
Probabilistic Ranking of Database Query Results  
 

 

 

 
 
 
 
 
 
 

 
 
 
 

Abstract 
We investigate the problem of ranking answers 
to a database query when many tuples are 
returned. We adapt and apply principles of 
probabilistic models from Information 
Retrieval for structured data. Our 
proposed solution is domain independent. It 
leverages data and workload statistics and 
correlations. Our ranking functions can be 
further customized for different   applications. 
We present results of preliminary experiments 
which demonstrate the efficiency as well as the 
quality of our ranking system. 

1. Introduction 
Database systems support a simple Boolean query 
retrieval model, where a selection query on a SQL 
database returns all tuples that satisfy the conditions in the 
query. This often leads to the Many-Answers Problem: 
when the query is not very selective, too many tuples may 
be in the answer. We use the following running example 
throughout the paper: 
 
Example: Consider a realtor database consisting of a 
single table with attributes such as (TID, Price, City, 
Bedrooms, Bathrooms, LivingArea, SchoolDistrict, View, 
Pool, Garage, BoatDock …). Each tuple represents a 
home for sale in the US. 
 

Consider a potential home buyer searching for homes 
in this database. A query with a not very selective 

condition such as “City=Seattle and View=Waterfront” 
may result in too many tuples in the answer, since there 
are many homes with waterfront views in Seattle.  

The Many-Answers Problem has been investigated 
outside the database area, especially in Information 
Retrieval (IR), where many documents often satisfy a 
given keyword-based query. Approaches to overcome this 
problem range from query reformulation techniques (e.g., 
the user is prompted to refine the query to make it more 
selective), to automatic ranking of the query results by 
their degree of “relevance” to the query (though the user 
may not have explicitly specified how) and returning only 
the top-K subset.   

It is evident that automated ranking can have 
compelling applications in the database context. For 
instance, in the earlier example of  a homebuyer searching 
for homes in Seattle with waterfront views, it may be 
preferable to first return homes that have other desirable 
attributes, such as good school districts, boat docks, etc. 
In general, customers browsing product catalogs will find 
such functionality attractive. 

In this paper we propose an automated ranking 
approach for the Many-Answers Problem for database 
queries. Our solution is principled, comprehensive, and 
efficient. We summarize our contributions below. 

Any ranking function for the Many-Answers Problem 
has to look beyond the attributes specified in the query, 
because all answer tuples satisfy the specified conditions1. 
However, investigating unspecified attributes is 
particularly tricky since we need to determine what the 
user’s preferences for these unspecified attributes are. In 
this paper we propose that the ranking function of a tuple 
depends on two factors: (a) a global score which captures 
the global importance of unspecified attribute values, and 

                                                           
1 In the case of document retrieval, ranking functions are often based on 
the frequency of occurrence of query values in documents (term 
frequency, or TF). However, in the database context, especially in the 
case of categorical data, TF is irrelevant as tuples either contain or do 
not contain a query value. Hence ranking functions need to also consider 
values of unspecified attributes. 
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(b) a conditional score which captures the strengths of 
dependencies (or correlations) between specified and 
unspecified attribute values. For example, for the query 
“City = Seattle and View = Waterfront”, a home that is 
also located in a “SchoolDistrict = Excellent” gets high 
rank because good school districts are globally desirable. 
A home with also “BoatDock = Yes” gets high rank 
because people desiring a waterfront are likely to want a 
boat dock.  While these scores may be estimated by the 
help of domain expertise or through user feedback, we 
propose an automatic estimation of these scores via 
workload as well as data analysis. For example, past 
workload may reveal that a large fraction of users seeking 
homes with a waterfront view have also requested for 
boat docks. 

The next challenge is how do we translate these basic 
intuitions into principled and quantitatively describable 
ranking functions?  To achieve this, we develop ranking 
functions that are based on Probabilistic Information 
Retrieval (PIR) ranking models. We chose PIR models 
because we could extend them to model data 
dependencies and correlations (the critical ingredients of 
our approach) in a more principled manner than if we had 
worked with alternate IR ranking models such as the 
Vector-Space model.  We note that correlations are often 
ignored in IR because they are very difficult to capture in 
the very high-dimensional and sparsely populated feature 
spaces of text data, whereas there are often strong 
correlations between attribute values in relational data 
(with functional dependencies being extreme cases), 
which is a much lower-dimensional, more explicitly 
structured and densely populated space that our ranking 
functions can effectively work on.  

The architecture of our ranking has a pre-processing 
component that collects database as well as workload 
statistics to determine the appropriate ranking function. 
The extracted ranking function is materialized in an 
intermediate knowledge representation layer, to be used 
later by a query processing component for ranking the 
results of queries. The ranking functions are encoded in 
the intermediate layer via intuitive, easy-to-understand 
“atomic” numerical quantities that describe (a) the global 
importance of a data value in the ranking process, and (b) 
the strengths of correlations between pairs of values (e.g., 
“if a user requests tuples containing value y of attribute Y, 
how likely is she to be also interested in value x of 
attribute X?”). Although our ranking approach derives 
these quantities automatically, our architecture allows 
users and/or domain experts to tune these quantities 
further, thereby customizing the ranking functions for 
different applications. 

We report on a comprehensive set of experimental 
results. We first demonstrate through user studies on real 
datasets that our rankings are superior in quality to 
previous efforts on this problem. We also demonstrate the 
efficiency of our ranking system. Our implementation is 
especially tricky because our ranking functions are 

relatively complex, involving dependencies/correlations 
between data values. We use novel pre-computation 
techniques which reduce this complex problem to a 
problem efficiently solvable using Top-K algorithms. 

The rest of this paper is organized as follows. In 
Section 2 we discuss related work. In Section 3 we define 
the problem and outline the architecture of our solution. 
In Section 4 we discuss our approach to ranking based on 
probabilistic models from information retrieval. In 
Section 5 we describe an efficient implementation of our 
ranking system. In Section 6 we discuss the results of our 
experiments, and we conclude in Section 7. 

2. Related Work 
Extracting ranking functions has been extensively 
investigated in areas outside database research such as 
Information Retrieval. The vector space model as well as 
probabilistic information retrieval (PIR) models [4, 28, 
29] and statistical language models [14] are very 
successful in practice. While our approach has been 
inspired by PIR models, we have adapted and extended 
them in ways unique to our situation, e.g., by leveraging 
the structure as well as correlations present in the 
structured data and the database workload.  

In database research, there has been some work on 
ranked retrieval from a database. The early work of [23] 
considered vague/imprecise similarity-based querying of 
databases. The problem of integrating databases and 
information retrieval systems has been attempted in 
several works [12, 13, 17, 18]. Information retrieval based 
approaches have been extended to XML retrieval (e.g., 
see [8]). The papers [11, 26, 27, 32] employ relevance-
feedback techniques for learning similarity in multimedia 
and relational databases. Keyword-query based retrieval 
systems over databases have been proposed in [1, 5, 20]. 
In [21, 24] the authors propose SQL extensions in which 
users can specify ranking functions via soft constraints in 
the form of preferences. The distinguishing aspect of our 
work from the above is that we espouse automatic 
extraction of PIR-based ranking functions through data 
and workload statistics. 

The work most closely related to our paper is [2] 
which briefly considered the Many-Answers Problem 
(although its main focus was on the Empty-Answers 
Problem, which occurs when a query is too selective, 
resulting in an empty answer set). It too proposed 
automatic ranking methods that rely on workload as well 
as data analysis. In contrast, however, the current paper 
has the following novel strengths: (a) we use more 
principled probabilistic PIR techniques rather than ad-hoc 
techniques “loosely based” on the vector-space model, 
and (b) we take into account dependencies and 
correlations between data values, whereas [2] only 
proposed a form of global score for ranking. 

Ranking is also an important component in 
collaborative filtering research [7]. These methods require 
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training data using queries as well as their ranked results. 
In contrast, we require workloads containing queries only.  

A major concern of this paper is the query processing 
techniques for supporting ranking. Several techniques 
have been previously developed in database research for 
the Top-K problem [8, 9, 15, 16, 31]. We adopt the 
Threshold Algorithm of [16, 19, 25] for our purposes, and 
show how novel pre-computation techniques can be used 
to produce a very efficient implementation of the Many-
Answers Problem. In contrast, an efficient 
implementation for the Many-Answers Problem was left 
open in [2]. 

3. Problem Definition and Architecture 
In this section, we formally define the Many-Answers 
Problem in ranking database query results, and also 
outline a general architecture of our solution. 

3.1 Problem Definition  

We start by defining the simplest problem instance. 
Consider a database table D with n tuples {t1, …, tn} over 
a set of m categorical attributes A = {A1, …, Am}. 
Consider a “SELECT * FROM D” query Q with a 
conjunctive selection condition of the form “WHERE 
X1=x1 AND … AND Xs=xs”, where each Xi is an attribute 
from A and xi is a value in its domain. The set of attributes 
X ={X1, …, Xs}⊆ A is known as the set of attributes 
specified by the query, while the set Y = A – X is known 
as the set of unspecified attributes. Let S ⊆ {t1, …, tn} be 
the answer set of Q. The Many-Answers Problem occurs 
when the query is not too selective, resulting in a large S.  

The above scenario only represents the simplest 
problem instance. For example, the type of queries 
described above are fairly restrictive; we refer to them as 
point queries because they specify single-valued equality 
conditions on each of the specified attributes.  In a more 
general setting, queries may contain range/IN conditions, 
and/or Boolean operators other than conjunctions. 
Likewise, databases may be multi-tabled, may contain a 
mix of categorical and numeric data, as well as missing or 
NULL values.  While our techniques extend to all these 
generalizations, in the interest of clarity (and due to lack 
of space), the main focus of this paper is on ranking the 
results of conjunctive point queries on a single categorical 
table (without NULL values).  

3.2 General Architecture of our Approach 

Figure 1 shows the architecture of our proposed system 
for enabling ranking of database query results. As 
mentioned in the introduction, the main components are 
the preprocessing component, an intermediate knowledge 
representation layer in which the ranking functions are 
encoded and materialized, and a query processing 
component. The modular and generic nature of our 

system allows for easy customization of the ranking 
functions for different applications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the next section we discuss PIR-based ranking 

functions for structured data. 

4. Ranking Functions: Adaptation of PIR 
Models for Structured Data 

In this section we discuss PIR-based ranking functions, 
and then show how they can be adapted for structured 
data. We discuss the semantics of the atomic building 
blocks that are used to encode these ranking functions in 
the intermediate layer. We also show how these atomic 
numerical quantities can be estimated from a variety of 
knowledge sources, such as data and workload statistics, 
as well as domain knowledge. 

4.1 Review of Probabilistic Information Retrieval  

Much of the material of this subsection can be found in 
textbooks on Information Retrieval, such as [4] (see also 
[28, 29]). We will need the following basic formulas from 
probability theory: 
 
Bayes’ Rule: 
 
Product Rule: 
 
 
Consider a document collection D. For a (fixed) query Q, 
let R represent the set of relevant documents, and R =D –
R be the set of irrelevant documents. In order to rank any 
document t in D, we need to find the probability of the 
relevance of t for the query given the text features of t 
(e.g., the word/term frequencies in t), i.e., p(R|t). More 
formally, in probabilistic information retrieval, documents 
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are ranked by decreasing order of their odds of relevance, 
defined as the following score: 
 
 
 
 
 
 
The main issue is, how are these probabilities computed, 
given that R and R are unknown at query time? The usual 
techniques in IR are to make some simplifying 
assumptions, such as estimating R through user feedback, 
approximating R as D (since R is usually small compared 
to D), and assuming some form of independence between 
query terms (e.g., the Binary Independence Model). 

In the next subsection we show how we adapt PIR 
models for structured databases, in particular for 
conjunctive queries over a single categorical table. Our 
approach is more powerful than the Binary Independence 
Model as we also leverage data dependencies.  

4.2 Adaptation of  PIR Models for Structured Data 

In our adaptation of PIR models for structured databases, 
each tuple in a single database table D is effectively 
treated as a “document”. For a (fixed) query Q, our 
objective is to derive Score(t) for any tuple t, and use this 
score to rank the tuples. Since we focus on the Many-
Answers problem, we only need to concern ourselves 
with tuples that satisfy the query conditions. Recall the 
notation from Section 3.1, where X is the set of attributes 
specified in the query, and Y is the remaining set of 
unspecified attributes. We denote any tuple t as 
partitioned into two parts, t(X) and t(Y), where t(X) is the 
subset of values corresponding to the attributes in X, and 
t(Y) is the remaining subset of values corresponding to the 
attributes in Y. Often, when the tuple t is clear from the 
context, we overload notation and simply write t as 
consisting of two parts, X and Y (in this context, X and Y 
are thus sets of values rather than sets of attributes).  

Replacing t with X and Y (and R  as D as mentioned in 
Section 4.1 is commonly done in IR), we get 
 
 
 
 
 
 
 
Since for the Many-Answers problem we are only 
interested in ranking tuples that satisfy the query 
conditions, and all such tuples have the same X values, we 
can treat any quantity not involving Y as a constant. We 
thus get 

      
),|(
),|(

)(
DXYp
RXYp

tScore ∝  

Furthermore, the relevant set R for the Many-Answers 
problem is a subset of all tuples that satisfy the query 
conditions. One way to understand this is to imagine that 
R is the “ideal” set of tuples the user had in mind, but who 
only managed to partially specify it when preparing the 
query. Consequently the numerator ),|( RXYp may be 
replaced by )|( RYp . We thus get 
 
 
 
 
 
 
We are not quite finished with our derivation of Score(t) 
yet, but let us illustrate Equation 1 with an example. 
Consider a query with condition “City=Kirkland and 
Price=High” (Kirkland is an upper class suburb of Seattle 
close to a lake). Such buyers may also ideally desire 
homes with waterfront or greenbelt views, but homes with 
views looking out into streets may be somewhat less 
desirable. Thus, p(View=Greenbelt | R) and 
p(View=Waterfront | R) may both be high, but 
p(View=Street | R) may be relatively low. Furthermore, if 
in general there is an abundance of selected homes with 
greenbelt views as compared to waterfront views, (i.e., the 
denominator p(View=Greenbelt | City=Kirkland, 
Price=High, D) is larger than p(View=Waterfront | 
City=Kirkland, Price=High, D)), our final rankings would 
be homes with waterfront views, followed by homes with 
greenbelt views, followed by homes with street views. 
Note that for simplicity, we have ignored the remaining 
unspecified attributes in this example.  

4.2.1 Limited Independence Assumptions  

One possible way of continuing the derivation of Score(t) 
would be to make independence assumptions between 
values of different attributes, like in the Binary 
Independence Model in IR. However, while this is 
reasonable with text data (because estimating model 
parameters like the conditional probabilities p(Y | X) poses 
major accuracy and efficiency problems with sparse and 
high-dimensional data such as text), we have earlier 
argued that with structured data, dependencies between 
data values can be better captured and would more 
significantly impact the result ranking. An extreme 
alternative to making sweeping independence 
assumptions would be to construct comprehensive 
dependency models of the data (e.g. probabilistic 
graphical models such as Markov Random Fields or 
Bayesian Networks [30]), and derive ranking functions 
based on these models. However, our preliminary 
investigations suggested that such approaches, 
particularly for large datasets, have unacceptable pre-
processing and query processing costs.  

Consequently, in this paper we espouse an approach 
that strikes a middle ground. We only make limited forms 
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of independence assumptions – given a query Q and a 
tuple t, the X (and Y) values within themselves are 
assumed to be independent, though dependencies between 
the X and Y values are allowed. More precisely, we 
assume limited conditional independence, i.e., )|( CXp  
(resp. )|( CYp ) may be written as ∏

∈Xx

Cxp )|(  (resp. 

∏
∈Yy

Cyp )|( ) where C is any condition that only involves 

Y values (resp. X values), R, or D.  
While this assumption is patently false in many cases 

(for instance, in the example in Section 4.2 this assumes 
that there is no dependency between homes in Kirkland 
and high-priced homes), nevertheless the remaining 
dependencies that we do leverage, i.e., between the 
specified and unspecified values, prove to be significant 
for ranking. Moreover, as we shall show in Section 5, the 
resulting simplified functional form of the ranking 
function enables the efficient adaptation of known Top-K 
algorithms through novel data structuring techniques.  

We continue the derivation of the score of a tuple 
under the above assumptions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This simplifies to   

 
 
 
 

 
Although Equation 2 represents a simplification over 
Equation 1, it is still not directly computable, as R is 
unknown.  We discuss how to estimate the quantities 

)|( Ryp  next.  

4.2.2 Workload-Based Estimation of p(y|R) 

Estimating the quantities )|( Ryp  requires knowledge of 
R, which is unknown at query time. The usual technique 
for estimating R in IR is through user feedback (relevance 
feedback) at query time, or through other forms of 

training. In our case, we provide an automated approach 
that leverages available workload information for 
estimating )|( Ryp . 

We assume that we have at our disposal a workload 
W, i.e., a collection of ranking queries that have been 
executed on our system in the past. We first provide some 
intuition of how we intend to use the workload in ranking. 
Consider the example in Section 4.2 where a user has 
requested for high-priced homes in Kirkland. The 
workload may perhaps reveal that, in the past a large 
fraction of users that had requested for high-priced homes 
in Kirkland had also requested for waterfront views. Thus 
for such users, it is desirable to rank homes with 
waterfront views over homes without such views. 

We note that this dependency information may not be 
derivable from the data alone, as a majority of such homes 
may not have waterfront views (i.e., data dependencies do 
not indicate user preferences as workload dependencies 
do). Of course, the other option is for a domain expert (or 
even the user) to provide this information (and in fact, as 
we shall discuss later, our ranking architecture is generic 
enough to allow further customization by human experts).  

More generally, the workload W is represented as a set 
of “tuples”, where each tuple represents a query and is a 
vector containing the corresponding values of the 
specified attributes. Consider an incoming query Q which 
specifies a set X of attribute values. We approximate R as 
all query “tuples” in W that also request for X. This 
approximation is novel to this paper, i.e., that all 
properties of the set of relevant tuples R can be obtained 
by only examining the subset of the workload that 
contains queries that also request for X. So for a query 
such as “City=Kirkland and Price=High”, we look at the 
workload in determining what such users have also 
requested for often in the past.  

We can thus write, for query Q, with specified 
attribute set X, )|( Ryp as ),|( WXyp . Making this 
substitution in Equation 2, we get 
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This can be finally rewritten as: 
 

 
 
 
 
 
Equation 3 is the final ranking formula that we use in the 
rest of this paper. Note that unlike Equation 2, we have 
effectively eliminated R from the formula, and are only 
left with having to compute quantities such as 

)|( Wyp , ),|( Wyxp , )|( Dyp , and ),|( Dyxp . In 
fact, these are the “atomic” numerical quantities referred 
to at various places earlier in the paper. 

Also note that the score in Equation 3 is composed of 
two large factors. The first factor may be considered as 
the global part of the score, while the second factor may 
be considered as the conditional part of the score. Thus, in 
the example in Section 4.2, the first part measures the 
global importance of unspecified values such as 
waterfront, greenbelt and street views, while the second 
part measures the dependencies between these values and 
specified values  “City=Kirkland” and “Price=High”. 

4.3 Computing the Atomic Probabilities  

Our strategy is to pre-compute each of the atomic 
quantities for all distinct values in the database. The 
quantities )|( Wyp and )|( Dyp  are simply the relative 
frequencies of each distinct value y in the workload and 
database, respectively (the latter is similar to IDF, or the 
inverse document frequency concept in IR), while the 
quantities  ),|( Wyxp  and ),|( Dyxp  may be 
estimated by computing the confidences of pair-wise 
association rules [3] in the workload and database, 
respectively. Once this pre-computation has been 
completed, we store these quantities as auxiliary tables in 

the intermediate knowledge representation layer.  At 
query time, the necessary quantities may be retrieved and 
appropriately composed for performing the rankings. 
Further details of the implementation are discussed in 
Section 5. 

While the above is an automated approach based on 
workload analysis, it is possible that sometimes the 
workload may be insufficient and/or unreliable. In such 
instances, it may be necessary for domain experts to be 
able to tune the ranking function to make it more suitable 
for the application at hand.  

5. Implementation 
In this section we discuss the implementation of our 
database ranking system. Figure 2 shows the detailed 
architecture, including the pre-processing and query 
processing components as well as their sub-modules. We 
discuss several novel data structures and algorithms that 
were necessary for good performance of our system.  

5.1 Pre-Processing  

This component is divided into several modules. First, the 
Atomic Probabilities Module computes the quantities 

)|( Wyp , )|( Dyp , ),|( Wyxp , and ),|( Dyxp  for 
all distinct values x and y. These quantities are computed 
by scanning the workload and data, respectively (while 
the latter two quantities can be computed by running a 
general association rule mining algorithm such as [3] on 
the workload and data, we instead chose to directly 
compute all pair-wise co-occurrence frequencies by a 
single scan of the workload and data respectively). The 
observed probabilities are then smoothened using the 
Bayesian m-estimate method [10].   

These atomic probabilities are stored as database 
tables in the intermediate knowledge representation layer, 
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with appropriate indexes to enable easy retrieval. In 
particular, )|( Wyp  and )|( Dyp  are respectively stored 
in two tables, each with columns {AttName, AttVal, 
Prob} and with a composite B+ tree index on (AttName, 
AttVal), while ),|( Wyxp and ),|( Dyxp  respectively 
are stored in two tables, each with columns 
{AttNameLeft, AttValLeft, AttNameRight, AttValRight, 
Prob} and with a composite B+ tree index on 
(AttNameLeft, AttValLeft, AttNameRight, AttValRight). 
These atomic quantities can be further customized by 
human experts if necessary. 

This intermediate layer now contains enough 
information for computing the ranking function, and a 
naïve query processing algorithm (henceforth referred to 
as the Scan algorithm) can indeed be designed, which, for 
any query, first selects the tuples that satisfy the query 
condition, then scans and computes the score for each 
such tuple using the information in this intermediate 
layer, and finally returns the Top-K tuples. However, such 
an approach can be inefficient for the Many-Answers 
problem, since the number of tuples satisfying the query 
condition can be very large. At the other extreme, we 
could pre-compute the Top-K tuples for all possible 
queries (i.e., for all possible sets of values X), and at 
query time, simply return the appropriate result set. Of 
course, due to the combinatorial explosion, this is  
infeasible in practice. We thus pose the question: how can 
we appropriately trade off between pre-processing and 
query processing, i.e., what additional yet reasonable pre-
computations are possible that can enable faster query-
processing algorithms than Scan? 

The high-level intuition behind our approach to the 
above problem is as follows. Instead of pre-computing the 
Top-K tuples for all possible queries, we pre-compute 
ranked lists of the tuples for all possible “atomic” queries 
- each distinct value x in the table defines an atomic query 
Qx that specifies the single value {x}. Then at query time, 
given an actual query that specifies a set of values X, we 
“merge” the ranked lists corresponding to each x in X to 
compute the final Top-K tuples.  

Of course, for this high-level idea to work, the main 
challenge is to be able to perform the merging without 
having to scan any of the ranked lists in its entirety.  One 
idea would be to try and adapt well-known Top-K 
algorithms such as the Threshold Algorithm (TA) and its 
derivatives [9, 15, 16, 19, 25] for this problem. However, 
it is not immediately obvious how a feasible adaptation 
can be easily accomplished. For example, it is especially 
critical to keep the number of sorted streams (an access 
mechanism required by TA) small, as it is well-known 
that TA’s performance rapidly deteriorates as this number 
increases. Upon examination of our ranking function in 
Equation 3 (which involves all attribute values of the 
tuple, and not just the specified values), the number of 
sorted streams in any naïve adaptation of TA would 

depend on the total number of attributes in the database, 
which would cause major performance problems.  

In what follows, we show how to pre-compute data 
structures that indeed enable us to efficiently adapt TA for 
our problem. At query time we do a TA-like merging of 
several ranked lists (i.e. sorted streams). However, the 
required number of sorted streams depends only on s and 
not on m (s is the number of specified attribute values in 
the query while m is the total number of attributes in the 
database, see Section 3.1). We emphasize that such a 
merge operation is only made possible due to the specific 
functional form of our ranking function resulting from our 
limited independence assumptions as discussed in Section 
4.2.1. It is unlikely that TA can be adapted, at least in a 
feasible manner, for ranking functions that rely on more 
comprehensive dependency models of the data.  

We next give the details of these data structures. They 
are pre-computed by the Index Module of the pre-
processing component. This module (see Figure 3 for the 
algorithm) takes as inputs the association rules and the 
database, and for every distinct value x, creates two lists 
Cx and Gx, each containing the tuple-ids of all data tuples 
that contain x, ordered in specific ways. These two lists 
are defined as follows:  
1. Conditional List Cx:  This list consists of pairs of the 

form <TID, CondScore>, ordered by descending 
CondScore, where TID is the tuple-id of a tuple t that 
contains x and 

∏
∈

=
tz Dzxp

Wzxp
CondScore

),|(
),|(  

where z ranges over all attribute values of t. 
2. Global List Gx: This list consists of pairs of the form 

<TID, GlobScore>, ordered by descending 
GlobScore, where TID is the tuple-id of a tuple t that 
contains x and  

∏
∈

=
tz Dzp

Wzp
GlobScore

)|(
)|(  

These lists enable efficient computation of the score of a 
tuple t for any query as follows: given query Q specifying 
conditions for a set of attribute values, say X = {x1,..,xs}, 
at query time we retrieve and multiply the scores of t in 
the lists Cx1,…,Cxs and in one of Gx1,…,Gxs. This requires 
only s+1multiplications and results in a score2 that is 
proportional to the actual score. Clearly this is more 
efficient than computing the score “from scratch” by 
retrieving the relevant atomic probabilities from the 
intermediate layer and composing them appropriately. 

We need to enable two kinds of access operations 
efficiently on these lists.  First, given a value x, it should 
be possible to perform a GetNextTID operation on lists Cx 
and Gx in constant time, i.e., the tuple-ids in the lists 

                                                           
2 This score is proportional, but not equal, to the actual score because it 
contains extra factors of the form ),|(),|( DzxpWzxp  where 

z∈X. However, these extra factors are common to all selected tuples, 
hence the rank order is unchanged.  

894



 

should be efficiently retrievable one-by-one in order of 
decreasing score. This corresponds to the sorted stream 
access of TA. Second, it should be possible to perform 
random access on the lists, i.e., given a TID, the 
corresponding score (CondScore or GlobScore) should be 
retrievable in constant time. To enable these operations 
efficiently, we materialize these lists as database tables – 
all the conditional lists are maintained in one table called 
CondList (with columns {AttName, AttVal, TID, 
CondScore}) while all the global lists are maintained in 
another table called GlobList (with columns {AttName, 
AttVal, TID, GlobScore}).  The table have composite B+ 
tree indices on (AttName, AttVal, CondScore) and 
(AttName, AttVal, GlobScore) respectively. This enables 
efficient performance of both access operations. Further 
details of how these data structures and their access 
methods are used in query processing are discussed in 
Section 5.2. 
 

 
 
 

5.2 Query Procesing Component 

In this subsection we describe the query processing 
component. The naïve Scan algorithm has already been 
described in Section 5.1, so our focus here is on the 
alternate List Merge algorithm (see Figure 4). This is an 
adaptation of TA, whose efficiency crucially depends on 
the data structures pre-computed by the Index Module. 

The List Merge algorithm operates as follows. Given a 
query Q specifying conditions for a set X = {x1,..,xs}of 
attributes, we execute TA on the following s+1 lists: 
Cx1,…,Cxs, and Gxb, where Gxb is the shortest list among 
Gx1,…,Gxs (in principle, any list from Gx1,…,Gxs would 
do, but the shortest list is likely to be more efficient). 
During each iteration, the TID with the next largest score 
is retrieved from each list using sorted access. Its score in 
every other list is retrieved via random access, and all 
these retrieved scores are multiplied together, resulting in 
the final score of the tuple (which, as mentioned in 

Section 5.1, is proportional to the actual score derived in 
Equation 3). The termination criterion guarantees that no 
more GetNextTID operations will be needed on any of the 
lists. This is accomplished by maintaining an array T 
which contains the last scores read from all the lists at any 
point in time by GetNextTID operations. The product of 
the scores in T represents the score of the very best tuple 
we can hope to find in the data that is yet to be seen. If 
this value is no more than the tuple in the Top-K buffer 
with the smallest score, the algorithm successfully 
terminates.  

 

 
 
 

5.2.1 Limited Available Space 

 So far we have assumed that there is enough space 
available to build the conditional and global lists. A 
simple analysis indicates that the space consumed by 
these lists is O(mn) bytes (m is the number of attributes 
and n the number of tuples of the database table). 
However, there may be applications where space is an 
expensive resource (e.g., when lists should preferably be 
held in memory and compete for that space or even for 
space in the processor cache hierarchy). We show that in 
such cases, we can store only a subset of the lists at pre-
processing time, at the expense of an increase in the query 
processing time.  

Determining which lists to retain/omit at pre-
processing time may be accomplished by analyzing the 
workload. A simple solution is to store the conditional 
lists Cx and the corresponding global lists Gx only for 
those attribute values x that occur most frequently in the 
workload. At query time, since the lists of some of the 
specified attributes may be missing, the intuitive idea is to 
probe the intermediate knowledge representation layer 
(where the “relatively raw” data is maintained, i.e., the 

List Merge Algorithm 
Input:  Query, data table, global and conditional lists 
Output:  Top-K tuples 
 
Let Gxb be the shortest list among Gx1,…,Gxs 
Let B ={} be a buffer that can hold K tuples ordered by score 
Let T be an array of size s+1 storing the last score from each list 
Initialize B to empty 
REPEAT 
   FOR EACH list L in Cx1,…,Cxs, and Gxb DO 

TID  = GetNextTID(L) 
Update T with score of TID in L 
Get score of TID from other lists via random access 
IF all lists contain TID THEN 
    Compute Score(TID) by multiplying retrieved scores 

      Insert <TID, Score(TID)> in the correct position in B 
 END IF 

   END FOR  

UNTIL ∏
+

=

≥
1

1

][].[
s

i

iTScoreKB  

RETURN B 

Index Module 
Input: Data table, atomic probabilities tables 
Output:  Conditional and global lists 
 
FOR EACH distinct value x of database DO 
  Cx = Gx  = {} 
  FOR EACH tuple t containing x with tuple-id = TID DO 

∏
∈

=
tz Dzxp

Wzxp
CondScore

),|(
),|(  

Add <TID, CondScore> to Cx 

∏
∈

=
tz Dzp

Wzp
GlobScore

)|(
)|(  

Add <TID, GlobScore> to Gx 
  END FOR 
  Sort Cx and Gx  by decreasing CondScore and GlobScore resp. 
END FOR 

Figure 3:  The Index Module  
 

Figure 4:  The List Merge Algorithm  
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atomic probabilities) and directly compute the missing 
information.  More specifically, we use a modification of 
TA described in [9], where not all sources have sorted 
stream access.  

6. Experiments 
In this section we report on the results of an experimental 
evaluation of our ranking method as well as some of the 
competitors. We evaluated both the quality of the 
rankings obtained, as well as the performance of the 
various approaches. We mention at the outset that 
preparing an experimental setup for testing ranking 
quality was extremely challenging, as unlike IR, there are 
no standard benchmarks available, and we had to conduct 
user studies to evaluate the rankings produced by the 
various algorithms.  

For our evaluation, we use real datasets from two 
different domains. The first domain was the MSN 
HomeAdvisor database (http://houseandhome.msn.com/), 
from which we prepared a table of homes for sale in the 
US, with attributes such as Price, Year, City, Bedrooms, 
Bathrooms, Sqft, Garage, etc. (we converted numerical 
attributes into categorical ones by discretizing them into 
meaningful ranges). The original database table also had a 
text column called Remarks, which contained descriptive 
information about the home. From this column, we 
extracted additional Boolean attributes such as Fireplace, 
View, Pool, etc. To evaluate the role of the size of the 
database, we also performed experiments on a subset of 
the HomeAdvisor database, consisting only of homes sold 
in the Seattle area.  

The second domain was the Internet Movie Database 
(http://www.imdb.com), from which we prepared a table 
of movies, with attributes such as Title, Year, Genre, 
Director, FirstActor, SecondActor, Certificate, Sound, 
Color, etc. (we discretized numerical attributes such as 
Year into meaningful ranges). We first selected a set of 
movies by the 30 most prolific actors for our experiments. 
From this we removed the 250 most well-known movies, 
as we did not wish our users to be biased with information 
they already might know about these movies, especially 
information that is not captured by the attributes that we 
had selected for our experiments. 

The sizes of the various (single-table) datasets used in 
our experiments are shown in Figure 5. The quality 
experiments were conducted on the Seattle Homes and 
Movies tables, while the performance experiments were 
conducted on the Seattle Homes and the US Homes tables 
– we omitted performance experiments on the Movies 
table on account of its small size. We used Microsoft SQL 
Server 2000 RDBMS on a P4 2.8-GHz PC with 1 GB of 
RAM for our experiments. We implemented all 
algorithms in C#, and connected to the RDBMS through 
DAO. We created single-attribute indices on all table 
attributes, to be used during the selection phase of the 

Scan algorithm. Note that these indices are not used by 
the List Merge algorithm. 
 

Table NumTuples Database Size (MB) 
Seattle Homes  17463 1.936 
US Homes 1380762 140.432 
Movies 1446 Less than 1 

Figure 5: Sizes of Datasets 

6.1 Quality Experiments 

We evaluated the quality of two different ranking 
methods: (a) our ranking method, henceforth referred to 
as Conditional (b) the ranking method described in [2], 
henceforth known as Global. This evaluation was 
accomplished using surveys involving 14 employees of 
Microsoft Research.  

For the Seattle Homes table, we first created several 
different profiles of home buyers, e.g., young dual-income 
couples, singles, middle-class family who like to live in 
the suburbs, rich retirees, etc. Then, we collected a 
workload from our users by requesting them to behave 
like these home buyers and  post conjunctive queries 
against the database - e.g., a middle-class homebuyer with 
children looking for a suburban home would post a typical 
query such as “Bedrooms=4 and Price=Moderate and 
SchoolDistrict=Excellent”.  We collected several hundred 
queries by this process, each typically specifying 2-4 
attributes. We then trained our ranking algorithm on this 
workload.  

We prepared a similar experimental setup for the 
Movies table. We first created several different profiles of 
moviegoers, e.g., teenage males wishing to see action 
thrillers, people interested in comedies from the 80s, etc. 
We disallowed users from specifying the movie title in the 
queries, as the title is a key of the table. As with homes, 
here too we collected several hundred workload queries, 
and trained our ranking algorithm on this workload. 

We first describe a few sample results informally, and 
then present a more formal evaluation of our rankings.  

6.1.1 Examples of Ranking Results 

For the Seattle Homes dataset, both Conditional as well as 
Global produced rankings that were intuitive and 
reasonable. There were interesting examples where 
Conditional produced rankings that were superior to 
Global. For example, for a query with condition 
“City=Seattle and Bedroom=1”, Conditional ranked 
condos with garages the highest. Intuitively, this is 
because private parking in downtown is usually very 
scarce, and condos with garages are highly sought after. 
However, Global was unable to recognize the importance 
of garages for this class of homebuyers, because most 
users (i.e., over the entire workload) do not explicitly 
request for garages since most homes have garages.  As 
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another example, for a query such as “Bedrooms=4 and 
City=Kirkland and Price=Expensive”, Conditional ranked 
homes with waterfront views the highest, whereas Global 
ranked homes in good school districts the highest. This is 
as expected, because for very rich homebuyers a 
waterfront view is perhaps a more desirable feature than a 
good school district, even though the latter may be 
globally more popular across all homebuyers. 

Likewise, for the Movies dataset, Conditional often 
produced rankings that were superior to Global. For 
example, for a query such as “Year=1980s and 
Genre=Thriller”, Conditional ranked movies such as 
“Indiana Jones and the Temple of Doom” higher than 
“Commando”, because the workload indicated that 
Harrison Ford was a better known actor than Arnold 
Schwarzenegger during that era, although the latter actor 
was globally more popular over the entire workload. 

6.1.2 Ranking Evaluation 

We now present a more formal evaluation of the ranking 
quality produced by the ranking algorithms. We 
conducted two surveys; the first compared the rankings 
against user rankings using standard precision/recall 
metrics, while the second was a simpler survey that asked 
users to rate which algorithm’s rankings they preferred. 
 
Average Precision: Since requiring users to rank the 
entire database for each query would have been extremely 
tedious, we used the following strategy. For each dataset, 
we generate 5 test queries. For each test query Qi we 
generated a set Hi of 30 tuples likely to contain a good 
mix of relevant and irrelevant tuples to the query. We did 
this by mixing the Top-10 results of both the Conditional 
and Global ranking algorithms, removing ties, and adding 
a few randomly selected tuples. Finally, we presented the 
queries along with their corresponding Hi’s (with tuples 
randomly permuted) to each user in our study. Each user’s 
responsibility was to mark 10 tuples in Hi as most relevant 
to the query Qi. We then measured how closely the 10 
tuples marked as relevant by the user (i.e., the “ground 
truth”) matched the 10 tuples returned by each algorithm.  

 
Seattle Homes Movies  

COND GLOB COND GLOB 
Q1 0.70 0.26 0.48 0.35 

Q2 0.76 0.62 0.53 0.43 

Q3 0.90 0.54 0.58 0.20 

Q4 0.84 0.32 0.45 0.48 

Q5 0.44 0.48 0.43 0.40 

Figure 6: Average Precision  

We used the formal Precision/Recall metrics to 
measure this overlap. Precision is the ratio of the number 
of retrieved tuples that are relevant, to the total number of 

retrieved tuples, while Recall is the fraction of the number 
of retrieved tuples that are relevant, to the total number of 
relevant tuples (see [4]). In our case, the total number of 
relevant tuples is 10, so Precision and Recall are equal. 
The average precision of the ranking methods for each 
dataset are shown in Figure 6 (the queries are, of course, 
different for each dataset). As can be seen, the quality of 
Conditional’s ranking was usually superior to Global’s, 
more so for the Seattle Homes dataset. 

 
User Preference of Rankings: In this experiment, for the 
Seattle Homes as well as the Movies dataset, users were 
given the Top-5 results of the two ranking methods for 5 
queries (different from the previous survey), and were 
asked to choose which rankings they preferred. Figures 7 
and 8 show, for each query and each algorithm, the 
fraction of users that preferred the rankings of the 
algorithm. The results of the above experiments show that 
Conditional generally produces rankings of higher quality 
compared to Global, especially for the Seattle Homes 
dataset. While these experiments indicate that our ranking 
approach has promise, we caution that much larger-scale 
user studies are necessary to conclusively establish 
findings of this nature.  
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Figure 7: Fraction of Users Preferring Each Algorithm 
for Seattle Homes Dataset 
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Figure 8: Fraction of Users Preferring Each Algorithm 
for Movies Dataset 
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6.2 Performance Experiments 

In this subsection we report on experiments that compared 
the performance of the various implementations of the 
Conditional algorithm: List Merge, its space-saving 
variants, and Scan. We do not report on the corresponding 
implementations of Global as they had similar 
performance. We used the Seattle Homes and US Homes 
datasets for these experiments. 
 
Preprocessing Time and Space: Since the preprocessing 
performance of the List Merge algorithm is dominated by 
the Index Module, we omit reporting results for the 
Atomic Probabilities Module. Figure 9 shows the space 
and time required to build all the conditional and global 
lists. The time and space scale linearly with table size, 
which is expected. Notice that the space consumed by the 
lists is three times the size of the data table. While this 
may seemingly appear excessive, note that a fair 
comparison would be against a Scan algorithm that has 
B+ tree indices built on all attributes (so that all kinds of 
selections can be performed efficiently). In such a case, 
the total space consumed by these B+ tree indices would 
rival the space consumed by these lists.  
 

Datasets  Lists Building Time  Lists Size  

Seattle  Homes 1500 msec  7.8 MB 
US Homes 80000 msec  457.6 MB 

Figure 9: Time and Space Consumed by Index Module 

If space is a critical issue, we can adopt the space 
saving variation of the List Merge algorithm as discussed 
in Section 5.2.1. We report on this next.  

 
Space Saving Variations: In this experiment we show 
how the performance of the algorithms changes when 
only a subset of the set of global and conditional lists are 
stored. Recall from Section 5.2.1 that we only retain lists 
for the values of the frequently occurring attributes in the 
workload. For this experiment we consider Top-10 
queries with selection conditions that specify two 
attributes (queries generated by randomly picking a pair 
of attributes and a domain value for each attribute), and 
measure their execution times. The compared algorithms 
are: 

• LM: List Merge with all lists available  
• LMM: List Merge where lists for one of the two 

specified attributes are missing, halving space 
• Scan  

Figure 10 shows the execution times of the queries over 
the Seattle Homes database as a function of the total 
number of tuples that satisfy the selection condition. The 
times are averaged over 10 queries.  

We first note that LM is extremely fast when 
compared to the other algorithms (its times are less than 
one second for each run, consequently its graph is almost 

along the x-axis). This is to be expected as most of the 
computations have been accomplished at pre-processing 
time. The performance of Scan degrades when the total 
number of selected tuples increases, because the scores of 
more tuples need to be calculated at runtime. In contrast, 
the performance of LM and LMM actually improves 
slightly. This interesting phenomenon occurs because if 
more tuples satisfy the selection condition, smaller 
prefixes of the lists need to be read and merged before the 
stopping condition is reached.   
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Figure 10: Execution Times of Different Variations of 

List Merge and Scan for Seattle Homes Dataset 

Thus, List Merge and its variations are preferable if 
the number of tuples satisfying the query condition is 
large (which is exactly the situation we are interested in, 
i.e., the Many-Answers problem). This conclusion was 
reconfirmed when we repeated the experiment with LM 
and Scan on the much larger US Homes dataset with 
queries satisfying many more tuples (see Figure 11).  
 

NumSelected 
Tuples  

LM Time  
(msec)  

Scan Time 
(msec)  

350 800 6515 
2000 700 39234 
5000 600 115282 

30000 550 566516 
80000 500 3806531 

 
 
 
Varying Number of Specified Attributes: Figure 12 
shows how the query processing performance of the 
algorithms varies with the number of attributes specified 
in the selection conditions of the queries over the US 
Homes database (the results for the other databases are 
similar). The times are averaged over 10 Top-10 queries. 
Note that the times increase sharply for both algorithms 
with the number of specified attributes. The LM algorithm 
becomes slower because more lists need to be merged, 
which delays the termination condition. The Scan 
algorithm becomes slower because the selection time 

Figure 11: Execution Times of List Merge and Scan 
for US Homes Dataset 
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increases with the number of specified attributes. This 
experiment demonstrates the criticality of keeping the 
number of sorted streams small in our adaptation of TA. 
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Figure 12: Varying Number of Specified Attributes for 
US Homes Dataset 

7. Conclusions 
We proposed a completely automated approach for the 
Many-Answers Problem which leverages data and 
workload statistics and correlations. Our ranking 
functions are based upon the probabilistic IR models, 
judiciously adapted for structured data. We presented 
results of preliminary experiments which demonstrate the 
efficiency as well as the quality of our ranking system. 

Our work brings forth several intriguing open 
problems. For example, many relational databases contain 
text columns in addition to numeric and categorical 
columns. It would be interesting to see whether 
correlations between text and non-text data can be 
leveraged in a meaningful way for ranking. Finally, 
comprehensive quality benchmarks for database ranking 
need to be established. This would provide future 
researchers with a more unified and systematic basis for 
evaluating their retrieval algorithms. 
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