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Abstract— With the increase in distributed generation, the 

demand-only nature of many secondary substation nodes in 

medium voltage networks is becoming a mix of temporally 

varying consumption and generation with significant stochastic 

components. Traditional planning, however, has often assumed 

that the maximum demands of all connected substations are fully 

coincident, and in cases where there is local generation, the 

conditions of maximum consumption and minimum generation, 

and maximum generation and minimum consumption are 

checked, again assuming unity coincidence. 

Statistical modelling is used in this paper to produce network 

solutions that optimize investment, running and interruption 

costs, assessed from a societal perspective. The decoupled 

utilization of expected consumption profiles and stochastic 

generation models enables a more detailed estimation of the 

driving parameters using the Monte Carlo simulation method.  

A planning algorithm that optimally places backup 

connections and three layers of switching has, for real-scale 

distribution networks, to make millions of iterations within 

iterations to form a solution, and therefore cannot 

computationally afford millions of parallel load flows in each 

iteration. The interface that decouples the full statistical 

modelling of the combinatorial challenge of prosumer nodes with 

such a planning algorithm is the main offering of this paper. 

Keywords—Distributed Generation, Distribution Network 

Planning, Monte Carlo Simulation, Statistical Load Analysis, Wind 

generation Analysis 

I.  INTRODUCTION  

Whilst still a fertile topic for research, electricity 
consumption modelling is a mature discipline in power 
systems, and it is reasonable to assert that when there are tens 
or more customers behind a given substation, load profiles can 
be estimated with a reasonable degree of certainty [1]-[5]. 

AMR measurements give the potential to further refine load 
profiling for planning purposes, although the demand of single 
and small numbers of low voltage (LV) customers will always 
involve a high degree of uncertainty [6]. On the other hand, the 
generation time series from renewable sources such as wind 
and solar are highly stochastic, and are challenging to predict. 

Depending on viewpoint, the traditional assumption that the 
extreme conditions (either maximum demand / minimum 
generation or maximum generation / minimum demand) are 
fully coincident at the secondary substation level may be 
considered pragmatic, but is more likely to be considered 
overly conservative. The judicious use of coincidence factors 
reduces the margin, but with the rapid increase in distributed 
generation connected at the medium (MV) or low voltage (LV) 
level, the analysis becomes far more complex, requiring the 
time dependent modelling of each generation unit and 
consumption type. Once the consumption and generation has 
been modelled, the uncertainty in the stochastic models can be 
modelled using the Monte Carlo simulation method [6]-[8].  

This paper shows that the Monte Carlo method, with a 
selected confidence interval (CI), can be used to produce safe 
parameterization of the network. What is considered safe, 
however, is ultimately the network company’s choice, which 
may be expressed as a CI, e.g., the 95th percentile. We have 
used the Monte Carlo simulation method to analyse wind 
generation, including both spatial and temporal dependencies 
(the modelling was carried out as shown in [7], [8]). Its high 
stochasticity means that using only the maximum generation 
(i.e., the installed capacity) to model wind generation is clearly 
not representative of the observed behaviour (see the red 
simulated time series in Fig. 1). 

 



 

Figure 1 Ten Monte Carlo simulation runs of aggregate consumption (blue) 
and wind generation (red) showing the strong variability in wind generation 
and the relative lack of variability (around the expected path) in aggregated 
consumption (the wind and consumption scenarios are as specified in [6]). 

 

When, however, enough customers are clustered together, 
as they often are in zoned urban, suburban and rural 
environments, the aggregate consumption is relatively 
predictable [5], [6]. In Monte Carlo simulation, this means that 
the individual simulation runs are close to the expected path 
(the blue profiles in Fig 1). The expected path (i.e., the profile) 
is dictated by outside temperature and other exogenous 
variables [6]. Therefore, in the context of a network planning 
paper that utilises a large amount of parameterisation with 
questionable accuracy, the consumption in this paper was 
modelled using only consumption profiles (i.e., the expected 
paths). However, wind generation is modelled using a 
stochastic model, with 100 Monte Carlo runs (with hourly 
resolution). 

The reliability analysis has not yet been extended to cover 
the islanded supply of other secondary substation loads during 
grid faults. The ability of a substation area to supply itself is 
considered, but not the ability to supply a wider area in times 
when local production is high enough to do so. Switch 
placement in distribution networks with distributed generation 
has been treated, for example, by [9].  It should also be noted 
that this paper does not utilise the geographical interface 
developed in [10], [11], in order to better highlight the 
topological effect of the time series analyses we conduct in this 
paper.  

Load growth can at present be node specific, but the 
decoupling of local generation from demand growth will also 
have to be implemented via a third dimension in the nodal 
aggregate time series simulation data, which has not yet been 
implemented. To retain a reasonable level of confidence when 
consumption and operational considerations are also fully 
modelled will require much larger data sets, containing 
thousands of Monte Carlo simulation runs (times the 40 or so 
years needed to represent load and generation growth up to the 
planning horizon). 

Running a multitude of parallel power flows at every 
iteration in a distribution planning algorithm is computationally 
too heavy. Therefore, this paper proposes a decoupled 
approach, whereby node specific coincidence factors and the 
utilization times for losses (loss times) are computed and then 
periodically updated by pausing the network planning iteration 
process at critical stages in the algorithm. For a given network 
topology, power flows are run with hourly resolution over a 
multitude of Monte Carlo simulated realizations of a scenario 

year, such that worst (for technical constraints with a given 
confidence interval) and load-squared average (for losses) 
parameterization can be reliably achieved.  

The two main interface parameters couple the statistical 
analysis with the planning algorithm are the coincidence 
factors and loss times. A coincidence factor for a particular 
node in the network is defined as the maximum (95 percentile 
confidence) hourly power flow in its feeding line section from 
the 876000 simulated hours of Monte Carlo data, divided by 
the summation of the line power flow that would occur if all 
the maximum nodal demands would occur simultaneously. The 
loss time is defined as the equivalent number of hours of 
maximum power flow in a line section that would give the 
same losses that typically occur in a year (8760 h). 

The coincident factors, fcoinc, and loss times, Tlosses, are used 
in the single shot backward sweep power flows based on 
maximum and minimum demand (where the minimum at some 
nodes may be negative, implying net generation) and minimum 
acceptable network voltage during intermediate iterations of 
the planning algorithm. Naturally, these two sets of parameters 
change as the topology of the network changes during the 
planning process, hence they must be re-computed as the 
network evolves towards the optimum solution. 

We have earlier implemented Microgrid parameterization 
of secondary substation areas, [12], [13]. Microgrids, however, 
constitute a very specific and well-behaved type of prosumer 
node. By definition, they can take care of themselves, i.e. 
seamlessly disconnect and reconnect to the main MV or LV 
grid, and take care of their own demand, with a combination of 
DG, storage and load shedding. The prosumer node modelling 
used in this paper makes no such assumptions, and is therefore 
a useful improvement on previous work.  

With this decoupled approach, the network is coerced 
towards the theoretical optimum by network modifying 
functions [14]-[16], noting that our approach is only one of 
many, e.g. [17], [18]. The statistical modelling and the 
decoupled interface are the major new contributions in this 
paper, but we must confess that coupling a full probabilistic 
modelling of consumption and generation with a network 
planning algorithm involves some compromises.  

Section III illustrates the methodology covered in Section II 
with MV network plans that combine MV connected wind 
turbines alongside various consumption types aggregated to the 
secondary (MV/LV) substation level, with and without the 
probabilistic modelling. 

II. METHODOLOGY 

The overriding network optimisation is to produce a 
societal cost minimum network, where the costs include 
investments, operation and maintenance, loss, and interruption 
costs, subject to the thermal and voltage related technical 
restraints, and is described, for example, in [12].  

This section commences with a description of the wind 
generation modelling necessary in forming the net-demand 
prosumer time series data. 



A. Wind Power Monte Carlo simulation 

The method used in this paper to generate the wind power 
time series consists of the transformed ARC model 
(Autoregressive model utilizing a spatial Correlation matrix) to 
generate the wind speed time series and a turbine model to 
convert the wind speed time series to the power domain [7], 
[8]. With this approach, 100 hourly one year time series 
(possible realizations of the wind speeds) are simulated for 8 
wind turbines in specific locations. 

The procedure utilized to generate the multivariate 
temporally and spatially correlated wind speed time series is as 
follows. First, univariate normally distributed time series are 
simulated for each turbine location using an autoregressive 
(AR) model, which can be written for location i as 

   
p

i itit ezacz
1

, (1) 

where a1,…, ap are the AR model parameters, p is the order 
of the AR model, c is the intercept term and e is the error term 
of the model. Second, the monthly changing diurnal structures, 
estimated from two high and 19 low altitude locations in 
Finland are added to the time series, as presented in [8]. Third, 
the spatial correlations are added to the simulated data with the 
Cholesky decomposition by linking the distances between the 
turbine locations to the correlations between those locations, as 
presented in [7], [8]. Finally, the simulated normally distributed 
time series are transformed to wind speed time series through 
probability integral transformations. The marginal distributions 
utilized to obtain the wind speed time series through the 
transformations are considered to be Weibull distributed, as in 
[8]. The Weibull parameters defining the marginal distributions 
are obtained from the Finnish Wind Atlas database [19] 
according to the coordinates of each location. 

In the last phase of the wind power simulation procedure, 
the turbine model presented in [8] is used to transform the wind 
speed time series to the power time series according to the 
specification of the turbines. For four out of the 8 locations, 
Winwind WWD-1-56 1 MW turbines [20] are considered and 
for the rest of the locations Enercon E-12 30 kW turbines [21] 
are utilized. 

B. Aggregation to Prosumer Nodes and Parameterisation for 

Network Planning Algorithm 

Fig. 2 gives an overview of the planning algorithm. If time 
series data is available, the pre-processing of prosumer (which 
may be demand-only, generation-only, or both) data is needed 
to allow the MV topology planning algorithm to produce a 
good initial network. This involves establishing, for each node 
n (secondary substation or MV connection point) in the 
network, the net demand time series P[n, t], Q[n, t], where, in 
this paper, t = (1h,...,8760 h). Fig. 3 shows the net active power 
demand P[n, t] for a single (8760 h) simulation run in the top 
figure. The lower figure illustrates the risk of using only a 
single simulation run’s time series (whether based on 
measurements or modelled) as, for the particular simulated 
year in the top figure, the maximum would be well below the 
maximum for the 100 simulations of a modelled year or even 
the 95th CI. Therefore, we have 100 simulation runs for both 
P[n, t] and Q[n, t], for all n. The 95th CIs for the maximum and 

minimum P[n, t] and Q[n, t] for each node are calculated from 
the maximums and minimums of the 100 simulated runs. e.g., 
for the maximum active demand for node n, this means the 95th 
CI of max(P(n,t)), as detailed in [6]. 

When net demand goes negative, the node is acting as a net 
generator (this can be seen for some hours in Fig. 3). The net 
active demand for node n is thus defined as 
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where d represents the demand type (district heating, direct 
electric heating, storage heating, etc.) and g the generators  
behind the node in question, noting that generation is 
mathematically treated as negative demand.  

 

Figure 2 Overview of additional stages required when time series data is 
utilised in the MV topology planning algorithm. Note that n represents both the 

node n and the line section that feeds node n. 



 

 

Figure 3 Active power demand of a prosumer node (node 3 in Table II in the 
Appendix). The top figure shows one simulation run with its maximum shown 

in red. The bottom figure shows the estimated PDF of all (100) simulation runs, 
with the maximum from the single run in the top figure shown in red and the 

95th CI shown in green. 

This is calculated for all the Monte Carlo simulation runs. The 
resulting 100 max(P(n,t)) values are used to calculate the 
required CIs for the maximum net active power demand and, 
similarly, for the minimum net active and corresponding 
reactive power demands. The maximum net active power 
demand is abbreviated Pmax(n), which corresponds to the 
selected CI of the max(P(n,t)). Similar symbols are used for the 
minimum net active power and the corresponding reactive 
power demands. 

The net demand time series for each node or upstream 
(feeding) line section n, the loss times, Tlosses(n), are calculated 
from: 
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Equation (3) defines Tlosses(n) for one simulation run. The 

Tlosses(n) used in the planning algorithm is the average of the 
100 Tlosses(n) values. The coincidence factors for the initial 
network are set to unity, which is conservative. 

C. The Context: A Distribution Network Planning Algorithm  

The initial network is the starting point for the first round of 
time series modelling for each line section and the network 
modifying functions, but also allows initial parameterising of 
the geographical installation and operational environment for 
the network, which is not covered in this paper. A typical 
network solution is given for this and the subsequent stages of 
the algorithm in Section III.   

The net demand time series are the key parameters for the 
planning, along with substation specific interruption costs (load 
averaged €/kW/permanent fault, €/kW/short interruption, and 
€/kWh of energy not supplied), node specific net growth, 
expressed as per unit values based on the first year for every 
year up to the planning time horizon, and the basic cost 

parameters, such as investment costs, loss costs and the 
electrotechnical parameters of the network components, see the 
Appendix. Naturally, all existing network must be 
parameterized, but the network plans shown in this paper are 
Greenfield, to better show the impact of the two main planning 
philosophies (deterministic vs. probabilistic), whereas in the 
real world, the algorithm is mostly used for Brownfield 
planning. 

The interface between a full statistical treatment of nodal 
consumption and distributed generation is the main challenge 
addressed in this paper. The traditional methodology of 
assuming that the maximum nodal demands occur 
simultaneously in the network is now modified via periodically 
computed coincidence factors based on a Monte Carlo 
simulation analysis of the nodal time series and how they sum 
to each line section n in the radially operated network. 
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where i are the downstream nodes fed by line section n. 
Equation (4) yields as many coincidence factors for every line 
section as there are Monte Carlo simulation runs. These 100 
values per line section n are analysed in a similar manner as 
max(P(n,t)) above, to give the required CI for fcoinc[n]. The 
coincidence factors are then used in the next iterations of the 
planning algorithm to scale down the line power flows based 
on full coincidence, which themselves are 95 percentiles of the 
simulation run maximums. Line specific loss times are 
calculated using line power flows in an equation similar to (3). 

Running the relevant parts of the MV topology planning 
algorithm can be controlled by settings variables. A sprint 
version utilises a sector-based initial network generation [15] 
followed by a user-stipulated time-limited number of basic 
branch exchanges and polishing functions. Because the sample 
network section shown in the Results section is rather small, 
we simply ran consecutive pairs of full simulations, re-
computing the underlying network solution from the first of 
each pair with updated coincidence factors and loss times to 
correctly cost and dimension the network in the second. This is 
then repeated until convergence, with a check for possible 
oscillation. At a later date, the time series analyses will be fully 
embedded at critical stages of the planning algorithm, to 
prevent the need to run the full algorithm several times. 
Oscillation due to the decoupled treatment of the time series 
data must also be resolved. 

III. RESULTS 

The network simulations are loosely based on a Finnish 
west-coast suburban/rural MV (20kV) network area, with 2 
primary (110/20kV) substations and 74 secondary (20/0.4kV) 
substations. The outputs of the wind turbines are 
geographically modelled, using the methodology presented in 
[7], [8]. 



Fig. 4 shows the deterministically planned initial network, 
generated with coincidence factors of 1, i.e. assuming that the 
95 percentile maximum or minimum (generation) demands 
occur simultaneously. Fig. 5 shows the final solution network, 
which corresponds to the coincidence values shown in the 
Appendix (calculated using the Monte Carlo simulation 
method). It is, of course, impossible to show the time series 
data used in this paper, but the time series data was created 
from appropriate proportions of 4 consumer types, district 
heating, offices and small business, direct electric heating, and 
electric storage heating, where the consumption is coupled with 
MV connected wind turbines at 12 locations (the wind 
generation is modelled using the Monte Carlo methods). 

Table I summarizes the cost components of the solution 
networks. Note that two cost summaries are given for the initial 
network in Fig. 4. The first is for the assumption of unity 
coincidence factors and the second uses the utilization times for 
losses and line specific coincident factors estimated using the 
Monte Carlo method (re-computed for the same network 
topology). The results are as expected. Introducing the 
estimated coincidence factors for this lightly loaded network is 
more realistic, as it eliminates the overestimation of the losses. 
The solution network minimises interruption and investment 
costs at the expense of loss costs. 

 

Figure 4 Initial deterministically planned network with symbol key, total 

costs are 5 545 312 € 

The final solution network (Fig. 5) shows some component 
and topological differences to the network shown in Fig. 4, and 
is 3% cheaper than the deterministically planned network 
costed with power flows moderated by time-series derived 
coincident factors (this is considered the fairest comparison). 

TABLE I.  NETWORK SOLUTION COST COMPONENTS AND NO. OF 

PROTECTION DEVICES 

Component Initial 

network with 

coincident 

factors = 1 

Initial 

network with 

time-series 

based loss 

times and 

coincidence 

factors 

Solution network 

Total cost  5 545 312 5 425 059 5 266 970 

Total investment 

costs: 

4 389 077 4 291 187 4 175 215 

Total loss costs: 386 879 344 149 363 105 

Total 

interruption 

costs: 

769 355 789 723 728 649 

No of manual 

switches: 

30 33 37 

No of master 

stations for 

remote switches: 

39 38 36 

No of remote 

switches: 

97 93 88 

No. of master 

stations for 

network circuit 

breakers: 

3 3 4 

No. of network 

circuit breakers: 

3 4 5 

  
Figure 5 The final solution network using line specific coincidence factors 

(95th percentile) and loss times, total costs are 5 266 970 € 



Note that the wind turbines are assumed to have their own 
protection devices. What these solution networks do not 
consider, is the potential for islanding parts of the network 
during faults upstream from distributed generation locations. 
Only the wind turbine locations behave as prosumer nodes, but 
in fact every node in the network is modelled as a prosumer, 
and can contain any mix of generation and consumption, as 
long as time series for each component can be provided. 

Although the simulations allowed choosing between 
underground cable and bare overhead conductors, underground 
cables were mostly chosen by the planning algorithm, with 
only a few covered conductor overhead line sections in the 
solution networks. 

IV. DISCUSSION 

The paper has made some significant steps towards 
planning contemporary and future distribution networks in our 
particular planning algorithm, and hopefully has offered some 
methodology of more general benefit. While the basic planning 
algorithm utilised in this paper includes a comprehensive 
treatment of conventional radial top-down reliability, optimally 
placing up to three layers of switching (circuit breakers, 
remote/automatic and manual load-breaking switches) [16], it 
does not yet do full justice to the supply possibilities of 
distributed generation, in terms of islanded operation during 
major grid contingencies. There should, for example, be the 
possibility of downstream circuit breakers that can isolate 
faulted upstream network (upstream and downstream referring 
to normal radial operation with no DG). The statistical 
modelling of consumption presented in the literature is quite 
advanced; however, the full ability of that modelling to 
generate thousands of Monte-Carlo simulated years has not 
been utilised in this paper. We chose to take the expected 
yearly profiles for a range of customer types, and superimpose 
them on one hundred years of simulated hourly wind data for 
12 wind generation locations. The statistical modelling of 
limited customer bases is another challenge that we are 
addressing. Rural Finland, for example, has secondary 
substations that have only single customers behind them. The 
use of 95th percentile confidence limits for the coincidence 
factors that scale down the load flows implied by using the 95th 
percentile maximum and minimum net demand (negative for 
net generation) from the time series data in the line sections 
should mean that higher than 95% confidence is achieved in 
the planning process (as at the same time both the individual 
nodal maximums are calculated with 95 % CIs and the 
likelihood of them occurring at the same time is calculated with 
95 % CIs). 

A probabilistic approach may mean, on rare occasions, 
demand or distributed generation curtailing, and require a 
closer monitoring of the state of the network. A state estimation 
algorithm has been developed by the 4th author [23].  

International working groups [24] have been indicating that 
not only the stochasticity and divergence of distributed 
generation and consumption should be taken account of in the 
networks of the future, but also active network operation. This 
paper has developed a method to handle these challenges, 
provided they can be represented in simulated time series that 

cover the behaviour of all the constituent components in future 
networks.  

The network plans shown in this paper show some benefit 
in terms of total costs compared to planning using conventional 
top-down logic. That there are at least marginal savings in total 
societal costs is perhaps self-evident, but we hope that clear 
methodology has been established showing one way to treat a 
complex problem. If we had focused on the expansion and 
upgrade of a more highly loaded network, the savings and 
topological changes in the network solutions would certainly 
have been greater than in the relatively lightly loaded 
Greenfield planning problem presented in this paper. It is to be 
admitted that the planning philosophy illustrated in this paper is 
still on the conservative side, but it may be argued that such 
long-term target networks should err on the conservative side, 
given that the future is hard to predict. 

V. CONCLUSION 

This paper presented a decoupled methodology suitable for 
planning and evaluating distribution networks with distributed 
generation, provided that full time series data and modelling is 
available for what lies behind the secondary substations. The 
probabilistic treatment and periodic processing of such time 
series data was coupled with a distribution network planning 
algorithm. The particular network section that we simulated 
showed some topological differences between the deterministic 
and probabilistic planning philosophies, but only marginal 
savings. 

The methodology is an incremental development of that 
given in [13], which based nodal time series modelling on 
expected values for consumption and generation of a single 
typical year. We have now introduced the methodology to 
utilise full multi-year Monte-Carlo simulations of a properly 
modelled year; in this paper only demonstrated for wind 
generation, but in principle applicable to multiple consumption 
and generation types. 
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APPENDIX – NETWORK DATA 

Space does not allow presenting all the network nodal data 
used in the simulations that produced Figs. 4 and 5, but Table 
II gives a few sample nodal parameters. The last column gives 
coincident factors associated with the line sections with the 
same reference number from the final solution network in Fig. 
5. 

TABLE II.  NETWORK NODAL DATA SAMPLES 

Node

/line 

sect. 

ref. 

n 

X-

coord 

(km) 

Y-

coord 

(km) 

Pmax 

(kW) 

Pmin 

(kW) 

Qmax 

(kW) 

Qmin 

(kW) 

Tnode_ 

losses 

(h/ 

year) 

fcoinc, 

95th 

(p.u.) 

0 0 0 0 0 0 0 0 0 

1 -4.28 -12.24 0 0 0 0 0 0 

2 -0.5 2 800 -1000 74 -75 1708 0.85 

3 1.77 -12.4 431 0 107 0 2169 0.84 

4 2.56 -13 492 0 122 0 1227 0.87 

5 2.25 -13.8 492 0 122 0 2033 1 

6 -4.34 -7.1 504 0 125 0 1227 1 

7 -3.53 -6.9 80 -30 11 -10 2023 0.94 

8 -3.86 -9.3 672 0 166 0 1227 0.86 

9 -2.17 -6.2 611 0 151 0 1227 0.87 

10 -1.73 -6.7 599 0 148 0 2033 0.86 

11 -2.58 -6.7 800 0 198 0 1227 0.88 

12 -3.23 -6.6 788 0 195 0 510 1 

13 0 -6.4 547 0 135 0 1227 1 

14 -0.89 -7.2 438 0 108 0 1227 0.85 

15 0.28 -7.1 718 0 178 0 2169 0.84 

16 0.3 -7.6 718 0 178 0 1227 0.94 

Missing data 

48 -6.23 -15.2 390 0 97 0 1227 0.84 

49 -1.98 -14.3 603 0 149 0 2169 0.83 

50 -0.86 -15.2 310 0 77 0 2033 1 

51 -2.93 -15.3 495 0 122 0 510 1 

52 -2.24 -15.8 495 0 122 0 510 1 

53 -2.73 3.3 1025 -1000 125 -120 1078 1 

54 -3.37 0 470 0 116 0 2033 0.99 

55 -4.27 0.1 470 0 116 0 1227 1 

56 -5.31 0.1 996 -1000 112 -100 1276 1 

57 -2.66 1.4 1569 0 59 0 510 0.93 

58 -0.65 -3 514 0 127 0 2169 0.81 

59 -1.36 -3.4 514 0 127 0 2169 0.79 

60 -2.89 -3.2 246 0 61 0 2033 0.77 

61 -3.58 -5 347 0 86 0 2033 0.82 

62 -4.15 -1.1 350 0 86 0 2033 1 

63 -5.55 -5.3 2550 0 35 0 2169 0.86 

64 -8.39 -9.7 446 0 110 0 2169 0.77 

65 -8.35 -11.3 436 0 108 0 1227 0.82 

66 -8.92 -10.5 70 -30 8 -8 2006 0.79 

67 -8.48 -12.3 425 0 105 0 2033 0.84 

68 -3.72 -16.7 408 0 101 0 2169 0.71 

69 -4.87 -16.2 572 0 141 0 2033 0.8 

70 -4.75 -16.9 609 0 151 0 2033 0.76 

71 -1.46 -17.2 301 0 74 0 510 1 

72 -0.19 -17.7 450 0 111 0 510 1 

73 -0.83 -18.4 461 -30 0 0 501 1 

74 -8.95 -5.28 461 -1000 0 0 1736 0 

75 -10.25 -5.2 461 -30 0 0 1208 1 

 

http://www.winwind.com/WWD-1.aspx


The cost and electro-technical parameters of the underground 

cables and covered overhead conductors are given in Tables 

III and IV. 

TABLE III.  UNDERGROUND CABLE PARAMETERS 

Fixed costs 
(k€/km) 

Resistance 

(/km) 

Reactance 

(/km) 

Susceptance 

(S/km) 

Thermal 
Limit (A) 

30.44 1.20000 0.16022 40.8 110 

33.16 0.64100 0.14451 50.3 155 

43.86 0.38000 0.12881 66.0 235 

46.31 0.25000 0.12252 75.4 300 

52.76 0.15000 0.10996 94.2 385 

 

TABLE IV.  COVERED OVERHEAD CONDUCTOR PARAMETERS 

Fixed costs 
(k€/km) 

Resistance 

(/km) 

Reactance 

(/km) 

Susceptance 

(S/km) 

Thermal 
Limit (A) 

27.990 0.493 0.302 3.770 310 

31.930 0.288 0.284 4.084 430 

37.052 0.188 0.27 4.398 560 

73.864 0.094 0.135 8.796 1120 

Note that, for convenience, interruption costs were set to 
1.1€/kW/fault and 11€/kWh for all nodes, which are rather 
high values for rural customers. The planning horizon is 40 
years, the annual interest rate is 6 % and net annual nodal load 
growth is set globally to 0.12 %. These parameters can be node 
specific if required. 
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