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Abstract— Web services orchestrations and choreographies flexible manner. This flexibility is essential because défe

require establishing Quality of Service (QoS) contracts wh the  grganisations often associate different semantics toahees
user. This is achieved by performing QoS composition, basezh parameter name.

contracts established between the orchestration and the ted

Web services. These contracts are typically stated in the fi;m of Nevertheless, most SLAs commonly tend to have QoS

hard guarantees (e.g., response time always less than 5 msec parameters which are mild variations of the the following
In this paper we propose usingsoft contracts instead. Soft measures:

contracts are characterized by means of probability distrbu- .

tions for QoS parameters. We show how to compose such e response time (latency);

contracts, to yield a global contract (probabilistic) for the or- « availability;

chestration. Our approach is implemented by theTOrQUuE tool. « maximum allowed query rate (throughput);
Experiments on TOrQUE show that overly pessimistic contracts . security.

can be avoided and significant room for safe overbooking exis.
In this paper we do not consider aspects of security in QoS.
To the best of our knowledge, with the noticeable excep-
Web Services Orchestrations have attracted growing ifipn of [20], all composition studies consider performance
terest over the last years [4], [13]. They are now considergd|ated QoS parameters of contracts in the formhafd
an infrastructure of choice for managing business prosessgounds.For instance, response times and query throughput
and workflow activities over the Web infrastructure [2]. Ingre required to be less than a certain fixed value and validity
this context, the Web services for composition are mainly off answers to queries must be guaranteed at all times. When
transactional nature. composing contracts, hard composition rules are used such

~ BPEL [4] has become the industrial standard for spegss addition or maximum (for response times), or conjunction
ifying orchestrations. Numerous studies have been devotgg, validity of answers to queries).

to relating BPEL to mathematical formalisms for workflows,  \yhereas this results in elegant and simple composition
such as WorkFlow nets (WFnets) [5] a special subclass Qfjjas e argue that this general approach by using hard

Petri nets, or the pi-calculus [7]. This has allowed develgp ,5,nds does not fit the reality well. Figure 1 displays a
analysis techniques and tools for BPEL [8], [10] including

functional aspects of contracts [6], as well as techniquoes f
workflow mining from logs [9]. 400
When applied to the management of OEM/supplier co- 35
operations, orchestrations must make precise the duts ar
responsibilities of the different actors in such chainsisTé 300
achieved by relying ortontracts[3]. Contracts specify the
requirements each subcontractor must satisfy; from tliese,
overall contract between orchestration and its customneans c
be established. This process is calhtract composition.
While functional aspects of contract composition rely
on the above mentioned formal models and techniques [6]
Quality of Service (QoSaspects must be handled as well.
The Web Service Level Agreement (WSLA) framework [12] 50}
is a standard proposed by IBM for specifying (and moni-

I. INTRODUCTION
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toring) QoS parameters in Web Services. There are no pre % B 15 T
defined QoS parameters in WSLA, the contracting parties ar Delays x 10*
free to negotiate and define their own QoS parameters in a
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histogram of measured response times for a “StockQuotsurvey of the existing literature on QoS-enabled WS compo-
Web Service which returns stock prices of a queried ersition. In section Ill, we present our general approach aed t
tity [29]. These measurements show evidence that the tail ®OrQuE tool supporting it. In section 1V, we introduce the
the above distribution cannot be neglected. For example, ianning example used throughout (an orchestrated service
this histogram, quantiles of 90%, 95%, and 98%, corresporidr buying cars online), and we present simulation results,
to response times of 6,494 ms, 13,794 ms, and 23,506 rashibiting the potential for overbooking. Finally, secti®&/
respectively. Setting hard bounds in terms of response tinpeesents conclusions and outlooks.
would amount to selecting, e.g., the 98% quantile of 23,506
ms, leading to an over pessimistic promise, for this service
In fact, users would find it very natural to “soften” In this section we survey the work done on QoS-based

contracts: a contract should promise, e.g., a response tiféb Service composition. Proposals for such QoS-based
in less thanT milli-sec for 95% of the cases, validity in compositions are few and no well-accepted standard exists

99% of the cases, accept a throughput not larger tNan to date. The METEOR-S project [14] has studied QoS
queries per second for 98% of a time perioddf hours, enabled compositions in workflows. In METEOR-S, Agarwal
etc. This sounds reasonable but is not used in practicdy parét. al [15] view QoS based composition as a constraint
because soft contracts based on quantiles as above are $jtsfaction/optimization problem. Services have sedact
supported by composition rules. criteria which are constraints, for which an optimal sauti

In this paper we propose a fully probabilistic approactis found using integer linear programming. Cardoso et al.
to soft QoS contract composition. We advocate that sof@ [16] aim to derive QoS parameters for a workflow,
contracts should be based on probability distributiong, n@iven the QoS parameters of its component tasks. Using
on quantiles, for the following reasons. Contracts exmass@ graph reduction technique, they repeatedly re-write the
as quantiles do not compose as such. In contrast, comp®42rkflow, merging different component tasks and also their
ing probability distributions is simply achieved by rungin QO0S attributes according to different rules.
Monte-Carlo simulations. Assume a combined executable Zeng et al. [17] use Statecharts to model composite
functional-and-QoS model of the orchestration is avadabl services. An orchestration is taken to be a finite execution
Then, drawing QoS parameters for the called sites in accdyath. For each task of the orchestration, a service is select
dance with their probabilistic contracts and feeding Menteffom a pool of candidate services, using linear programming
Carlo simulations with these, yields an estimate of th&echniques such that it optimizes a specific global QoS
probability distribution for the different QoS parameterfs criteria. In [18], the authors propose using fuzzy distréli
the orchestration. Thus, while probabilistic contracenseat ~ constraint satisfaction programming (CSP) techniques for
a first glance, technically involved, they compose easiysT finding the optimal composite service.
is a major advantage when considering contract composition Canfora et. al [19] suggest using Genetic Algorithms for

Such a combined executable functional-and-QoS mod@griving optimal QoS compositions. They use techniques
of the orchestration can be obtained by enhancing orchedimilar to [16] for modeling QoS of services. Compared to
tration specifications with QoS attributes seen as randotfie linear programming method of Cardoso et. al [16], the
variables, and then combining them properly. This requiregenetic algorithm is typically slower on small to moderate
exhibiting concurrency and sequentialization in the osehe Size applications, but is more scalable, outperformingdmn
tration in a precise way, which amounts to representingfogramming techniques when the number of candidate
orchestrations agartial orders of events. Mathematical S€rvICES InCrease.
models of orchestrations typically provide this. For extenp A distinguishing feature of our proposal from the above
the partial order semantics of WFnets [5] is such a matf:omposition techniques is that we do not consider the QoS
ematical model. Our group has developed a t66IrQuUE Parameters of a service to be fixed, hard bound values. We
(Tool for OrchestrationQuality of Serviceevaluation) that Pelieve that in reality, these parameters exhibit significa
directly produces executions as partial orders, from &ec O Variations in their values and are better modeled by a
program. Qrc is a simple and clean academic language foprobability distribution. This alternative approach hast
orchestrations with a rigorous mathematical semantics, dadvantages. First, it reduces pessimism in contract compo-
veloped by Cook and Misra at Austin [23]. The Monte-Carldsition, as we shall see. And, second, it allows for “soft”
results reported here were obtained by this tool. HoweveRonitoring of contract breaching (have a delayed response
it should be clear that our approach of soft probabilisti®nce upon a time should not be seen as a breaching). We
contracts applies to any orchestration formalism as soon BEPOSe using simulation techniques to analyse the QoS of
the orchestration can be animated as a partial order of verft COMposite service.

_Using these tools, we sh(_)w in particular that th_e orches— lIl. GENERAL APPROACH AND THETOrQUETOOL
tration QoS parameters obtained by Monte-Carlo simulation
using probabilistic contracts are much less pessimista th A. General approach
those based on hard bound reasoning, thus showing evidence ~ The Open World paradigmEor QoS analysis, actors
of opportunities for well sound overbooking. for consideration are:

The paper is organized as follows. Section Il gives a « the orchestration;

II. RELATED WORK



« the Web services called by the orchestration; have developed the following Monte-Carlo technique for
« the transport network infrastructure. QoS contract composition to be performed at design time:

All these actors contribute to the overall QoS characiesst e« Contracts with the called sites have the form of proba-
of the orchestration. Therefore, to be able to offer QoS  bility distributions for the considered QoS parameters.
guarantees, the orchestration needs QoS data from the other From these, we draw successive outcomes for the tuples:
two types of actors.

In the context of networks, QoS studies assume knowl-
edge of end-to-end resources and traffic, and use these If no contractis available for a given site, we replace the
to predict or estimate end-to-end QoS [11]. This can, for  missing probability distribution by empirical estimates
example, be used for evaluating the end-to-end performance of it, based on QoS measurements.
of streaming services, supported by a dedicated crossidoma « Using a partial order execution model for the orchestra-
VPN. Once defined and deployed, the considered VPN has tion, we run QoS-enhanced Monte-Carlo simulations of
knowledge of his resources and traffic. For our case, the the orchestration, thus deriving empirical estimates for
situation, however, is different: the global QoS parameters of the orchestration.

« The orchestration has direct knowledge of the resources® Having these empirical estimates, we can properly select
of its own server architecture. It knows the traffic it can ~ 9quantiles defining soft contracts for the end user.
support, and it can monitor and measure the ongoing Tne TOrQUE tool

traffic at a given time.

o The resources and extra traffic for each called We The TOrQuE (Tool for Orches'gration simulation and
service is not known to the orchestration—other user%uallty of serviceEvaluation tool implements the above

of these sites belong to the “open world” and thénethodology. Its overall architecture is shown in Figure 2.
orchestration just ignores their existence. The steps involved in the QoS evaluation and Ti@rQuE

o The resources and extra traffic for the transport network |
infrastructure are not known to the orchestration—other Trace
traffic belongs to the “open world” and the orchestration | Reconstructor Stamper

{response to queries, associated QoS paranjeters

just ignores it. ; #
Contracts have therefore emerged as the adequate paradigm | batch-wise measturﬁ— randot
for QoS of orchestrations and, more generally, of composite © mei processing ments ) (generatol
Web services in open world contexts. Y

Contracts: A contract consists of an agreement on
QoS parameters of the kind listed before. Contracts provide ~ SLA Design
the orchestration with the information needed to constitact
own offer to customers.

In all cases, the orchestration will not contract regarding Fig. 2. Overall architecture of thEOrQUE tool.
transport. The reason is that the orchestration does nat wan
to know the network domains it may traverse. If, howevemnodules that perform them are commented next.
QoS information regarding the transport layer is wanted, 1) The orchestration modelTo ease the development
this can be coarsely estimated by sending “pings” to thef this tool, we decided to replace the (complex) BPEL
considered site. On the other hand the orchestration magjandard for specifying Web services orchestrations by a
contract with the Web services it is calling—some sitesight weight formalism called @c [23]. ORC has a rigorous
however, such as e.g., Google, may be targeted to huggathematical semantics based on SOS rules. The authors of
sets of users and would therefore not enter in a negotiatiehis formalism have developed a tool [24] which can animate
process with any orchestration. Therefore, in designiag ibrchestrations specified inA@.
contracts with its own customers, the orchestration: 16use 2) Getting QoS enhanced partial order models of exe-
the contracts it has agreed upon with its subcontracting Wefations with the “Trace Reconstructor”:Jointly with the
services, 2/ may estimate QoS parameters for other Welathors of Gkc, we have developed an alternative mathe-
services it is using, and, 3/ may estimate QoS parametatsatical semantics for Rc in terms ofevent structure§25].
for transport. Event structures [21] provide the adequate paradigm for
Classically, contracts are formulated as hard bounds aferiving partial order models of & executions, in which

some QoS parameters. As argued in the introduction, it &ausality and concurrency relationships between therdifte
preferable to characterize contracts in terms of proligbili events of the orchestration is made explicit. Partiallyeoed|
distributions over QoS parameters. Hard bounds on paramexecutions can be tagged with QoS parameters which can
ters will then be replaced by “soft” bounds, of probabitisti then be composed. For example, figure 3 shows how the
or statistical nature. response time of a fork-join pattern is computed from that

Contract composition:From the above discussion, of its individual events. These max-plus rules are used to
the need foprobabilistic contract compositioemerges. We combine delays in the partial order. The QoS parameter
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Fig. 3. Deriving response time for a fork-join pattern. ThHeotk” and i
“Join” are the branching and synchronization ever$, and S2 are two ‘ AllCredit ‘ ‘ A";L“;Sd“ Goldinsure InsurePlus ‘ |nsureA||‘
Web Services called in paralled, denotes the time taken for eveatto
execute. \ /
tagging of the partial ordered executions and their com- »

L. . . . sync

position is implemented iMTOrQuEs trace reconstructor S,

module (see figure 2). Arbitrary patterns encounteredic O J
specifications can be handled by this module. response
3) Drawing at random, samples of QoS parameters for
the called sites, with the “Time Stamper’To perform Fig. 4. A simplified view of the CarOnI__ine orchestration.,‘leIIs to
. . . GarageA and GarageB are guarded by a timer that returns &*Rassage
Monte-Carlo simulations using the Trace Reconstructor, Wghenever the timeout occurs.
need to feed it with actual values for the QoS parameters.
For the called sites, these values should be representdtive
the contracts established between them and the orchestratils selected and credit and insurances are parallelly found
This is achieved by drawing such parameters at random frof@r the offer. Two banks Al | Credit, All Credi t Pl us)
the probability distribution specified in each contract. are queried for credit rates and the one offering a lower
If no contract is available with a given site, the neede#@te is chosen. For insurance, if the car price of the best
probability distribution may alternatively be estimatedrh ~ Offer is greater than a certain limit, any insurance offer
measurements. For example, calling the considered siteb¥ serviceGol dl nsure is accepted. If not, two services
certain number of times and recording the response timésnsur ePl us, I nsur eAl |') are parallelly called and the one
provides an empirical distribution that can be re-sample@ffering the lower insurance rate is chosen. In the end,
by simple bootstrapping techniques [22]. The Time Stampdpe (€ar-price, credit-rate,insurance-rate) tuple
module supports both techniques: sampling from contract’§ returned to the requester.
probability distribution or bootstrapping measured value The Orc program for CarOnLine is given in table I.
4) Exploiting results from Monte-Carlo simulations to ORC defines three basic operators. Far@©expressiony, g,
set contracts for the orchestration with the “SLA Design f | g executesf and g in parallel. °f >z> g evaluates
Unit”: This is mainly a GUI module that displays simulation/ first and foreveryvalue returned by, a newinstance of
logs and histograms or empirical distributions of the Qo% is launched with variable: assigned to this return value.

parameters and allows selecting appropriate quantiles. ~“/ where x :c g" executesf andg in parallel. Wheng
returns itsfirst value, 2 is assigned to this value and the

IV. RESULTS: OPPORTUNITIES FOR OVERBOOKING computation ofg is terminated. All site calls irf havingz
In this section we report the results obtained from th@s a parameter are blocked tilis defined (e, till g returns
simulations of théTOrQuEtool which validate our approach its first value).

of using probabilistic contracts. CarPrice parallelly callsGarageAandGarageBfor quo-
) tations. Calls to these garages are guarded by a timer site
A. lllustrative example Timer which returns a fault valug’ time units after the

We perform our experiments on ti@r OnLi ne exam- calls are made. Thket site simply returns the values of its
ple developed in thesWAN project [30]. Car OnLi ne is arguments—sites can only execute when all their parameters
a composite service for buying cars online, together withre defined and thus can be used to synchronize parallel
credit and insurance. A simplified schematic description dhreads. The value returned IarPrice (here the variable
the service is given in figure 4. p) is passed as argument @&etCreditand Getlnsurwhich

On receiving a car model as an input query, the CarOmparallelly find credit and insurance rates for the price.

Line service first sends parallel requests to two car dealers Figure 5 shows a diagram of the event structure corre-
(Gar ageA, Gar ageB), getting quotations for the car. We sponding to theCar OnLi ne program written in &c. The
guard the calls to each garage by a timer, which kills thevent structure is generated by our tool and it collects all
waiting when timeout occurs. The best offer (minimum pricejhe possible executions @kar OnLi ne, taking into account



CarOnline(car) A CarPrice(car) >p>
let(p,c,)
where ¢ :€ GetCredit(p)
r:€ GetInsur(p)

CarPrice(car) A {Mux(pl,p2)
where
pl :€ GarageA(car) | Timer(T)
p2 :€ GarageB(car) | Timer(T)

>p> if(p # Fault)) > let(p)

GetCredit(p) A Min(rl,r2)
where
rl:€ AllCredit(p)
r2 :€ AllCreditPlus(p)

GetInsur(p) A {if(p > limit) > GoldInsure(p)}
|
{if (p < limit) >
min(ip, ia)
where
ip :€ InsurePlus(p)
ia :€ InsureAll(p)

TABLE |
CARONLINE IN ORC.

timers and other interactions between data and controh Eag
execution has the form of a partial order and can be analysdd
to derive appropriate QoS parameter composition, for each
occurring pattern. Each site call to a servickis translated
into three events, theall (M), thecall return (?/) and the
publish action(!), which adds to the length of the structure. |
For more information regarding these event structures, thé
reader is referred to [25]. |

In orchestrations, exceptions and their handling are fre-
quently part of the orchestration specification itself. tilia
tion, collecting measurement data from existing Web sesvic |
regarding this type of parameter is difficult (actually, iaro
experiments, no exceptions were observed). For these tvvio
reasons, we did not include exceptions in our simulation
study.

B. Analyzing Response Times: approach

Probabilistic contracts for the sitesThe sites in the
CarOnLine example were not implemented as real servic€g. 5. A labelled event structure collecting all possible exemusi
over the internet. In order to assign realistic delay bemavi Of Car OnLi ne, as generated by our tool. The three dangling arcs
. . . . . from the shaded places are followed by copies of the boxed net
to these sites during the simulations, we associated their
behaviour to that of actual Web Services over the internet.
For this, we measured response times of calls to these ac.tv\?el made 20,000 calls to each of these six Web Services
Web Services. The response time recorded were used in a . : .
SR : and measured their response times. The calls were made in
bootstrap mode and also to fit distributions which would bée : .
. . . Sequence, a new call being made as soon as the previous call
sampled during simulations.

We considered six different Web Services for this pur_responded. We could roughly categorise these services into

pose [29]:St ockQuot e which returns stock prices for a three categories based on their response times:

queried enterpriseUS\eat her which gives the weather e« Fast: The servic€aribbeanwith response times in the
forecast of a queried city for a week from the day of the call, ~ range 60-100 ms or th€ongressMembeservice with
Congr essMenber which returns the list of the members of ~ response times between 300-500 ms.

the US CongresBushi smwhich returns a random quote  Slow : ServiceStockQuotewhich responded typically
of George W. BushCar i bbean which returns information between 2 and 8 seconds.

related to tourism in the Caribbean, aKiet hods which + Moderate: The services likdSWeatherxMethodsand
queries a database of existing Web Services over the web. Bushismwith response times in the 800-2000 ms range.



Fitting distributions on measured datdafo validate the table 1) : 1) No timeout (equally/" is infinite) 2) T is a
use of certain families of distributions, we performed theifinite value, which is lesser than the maximum response time
best fit on the measured data. When applied to the meaf a garage.

Case 1: No timeouts

[ Based on the way delays of site calls are generated, we
performed two types of simulations: those in which delays
generation is done by 1/ bootstrapping measured values, 2/
sampling a T location-scale distribution, previously fit to
measured data.
1) Bootstrap based Simulationdn these simulations,

we associated each service in the CarOnLine example with
n ] delay behaviours of one of the six web services mentioned

_

Il previously. The associations are shown in Table II.
m M | Site | Service |
il ” Lo ‘ ‘ GarageA USWeather
GarageB Bushism
AllCredit XMethods
Fig. 6. Fitting of a T Location-scale distribution on the plot of AllCreditPlus StockQuote
20,000 measured delays of the servi¢g8Weather Goldinsure Caribbean
InsureAll CongressMember

sured response times of the six different web services, we
observed that T location-scale distributions served asigoo
approximations in most cases. Moreover, Gamma and the TABLE Il
Log-Logistic distributions were also reasonably good fits f

the response times. Figure 6 shows the results of the fit of
a T Location-Scale distribution on the response times of the The service “Min” inCar OnLi ne (figure 4) is consid-

serviceUS\\eat her . . ~ ered to be a local service at the orchestrator with negkgibl

~ While the quality of fit is reasonably good, this pointresponse times. During any run of CarOnLine, the response

is anyway not central in our study. We only see the use @fme of a call is picked uniformly from the set of 20,000

certain families of distributions as an alternative to Istraip delay values of its associated site.

techniques, when measurements are not available. In denera Ragits using hard contractsConsider the following

however, we prefer using bootstrapping techniques. “hard contract” policy—which is close to current state of
Orchestration Engine OverheadThe events of an or- ractice. Contracts have the form of a certain quantile; e.g

chestration could be seen as one of these two types : 4fe response time shall not exceeths iny% of the cases.”

the service call events which are calls to a external sites. More precisely, let contracts of the orchestration with a
2/ the events internal to the orchestration, implementingia pe of the forn;

the processing and coordination actions of the orchestrati
Depending on the relative cost (in terms of execution time) P, < K;) > p; (1)

of these events the following scenarios can be considered: ) ) ) )
wherei = 1,...,m ranges over the sites involved in the

o Zero delay: The delay due to the internal events is zero . : . o .
S . orchestrationg; is the response time of site K; is the
(or negligible) when compared to that of the site calls; romised bound of sité andp: is the corresponding proba-
The overall delay of the orchestration would depen lity I(so thatué K Ir?olds i];:yl‘V of the caspes vlvhgefge
i . . . s s A , =
solely on the response times of the services it calls I100 x p;). Assuming the called sites to be probabilistically

this case. independent, what the orchestration can guarantee to its
« Non-zero delay: The delays of the internal events in thislienE(Js i ' 9

case are non zero, comparable to the delays of site calfe!
Since the performance of our prototype can not be regarded =
perto prototyp . 9 PG <K) > [[» )
as representative of that of a real orchestration engine, we Pl
considered only the first scenario. B

U

InsurePlus | CongressMember

RESPONSE TIME ASSOCIATIONS FOR SITES IRARONLINE

) ) where § is the response time of the orchestration asid
C. Simulation results is the max-plus combination thé(’s, according to the
All the measurements and simulations were performed arrchestration’s partial ordering of call events.
a 2 GHz Pentium dual core processor with 2 Gb RAM. We By setting the delay contracts (maximum delay values)
consider two cases of simulations, depending on the timeoot each of the sites involved in CarOnLine to their 99.2%
value T for the calls to the garages (see sftémer(T) in  quantile values, we get the end-to-end orchestration delay



bound to beK = 66,010 ms, which can be guaranteed for  Results using probabilistic soft contractsAs before,
94.53% of the cases. we assume zero delay for all the internal orchestration
Recall that, if only the quantilei.¢., the pair (K;,p;)) actions and perform 100,000 runs of the orchestration in
is known as part of the contract with each called site, thethis configuration. End to end orchestration delays from the
guantile (2) cannot be computed. The reason is that quantil@mulations were recorded. In this case, the 94.53% gqueantil

do not compose. is found to be 14,658 ms.

Results using probabilistic soft contractg/e now com- The results are summarized in Table III.
pare the above results with our approach using probabilisti - e oA
contracts. To this end, we performed 100,000 runs of the or- Mode 94.53% quantile 94.53% quantile
chestration in the bootstrap mode. The empirical distidiut BootStrap 23,189 44,243
of end-to-end delays of the orchestration is shown in figure 7 |_T Location Dist 14,658 1,469,539

The minimum delay observed in this case is 1511 ms and
the maximum is 369559 ms. The 94.53% delay quantile of
this distribution is 23,189 ms, to be compared with the more

pessimistic value 44,243 of ms that we obtained using the The time taken for the 100,000 simulations in the boot-
usual approach. strap mode was 37.74 sec and in the T Location-sampling

mode was 42.13 sec.

TABLE Il
NO TIMEOUT CASE: COMPARISON OFDELAY QUANTILES

Case 2: Finite Timeouts
9000

Using hard contracts in orchestrations having timeouts
80001 7 raises difficulties. As an illustration, consider againufig 3.

Let K, and K> be the two hard bounds (in ms) for response
times in the contracts of site§1 and S2, respectively.
6000} 1 Assume that timers are used to guard the two site calls, with
timeout occurring at\ ms. Then, clearly, the contract that
results for this orchestration entirely depends on thetivela
position of \, K7, and K. If A > K; for i = 1,2, then a
timeout is supposed to never occur (unless one of the site

7000 B

5000 B

4000 b

No. of Occurrences

3000 1 contracts is violated). On the other hand,Nf< K; for
max delay = 1 = 1,2 then, even if the sites respect their contracts, this may
2% 36955;9 ™71  attimes be seen by the orchestration as a timeout. Clearly,
1000 .| using timers in combination with hard contracts makeslitt|
; sense.
% o5 1 s 2 25 3 s 2 In contrast, probabilistic soft contracts allow using time
Delays x1¢  with no contradiction. The reason is that Monte-Carlo simu-

lations have no problem simulating timers and their effect o
Fig. 7. Empirical distribution of end-to-end orchestratigelays for 100000 the distribution of the orchestration response time. Asra co
simulations in the bootstrapping case. sequence, we only present the results from our simulations
without a comparison to the hard contract based composition
We again perform simulations in two modes: Bootstrap

2) T Location-Scale Sampling based Simulations: and T Location-scale based simulations.

this mode of simulation, T location-scale distributiong ar 1) Bootst based Simulationss bef
sampled to generate delay values for site calls. The dela}/t )d Ooﬁ fap base th'mgagnl_:s € ore,lwe ';?Sdo-l
values of the six Web Services were fitted with a T Locationt & cd €ach service In the t.arontine exampie wi elay

scale distribution, giving the estimatgdo andv parameters behav.|0L_Jrs of one of the six web Services measured. The
of the distribution. The pdf for this distribution is: associations are the same as before, given in table Il. We now

have timeouts for the calls to sites GarageA and GarageB.

2 —(21) The99.2% delay quantiles for these two sites are 3,304 msec

B Ny v+ (32) ’ and 4,183 msec respectively. We perform simulations with

p(e) = ovml'(% v different timeout values: 3,000, 4,000 and 5,000 msec. The
Vrl(5)

results are given in table V.
The association of sites of CarOnLine and the Web services 2) T-Location Scale Sampling based Simulatiovse
remains unchanged, as given in table II. maintain the associations of table Il and perform simutatio
Results using hard contract$On setting the delay con- by sampling the fitted T Location-scale distributions. The
tracts of each of the sites to their 99.2% quantile valuesesults of these simulations summarized in Table IV. The
we get the end-to-end orchestration delay bound tdbe  average time for 100,000 simulations in the bootstrap mode
1469, 539 ms, which can be guaranteed for 94.53% of thevas 34.29 sec and in the T Location-sampling mode was
cases. 43.75 sec.



Mode 9 48;);75 %T};?ﬁltl e Timeout ValueT'
BootStrap 23,040 3,000
BootStrap 22,681 4,000
BootStrap 22,834 5,000

T Location Dist 13,258 3,000

T Location Dist 13,364 4,000

T Location Dist 13,582 5,000
TABLE IV

FINITE TIMEOUT CASE: DELAY QUANTILES

V. CONCLUSION

(6]

(7]

(8]

El

We have studied contract composition for Web serviceggo;
orchestrations. Our study has revealed a number of prob-
lems when relying on conventional contracts based on haHil]
bounds—even if the latter are used in combination with
percentages of contract violation. We have advocated the us

of softcontracts instead. And we have propopeababilistic
contracts as a natural way to implement soft contracts.

[12]

Probabilistic soft contracts have a number of advantages.

First, they compose easily, as shown by our Monte-Carlg®

based dimensioning toolTOrQuUE Second, they provide

opportunity for well sound overbooking, thus avoiding pesH4]

simistic contracts. Third, they allow handling timers a

Andries van Dijk. Contracting Workflows and Protocol feats.
Business Process Management 2003, Wil M. P. van der Aalst and
Arthur H. M. ter Hofstede and Mathias Weske Eds., LNCS 2678,
152-167, 2003.

F. Puhlmann, M. Weske: Using the Pi-Calculus for Formia
Workflow Patterns. In W.M.P. van der Aalst et al. (Eds.): BPODZ2,
volume 3649 of LNCS, Nancy, France, Springer-Verlag (20053-
168.

C. Ouyang, E. Verbeek, W.M.P van der Aalst and S. Breufetrmal
Semantics and Analysis of Control Flow in WS-BPEL. BPM Cente
Report BPM-05-15, BPMcenter.org, 2005.

W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. M&usG.
Schimm, and A.J.M.M. Weijters. Workflow Mining: A Survey of
Issues and ApproacheBata and Knowledge Engineeringy(2):237-
267, 2003.

J. Arias-Fisteus, L. Sanchez Fernandez, and C. Del¢doos. Apply-
ing model checking to BPEL4WS business collaborations. 2805:
826-830.

V. Firiou, J-Y. Le Boudec, D. Towsley, and Z-L. Zhang. édries
and models for Internet Quality of Serviceroc. of the IEEE90(9),
1565-1591, 2002.

Keller A., Ludwig H., The WSLA Framework: Specifying driMoni-
toring Service Level Agreements for Web Servicisurnal of Network
and Systems Managemehbl. 11, No 1, Plenum Publishing, pp. 57-
81.

] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Dafon. Web

Services Choreography Description Language — WS-CDL jorers 0.
http://www.w3.0rg/2002/ws/chor/edcopies/cdl/cdl.htm
METEOR-S: Semantic  Web Services and
http://swp.semanticweb.org/

Processes

15] R. Aggarwal, K. Verma, J. Miller and W. Milnor. ConstrdiDriven

part of the orchestration, a frequent and desirable pmctic

We stress that oulfOrQuE tool can indeed be used for

the dimensioning of realistic orchestrations, as the cést
running Monte-Carlo simulation for design space explorati
is acceptable.

Web Service Composition in METEOR-Broc. of IEEE International
Conference on Services ComputirRCC 2004.

6] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. KochQuality of

[17]

Future work to consider includes probabilistic soft con-
tract monitoring i.e., the detection, by the orchestration{is]
of the violation of a site contract. Again, our approach
opens avenues for this. Ip is the response time distri- 19]
bution promised by a site as part of its contract with the

orchestration, then monitoring for contract violation daa
performed as follows. Lep be the empirical distribution of

the considered site, as measured on-line by the orchestrati

[20]

Then, we need to design statistical tests to decide whether[&ll

notp < p holds, where< is thestochastic orderingpetween
distributions [1]: for two random variable¥ andY, X <Y
means that, for every, the probability thatX exceeds:

is less than the probability thaf exceeds the same value.

In [1], statistical procedures are provided to this end.
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