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A b s t r a c t . We present a biomolecular probabilistic model driven by the 
action of a DNA toolbox made of a set of DNA templates and enzymes 
that is able to perform Bayesian inference. The model will take single-
stranded DNA as input data, representing the presence or absence of 
a specific molecular signal (the evidence). The program logic uses dif-
ferent DNA templates and their relative concentration ratios to encode 
the prior probability of a disease and the conditional probability of a 
signal given the disease. When the input and program molecules in-
teract, an enzyme-driven cascade of reactions (DNA polymerase exten-
sion, nicking and degradation) is triggered, producing a different pair of 
single-stranded DNA species. Once the system reaches equilibrium, the 
ratio between the output species will represent the application of Bayes’ 
law: the conditional probability of the disease given the signal. In other 
words, a qualitative diagnosis plus a quantitative degree of belief in that 
diagnosis. Thanks to the inherent amplification capability of this DNA 
toolbox, the resulting system will be able to to scale up (with longer cas-
cades and thus more input signals) a Bayesian biosensor that we designed 
previously. 

1 Introduction 

Dynamic DNA nanotechnology is one of the areas of biomolecular computing 
that has developed most over the past decade. Many different models of DNA 
processors have been implemented since Adleman’s seminal work [1]. We can find 
examples of DNA automata driven by restriction enzymes [2], deoxyribozyme-
based DNA automata [3,4], DNA polymerase-based computers [5] or strand dis-
placement circuits [6,7,8,9,10,11,12]. 

Most of the above models are designed as “use once” devices. This is a conse-
quence of their operating principle: a set of molecules in a non-equilibrium state 
undertaking reactions and conformational changes until they reach a practically 
irreversible equilibrium state. Although this feature seems to be consistent with 
the objectives of structural DNA nanotechnology (e.g. DNA origami [13]), when 
we move to dynamic DNA nanotechnology the “use once” feature is a drawback 
rather than an advantage. Although they can still have very interesting appli-
cations (e.g. in vitro sensors and genetic diagnosis), every computation would 
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require a new DNA device. In order to achieve more complex behaviors, such as 
bistability or oscillations, biomolecular computing models need to be driven by 
a continuous input flux of energy [14]. This could be achieved, for example, by 
the DNAzyme-driven [3,4] and catalytic enzyme-free [10,11] models cited above, 
as long as there is a continuous supply of input ribonucleated strands and fuel 
strands, respectively, in the environment (e.g. in an open reactor). The design of 
other biomolecular computing models depends fundamentally on the existence 
of an input energy flux. For example, RNA computers work with a continuous 
supply of NTP, used by RNA polymerase as fuel in the transcription process 
[15,16]. 

DNA polymerase was one of the first computational primitives used in the 
early models of DNA computing [1,17]. It was therefore not surprising to find 
it in the first autonomous DNA computer model: the Whiplash machine [5]. 
However, after that milestone, DNA polymerase-driven models remained outside 
the mainstream for years, mainly due to the need for thermal cycles. Interest 
in this topic rekindled after some breakthroughs exploiting isothermal DNA 
amplification protocols [18], such as an improved Whiplash model [19] or the 
DNA toolbox developed by Rondelez’s team [20,21,22]. 

The DNA toolbox is specially interesting due to its similarities with RNA 
computers: it is also driven by a continuous supply of NTP, which is used to 
extend input DNA strands and produce output strands. It has recently led to 
impressive achievements, such as reliable oscillations [20], bistability [21] or pop-
ulation dynamics models like predator-prey [22]. Its operation is based on the 
action of a set of enzymes (DNA polymerase, an isothermal DNA nicking en-
zyme and a single-strand specific exonuclease) on the input strands and a set 
of single-stranded DNA templates, enabling the following set of basic reactions 
(see Figure 1): 

— Polymerization and nicking. After the hybridization of an input DNA strand 

A1 at the 3’ end of a DNA template AB, DNA polymerase produces the 

double strand AB. Since the duplex A contains the recognition sequence of 

the nicking enzyme, the newly polymerized strand is cleaved in two fragments 

A and B, which will dissociate from the template due to their shorter length. 

B can also be displaced by further DNA polymerase activity. As result of 

this process, the input strands A periodically generate new strands B (see 

left panel in Figure 1). 

— Inactivation. A special type of input DNA strand B can be used to inactivate 

a template does not fully bind the recognition sequence of the nicking 

enzyme in the template, and since it is longer than the regular inputs D, B 

wins the competition to bind the template almost irreversibly. Moreover, its 

3’ end does not bind the template, avoiding the action of DNA polymerase 

(see right bottom panel in Figure 1). 

A DNA strand denoted A is supposed to be Watson-Crick complementary to a DNA 
2 2 y 

strand denoted A, and would form a duplex A when both molecules hybridize. 
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Fig. 1. DNA toolbox. The left panel shows the basic catalytic operation of the tool-

box: the input strand A binds the 3’ end of the DNA template AB, allowing DNA 

polymerase to extend it forming the duplex AB. Then the enzyme nickase binds to its 

recognition sequence in A (bold line) and cleaves the newly polymerized upper strand 

AB in two fragments A and B, which can either dissociate from the template due to 

their shorter length, or let B be displaced by a new DNA polymerization of ~A. The 

right panel shows the two possible operating modes of the output B: as an activator 

it will enable the polymerization of another DNA strand C (see the motif at the top); 

as an inhibitor, it would bind in the middle of a DNA template inhibiting nicking 

and polymerization. All the DNA strands except the templates are subject to periodic 
degradation (see arrows pointing to <f>). 

– Degradation. Species dynamically generated by DNA polymerase are de-
graded by a single-strand specific exonuclease. DNA templates are protected 
from the action of the exonuclease thanks to DNA backbone modifications 
at their 5’ end. 

Inspired by recent works presented above by Rondelez’s team, we have identi-
fied their DNA toolbox as an alternative to implementing probabilistic reasoning, 
which can be used when we want to consider diagnostic accuracy or uncertainty 
of tests in our clinical decisions (i.e., classic systems like Mycin [23]). With the 
aim of designing a model that can process this uncertainty, this article presents 
a Bayesian biosensor that reasons probabilistically and whose output represents 
the probability (value between 0 and 1) of a disease. Such a device can be used 
to estimate and update the probability of any diagnosis based in the light of new 
evidence, i.e., the presence or absence of a new specific signal (or set of signals). 
The DNA sensor device encodes two different probabilities as program data: the 
conditional probability of the signal given the disease (P(signal|disease)) and 
the prior probability of the disease (P(disease)). Then, when the sensor inter-
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acts with an input representing the evidence of a signal (its presence or absence), 
Bayes’ law is autonomously computed by means of enzymatic reaction cascades, 
releasing a set of DNA species whose concentration ratio encodes the posterior 
probability of the disease given the input (P(disease\signal)). We presented a 
similar model in [24], which used DNA strand displacement instead of Rondelez’s 
DNA toolbox. 

The rest of the chapter is structured as follows. Section 2 includes an example 
of Bayesian inference that can be performed with the model. Sections 3, 4 and 
5 show the encoding of input signals and prior and conditional probabilities, 
respectively. Section 6 details how the model implements the Bayesian inference 
process. Finally, Section 8 summarizes the conclusions and future work. 

2 Example of Bayesian Inference 

This section describes a basic Bayesian inference example. 
Let us imagine that we want to diagnose whether a patient is affected by a 

certain disease d, whose possible diagnosis is “disease present” (-D1) or “disease 
absent” (D0). 

Based on empirical data, we can know upfront the prior probability of the 
disease. For this example, we consider both diagnoses to be equiprobable, which 
is represented as follows: 

P(d) = (P(D = present), P(D = absent)) = (P(D1), P(D0)) = (0.5,0.5). 

Studying already diagnosed cases of this disease and its symptoms s (working 
as input signals), we can also ascertain upfront the conditional probability of a 
certain symptom (or signal) s given the disease d, P(s\d): 

P(S = absent)\D = absent) = P(S0\D0) = 0.7 
P(S = present)\D = absent) = P(S1\D0) = 0.3 
P(S = absent)\D = present) = P(S0\D1) = 0.2 
P(S = present)\D = present) = P(S1\D1) = 0.8. 

Now we test whether the patient has symptom s, which we interpret as a 
confirmation that the signal s is present (5*1). In the light of this new evidence, 
we can update our knowledge on the probability of the disease being present 
given that the signal is present, P(D1\S1), applying the Bayes’ law: 

P(d\s) = P(SM/P(d) =a-P(s\d)-P(d). (1) 
P(s) 

Since we do not know the prior probability of the signal P(s), we can apply 
the second derivation of Bayes’ law as stated in Equation 1: 

P(D1\S1) = a • P(S1\D1) • P(D1) = a • 0.8 • 0.5 = a • 0.4. 

In order to find a, we need to calculate P(D0\S1) as well: 

P(D0\S1) = a • P(S1\D0) • P(D0) = a • 0.3 • 0.5 = a • 0.15. 

According to the foundations of probability theory, we know P(D1\S1) + 
P(D0\S1) = 1. We can use this knowledge to derive a = 1.81 and P(D1\S1) = 
0.73. 



The biomolecular probabilistic inference devices described in the next sections 
of the paper can autonomously update their output probability values, such that 
they match the inference steps described in this example. 

3 Encoding Input Evidences 

Normally, a biomolecular device that senses real samples expecting a certain 
input signal In would reason as follows: if molecules In are present, the signal 
is present; otherwise the signal is absent. However, the devices that we propose 
use a different type of input logic, where the presence and absence of the signal 
are represented by the presence of different DNA species. 

Thus, our input evidence is encoded using single-stranded DNA. A strand Si 
encodes the presence of an input signal, whereas a strand So encodes the absence 
of the signal. As we are dealing with evidences, only one species can be present 
at a time: either Si (meaning the signal is present) or So (meaning the signal is 
not present). These input signals will tell the sensor that the prior probability 
of the disease needs to be updated according to the given evidence. 

However, if the system is to be able to deal with real biological samples, it 
needs to translate the presence of an external input signal In into strands Si 
(meaning input present in our system) and the absence of In into strands So 
(meaning input absent in our system). A recent bistable implementation us-
ing this DNA toolbox illustrated an excellent way of translating the respective 
signals to produce strands Si and So [21]. In this paper, a bistable switch pro-
ducing a certain type of DNA species (which could be our So) in the absence of 
a certain type of input species In switched to producing another type of DNA 
species (which could be our Si) in the presence of In. This model meets all the 
requirements to encode input evidence in the fashion described above. See [21] 
for details, which are omitted here due to space constraints. 

4 Encoding Prior Probabilities 

As illustrated by the example of Section 2, the prior probability of a disease 

is represented by the duple P(d) = (P(-Di),P(Do)). Our model will use two 

different single-stranded DNA species to encode each possible probability value: 

Di species representing P(D = present) and -Do representing P(D = absent). 

These strands will be produced from two DNA templates, DiDi and -Do-Do. 

When Di strands interact with their respective DiDi templates, Di production 

increases (see Figure 2). At the same time, exonuclease degrades the production 

of Di at a certain rate. The equations below govern this behavior: 

Di + DiDi N Di • DiDi - ^ Di + Di + D~D~ (2) 
a d 

Di — ^ <f>, ( 3 ) 



where ka is the association constant of Di, K,* is the dissociation constant 

of Di from the DNA template, kd*c is the degradation rate of Di, and kci^t is 

the rate of production of new strands Di. The constant really includes several 
reactions (polymerization, nicking and dissociation), but is confined to one here 
for reasons of space. Therefore, we would expect kc*t << kEi and thus the 
respective Michaelis-Menten constant of the catalysis reaction would be KEi ~ 

Kd* ( # m = (ka* • Kd* + kcat)/ka*). 

When the system reaches equilibrium, the ratio between the concentration of 
both species will encode the prior probability, such that 

\I?-]EQ \lf-]EQ 
P(Di)= -±-^ = L^l— ? (4) 

[Di]EQ 
i=0 

where A represents the sum of [D0] and [D1] that encodes the maximum proba-

bility 1. Each equilibrium concentration [Di]E® is a function of the initial con-

centration of the templates DiDi. Section 6 shows the derivation of this function. 

D0 D0 D[ Dt 

Fig. 2. Encoding prior probabilities. Thick regions of the strands represent the nickase 

recognition sequence. When a strand Di at the top of the figure binds a template strand 

DiDi at the bottom of the figure, they form a complex Di'.DiDi then DNA polymerase 

extends the upper strand to form the duplex DiDcDiDi and finally the enzyme nickase 

cleaves the newly polymerized strand in the middle. After the Di strands dissociate 

from the template due to their short length, they can either be degraded by the exonu-

clease (arrows pointing to <f>) or be recruited again by the template to produce more 

strands Di. 

5 Encoding Conditional Probabilities 

Conditional probabilities require the encoding of four different probability val-
ues: P(S0\D0), P(S0\D1), P(S1\D0) and P(S1\D1). Two different types of DNA 
templates will be used in the encoding of each probability value (see left side of 
Figure 3): 

— Templates with format Di'.Di A Sj produce species Di A Sj in the presence 

of input strands Di (see Figure 3), such that when the system reaches equi-

librium [Di A Sj] Q is a function of [Di] ^ and [Di'.Di A Sj]. The relative 

D0 D0 D1 D1 



concentration of the templates with format Di: Di A Sj encodes each condi-
tional probability value, such that: 

P(Sj\Di) = 
pi:j • [bi-.DiASj] 

pi:j • [bi-.DiASj] 
j=0 

(5) 

Y^Pij • [Di-.DiASj]= Y^Pkj • [Dk:DkASj]=~f,k^i, 
0 =0 3=0 

(6) 

where fiij is a normalization coefficient and 7 is the total normalized concen-

trat ion of s trands [Di'.Di A Sj] tha t represents probability 1. Section 6 will 

show the meaning of the (3ij coefficients and how [Di A Sj] E® is proportional 

to the product of [Di] E® and [Di :Di A Sj]. 

— Templates with format Di A Sj : D^ have a twofold objective. First, they gen-

erate the output species D^, whose relative concentration will encode the 

posterior probability of the disease given the signal (P(d\s)). Second, in con-

junction with the input signal species Si, they select what posterior prob-

ability computation should be produced as output: when the input signal 

is S1 (S0), it binds and inactivates the strands Di A S0'.D^ (Di A S1: D^) 

(see the crossed-out arrows in Figure 3), so tha t there is only one source of 

species D[ and another of D'0, whose ratio will conform the output proba-

bility: the posterior probability P(Di\Sj) of the disease. All the templates 

with format Di A Sj : D^ must have the same concentration, so tha t there are 

no changes of relative proportions from [IV] in relation to their respective 

source [Di A Sj]. 

The equations below govern the behaviour of these components: 

Di bi-.DiASj 
ka 

+ Di-Di-.Di A Sj ---—> Di + Di:DiSj + Di A Sj (7) 

3 
Di A 5,- + Di A 5,-: D': 

ka ^ t, 
Kd

 3
 fca 

-DihSj-DihSf.D'i---* 

D1. 
3-

-~^- Di A Sj + Di A Sj : D'i + D/ (8) 

• - > 

Sk + Di A Sj : D^ ^ 
fca 

• - > 

Sk-DiASj:D'i, k^j (9) 
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Fig. 3. Encoding conditional probabilities. The prior probability strands Di bind the 

templates on the left side, enabling the production of Di A Sj strands (via polymer-

ization and nicking) used to encode conditional probability. These strands will then 

activate the templates on the right side not protected by the input strands Sj (see 

the crossed-out arrows), producing the output strands Di , whose concentration ratio 

encodes the posterior probability P(d\s). 

k 
Di A Sj d" ) <j> (10) 

D'-

Di' -^4> (11) 

s*j -^></>, (12) 

where ka is the association rate of Di, Di A Sj and Sk; Kd i , Kd * 3 and Kd k are 

DiS-: D'i 
their respective dissociation constants; kcl^t

 3 and kc*t are the production rates 

of strands Di A Sj and Di'; kd*c
 3, kd*c and kdec are the degradation constants 

of Di A Sj and Di and Sj. 



6 Inference Process 

6.1 Inference Steps 

A high-level description of the inference process follows: 

Goal. Update the concentration of Di strands once a new signal (S0 or Si) is 

detected. 
Initial set-up. Add templates DiDi (whose concentration is a parameter in the 

encoding of prior probabilities), and templates Di :Di A Sj and Di A Sj '.D ̂  
(whose concentrations are parameters in the encoding of conditional proba-
bilities). 

Step 1. Add some Di, such that templates DiDi bring the production of strands 

Di to its equilibrium concentration [Di]E®, which will be proportional to the 

prior probability P(Di). 

Step 2. The Di species bind the templates Di'.Di A Sj, activating the pro-

duction (via polymerization and nicking) of Di A Sj strands, whose equilib-

rium concentration [Di A Sj] E® is proportional to the conditional probability 

P{Sj\Di). 

Step 3. The newly created “conditional probability strands” Di A Sj bind the 

templates Di A Sj: D^ that are not protected by 5*0 or S\, activating the 
production (via polymerization and nicking) of the output species D^. 

Read-out. The new concentration ratio of Di encodes the posterior probability 
P{Di\Sj). 

This description is refined below providing a more thorough analysis of the pro-
cess with estimations and derivations. 

6.2 Modeling the Inference 

From the equations presented in Sections 4 and 5, we can build a derivation 

that relates the output concentrations [Di1] to the initial concentrations of the 

strands encoding prior and conditional probabilities. 

Based on Equations 2, 3 and the Michaelis-Menten model [25], we can infer 

how [Di] changes in time (see Equation 13) and, applying the equilibrium con-

dition (d[Di]/dt = 0), obtain derivations for [Di]E® (see Equation 14) and the 

initial [DiDi] (see Equation 15): 

d0i] k* • 0i] • [D~Di] 

dt K°< + [Hi] 
^dec ' [Di] (13) 

k° v K 4-

[Di] ^ = Cp [DiDi] — Kd i (14) 
K
d 



[DiDi]= -^{[Di] EQ + K^) (15) 

A similar procedure can be applied for Di A Sj from Equations 7 and 10, 

obtaining a derivation for [Di A Sj] E® (see Equations 16 and 17). We are as-

suming Kd i » [Di], which could be achieved with an appropriate temperature 

increase: 

Di/\S 

"77 = c° D [Di] • [Di :DiSj] — kdec
 3 • [Di A Sj] 

dt K 
(16) 

[D~AS"j] E<J 
DiASj 

KDi ·kDi Sj 

d dec 

•0i] • [Di-.DiSj] (17) 

The formulation of [Di1] is a bit more intricate, because the Michaelis-Menten 

derivation needs to consider the interaction of the inhibiting input species Si, 

which represses the catalysis. Based on Equations 8, 9 and 11, and also assuming 

Kd
 3 >> [Di A Sj], we can infer [Di'] E® (see Equations 18 and 19): 

d[Dj'] 
dt 

'*%t-[D~AS*]-[DiASj:D>i\ D> -f 
dec ' V i 1 

3=0 K 
DiAS 3

 (1 +
 [

^tj]) 
(18) 

[D >EQ 

D; 
^ 

j=0 Kd 

DiASj k 
di • (1 + ^ 

-—[Di A Sj] • [Di A Sj : D'i] . (19) 

- ) 

Taking into account that species S0 and S1 are never present at the same 

time, [Si] >> [Di A Sj]+ [Di A Sj :D'j\ and Kd k << Kd * 3, we can neglect the 

terms of the sum in Equation 19 where [S^] > 0 and derive a simpler expression 

for [D^]: 

\D-']EQ 

1 l [ S j ] = 0 , [si*1 >0 
K 

£>.' 

DiASj k T[DiASj]-[DiASj:D'i] (20) 

Substituting Equation 17 in Equation 20, and reordering constant values to 
the left and variables to the right: 

D; 

\D-']EQ 

1 l [Sj]=0 , [S^3]>0 

DiASj 
^ • C M A A ^ f l ; ] 

K 
DiASj UD'i KDi > ^ A S 3 -

^dec ' d ' "-dec 

[Di-.DiSj] • 0i] = 

(3ij • [Di'.DiSj] • [Di] . (21) 

1 

1 



In the above Equation 21, all the constant terms have been grouped in the pa-

rameter j3ij (already introduced in Equations 5 and 6). The term [Di] is propor-

tional to the prior probability (see Equation 4), and the product /3jj • [Di :DiSj] 

is proportional to the conditional probability (see Equation 5). The derivation 

below shows how the ratio between [DQ']EQ and [D\']EQ determines posterior 

probability P(d[s): 

0i'] EQ fa • [Di-.DiSj] • 0i] 
— ^ ^ j ^ j ^— 

[D0']
EQ + [DX']EQ p0j • [Do-.DoSj] • [D0] + / 3 y • [D^.D^] • [Dt] 

l3ij-^--P{Sj\Di)-X-P{Di) 
— — 

POJ • -fa • P(Sj\D0) • A • P(D0) + Pij • jfc • P{Si\Dl) • A • P(DX) 
PjSjlDj) • P(Dj) PjSjlDj) • P(Dj) _ p(n,„s 

~ PiSjlDo) • P(D0)+ PiSjlDi.) • P(Di.) ~ Pjs~) ~ ( ^ j ' ' 

7 Discussion 

The DNA biosensor presented here operates as a Bayesian inference device. It 
is capable of introducing quantitative information, highlighted by the molecular 
indicators or signals, into the tests. It builds on our previous work [24], but uses 
the DNA toolbox recently introduced by Rondelez [20,21] instead of the DNA 
strand displacement operation. Another aim was to map the basic concepts of 
probability theory and Bayesian inference into the toolbox motifs, for use as 
design patterns when implementing Bayesian reasoning with DNA. 

The example detailed in Section 6 has used only one input signal. For this 
model to have realistic applications in genetic diagnosis, however, it needs to 
deal with more than one signal (s1,..., sn) for the same disease d (superscripts 
denote the signal number). According to Equation 1, the following formulation 
of Bayes’ law would need to be solved: P(d\s1,..., sn) = a • P(d) • P(s1,..., sn\d). 
Assuming conditional independence of the signals given the disease (as in the 
naïve Bayes model [26]) we can derive the following expression: P(d\s1,..., sn) = 
a • P(d) • P(s1\d) • ... • P(sn\d), meaning the initial probability statement with 
multiple input signals can be decomposed into conditional probability products, 
which can be encoded by cascading the devices presented here. 

This research has addressed the two main improvement opportunities of the 
work that we presented elsewhere [24]: 

Reusability. Devices are conceived for just one use. If the inputs are altered af-
ter the output signals become stable, the new output would not be correct 
any more. We would need a new initialised set of devices to deal with a 
new input. This research solves this problem with the action of the single-
strand specific exonuclease, which periodically degrades all the non-template 



strands not protected at their 5’ end. This way, when the initial intput 
data flux Si~ is stopped in favor of the new flux S^ (k = k';k,k' € 0..1), 
the system will converge to the total elimination of S^ (since that species 
is only degraded and not replenished). The same should happen with the 

intermediate species L>i A Sj and output species D ̂  , driving the system to 
converge to a the correct output for input Sk> . 

Signal attenuation. In theory, the model in [24] was also able to deal with mul-
tiple input signals by cascading the outputs as inputs of other conditional 
probability devices downstream. However, each inference iteration would at-
tenuate the signal by an average of 50%. The replacement of strand dis-
placement by an enzymatic catalysis, with inherent amplification capabili-
ties, overcomes this drawback allowing longer inference cascades and thus 
more input signals. 

8 Conclusions and Future Work 

We have designed a biomolecular probabilistic expert system for genetic diagno-
sis. This is an enzyme-driven DNA device able to: 

1. Encode diagnostic probabilistic information in single-stranded DNA. 
2. Sense DNA inputs. 
3. Process probabilistic information, encoded either as a steady state concen-

tration of single-stranded DNA (for prior probabilities) or as a fixed concen-
tration of single-stranded DNA (for conditional probabilities). 

4. Release output molecules (duples of single-stranded DNA encoding a prob-
ability proportional to their concentration ratio). 

5. Update the probability of the disease depending on the different single-
stranded DNA inputs detected following Bayes’ rule. 

The model is autonomous and can be implemented according to the DNA 
toolbox presented in [20,21]. We think this and the other model that we in-
troduced in [24] have the potential to deliver new quantitative applications of 
probabilistic genetic diagnosis in vitro. We plan to build, improve and generalize 
both models in a wet lab to work with all types of Bayesian networks (and not 
just naïve Bayes approaches [26]). 
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