(s)
v with the distribution

Δ
Gin(s)
r ; the transfer function for v = r.f composes the distributions of the field f

of all the objects in the support set of Δ
Gin(s)
r ; and the transfer function for v.f = r

updates multiple distributions in the form of o.f .
A probabilistic points-to analysis also needs to take arrays into account, each of

which may contain multiple references. Since an array array, is initialized as

C [ ] array = new C [n];

where n can be either a constant or a variable, it is difficult to infer the range of n.
We can obtain the array elements of multiple references and estimate the total number
of references they point to if we cannot determine the points-to set of each element
in a static manner. When an element o is stored to array (i.e., array[i] = o), o is
added to the points-to set of array, say Pt(array). Then each points-to probability is
recalculated

p =
1

|Pt(array)|
where |Pt(array)| is the number of the elements in Pt(array). When array[i] is
accessed (e.g., v = array[i]), the distribution of v is updated by the distribution of
array.

Branch. When multiple nodes directly reach a destination node s in a CFG, the meet
operation is adopted in the calculation of Gin(s). Suppose s is the successor of the
nodes si(i ∈ I) in a CFG. The following condition is satisfied∑

i∈I

EP ((si, s)) = 1

where EP ((si, s)) represents the probability of edge (si, s). The meet operation can be
described by

Gin(s) =
⊔

{Gout(si) | i ∈ I} �
∑
i∈I

EP ((si, s)) · Gout(si).
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� Example. In an if-then-else statement, suppose Gout(sthen) and Gout(selse) are
the PPGs at the exit points of the then and else branches respectively, pt and pf are the
probabilities of the then and else branches respectively, and pt + pf = 1. A PPG at
sjoin, the statement succeeding the if-then-else statement, can be computed by using
meet operation: Gin(sjoin) = pt · Gout(sthen) + pf · Gout(selse). �

Loop. The loop body B can be unfolded for arbitrary times. The computation can be
formulated as

Gin =
∑

pi · F i(G0)
α≤i≤β

+ p0 · G0,
∑

α≤i≤β

pi + p0 = 1

where α and β are the upper-bound and lower-bound of iteration number, G0 represents
the initial PPG before entering the loop, F is the transfer function of loop body B, p0

represents the probability of not entering the loop, pi represents the probability of i
times iteration. Two problems arise when a loop is analyzed: (1) how to estimate the
upper- and lower-bounds of iteration number, and (2) how to estimate the probability of
some iteration number.

In JPPA, the loop body is unfolded for the upper-bound times. The lower-bound of
iteration number is 0. The upper-bound of iteration number is the minimum N , which

satisfies ∀r ∈ R, 
ΔF N (G0)
r � = 
ΔF N+1(G0)

r �. The probability of each iteration num-
ber is 1/(N + 1).

Exception Handling. The exception handling in Java encapsulates exception in class,
uses the exception handling mechanism of try-catch-finally and gets more robust ex-
ception handling code finally. In JPPA framework, the probabilistic points-to analysis
can easily go deep into the exception blocks through building the CFG for them. In the
try-catch-finally structure, the exceptions are thrown out from every program point in
the try block, then the edges from the program points to the entry point of catch block
are generated. In our study we adopt Soot to construct CFGs for try-catch-finally struc-
tures. However, a precise calculation of points-to relation information in exceptions
requires obtain all program points that may throw these exceptions, which remains in
our future work.

3.3 Interprocedural Analysis

Interprocedural probabilistic points-to analysis analyzes points-to relations crossing the
boundary between methods. At each call site, points-to relations are mapped from
the actual parameters to the formal parameters, and the results are mapped back to
the variables in the caller.

Since a Java program may rely heavily on libraries with a number of irrelevant meth-
ods, JPPA adopts RTA algorithm [13] to produce an approximation of the corresponding
call graph so that some irrelevant methods can be ignored. After that, JPPA uses the call
graph to construct the ICFG. At each call site, two extra nodes are generated for each
callee: an entry node recording the passing of parameters, and a return node recording
the returns of the callee. Specially, all values returned by the callee are assigned to a
unique variable in the return node. JPPA then refines the ICFG by adjusting the proba-
bilities on the interprocedural edges according to the PPGs at all method call sites.
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When a method call is analyzed, a partial PPG is propagated through an interproce-
dural edge to the callee method. JPPA takes a set of actual parameters and a PPG as its
inputs, and then computes all the objects that can be accessed by these actual parame-
ters. The partial PPG as a result includes all the points-to relations with the probabilities
that may be manipulated by the callee method.

Since JPPA is a context-insensitive analysis without distinguishing the contexts un-
der which a method is invoked, it may share one callee method with different calling
contexts. Thus a meet operation can be defined as

Gin(sm) =
∑

csi∈CS

EP (ecsi) · Gout(scsi), ecsi = (scsi , sm)

where m is the callee method, Gin(sm) is the PPG before the program point entering
the method m, CS denotes the set of call sites at each of which m is invoked, EP (ecsi)
denotes the probability of the invocation of m at csi, and Gout(scsi) represents the PPG
after the passing of parameters at csi.

When the return value is assigned to the variable in the caller method, all the points-
to relations updated by the callee method need to be reflected upon the PPG after the
method invocation.

Virtual Invocation. In Java, virtual method is a method whose behavior can be over-
ridden within an inheriting class by a method with the same signature. The compiler
and loader can guarantee the correct correspondence between objects and the methods
applied to them.

A virtual method m is usually invoked explicitly or implicitly by a this object, and
thus this needs to be mapped to the receiver object invoking m. Suppose m is declared
in class C and at each call site csi ∈ CS, m may be invoked in a form ri.m() where ri

is the receiver object invoking m at csi. At each call site csi, there exits an object set

seti = {o | o ∈ 
Δri� ∧ o.Class ∈ MatchedClass(C, m)}

where MatchedClass(C, m) is a set of classes containing class C and all its subclasses
in each of which m is inherited. The distribution of this can be computed

Δthis =
∑

csi∈CS

∑
o∈seti

EP (ecsi) · Δri(o)
a

−
o,

a =
∑

csi∈CS

∑
o∈seti

EP (ecsi) · Δri(o), ecsi = (scsi , sm)

where EP (ecsi) denotes the probability of invocation of m at csi.

� Example. In Fig. 1, the distribution of this in method Circle.set can be cal-
culated as 1.0o1, which is more precise than that calculated by using the formula in
Section 3.3 (i.e., 0.25o1 + 0.75o2). �

The return value of a virtual invocation also needs to be taken into account in or-
der to achieve a conservative resolution. Suppose a virtual invocation at a call site cs is
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Fig. 6. A framework of Lukewarm tool

v = r.m(). With the points-to set of r, we can deduce the set of methods that can be
invoked at cs and denote each method remained in the set Mv. The distribution of the
variable v can be calculated by

Δv =
∑

mj∈Mv

EP (e) · Δreturnmj
, e = (sret

mj
, s′cs)

where EP (e) denotes the probability of mj invoked at cs, and Δreturnmj
the distribu-

tion of the return value of mj . EP (e) is then adjusted on the base of the distribution
of r.

� Example. In Fig. 1, the distribution of variable r is 0.25o5 + 0.75o6. �

4 Implementation

We have developed a tool called Lukewarm to support our method. Fig. 6 shows the
framework of Lukewarm: the inputs are Jimple code (a typed 3-address intermediate
representation) [17,18], the call graph of the program which are generated by Soot [19],
and the predecessor-dependent probabilities computed by a static branch prediction
analysis [16]; the outputs are the PPGs at all program points. Lukewarm provides engi-
neers with support in probabilistic points-to analysis of Java programs by the following
four steps:

– Use RTA algorithm in Soot to construct the call graph covering all reachable meth-
ods, and then construct the CFGs for these methods and combine them to form an
ICFG;

– Annotate each edge with a probability calculated based on the static branch predic-
tion approach;

– Extract all the references and objects from the ICFG and generate the transfer func-
tion for each node;

– Adopt a worklist algorithm on the nodes of the ICFG to compute the PPG for each
program point. A worklist is initialized to contain a node which is associated with
an empty PPG. Everytime one node n in the worklist is retrieved, and the PPGs of
its Gin and Gout are calculated on the basis of the transfer function. If Gin or Gout

of n is changed (The graphs Ga and Gb are equivalent iff ‖Ga−Gb‖e < ε.), all the
successive nodes of n are added to the worklist. This procedure is repeated until the
worklist is empty. Based on the observations, we choose ε to be 0.01 in this paper
for the reason that it can balance the efficiency and precise.
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Table 2. Java benchmarks

Program #Statement #Block Description
HashMap 20929 12307 A small program using HashMap in Java library.
ArrayList 150 27 A small program using ArrayList in Java library.
antlr 52058 23167 A parser generator and translator generator.(DaCapo)
xalan 24186 13716 An XSLT processor for transforming XML documents.(DaCapo)
luindex 24947 14144 A text indexing tool.(DaCapo)
hsqldb 24466 13714 An SQL relational database engine written in Java.(DaCapo)
toba-s 34374 16661 A tool translating Java class files into C source code.(Ashes)
Jtopas 32226 21042 A Java library for the common problem of parsing text data. (SIR)
JLex 32058 16120 A lexical analyzer generator for Java.
java cup 37634 18049 A LALR parser generator written in Java.

5 Experiments

We have conducted three experiments on JPPA by comparing it with a context-
insensitive and flow-sensitive points-to analysis (TPA for short) proposed by Hind
et al [20]. The principle of TPA is to use an iterative dataflow analysis framework
to compute the points-to set for each reference variable on each node of the CFG of
the program. The first experiment was conducted to evaluate the precision of points-to
sets calculated through JPPA, the second one was to evaluate the capability of JPPA to
calculate the points-to relations maybe holding, and the third one was to evaluate the
performance of JPPA. All experiments were conducted on a machine with an AMD
SempronTM 1.80GHz CPU and 1G heap size (option -Xmx1024m).

Table 2 shows benchmark programs used in the experiments, which include the SIR
suite [21], programs from the Ashes suite [22], programs from the DaCapo suite [23],
and two programs for testing java.util.HashMap and java.util.ArrayList.
Table 2 also shows the total number of statements (#Statement) in Jimple code and
that of basic blocks (#Block) of each benchmark program.

5.1 Precision of Points-to Analysis

In the first experiment, the points-to sets computed by JPPA and TPA for each reference
were the same at each program point. Table 3 shows the average and the maximum sizes
of the points-to sets of each benchmark program as well the percentage of the points-to
set with only one object inside. It can be seen that for each benchmark program the aver-
age size of points-to sets is less than 2, and the maximum size is less than 20. A rational
claim is that the closer to 1 the average size of points-to sets is, the more traditional op-
timization techniques we can use because optimizations usually require the information
about the points-to relations definitely holding. For example, if the points-to set of the
receiver variable contains only one object, it can reduce the direct overhead of dispatch-
ing the message and provide the opportunities for method inlining and interprocedural
analysis.

In addition, most points-to sets of the benchmark programs have only one object
inside, as the row OneObject.Pt (%) indicates. It means that both JPPA and TPA can
explore most points-to relations.
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Table 3. JPPA measurements

Program HashMap ArrayList antlr xalan luindex hsqldb toba-s Jtopas JLex java cup
#Avg.Size.Pt 1.49 1.32 1.05 1.60 1.95 1.49 1.29 1.86 1.04 1.72
#Max.Size.Pt 6 8 13 13 13 13 19 13 9 18
OneObject.Pt(%) 79.57 93.80 98.50 86.22 77.58 81.34 91.33 74.12 99.15 87.58

5.2 Precision of Probabilities

In the second experiment, we chose some program points. For each program point l,
we obtained the corresponding dynamic probabilistic points-to graph Gd as a standard
and then evaluated JPPA and TPA by calculating their probabilistic points-to graphs at
l (say GJPPA

s and GTPA
s , respectively) and the corresponding average graph distances

to Gd. In this experiment, Gd was computed by using a dynamic method:

– Perform a program instrumentation in order to collect at runtime the hashcodes of
all objects in the program and variables at l;

– Execute the program and use the hashcodes of the objects to explore the points-to
relations at l;

– Execute the corresponding benchmark program multiple times and record the fre-
quency for each points-to relation.

The average of distance can be calculated by

AV Gdistance =
∑ ‖Gs − Gd‖e

N

where N is the number of program points of interest, and Gs is a probability points-
to graph of any program point generated either by JPPA or TPA, and ‖Gs − Gd‖e

calculates the average of the normalized Euclidean distances between the distributions
of Gs and Gd, which can be calculated by

‖Gs − Gd‖e =

∑
r∈R

√
0.5 · ∑

o∈Obj

(Δs
r(o) − Δd

r(o))2

|R| .

AV Gdistance ranges from zero to one and was used to measure the divergence between
a probability points-to graph computed by JPPA or TPA and that computed by the dy-
namic method. AV Gdistance = 0 means that the PPG computed by JPPA or TPA is
regarded as correct, and AV Gdistance = 1 means that it may be totally wrong.

In the experiment, when using JPPA, we assumed that all incoming edges of a node
of ICFG have the same probability, and then computed the probabilistic points-to re-
lations. When using TPA, we assumed that the probability of each points-to relation
belonging to a points-to set is equal. Fig. 7 shows the average distances between the
PPGs computed by JPPA and TPA and those computed by the dynamic method. For
each benchmark program, the average distance corresponding to JPPA is shorter than
that corresponding to TPA. However, for the programs hsqldb and Jtopas, the dis-
tances corresponding to JPPA are not of significant divergences to those corresponding
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Fig. 7. The comparison of graph distances between JPPA and TPA

to TPA. After a thorough investigation, we found that the arrays of objects used in these
programs can decrease the precision of JPPA to compute probabilities. It is one of our
future research directions to find out how to improve the precision of JPPA when a
number of arrays of objects are available in the programs.

JPPA reaches the same precision of points-to sets as that of TPA, but has a much
higher precision of probabilities than that of TPA. In addition, the precision of proba-
bilities of JPPA is very close to that of the dynamic method. It demonstrates that JPPA
can be an effective approach to probabilistic points-to analysis of Java programs.

5.3 Analysis Performance

In the third experiment, an investigation of the execution time and memory usage was
conducted after the benchmark programs were executed several times. Table 4 shows
the running time and memory usage for each benchmark program. A vertical line | is
used to divide a result of using JPPA from that of using TPA. We also counted the num-
ber of the references (#reference), static fields (#static-field), and objects (#object) for
each benchmark program in order to find out the factors that will affect the performance.

After analyzing the results, we found that the distributions of the static fields signifi-
cantly affects the performance of both JPPA and TPA because the points-to sets of these
fields can propagate to all nodes in the ICFG. Specially, when a points-to set of a static
field is of a large number of elements, the performance will decrease rapidly because
of the propagation of a great amount of data. In addition, the use of arrays of objects
in Java also decrease the performance of JPPA because they are handled conservatively
and thus a number of redundant objects are contained in points-to sets and also will be
propagated.
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Table 4. Performance

Program #reference #static-field #object Time (Sec) Memory (MB)
HashMap 4200 104 296 32.98 33.47 176.36 195.82
ArrayList 42 0 9 1.41 1.36 0.38 0.31
antlr 8651 158 972 329.03 369.52 239.79 203.98
xalan 4906 133 398 36.54 40.98 206.56 228.24
luindex 5095 133 419 43.06 43.87 218.97 237.01
hsqldb 4883 114 417 41.26 41.03 213.33 227.99
toba-s 5876 140 750 131.63 103.96 316.97 331.69
Jtopas 5896 107 440 139.70 167.45 298.07 330.80
JLex 5491 129 481 56.90 54.23 296.81 306.58
java cup 6431 132 825 215.14 146.64 303.02 334.37

From the experiment, we found that JPPA spends more time and memory in com-
puting the probabilities for the points-to relations than TPA does. However, the cost of
using JPPA is only about 1.2 times of that of using TPA, which is still acceptable.

5.4 Threats to Validity

A threat to validity is that when using JPPA, we assumed that all incoming edges of a
node in the ICFG have the same probability, and when using TPA, we assumed that the
probability of each points-to relation belonging to a points-to set is equal. In practice,
these assumptions are very strong in that edges of ICFG may hold different probabili-
ties, which may be hardly determined precisely before the analysis. A more reasonable
solution is to use the edge profiling information estimated by the machine learning
techniques to compute the predecessor-dependent probabilities which will be explored
in our future work.

6 Related Work

In the past several years, points-to analysis has been an active research field. A survey
of algorithms and metrics for points-to analysis has been given by Hind [24].

Traditional points-to analysis. Context-sensitivity and flow-sensitivity are two ma-
jor dimensions of pointer analysis precision. Context-sensitive and flow-sensitive al-
gorithms (CSFS) [25,26,27,28] are usually precise, but are difficult to scale to large
programs. Recently Yu et al. [29] proposed a level-by-level algorithm that improves
the scalability of the context-sensitive and flow-sensitive algorithm. Context-insensitive
and flow-insensitive (CIFI) algorithms [30,31] have the best scalability on the large
programs with overly conservative results. Equality-based analysis and inclusion-based
analyses have become the two widely accepted analysis styles. Through carrying out the
experiments, Foster et al. [32] compared several variations of flow-insensitive points-to
analysis for C, including polymorphic versus monomorphic and equality-based versus
inclusion-based.

How well the algorithms scale to large programs is an important issue. Trade-offs
are made between efficiency and precision by various points-to analyses, including



Probabilistic Points-to Analysis for Java 79

context-sensitive and flow-insensitive analyses [4,5,33] and context-insensitive and
flow-sensitive analyses [6,20,7]. However, these conventional points-to analyses do not
provide with the probabilities for the possible points-to relations, which is one of main
goals of JPPA proposed in this paper.

Probabilistic pointer analysis for C. With the proposition of the speculative optimiza-
tions, the probability theory has been introduced into the traditional program analy-
sis. In earlier work, Ramalingam [15] proposed a generic data flow frequency analysis
framework that uses the edge frequencies propagation to compute the probability a fact
holds true at every control flow node. Chen et al. [8] developed a context-sensitive and
flow-sensitive probabilistic point-to analysis algorithm. This algorithm is based on an
iterative data flow analysis framework, which computes the transfer function for each
control flow node and propagates probabilistic information additionally. In addition,
this algorithm also handles interprocedural points-to analysis on the basis of Emami’s
algorithm [25]. Their experimental results demonstrates that their technique can esti-
mate the probabilities of points-to relations in benchmark programs with reasonable
accuracy although they have not disambiguated heap and array elements. Compared
with Chen et al.’s algorithm, JPPA is also on the basis of an iterative data flow analysis
framework but with context-insensitive analysis. In addition, the concept of the discrete
probability distribution are introduced to JPPA.

Silva and Steffan [34] proposed a one-level context-sensitive and flow-sensitive prob-
abilistic pointer analysis algorithm that statically predicts the probability of each points-
to relation at every program point. Their algorithm computes points-to probabilities
through the use of linear transfer functions that are efficiently encoded as sparse ma-
trices. Their experimental results demonstrates that their analysis can provide accurate
probabilities, but omits handling alias between the shadow variables. JPPA provides a
safer result in its analysis because the transfer functions of accessing of instance fields
do not use the shadow variables during its propagation of the distributions.

7 Conclusions

In this paper we have presented JPPA, a context-insensitive and flow-sensitive algo-
rithm for calculating the probabilistic points-to relations in Java programs. JPPA also
predicts the likelihood of points-to relations without depending on runtime profiles. In
order to ensure the safety of the result, JPPA takes Java libraries into account. We have
conducted experiments to validate JPPA by comparing it with the traditional context-
insensitive and flow-sensitive points-to analysis. The experimental results show that
JPPA not only produces precise probabilities of points-to relations for Java, but also
maintains a similar performance to the traditional context-insensitive and flow-sensitive
points-to analysis.

In the future, we would like to continue our efforts to improve and extend JPPA to
support more powerful functions concerned with points-to analysis, such as handling
of arrays of objects. Also with a more mature approach and the corresponding tool, we
would like to apply them in some large-scale projects to investigate how our approach
can benefit real projects. We would also like to extend JPPA to a context-sensitive anal-
ysis approach in order to improve its precision.
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