
Probabilistic Ranking of Database Query Results

Abstract
We investigate the problem of ranking answers
to a database query when many tuples are
returned. We adapt and apply principles of
probabilistic models from Information
Retrieval for structured data. Our
proposed solution is domain independent. It
leverages data and workload statistics and
correlations. Our ranking functions can be
further customized for different applications.
We present results of preliminary experiments
which demonstrate the efficiency as well as the
quality of our ranking system.

1. Introduction
Database systems support a simple Boolean query
retrieval model, where a selection query on a SQL
database returns all tuples that satisfy the conditions in the
query. This often leads to the Many-Answers Problem:
when the query is not very selective, too many tuples may
be in the answer. We use the following running example
throughout the paper:

Example: Consider a realtor database consisting of a
single table with attributes such as (TID, Price, City,
Bedrooms, Bathrooms, LivingArea, SchoolDistrict, View,
Pool, Garage, BoatDock …). Each tuple represents a
home for sale in the US.

Consider a potential home buyer searching for homes
in this database. A query with a not very selective

condition such as “City=Seattle and View=Waterfront”
may result in too many tuples in the answer, since there
are many homes with waterfront views in Seattle.

The Many-Answers Problem has been investigated
outside the database area, especially in Information
Retrieval (IR), where many documents often satisfy a
given keyword-based query. Approaches to overcome this
problem range from query reformulation techniques (e.g.,
the user is prompted to refine the query to make it more
selective), to automatic ranking of the query results by
their degree of “relevance” to the query (though the user
may not have explicitly specified how) and returning only
the top-K subset.

It is evident that automated ranking can have
compelling applications in the database context. For
instance, in the earlier example of a homebuyer searching
for homes in Seattle with waterfront views, it may be
preferable to first return homes that have other desirable
attributes, such as good school districts, boat docks, etc.
In general, customers browsing product catalogs will find
such functionality attractive.

In this paper we propose an automated ranking
approach for the Many-Answers Problem for database
queries. Our solution is principled, comprehensive, and
efficient. We summarize our contributions below.

Any ranking function for the Many-Answers Problem
has to look beyond the attributes specified in the query,
because all answer tuples satisfy the specified conditions1.
However, investigating unspecified attributes is
particularly tricky since we need to determine what the
user’s preferences for these unspecified attributes are. In
this paper we propose that the ranking function of a tuple
depends on two factors: (a) a global score which captures
the global importance of unspecified attribute values, and

1 In the case of document retrieval, ranking functions are often based on
the frequency of occurrence of query values in documents (term
frequency, or TF). However, in the database context, especially in the
case of categorical data, TF is irrelevant as tuples either contain or do
not contain a query value. Hence ranking functions need to also consider
values of unspecified attributes.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

Surajit Chaudhuri Gautam Das

Microsoft Research
One Microsoft Way

Redmond, WA 98053
USA

{surajitc, gautamd}@microsoft.com

Vagelis Hristidis

School of Comp. Sci.
Florida Intl. University

Miami, FL 33199
USA

vagelis@cs.fiu.edu

Gerhard Weikum

MPI Informatik
Stuhlsatzenhausweg 85
D-66123 Saarbruecken

Germany
weikum@mpi-sb.mpg.de

888

(b) a conditional score which captures the strengths of
dependencies (or correlations) between specified and
unspecified attribute values. For example, for the query
“City = Seattle and View = Waterfront”, a home that is
also located in a “SchoolDistrict = Excellent” gets high
rank because good school districts are globally desirable.
A home with also “BoatDock = Yes” gets high rank
because people desiring a waterfront are likely to want a
boat dock. While these scores may be estimated by the
help of domain expertise or through user feedback, we
propose an automatic estimation of these scores via
workload as well as data analysis. For example, past
workload may reveal that a large fraction of users seeking
homes with a waterfront view have also requested for
boat docks.

The next challenge is how do we translate these basic
intuitions into principled and quantitatively describable
ranking functions? To achieve this, we develop ranking
functions that are based on Probabilistic Information
Retrieval (PIR) ranking models. We chose PIR models
because we could extend them to model data
dependencies and correlations (the critical ingredients of
our approach) in a more principled manner than if we had
worked with alternate IR ranking models such as the
Vector-Space model. We note that correlations are often
ignored in IR because they are very difficult to capture in
the very high-dimensional and sparsely populated feature
spaces of text data, whereas there are often strong
correlations between attribute values in relational data
(with functional dependencies being extreme cases),
which is a much lower-dimensional, more explicitly
structured and densely populated space that our ranking
functions can effectively work on.

The architecture of our ranking has a pre-processing
component that collects database as well as workload
statistics to determine the appropriate ranking function.
The extracted ranking function is materialized in an
intermediate knowledge representation layer, to be used
later by a query processing component for ranking the
results of queries. The ranking functions are encoded in
the intermediate layer via intuitive, easy-to-understand
“atomic” numerical quantities that describe (a) the global
importance of a data value in the ranking process, and (b)
the strengths of correlations between pairs of values (e.g.,
“if a user requests tuples containing value y of attribute Y,
how likely is she to be also interested in value x of
attribute X?”). Although our ranking approach derives
these quantities automatically, our architecture allows
users and/or domain experts to tune these quantities
further, thereby customizing the ranking functions for
different applications.

We report on a comprehensive set of experimental
results. We first demonstrate through user studies on real
datasets that our rankings are superior in quality to
previous efforts on this problem. We also demonstrate the
efficiency of our ranking system. Our implementation is
especially tricky because our ranking functions are

relatively complex, involving dependencies/correlations
between data values. We use novel pre-computation
techniques which reduce this complex problem to a
problem efficiently solvable using Top-K algorithms.

The rest of this paper is organized as follows. In
Section 2 we discuss related work. In Section 3 we define
the problem and outline the architecture of our solution.
In Section 4 we discuss our approach to ranking based on
probabilistic models from information retrieval. In
Section 5 we describe an efficient implementation of our
ranking system. In Section 6 we discuss the results of our
experiments, and we conclude in Section 7.

2. Related Work
Extracting ranking functions has been extensively
investigated in areas outside database research such as
Information Retrieval. The vector space model as well as
probabilistic information retrieval (PIR) models [4, 28,
29] and statistical language models [14] are very
successful in practice. While our approach has been
inspired by PIR models, we have adapted and extended
them in ways unique to our situation, e.g., by leveraging
the structure as well as correlations present in the
structured data and the database workload.

In database research, there has been some work on
ranked retrieval from a database. The early work of [23]
considered vague/imprecise similarity-based querying of
databases. The problem of integrating databases and
information retrieval systems has been attempted in
several works [12, 13, 17, 18]. Information retrieval based
approaches have been extended to XML retrieval (e.g.,
see [8]). The papers [11, 26, 27, 32] employ relevance-
feedback techniques for learning similarity in multimedia
and relational databases. Keyword-query based retrieval
systems over databases have been proposed in [1, 5, 20].
In [21, 24] the authors propose SQL extensions in which
users can specify ranking functions via soft constraints in
the form of preferences. The distinguishing aspect of our
work from the above is that we espouse automatic
extraction of PIR-based ranking functions through data
and workload statistics.

The work most closely related to our paper is [2]
which briefly considered the Many-Answers Problem
(although its main focus was on the Empty-Answers
Problem, which occurs when a query is too selective,
resulting in an empty answer set). It too proposed
automatic ranking methods that rely on workload as well
as data analysis. In contrast, however, the current paper
has the following novel strengths: (a) we use more
principled probabilistic PIR techniques rather than ad-hoc
techniques “loosely based” on the vector-space model,
and (b) we take into account dependencies and
correlations between data values, whereas [2] only
proposed a form of global score for ranking.

Ranking is also an important component in
collaborative filtering research [7]. These methods require

889

training data using queries as well as their ranked results.
In contrast, we require workloads containing queries only.

A major concern of this paper is the query processing
techniques for supporting ranking. Several techniques
have been previously developed in database research for
the Top-K problem [8, 9, 15, 16, 31]. We adopt the
Threshold Algorithm of [16, 19, 25] for our purposes, and
show how novel pre-computation techniques can be used
to produce a very efficient implementation of the Many-
Answers Problem. In contrast, an efficient
implementation for the Many-Answers Problem was left
open in [2].

3. Problem Definition and Architecture
In this section, we formally define the Many-Answers
Problem in ranking database query results, and also
outline a general architecture of our solution.

3.1 Problem Definition

We start by defining the simplest problem instance.
Consider a database table D with n tuples {t1, …, tn} over
a set of m categorical attributes A = {A1, …, Am}.
Consider a “SELECT * FROM D” query Q with a
conjunctive selection condition of the form “WHERE
X1=x1 AND … AND Xs=xs”, where each Xi is an attribute
from A and xi is a value in its domain. The set of attributes
X ={X1, …, Xs}⊆ A is known as the set of attributes
specified by the query, while the set Y = A – X is known
as the set of unspecified attributes. Let S ⊆ {t1, …, tn} be
the answer set of Q. The Many-Answers Problem occurs
when the query is not too selective, resulting in a large S.

The above scenario only represents the simplest
problem instance. For example, the type of queries
described above are fairly restrictive; we refer to them as
point queries because they specify single-valued equality
conditions on each of the specified attributes. In a more
general setting, queries may contain range/IN conditions,
and/or Boolean operators other than conjunctions.
Likewise, databases may be multi-tabled, may contain a
mix of categorical and numeric data, as well as missing or
NULL values. While our techniques extend to all these
generalizations, in the interest of clarity (and due to lack
of space), the main focus of this paper is on ranking the
results of conjunctive point queries on a single categorical
table (without NULL values).

3.2 General Architecture of our Approach

Figure 1 shows the architecture of our proposed system
for enabling ranking of database query results. As
mentioned in the introduction, the main components are
the preprocessing component, an intermediate knowledge
representation layer in which the ranking functions are
encoded and materialized, and a query processing
component. The modular and generic nature of our

system allows for easy customization of the ranking
functions for different applications.

In the next section we discuss PIR-based ranking

functions for structured data.

4. Ranking Functions: Adaptation of PIR
Models for Structured Data

In this section we discuss PIR-based ranking functions,
and then show how they can be adapted for structured
data. We discuss the semantics of the atomic building
blocks that are used to encode these ranking functions in
the intermediate layer. We also show how these atomic
numerical quantities can be estimated from a variety of
knowledge sources, such as data and workload statistics,
as well as domain knowledge.

4.1 Review of Probabilistic Information Retrieval

Much of the material of this subsection can be found in
textbooks on Information Retrieval, such as [4] (see also
[28, 29]). We will need the following basic formulas from
probability theory:

Bayes’ Rule:

Product Rule:

Consider a document collection D. For a (fixed) query Q,
let R represent the set of relevant documents, and R =D –
R be the set of irrelevant documents. In order to rank any
document t in D, we need to find the probability of the
relevance of t for the query given the text features of t
(e.g., the word/term frequencies in t), i.e., p(R|t). More
formally, in probabilistic information retrieval, documents

)(
)()|(

)|(
bp

apabp
bap =

),|()|()|,(cabpcapcbap =

Query Processing

Workload

Figure 1: Architecture of Ranking System

Data

Extract
Ranking
Function

Top-K
Algorithm

Top-K
Tuples

Pre-Processing

Intermediate
Knowledge

Representation
Layer

Customize
Ranking
Function
(optional)

Submit
Ranking
Query

890

are ranked by decreasing order of their odds of relevance,
defined as the following score:

The main issue is, how are these probabilities computed,
given that R and R are unknown at query time? The usual
techniques in IR are to make some simplifying
assumptions, such as estimating R through user feedback,
approximating R as D (since R is usually small compared
to D), and assuming some form of independence between
query terms (e.g., the Binary Independence Model).

In the next subsection we show how we adapt PIR
models for structured databases, in particular for
conjunctive queries over a single categorical table. Our
approach is more powerful than the Binary Independence
Model as we also leverage data dependencies.

4.2 Adaptation of PIR Models for Structured Data

In our adaptation of PIR models for structured databases,
each tuple in a single database table D is effectively
treated as a “document”. For a (fixed) query Q, our
objective is to derive Score(t) for any tuple t, and use this
score to rank the tuples. Since we focus on the Many-
Answers problem, we only need to concern ourselves
with tuples that satisfy the query conditions. Recall the
notation from Section 3.1, where X is the set of attributes
specified in the query, and Y is the remaining set of
unspecified attributes. We denote any tuple t as
partitioned into two parts, t(X) and t(Y), where t(X) is the
subset of values corresponding to the attributes in X, and
t(Y) is the remaining subset of values corresponding to the
attributes in Y. Often, when the tuple t is clear from the
context, we overload notation and simply write t as
consisting of two parts, X and Y (in this context, X and Y
are thus sets of values rather than sets of attributes).

Replacing t with X and Y (and R as D as mentioned in
Section 4.1 is commonly done in IR), we get

Since for the Many-Answers problem we are only
interested in ranking tuples that satisfy the query
conditions, and all such tuples have the same X values, we
can treat any quantity not involving Y as a constant. We
thus get

),|(
),|(

)(
DXYp
RXYp

tScore ∝

Furthermore, the relevant set R for the Many-Answers
problem is a subset of all tuples that satisfy the query
conditions. One way to understand this is to imagine that
R is the “ideal” set of tuples the user had in mind, but who
only managed to partially specify it when preparing the
query. Consequently the numerator),|(RXYp may be
replaced by)|(RYp . We thus get

We are not quite finished with our derivation of Score(t)
yet, but let us illustrate Equation 1 with an example.
Consider a query with condition “City=Kirkland and
Price=High” (Kirkland is an upper class suburb of Seattle
close to a lake). Such buyers may also ideally desire
homes with waterfront or greenbelt views, but homes with
views looking out into streets may be somewhat less
desirable. Thus, p(View=Greenbelt | R) and
p(View=Waterfront | R) may both be high, but
p(View=Street | R) may be relatively low. Furthermore, if
in general there is an abundance of selected homes with
greenbelt views as compared to waterfront views, (i.e., the
denominator p(View=Greenbelt | City=Kirkland,
Price=High, D) is larger than p(View=Waterfront |
City=Kirkland, Price=High, D)), our final rankings would
be homes with waterfront views, followed by homes with
greenbelt views, followed by homes with street views.
Note that for simplicity, we have ignored the remaining
unspecified attributes in this example.

4.2.1 Limited Independence Assumptions

One possible way of continuing the derivation of Score(t)
would be to make independence assumptions between
values of different attributes, like in the Binary
Independence Model in IR. However, while this is
reasonable with text data (because estimating model
parameters like the conditional probabilities p(Y | X) poses
major accuracy and efficiency problems with sparse and
high-dimensional data such as text), we have earlier
argued that with structured data, dependencies between
data values can be better captured and would more
significantly impact the result ranking. An extreme
alternative to making sweeping independence
assumptions would be to construct comprehensive
dependency models of the data (e.g. probabilistic
graphical models such as Markov Random Fields or
Bayesian Networks [30]), and derive ranking functions
based on these models. However, our preliminary
investigations suggested that such approaches,
particularly for large datasets, have unacceptable pre-
processing and query processing costs.

Consequently, in this paper we espouse an approach
that strikes a middle ground. We only make limited forms

(|) (, |)
()

(|) (, |)
(|) (| ,)
(|) (| ,)

p t R p X Y R
Score t

p t D p X Y D
p X R p Y X R
p X D p Y X D

∝ =

∝

)|(
)|(

)(
)()|(

)(
)()|(

)|(
)|(

)(
Rtp
Rtp

tp
RpRtp

tp
RpRtp

tRp
tRp

tScore ∝==

),|(
)|(

)(
DXYp

RYp
tScore ∝ (1)

891

of independence assumptions – given a query Q and a
tuple t, the X (and Y) values within themselves are
assumed to be independent, though dependencies between
the X and Y values are allowed. More precisely, we
assume limited conditional independence, i.e.,)|(CXp
(resp.)|(CYp) may be written as ∏

∈Xx

Cxp)|((resp.

∏
∈Yy

Cyp)|() where C is any condition that only involves

Y values (resp. X values), R, or D.
While this assumption is patently false in many cases

(for instance, in the example in Section 4.2 this assumes
that there is no dependency between homes in Kirkland
and high-priced homes), nevertheless the remaining
dependencies that we do leverage, i.e., between the
specified and unspecified values, prove to be significant
for ranking. Moreover, as we shall show in Section 5, the
resulting simplified functional form of the ranking
function enables the efficient adaptation of known Top-K
algorithms through novel data structuring techniques.

We continue the derivation of the score of a tuple
under the above assumptions:

This simplifies to

Although Equation 2 represents a simplification over
Equation 1, it is still not directly computable, as R is
unknown. We discuss how to estimate the quantities

)|(Ryp next.

4.2.2 Workload-Based Estimation of p(y|R)

Estimating the quantities)|(Ryp requires knowledge of
R, which is unknown at query time. The usual technique
for estimating R in IR is through user feedback (relevance
feedback) at query time, or through other forms of

training. In our case, we provide an automated approach
that leverages available workload information for
estimating)|(Ryp .

We assume that we have at our disposal a workload
W, i.e., a collection of ranking queries that have been
executed on our system in the past. We first provide some
intuition of how we intend to use the workload in ranking.
Consider the example in Section 4.2 where a user has
requested for high-priced homes in Kirkland. The
workload may perhaps reveal that, in the past a large
fraction of users that had requested for high-priced homes
in Kirkland had also requested for waterfront views. Thus
for such users, it is desirable to rank homes with
waterfront views over homes without such views.

We note that this dependency information may not be
derivable from the data alone, as a majority of such homes
may not have waterfront views (i.e., data dependencies do
not indicate user preferences as workload dependencies
do). Of course, the other option is for a domain expert (or
even the user) to provide this information (and in fact, as
we shall discuss later, our ranking architecture is generic
enough to allow further customization by human experts).

More generally, the workload W is represented as a set
of “tuples”, where each tuple represents a query and is a
vector containing the corresponding values of the
specified attributes. Consider an incoming query Q which
specifies a set X of attribute values. We approximate R as
all query “tuples” in W that also request for X. This
approximation is novel to this paper, i.e., that all
properties of the set of relevant tuples R can be obtained
by only examining the subset of the workload that
contains queries that also request for X. So for a query
such as “City=Kirkland and Price=High”, we look at the
workload in determining what such users have also
requested for often in the past.

We can thus write, for query Q, with specified
attribute set X,)|(Ryp as),|(WXyp . Making this
substitution in Equation 2, we get

∏∏∏
∏

∏∏∏

∈ ∈∈

∈

∈ ∈∈

∝

=

Yy XxYy

Xx

Yy XxYy

DyxpDyp

WyxpWyp

DyxpDyp
ypyWXpyWp

),|(
1

)|(

),|()|(

),|(
1

)|(
)(),|()|(

∏ ∏∏

∏ ∏∏

∏

∏

∏∏

∈ ∈∈

∈ ∈∈

∈

∈

∈∈

∝

=

=

∝

=∝

Yy XxYy

Yy XxYy

Yy

Yy

YyYy

Dyxp
Dp

ypyDp
Ryp

DyxpypyDp
Ryp

ypDyXpyDp
Ryp

ypyDXp
Ryp

DXp
ypyDXp

Ryp
DXyp

Ryp
tScore

),|(
1

)(
)()|(

)|(

),|(
1

)()|(
)|(

)(),|()|(
)|(

)()|,(
)|(

),(
)()|,(

)|(
),|(

)|(
)(

∏ ∏∏

∏ ∏∏

∏ ∏∏

∈ ∈∈

∈ ∈∈

∈ ∈∈

∝

=

∝

Yy XxYy

Yy XxYy

Yy XxYy

DyxpDyp
ypyWXp

DyxpDyp
WXp

ypyWXp

DyxpDyp
WXyp

tScore

),|(
1

)|(
)()|,(

),|(
1

)|(
),(

)()|,(

),|(
1

)|(
),|(

)(

∏∏∏
∈ ∈∈

∝
Yy XxYy DyxpDyp

Ryp
tScore

),|(
1

)|(
)|(

)((2)

892

 Query Processing Pre-Processing

Data

Figure 2: Detailed Architecture of Ranking System

Workload

Global and
Conditional Lists

Tables

Atomic Probabilities
Module

Index Module

Scan Algorithm

List Merge Algorithm

Top-K
Tuples Atomic Probabilities

Tables
(Intermediate Layer)

Customize
Ranking
Function
(optional)

Submit
Ranking
Query

This can be finally rewritten as:

Equation 3 is the final ranking formula that we use in the
rest of this paper. Note that unlike Equation 2, we have
effectively eliminated R from the formula, and are only
left with having to compute quantities such as

)|(Wyp ,),|(Wyxp ,)|(Dyp , and),|(Dyxp . In
fact, these are the “atomic” numerical quantities referred
to at various places earlier in the paper.

Also note that the score in Equation 3 is composed of
two large factors. The first factor may be considered as
the global part of the score, while the second factor may
be considered as the conditional part of the score. Thus, in
the example in Section 4.2, the first part measures the
global importance of unspecified values such as
waterfront, greenbelt and street views, while the second
part measures the dependencies between these values and
specified values “City=Kirkland” and “Price=High”.

4.3 Computing the Atomic Probabilities

Our strategy is to pre-compute each of the atomic
quantities for all distinct values in the database. The
quantities)|(Wyp and)|(Dyp are simply the relative
frequencies of each distinct value y in the workload and
database, respectively (the latter is similar to IDF, or the
inverse document frequency concept in IR), while the
quantities),|(Wyxp and),|(Dyxp may be
estimated by computing the confidences of pair-wise
association rules [3] in the workload and database,
respectively. Once this pre-computation has been
completed, we store these quantities as auxiliary tables in

the intermediate knowledge representation layer. At
query time, the necessary quantities may be retrieved and
appropriately composed for performing the rankings.
Further details of the implementation are discussed in
Section 5.

While the above is an automated approach based on
workload analysis, it is possible that sometimes the
workload may be insufficient and/or unreliable. In such
instances, it may be necessary for domain experts to be
able to tune the ranking function to make it more suitable
for the application at hand.

5. Implementation
In this section we discuss the implementation of our
database ranking system. Figure 2 shows the detailed
architecture, including the pre-processing and query
processing components as well as their sub-modules. We
discuss several novel data structures and algorithms that
were necessary for good performance of our system.

5.1 Pre-Processing

This component is divided into several modules. First, the
Atomic Probabilities Module computes the quantities

)|(Wyp ,)|(Dyp ,),|(Wyxp , and),|(Dyxp for
all distinct values x and y. These quantities are computed
by scanning the workload and data, respectively (while
the latter two quantities can be computed by running a
general association rule mining algorithm such as [3] on
the workload and data, we instead chose to directly
compute all pair-wise co-occurrence frequencies by a
single scan of the workload and data respectively). The
observed probabilities are then smoothened using the
Bayesian m-estimate method [10].

These atomic probabilities are stored as database
tables in the intermediate knowledge representation layer,

∏∏∏
∈ ∈∈

∝
Yy XxYy Dyxp

Wyxp
Dyp
Wyp

tScore
),|(
),|(

)|(
)|(

)((3)

893

with appropriate indexes to enable easy retrieval. In
particular,)|(Wyp and)|(Dyp are respectively stored
in two tables, each with columns {AttName, AttVal,
Prob} and with a composite B+ tree index on (AttName,
AttVal), while),|(Wyxp and),|(Dyxp respectively
are stored in two tables, each with columns
{AttNameLeft, AttValLeft, AttNameRight, AttValRight,
Prob} and with a composite B+ tree index on
(AttNameLeft, AttValLeft, AttNameRight, AttValRight).
These atomic quantities can be further customized by
human experts if necessary.

This intermediate layer now contains enough
information for computing the ranking function, and a
naïve query processing algorithm (henceforth referred to
as the Scan algorithm) can indeed be designed, which, for
any query, first selects the tuples that satisfy the query
condition, then scans and computes the score for each
such tuple using the information in this intermediate
layer, and finally returns the Top-K tuples. However, such
an approach can be inefficient for the Many-Answers
problem, since the number of tuples satisfying the query
condition can be very large. At the other extreme, we
could pre-compute the Top-K tuples for all possible
queries (i.e., for all possible sets of values X), and at
query time, simply return the appropriate result set. Of
course, due to the combinatorial explosion, this is
infeasible in practice. We thus pose the question: how can
we appropriately trade off between pre-processing and
query processing, i.e., what additional yet reasonable pre-
computations are possible that can enable faster query-
processing algorithms than Scan?

The high-level intuition behind our approach to the
above problem is as follows. Instead of pre-computing the
Top-K tuples for all possible queries, we pre-compute
ranked lists of the tuples for all possible “atomic” queries
- each distinct value x in the table defines an atomic query
Qx that specifies the single value {x}. Then at query time,
given an actual query that specifies a set of values X, we
“merge” the ranked lists corresponding to each x in X to
compute the final Top-K tuples.

Of course, for this high-level idea to work, the main
challenge is to be able to perform the merging without
having to scan any of the ranked lists in its entirety. One
idea would be to try and adapt well-known Top-K
algorithms such as the Threshold Algorithm (TA) and its
derivatives [9, 15, 16, 19, 25] for this problem. However,
it is not immediately obvious how a feasible adaptation
can be easily accomplished. For example, it is especially
critical to keep the number of sorted streams (an access
mechanism required by TA) small, as it is well-known
that TA’s performance rapidly deteriorates as this number
increases. Upon examination of our ranking function in
Equation 3 (which involves all attribute values of the
tuple, and not just the specified values), the number of
sorted streams in any naïve adaptation of TA would

depend on the total number of attributes in the database,
which would cause major performance problems.

In what follows, we show how to pre-compute data
structures that indeed enable us to efficiently adapt TA for
our problem. At query time we do a TA-like merging of
several ranked lists (i.e. sorted streams). However, the
required number of sorted streams depends only on s and
not on m (s is the number of specified attribute values in
the query while m is the total number of attributes in the
database, see Section 3.1). We emphasize that such a
merge operation is only made possible due to the specific
functional form of our ranking function resulting from our
limited independence assumptions as discussed in Section
4.2.1. It is unlikely that TA can be adapted, at least in a
feasible manner, for ranking functions that rely on more
comprehensive dependency models of the data.

We next give the details of these data structures. They
are pre-computed by the Index Module of the pre-
processing component. This module (see Figure 3 for the
algorithm) takes as inputs the association rules and the
database, and for every distinct value x, creates two lists
Cx and Gx, each containing the tuple-ids of all data tuples
that contain x, ordered in specific ways. These two lists
are defined as follows:
1. Conditional List Cx: This list consists of pairs of the

form <TID, CondScore>, ordered by descending
CondScore, where TID is the tuple-id of a tuple t that
contains x and

∏
∈

=
tz Dzxp

Wzxp
CondScore

),|(
),|(

where z ranges over all attribute values of t.
2. Global List Gx: This list consists of pairs of the form

<TID, GlobScore>, ordered by descending
GlobScore, where TID is the tuple-id of a tuple t that
contains x and

∏
∈

=
tz Dzp

Wzp
GlobScore

)|(
)|(

These lists enable efficient computation of the score of a
tuple t for any query as follows: given query Q specifying
conditions for a set of attribute values, say X = {x1,..,xs},
at query time we retrieve and multiply the scores of t in
the lists Cx1,…,Cxs and in one of Gx1,…,Gxs. This requires
only s+1multiplications and results in a score2 that is
proportional to the actual score. Clearly this is more
efficient than computing the score “from scratch” by
retrieving the relevant atomic probabilities from the
intermediate layer and composing them appropriately.

We need to enable two kinds of access operations
efficiently on these lists. First, given a value x, it should
be possible to perform a GetNextTID operation on lists Cx
and Gx in constant time, i.e., the tuple-ids in the lists

2 This score is proportional, but not equal, to the actual score because it
contains extra factors of the form),|(),|(DzxpWzxp where

z∈X. However, these extra factors are common to all selected tuples,
hence the rank order is unchanged.

894

should be efficiently retrievable one-by-one in order of
decreasing score. This corresponds to the sorted stream
access of TA. Second, it should be possible to perform
random access on the lists, i.e., given a TID, the
corresponding score (CondScore or GlobScore) should be
retrievable in constant time. To enable these operations
efficiently, we materialize these lists as database tables –
all the conditional lists are maintained in one table called
CondList (with columns {AttName, AttVal, TID,
CondScore}) while all the global lists are maintained in
another table called GlobList (with columns {AttName,
AttVal, TID, GlobScore}). The table have composite B+
tree indices on (AttName, AttVal, CondScore) and
(AttName, AttVal, GlobScore) respectively. This enables
efficient performance of both access operations. Further
details of how these data structures and their access
methods are used in query processing are discussed in
Section 5.2.

5.2 Query Procesing Component

In this subsection we describe the query processing
component. The naïve Scan algorithm has already been
described in Section 5.1, so our focus here is on the
alternate List Merge algorithm (see Figure 4). This is an
adaptation of TA, whose efficiency crucially depends on
the data structures pre-computed by the Index Module.

The List Merge algorithm operates as follows. Given a
query Q specifying conditions for a set X = {x1,..,xs}of
attributes, we execute TA on the following s+1 lists:
Cx1,…,Cxs, and Gxb, where Gxb is the shortest list among
Gx1,…,Gxs (in principle, any list from Gx1,…,Gxs would
do, but the shortest list is likely to be more efficient).
During each iteration, the TID with the next largest score
is retrieved from each list using sorted access. Its score in
every other list is retrieved via random access, and all
these retrieved scores are multiplied together, resulting in
the final score of the tuple (which, as mentioned in

Section 5.1, is proportional to the actual score derived in
Equation 3). The termination criterion guarantees that no
more GetNextTID operations will be needed on any of the
lists. This is accomplished by maintaining an array T
which contains the last scores read from all the lists at any
point in time by GetNextTID operations. The product of
the scores in T represents the score of the very best tuple
we can hope to find in the data that is yet to be seen. If
this value is no more than the tuple in the Top-K buffer
with the smallest score, the algorithm successfully
terminates.

5.2.1 Limited Available Space

 So far we have assumed that there is enough space
available to build the conditional and global lists. A
simple analysis indicates that the space consumed by
these lists is O(mn) bytes (m is the number of attributes
and n the number of tuples of the database table).
However, there may be applications where space is an
expensive resource (e.g., when lists should preferably be
held in memory and compete for that space or even for
space in the processor cache hierarchy). We show that in
such cases, we can store only a subset of the lists at pre-
processing time, at the expense of an increase in the query
processing time.

Determining which lists to retain/omit at pre-
processing time may be accomplished by analyzing the
workload. A simple solution is to store the conditional
lists Cx and the corresponding global lists Gx only for
those attribute values x that occur most frequently in the
workload. At query time, since the lists of some of the
specified attributes may be missing, the intuitive idea is to
probe the intermediate knowledge representation layer
(where the “relatively raw” data is maintained, i.e., the

List Merge Algorithm
Input: Query, data table, global and conditional lists
Output: Top-K tuples

Let Gxb be the shortest list among Gx1,…,Gxs
Let B ={} be a buffer that can hold K tuples ordered by score
Let T be an array of size s+1 storing the last score from each list
Initialize B to empty
REPEAT
 FOR EACH list L in Cx1,…,Cxs, and Gxb DO

TID = GetNextTID(L)
Update T with score of TID in L
Get score of TID from other lists via random access
IF all lists contain TID THEN
 Compute Score(TID) by multiplying retrieved scores

 Insert <TID, Score(TID)> in the correct position in B
 END IF

 END FOR

UNTIL ∏
+

=

≥
1

1

][].[
s

i

iTScoreKB

RETURN B

Index Module
Input: Data table, atomic probabilities tables
Output: Conditional and global lists

FOR EACH distinct value x of database DO
 Cx = Gx = {}
 FOR EACH tuple t containing x with tuple-id = TID DO

∏
∈

=
tz Dzxp

Wzxp
CondScore

),|(
),|(

Add <TID, CondScore> to Cx

∏
∈

=
tz Dzp

Wzp
GlobScore

)|(
)|(

Add <TID, GlobScore> to Gx
 END FOR
 Sort Cx and Gx by decreasing CondScore and GlobScore resp.
END FOR

Figure 3: The Index Module

Figure 4: The List Merge Algorithm

895

atomic probabilities) and directly compute the missing
information. More specifically, we use a modification of
TA described in [9], where not all sources have sorted
stream access.

6. Experiments
In this section we report on the results of an experimental
evaluation of our ranking method as well as some of the
competitors. We evaluated both the quality of the
rankings obtained, as well as the performance of the
various approaches. We mention at the outset that
preparing an experimental setup for testing ranking
quality was extremely challenging, as unlike IR, there are
no standard benchmarks available, and we had to conduct
user studies to evaluate the rankings produced by the
various algorithms.

For our evaluation, we use real datasets from two
different domains. The first domain was the MSN
HomeAdvisor database (http://houseandhome.msn.com/),
from which we prepared a table of homes for sale in the
US, with attributes such as Price, Year, City, Bedrooms,
Bathrooms, Sqft, Garage, etc. (we converted numerical
attributes into categorical ones by discretizing them into
meaningful ranges). The original database table also had a
text column called Remarks, which contained descriptive
information about the home. From this column, we
extracted additional Boolean attributes such as Fireplace,
View, Pool, etc. To evaluate the role of the size of the
database, we also performed experiments on a subset of
the HomeAdvisor database, consisting only of homes sold
in the Seattle area.

The second domain was the Internet Movie Database
(http://www.imdb.com), from which we prepared a table
of movies, with attributes such as Title, Year, Genre,
Director, FirstActor, SecondActor, Certificate, Sound,
Color, etc. (we discretized numerical attributes such as
Year into meaningful ranges). We first selected a set of
movies by the 30 most prolific actors for our experiments.
From this we removed the 250 most well-known movies,
as we did not wish our users to be biased with information
they already might know about these movies, especially
information that is not captured by the attributes that we
had selected for our experiments.

The sizes of the various (single-table) datasets used in
our experiments are shown in Figure 5. The quality
experiments were conducted on the Seattle Homes and
Movies tables, while the performance experiments were
conducted on the Seattle Homes and the US Homes tables
– we omitted performance experiments on the Movies
table on account of its small size. We used Microsoft SQL
Server 2000 RDBMS on a P4 2.8-GHz PC with 1 GB of
RAM for our experiments. We implemented all
algorithms in C#, and connected to the RDBMS through
DAO. We created single-attribute indices on all table
attributes, to be used during the selection phase of the

Scan algorithm. Note that these indices are not used by
the List Merge algorithm.

Table NumTuples Database Size (MB)
Seattle Homes 17463 1.936
US Homes 1380762 140.432
Movies 1446 Less than 1

Figure 5: Sizes of Datasets

6.1 Quality Experiments

We evaluated the quality of two different ranking
methods: (a) our ranking method, henceforth referred to
as Conditional (b) the ranking method described in [2],
henceforth known as Global. This evaluation was
accomplished using surveys involving 14 employees of
Microsoft Research.

For the Seattle Homes table, we first created several
different profiles of home buyers, e.g., young dual-income
couples, singles, middle-class family who like to live in
the suburbs, rich retirees, etc. Then, we collected a
workload from our users by requesting them to behave
like these home buyers and post conjunctive queries
against the database - e.g., a middle-class homebuyer with
children looking for a suburban home would post a typical
query such as “Bedrooms=4 and Price=Moderate and
SchoolDistrict=Excellent”. We collected several hundred
queries by this process, each typically specifying 2-4
attributes. We then trained our ranking algorithm on this
workload.

We prepared a similar experimental setup for the
Movies table. We first created several different profiles of
moviegoers, e.g., teenage males wishing to see action
thrillers, people interested in comedies from the 80s, etc.
We disallowed users from specifying the movie title in the
queries, as the title is a key of the table. As with homes,
here too we collected several hundred workload queries,
and trained our ranking algorithm on this workload.

We first describe a few sample results informally, and
then present a more formal evaluation of our rankings.

6.1.1 Examples of Ranking Results

For the Seattle Homes dataset, both Conditional as well as
Global produced rankings that were intuitive and
reasonable. There were interesting examples where
Conditional produced rankings that were superior to
Global. For example, for a query with condition
“City=Seattle and Bedroom=1”, Conditional ranked
condos with garages the highest. Intuitively, this is
because private parking in downtown is usually very
scarce, and condos with garages are highly sought after.
However, Global was unable to recognize the importance
of garages for this class of homebuyers, because most
users (i.e., over the entire workload) do not explicitly
request for garages since most homes have garages. As

896

another example, for a query such as “Bedrooms=4 and
City=Kirkland and Price=Expensive”, Conditional ranked
homes with waterfront views the highest, whereas Global
ranked homes in good school districts the highest. This is
as expected, because for very rich homebuyers a
waterfront view is perhaps a more desirable feature than a
good school district, even though the latter may be
globally more popular across all homebuyers.

Likewise, for the Movies dataset, Conditional often
produced rankings that were superior to Global. For
example, for a query such as “Year=1980s and
Genre=Thriller”, Conditional ranked movies such as
“Indiana Jones and the Temple of Doom” higher than
“Commando”, because the workload indicated that
Harrison Ford was a better known actor than Arnold
Schwarzenegger during that era, although the latter actor
was globally more popular over the entire workload.

6.1.2 Ranking Evaluation

We now present a more formal evaluation of the ranking
quality produced by the ranking algorithms. We
conducted two surveys; the first compared the rankings
against user rankings using standard precision/recall
metrics, while the second was a simpler survey that asked
users to rate which algorithm’s rankings they preferred.

Average Precision: Since requiring users to rank the
entire database for each query would have been extremely
tedious, we used the following strategy. For each dataset,
we generate 5 test queries. For each test query Qi we
generated a set Hi of 30 tuples likely to contain a good
mix of relevant and irrelevant tuples to the query. We did
this by mixing the Top-10 results of both the Conditional
and Global ranking algorithms, removing ties, and adding
a few randomly selected tuples. Finally, we presented the
queries along with their corresponding Hi’s (with tuples
randomly permuted) to each user in our study. Each user’s
responsibility was to mark 10 tuples in Hi as most relevant
to the query Qi. We then measured how closely the 10
tuples marked as relevant by the user (i.e., the “ground
truth”) matched the 10 tuples returned by each algorithm.

Seattle Homes Movies

COND GLOB COND GLOB
Q1 0.70 0.26 0.48 0.35

Q2 0.76 0.62 0.53 0.43

Q3 0.90 0.54 0.58 0.20

Q4 0.84 0.32 0.45 0.48

Q5 0.44 0.48 0.43 0.40

Figure 6: Average Precision

We used the formal Precision/Recall metrics to
measure this overlap. Precision is the ratio of the number
of retrieved tuples that are relevant, to the total number of

retrieved tuples, while Recall is the fraction of the number
of retrieved tuples that are relevant, to the total number of
relevant tuples (see [4]). In our case, the total number of
relevant tuples is 10, so Precision and Recall are equal.
The average precision of the ranking methods for each
dataset are shown in Figure 6 (the queries are, of course,
different for each dataset). As can be seen, the quality of
Conditional’s ranking was usually superior to Global’s,
more so for the Seattle Homes dataset.

User Preference of Rankings: In this experiment, for the
Seattle Homes as well as the Movies dataset, users were
given the Top-5 results of the two ranking methods for 5
queries (different from the previous survey), and were
asked to choose which rankings they preferred. Figures 7
and 8 show, for each query and each algorithm, the
fraction of users that preferred the rankings of the
algorithm. The results of the above experiments show that
Conditional generally produces rankings of higher quality
compared to Global, especially for the Seattle Homes
dataset. While these experiments indicate that our ranking
approach has promise, we caution that much larger-scale
user studies are necessary to conclusively establish
findings of this nature.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Q1 Q2 Q3 Q4 Q5

Query

Fr
ac

tio
nB

et
te

r

CONDITIONAL GLOBAL

Figure 7: Fraction of Users Preferring Each Algorithm
for Seattle Homes Dataset

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Q1 Q2 Q3 Q4 Q5

Query

Fr
ac

tio
nB

et
te

r

CONDITIONAL GLOBAL

Figure 8: Fraction of Users Preferring Each Algorithm
for Movies Dataset

897

6.2 Performance Experiments

In this subsection we report on experiments that compared
the performance of the various implementations of the
Conditional algorithm: List Merge, its space-saving
variants, and Scan. We do not report on the corresponding
implementations of Global as they had similar
performance. We used the Seattle Homes and US Homes
datasets for these experiments.

Preprocessing Time and Space: Since the preprocessing
performance of the List Merge algorithm is dominated by
the Index Module, we omit reporting results for the
Atomic Probabilities Module. Figure 9 shows the space
and time required to build all the conditional and global
lists. The time and space scale linearly with table size,
which is expected. Notice that the space consumed by the
lists is three times the size of the data table. While this
may seemingly appear excessive, note that a fair
comparison would be against a Scan algorithm that has
B+ tree indices built on all attributes (so that all kinds of
selections can be performed efficiently). In such a case,
the total space consumed by these B+ tree indices would
rival the space consumed by these lists.

Datasets Lists Building Time Lists Size

Seattle Homes 1500 msec 7.8 MB
US Homes 80000 msec 457.6 MB

Figure 9: Time and Space Consumed by Index Module

If space is a critical issue, we can adopt the space
saving variation of the List Merge algorithm as discussed
in Section 5.2.1. We report on this next.

Space Saving Variations: In this experiment we show
how the performance of the algorithms changes when
only a subset of the set of global and conditional lists are
stored. Recall from Section 5.2.1 that we only retain lists
for the values of the frequently occurring attributes in the
workload. For this experiment we consider Top-10
queries with selection conditions that specify two
attributes (queries generated by randomly picking a pair
of attributes and a domain value for each attribute), and
measure their execution times. The compared algorithms
are:

• LM: List Merge with all lists available
• LMM: List Merge where lists for one of the two

specified attributes are missing, halving space
• Scan

Figure 10 shows the execution times of the queries over
the Seattle Homes database as a function of the total
number of tuples that satisfy the selection condition. The
times are averaged over 10 queries.

We first note that LM is extremely fast when
compared to the other algorithms (its times are less than
one second for each run, consequently its graph is almost

along the x-axis). This is to be expected as most of the
computations have been accomplished at pre-processing
time. The performance of Scan degrades when the total
number of selected tuples increases, because the scores of
more tuples need to be calculated at runtime. In contrast,
the performance of LM and LMM actually improves
slightly. This interesting phenomenon occurs because if
more tuples satisfy the selection condition, smaller
prefixes of the lists need to be read and merged before the
stopping condition is reached.

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000

NumSelectedTuples

Ti
m

e
(m

se
c)

LM

LMM

Scan

Figure 10: Execution Times of Different Variations of

List Merge and Scan for Seattle Homes Dataset

Thus, List Merge and its variations are preferable if
the number of tuples satisfying the query condition is
large (which is exactly the situation we are interested in,
i.e., the Many-Answers problem). This conclusion was
reconfirmed when we repeated the experiment with LM
and Scan on the much larger US Homes dataset with
queries satisfying many more tuples (see Figure 11).

NumSelected
Tuples

LM Time
(msec)

Scan Time
(msec)

350 800 6515
2000 700 39234
5000 600 115282

30000 550 566516
80000 500 3806531

Varying Number of Specified Attributes: Figure 12
shows how the query processing performance of the
algorithms varies with the number of attributes specified
in the selection conditions of the queries over the US
Homes database (the results for the other databases are
similar). The times are averaged over 10 Top-10 queries.
Note that the times increase sharply for both algorithms
with the number of specified attributes. The LM algorithm
becomes slower because more lists need to be merged,
which delays the termination condition. The Scan
algorithm becomes slower because the selection time

Figure 11: Execution Times of List Merge and Scan
for US Homes Dataset

898

increases with the number of specified attributes. This
experiment demonstrates the criticality of keeping the
number of sorted streams small in our adaptation of TA.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3

NumSpecifiedAttributes

Ti
m

e
(m

se
c)

LM

Scan

Figure 12: Varying Number of Specified Attributes for
US Homes Dataset

7. Conclusions
We proposed a completely automated approach for the
Many-Answers Problem which leverages data and
workload statistics and correlations. Our ranking
functions are based upon the probabilistic IR models,
judiciously adapted for structured data. We presented
results of preliminary experiments which demonstrate the
efficiency as well as the quality of our ranking system.

Our work brings forth several intriguing open
problems. For example, many relational databases contain
text columns in addition to numeric and categorical
columns. It would be interesting to see whether
correlations between text and non-text data can be
leveraged in a meaningful way for ranking. Finally,
comprehensive quality benchmarks for database ranking
need to be established. This would provide future
researchers with a more unified and systematic basis for
evaluating their retrieval algorithms.

References
[1] S. Agrawal, S. Chaudhuri G. Das. DBXplorer: A System for
Keyword Based Search over Relational Databases. ICDE 2002.
[2] S. Agrawal, S. Chaudhuri, G. Das and A. Gionis. Automated
Ranking of Database Query Results. CIDR, 2003.
[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I.
Verkamo. Fast Discovery of Association Rules. Advances in
Knowledge Discovery and Data Mining, 1995.
[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. ACM Press, 1999.
[5] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti and S.
Sudarshan. Keyword Searching and Browsing in Databases
using BANKS. ICDE 2002.
[6] H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, G.
Weikum (Eds.): Intelligent Search on XML Data: Applications,
Languages, Models, Implementations, and Benchmarks. LNCS
2818 Springer 2003.
[7] J. Breese, D. Heckerman and C. Kadie. Empirical Analysis
of Predictive Algorithms for Collaborative Filtering. 14th
Conference on Uncertainty in Artificial Intelligence, 1998.

[8] N. Bruno, L. Gravano, and S. Chaudhuri.Top-K Selection
Queries over Relational Databases: Mapping Strategies and
Performance Evaluation. ACM TODS, 2002.
[9] N. Bruno, L. Gravano, A. Marian. Evaluating Top-K Queries
over Web-Accessible Databases. ICDE 2002.
10] B. Cestnik. Estimating Probabilities: A Crucial Task in
Machine Learning, European Conf. in AI, 1990.
[11] K. Chakrabarti, K. Porkaew and S. Mehrotra. Efficient
Query Ref. in Multimedia Databases. ICDE 2000.
[12] W. Cohen. Integration of Heterogeneous Databases
Without Common Domains Using Queries Based on Textual
Similarity. SIGMOD, 1998.
[13] W. Cohen. Providing Database-like Access to the Web
Using Queries Based on Textual Similarity. SIGMOD 1998.
[14] W.B. Croft, J. Lafferty. Language Modeling for
Information Retrieval. Kluwer 2003.
[15] R. Fagin. Fuzzy Queries in Multimedia Database Systems.
PODS 1998.
[16] R. Fagin, A. Lotem and M. Naor. Optimal Aggregation
Algorithms for Middleware. PODS 2001.
[17] N. Fuhr. A Probabilistic Framework for Vague Queries and
Imprecise Information in Databases. VLDB 1990.
[18] N. Fuhr. A Probabilistic Relational Model for the
Integration of IR and Databases. ACM SIGIR Conference on
Research and Development in Information Retrieval, 1993.
[19] U. Güntzer, W.-T. Balke, W. Kießling: Optimizing Multi-
Feature Queries for Image Databases. VLDB 2000.
[20] V. Hristidis,Y. Papakonstantinou. DISCOVER: Keyword
Search in Relational Databases. VLDB 2002.
[21] W. Kießling. Foundations of Preferences in Database
Systems. VLDB 2002.
[22] D. Kossmann, F. Ramsak, S. Rost: Shooting Stars in the
Sky: An Online Algorithm for Skyline Queries. VLDB 2002.
[23] A. Motro. VAGUE: A User Interface to Relational
Databases that Permits Vague Queries. TOIS 1988, 187-214.
[24] Z. Nazeri, E. Bloedorn and P. Ostwald. Experiences in
Mining Aviation Safety Data. SIGMOD 2001.
[25] S. Nepal, M. V. Ramakrishna: Query Processing Issues in
Image (Multimedia) Databases. ICDE 1999.
[26] M. Ortega-Binderberger, K. Chakrabarti and S. Mehrotra.
An Approach to Integrating Query Refinement in SQL, EDBT
2002, 15-33.
[27] Y. Rui, T. S. Huang and S. Merhotra. Content-Based Image
Retrieval with Relevance Feedback in MARS. IEEE Conf. on
Image Processing, 1997.
[28] K. Sparck Jones, S. Walker, S. E. Robertson: A
Probabilistic Model of Information Retrieval: Development
and Comparative Experiments - Part 1. Inf. Process. Manage.
36(6): 779-808, 2000.
[29] K. Sparck Jones, S. Walker, S. E. Robertson: A
Probabilistic Model of Information Retrieval: Development and
Comparative Experiments - Part 2. Inf. Process. Manage. 36(6):
809-840, 2000.
[30] J. Whittaker. Graphical Models in Applied Multivariate
Statistics. Wiley, 1990.
[31] L. Wimmers, L. M. Haas , M T. Roth and C. Braendli.
Using Fagin's Algorithm for Merging Ranked Results in
Multimedia Middleware. CoopIS 1999.
[32] L. Wu, C. Faloutsos, K. Sycara and T. Payne. FALCON:
Feedback Adaptive Loop for Content-Based Retrieval. VLDB
2000.

899

