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Probabilistic representation formula for the solution of fractional
high-order heat-type equations

Stefano Bonaccorsi, Mirko D’Ovidio and Sonia Mazzucchi

Abstract. We propose a probabilistic construction for the solution of a general class of fractional high-order
heat-type equations in the one-dimensional case, by using a sequence of random walks in the complex
plane with a suitable scaling. A time change governed by a class of subordinated processes allows to handle
the fractional part of the derivative in space. We first consider evolution equations with space fractional
derivatives of any order, and later we show the extension to equations with time fractional derivative (in the
sense of Caputo derivative) of order α ∈ (0, 1).

1. Introduction

The connection between partial differential equations and stochastic processes or,
more generally, functional integration, is an extensively developed theory which cov-
ers one-dimensional, finite-dimensional and infinite-dimensional problems. Since this
paper is mainly devoted to the one-dimensional case, we shall specialize this intro-
duction to such problems. The first and main example is the Feynman–Kac formula
[33,34] providing the solution of the Cauchy problem for the “heat equation with
sink”

∂t u(t, x) = 1

2
∂2x u(t, x) + V (x)u(t, x), x ∈ R, t ∈ R

+, (1)

in terms of a Wiener integral of the form

u(t, x) = E

[
u(0, x + W (t))e

∫ t
0 V (x+W (s)) ds

]
,

where W = (W (t))t≥0 denotes a one-dimensional Wiener process.
In fact, the connection between heat equation andWiener process is just a particular

case of a general theory connectingMarkov processes with parabolic equations associ-
ated with second-order elliptic operators (see [21,25]). In the general, d-dimensional
case, we are given a Lipschitz map σ : R

d → L(Rd , R
d) from R

d to the d × d
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matrices, a Lipschitz vector field b : R
d → R

d and a d-dimensional Wiener process
W = (W (t))t≥0. The solution of the Cauchy problem

{
∂
∂t u(t, x) = 1

2Tr [σ(x)σ ∗(x)∇2u(t, x)] + 〈b(x),∇u(t, x)〉 + V (x)u(t, x),
u(0, x) = u0(x)

(2)

is related to the solution Xx = {Xx (t)}t≥0 of the stochastic differential equation

{
dXx (t) = b(Xx (t)) dt + σ(Xx (t)) dW (t),
Xx (0) = x, x ∈ R

d (3)

by the probabilistic representation formula:

u(t, x) = E

[
u(0, Xx (t))e

∫ t
0 V (Xx (s)) ds

]
, t ≥ 0, x ∈ R

d . (4)

One possible extension of the heat equation occurs if we replace the right-hand side
of (1) by a spatial fractional derivative operator ∂α

x , namely by a Fourier operator with
symbol ψ(y) = (−iy)α , which leads to the equation

∂t u(t, x) = −∂α
x u(t, x), x ∈ R, t ∈ R

+, α ∈ (0, 1). (5)

Fractional powers of operators have been introduced in [17,24] where the authors
considered fractional powers of the Laplace operator. For a closed linear operator A,
the fractional operator (−A)α has been investigated by many researchers, and the
reader can consult the works [8,30,39,40,66], for example. Equation (5) is associated
with a Lévy process {Hα(t)}t≥0 called α-stable subordinator for α ∈ (0, 1) (see [14]
and Appendix A). In particular, the Laplace transform of Hα(t) has the form

E[e−λHα(t)] = e−tλα

, λ ∈ R
+;

hence, the solution of the Cauchy problem associated with Eq. (5) is given by

u(t, x) = E
[
u(0, x − Hα(t))

]
. (6)

The generalization of these results to different types of PDEs which do not satisfy
the maximum principle is in general not possible [20]. In particular, a probabilistic
representation of the form (4) or (6), giving the solution in terms of the expectationwith
respect to a real stochastic process with independent increments, cannot be proved in
case the second-order elliptic operator on the right-hand side of Eq. (2) is replaced by
a differential operator of order N > 2, obtaining a high-order heat-type equation of
the form

∂t u(t, x) = β

N !∂
N
x u(t, x), x ∈ R, t ∈ R

+, (7)

where β is a real constant satisfying some conditions on the sign, while the 1
N ! term

is the analog of the factor 1
2 for the heat equation. In fact, this no-go result was stated
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originally by Krylov [42] in the case where N = 4 and is related to the non-positivity
of the solution g ≡ g(t, x) of the problem

⎧⎨
⎩

∂t g = 1

N !∂
N
x g

g(x, 0) = δ(x), x ∈ R

(8)

as well as the rather restricting conditions for the generalization of Kolmogorov exis-
tence theorem to the limit of a projective system of either signed or complexmeasures
(see [68] for this result and [1] for a discussion of its implication in the construction
of a probabilistic representation for the solution of high-order PDEs).
The problem of a probabilistic representation for the Cauchy problem associated

with Eq. (7), namely a generalized Feynman–Kac formula, is extensively studied and
different approaches have been proposed, in particular in the case N = 4. One of the
first approaches was introduced by Krylov [42] and continued by Hochberg [31], who
introduced a stochastic pseudo-process whose transition probability function, defined
as the solution of (8), is not positive definite. The generalized Feynman–Kac formula is
constructed in terms of the expectation with respect to a signed measure on R

[0,t] with
infinite total variation. For this reason, the integral on R

[0,t] is not defined in Lebesgue
sense, but is meant as limit of finite-dimensional cylindrical approximations [10]. It is
worth mentioning the work by Levin and Lyons [45] on rough paths, conjecturing that
the signed measure (with infinite total variation) associated with the pseudo-process
could exist on the quotient space of equivalence classes of paths corresponding to
different parametrizations of the same path. Properties of the pseudo-process X (t)
associated with the signed measure P, corresponding to the fundamental solution of
(8) via the identity Px (X (t) ∈ dy) = p(t, x, dy), were studied by several authors,
see, e.g., [31,32,43,54–57]. It should be noticed that, in the case N = 4, paths of X (t)
are not continuous.
A different approach was proposed by Funaki [26] and continued by Burdzy and

Ma̧drecki [18], based on the construction of a complex-valued stochastic process with
dependent increments, obtainedby a certain compositionof two independentBrownian
motions.
Recently, in [15] a new approach has been proposed. Starting from the weak conver-

gence of the scaled random walk on the real line Sn(t) := 1√
n

∑�nt�
j=1 ξ j to the Wiener

process B(t) (ξ j for j = 1, . . . , n being independent identically distributed Bernoulli
random variables such that P(ξ j = 1) = P(ξ j = −1) = 1/2), the solution of the heat
equation can be written as the limit u(t, x) = limn→+∞ E[u(0, x + Sn(t))] . This for-
mula can be generalized to the case of Eq.(7) with N ∈ N and N > 2, by constructing
a sequence of complex random walks {WN ,β

n (t)}n∈N as WN ,β
n (t) := 1

n1/N
∑�nt�

j=1 ξ j ,
where ξ j for j = 1, . . . , n is a sequence of independent identically distributed complex
random variables uniformly distributed on the set of N th roots of β. In fact, if N > 2,
the particular scaling exponent 1/N appearing in the definition of WN ,β

n (t) does not
allow the weak convergence of the sequence of random variables WN ,β

n (t). However,
for a suitable class of analytic initial data u0 : C → C, the limit of the expectation,
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namely limn→∞ E

[
u0(x + WN ,β

n (t))
]
, exists and provides a probabilistic represen-

tation for the solution of Eq. (7). Properties of the random walks WN ,β are further
studied in [16], where a kind of Itô calculus is introduced, by the construction of the
Itô integral and an Itô formula for the limit of these processes. A similar approach to
pseudo-processes was introduced by Lachal [44] for N even. In that paper, the ξ j ’s
take values in the discrete set {−N/2,−N/2+1, . . . , N/2−1, N/2}with (positive or
negative) real pseudo-probabilities P(ξ = k) = δk=0 + (−1)k−1

( N
k+N/2

)
. He proves

that with the same scaling exponent as ours, his sequence of pseudorandom walks
converges to the pseudo-process associated with the signed measure P introduced
before.
An extension of Eq. (8) to the case of higher-order space fractional derivatives, by

replacing the order N ∈ N with the product Nα, with N ∈ N and α ∈ (0, 1), has been
obtained in [60]. The authors define a sequence of pseudorandom walks, converging
weakly to pseudo-processes stopped at stable subordinators. The fundamental solution
of higher-order space fractional heat-type equations is obtained as the limit of the
(signed) laws of the pseudorandom walks, which are signed measures.
A related problem is the study of time fractional equations of the form

DDDα
t u(t, x) =Au(t, x),

u(0, x) = f (x),
(9)

where A = β
N !∂

N
x and the time fractional derivative DDDα

t must be understood in the
Caputo sense.
The fractional diffusion equations are related to the so-called fractional and anoma-

lous diffusions, that is, diffusions in non-homogeneous media with random fractal
structures; see, for instance, [47]. The term fractional is due to the replacement of
standard derivatives with respect to time t with fractional derivatives and the corre-
sponding equations describe delayed diffusions. However, we do not care about the
geometrical structure of the medium, and therefore, our meaning of fractional diffu-
sions is far from the definition of fractional diffusions introduced in [7]. Anomalous
diffusion occurs when the mean square displacement (or time-dependent variance) is
stretched by some index, in other words proportional to tα , for instance. In the litera-
ture, equation (9) is used as amathematicalmodel of awide range of important physical
phenomena, usually named sub- or super-diffusions, for instance, in microelectronics
(dielectrics and semiconductors), polymers, transport phenomena in complex systems
and anomalous heat conduction in porous glasses and randommedia (see, for instance,
[27,28,50,62]).
Fractional diffusion equations as (9) where N = 2 have been investigated by several

researchers. In [37,53,67], the authors established the mathematical foundations of
fractional diffusions. In [63,67] and later in [23,29], the authors studied the solutions
to the heat-type fractional diffusion equation and the corresponding representation of
the solutions in terms of Fox’s functions. The explicit representation of the solutions
by means of stable densities has been studied in [11,58] and, in the case α = 1/2n ,
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Orsingher [58] proved the connection of this solutionwith the distribution of n-iterated
Brownian motion.
For a general operator A acting in space, several results can also be listed. Nigmat-

ullin [53] gave a physical interpretation when A is the generator of a Markov process.
Zaslavsky [69] introduced the fractional kinetic equation for Hamiltonian chaos. The
problem concerning an infinitely divisible generator A on a finite-dimensional space
has been investigated in [4]. In general, a large class of fractional diffusion equations
are solved by time-changed stochastic processes. We usually refer to such processes
as stochastic solutions to the driving equations. Stochastic solutions to fractional dif-
fusion equations can be realized through time change by inverse stable subordinators;
see, for example, [46,58]. Indeed, for a guiding process X (t)with generator Awe have
that X (Lα(t)) is governed by ∂α

t u = Au where the process Lα(t), t > 0 is an inverse
or hitting time process to an α-stable subordinator. The time fractional derivative
comes from the fact that X (Lα(t)) can be viewed as a scaling limit of continuous time
random walks where the iid jumps are separated by iid power-law waiting times (see
[48,49]). The interested reader can find a short survey on these results in [52]. Results
on subordination principles for fractional evolution equations can be found in [9,17].
Besides the interest in studying fractional equations, many researchers have concen-

trated their efforts toward the study of the higher-order counterpart (13) of fractional
equations; see, for example, [2,5,19,22,35,51]. When the underling operator gener-
ates a strongly continuous semigroup, the time-changed process can be considered in
order to study the fractional diffusion equations and also, the higher-order equation
with a non-homogeneous term involving higher-order powers of the driving operator.
The reader can consult Keyantuo and Lizama [35] and the references therein.
The first aim of the present work is the generalization of the construction in [15] to

the case of higher-order fractional derivatives of order Nα, with N ∈ N andα ∈ (0, 1).
After a couple of sections where we introduce some preliminary results, mainly taken
from [15] and [16], in Sect. 4 we provide a probabilistic representation of the solution
to a family of equations of the form

∂t u = −Au, (10)

where A : D(A) ⊂ L2(R) → L2(R) is a Fourier integral operator with symbol

 : R → C either of the form 
(y) = c(iy)Nα or 
(y) = c′|y|Nα , with c, c′ ∈ C

suitable constants.
As opposite to [60], in our approach the solution of the equation is given in terms

of the limit of expectations with respect to the probability laws of rather simple jump
processes in the complex plane, without the need to introduce signed probabilities.
By subordinating the sequence of complex random walks WN ,β

n (t) associated with
the N th-order Eq. (7) with a sequence of processes {Sα

m(t)}m∈N converging weakly
as m → +∞ to the α-stable process Hα(t), a sequence {Xn,m(t)}(n,m)∈N2 of jump

processes on the complex plane is defined as Xn,m(t) := WN ,β
n (Sα

m(t)). It converges
formally to an Nα-stable process in the sense that
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lim
m→∞ lim

n→∞ E

[
eiyXn,m (t)

]
= e

−t
(
(−1)N+1i N β

N ! yN
)α

, y ∈ R.

This result allows the representation of the solution to (10) with Âu(y) :=(
(−1)N+1i NβyN

N !
)α

û(y) (the symbol ˆ denoting the Fourier transform) as the limit

lim
m→∞ lim

n→∞ E

[
u0
(
x + WN ,β

n (Sα
m(t))

)]
, t ∈ R

+, x ∈ R, (11)

for a suitable class of analytic initial data u0. Moreover, we show that in the case the
symbol of the operator A has the form 
(y) = |y|Nα , the solution of (10) can still be
given by a formula

lim
m→∞ lim

n→∞ E

[
u0
(
x + Xn,m(t) + X̃n,m(t)

)]
, t ∈ R

+, x ∈ R,

where Xn,m(t) and X̃n,m(t) are two independent copies of the process Xn,m(t) =
WN ,β

n (Sα
m(t)) and X̃n,m(t) = WN ,β ′

n (Sα
m(t)), constructed, respectively, by setting β =

N ! and β ′ = −N !.
In Sect. 5, we also consider time fractional equations of the form (9) and we prove

that the solution of the initial value problem, for a suitable class of initial data f , is
given by

u(t, x) = lim
n→+∞ E

[
f (x + WN ,β

n (Lα(t)))
]
, (12)

where Lα(t) is the inverse of the subordinator Hα(t).
Furthermore, in the case where α = M−1 for some M ∈ N, M > 1, we prove that

problem (9) is equivalent to the diffusion equation with non-local forcing term of the
form

∂t u(t, x) = A1/αu(t, x) +
1/α−1∑
k=1

1

�(αk)
tαk−1Ak f (x),

u(0, x) = f (x),

(13)

in the sense that both problems share the same solution (12).

2. A sequence of random walks on the complex plane

The present section is devoted to the construction of a sequence of random walks in
the complex plane whose limit can be interpreted in a very weak sense (see Theorem
1) as an N -stable stochastic process, with N ∈ N.

Let (�,F , P) be a probability space. Let β be a complex number and N ≥ 2 a
given integer.
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Let R(N ) = {e2iπk/N , k = 0, 1, . . . , N − 1} denote the set of the N -roots of
the unity and let us consider the complex random variable ξN ,β that has uniform
distribution on the set β1/N R(N ), namely for any function f : C → C:

E[ f (ξN ,β)] = 1

N

N−1∑
k=0

f (β1/Ne2iπk/N ). (14)

The random variable ξN ,β has some interesting properties (see [15] for detailed
calculations). Indeed it admits (complex) moments of any order:

E[ξmN ,β ] =
{

βm/N , m = nN , n ∈ N,

0, otherwise.
(15)

In particular, its characteristic function is

ψξN ,β
(λ) = 1

N

N−1∑
k=0

exp(iβ1/Nλe2iπk/N ).

Further, we may compute the absolute moments of ξN ,β obtaining

E[|ξN ,β |m] = |β|m/N .

Equation (15) is the starting point for the construction of a particular sequence
of random variables on the complex plane which converges (in a sense that will be
explained soon) to a stable random variable of order N ≥ 2.

Let {ξ j , j ∈ N} be a sequence of iid random variables having uniform distribution
on the set β1/N R(N ) as in (14). Let S(N , β)n be the random walk defined by the {ξ j },
i.e.,

S(N , β)n =
n∑
j=1

ξ j .

Interesting properties of the complex randomwalk S(N , β)n in the case β = 1 have
been investigated in [15].
Consider the case where N = 3 and the walk S(3, 1)n occurs on the regular lattice

generated by the vectors {(1, 0), (− 1
2 ,

√
3
2 ), (− 1

2 ,−
√
3
2 )}, considered as a directed

graph. Therefore, the motion is 3-periodic, and a return to the origin only happens if
the same number of steps is made in every direction. Therefore, we compute

P(S(3, 1)3m = 0) = (3m)!
(m!)3

1

33m
,

and Stirling’s formula implies P(S(3, 1)3m = 0) ∼ 1
2π m ; hence, the expected number

of returns to the origin is

∞∑
m=1

P(S(3, 1)3m = 0) ∼
∞∑

m=1

1

m
= +∞,
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and the process is recurrent.
The case N = 4 corresponds to the standard, two-dimensional randomwalk; hence,

themotion is 2-periodic on the latticeZ
2 (this time considered as an undirected graph).

Finally, the motion is recurrent.
In the case where N = 5, the process is transient. Indeed, in this case, the motion

is again 5-periodic and the only way to return to the origin is taking the same number
of steps in each direction. Hence, again by an application of Stirling’s formula,

P(S(5, 1)5m = 0) = (5m)!
(m!)5

1

55m
∼

√
5

(2π m)2
,

and the expected number of returns is finite:

∞∑
m=1

P(S(5, 1)5m = 0) ∼
∞∑

m=1

√
5

(2π m)2
< ∞.

However, for N > 5 the following result holds [15].

Proposition 1. Let N ≥ 5. The process {S(N , 1)n} is neighborhood-recurrent, i.e.,
for every x in the lattice generated by the basis {β1/Ne2π ik/N , k = 0, 1, . . . , N − 1}
it holds

P(|S(N , 1)n − x | ≤ ε infinitely often) = 1, ∀ε > 0.

By the classical central limit theorem, the sequence 1
n1/2

S(N , β)n converges to a
Gaussian random variable for any N ∈ N and β ∈ C. However, if we consider a
normalized random walk S̃(N , β)n defined as

S̃(N , β)n = 1

n1/N
S(N , β)n,

then we have convergence to a stable distribution of order N in the sense that (see [15,
Theorem 2])

lim
n→∞ E[exp(iλS̃(N , β)n)] = exp

(
i Nβ

N ! λN
)

. (16)

It is important to remark that for N > 2 the sequence S̃(N , β)n cannot converge
in distribution because of the scaling exponent 1/N . In fact, for N > 2, the function
exp(cxN ) is not a well-defined characteristic function. Equation (16) states that even
if the distributions of S̃(N , β)n cannot converge weakly to a measure, the integral of
suitable functions (the exponentials) with respect to these measures has a well-defined
limit as n → ∞.

It is possible to extend the definition of S̃(N , β)n to a continuous time process
and construct a sequence of random walks WN ,β

n (t) on the complex plane such that
S̃(N , β)n = WN ,β

n (1). Given a sequence {ξ j } of independent copies of the random

Author's personal copy
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variable ξN ,β defined in (14), let us consider for t > 0 the process WN ,β
n (t) defined

by

WN ,β
n (0) = 0;

WN ,β
n (t) = 1

n1/N

�nt�∑
j=1

ξ j = 1

n1/N
S(N , β)�nt�. (17)

The processWN ,β
n has some interesting properties. The following lemma shows the

particular behavior of the complex moments.

Lemma 1. For k ∈ N and t ∈ R
+, the k-moment of W N ,β

n (t) satisfies

E[(WN ,β
n (t))k] =

⎧⎨
⎩

(
βt
N !
)k/N

k!
(k/N )!1[0,�nt�](k/N ) + R(n, k; t), k = hN , h ∈ N,

0, otherwise,

(1[0,�nt�] being the indicator function of the interval [0, �nt�]).
For k = 0 and k = N, i.e., for h = 0 and h = 1, the remainder term vanishes. For

k = hN, h ∈ N, h ≥ 2, the remainder term R(n, k; t) satisfies the following estimate:

|R(n, hN ; t)| ≤ |β|hth−1(h2 + h)

2n

(hN )!
h!(N !)h + |β|hth−1

n

(
0.792hN

log(hN + 1)

)hN

.

Proof. Let WN ,β
n (t) = 1

n1/N
∑�nt�

j ξ j and ψn be its characteristic function, namely:

ψn(λ) := E[eiλWN ,β
n (t)].

We have that

E[(WN ,β
n (t))k] = (−i)k

dkψn

dλk
(0),

where ψn is equal to

ψn(λ) =
(

E

[
exp(

1

n1/N
iλξ)

])�nt�
=
(

ψξ

(
λ

n1/N

))�nt�
,

with ψξ being the characteristic function of ξ . By Faá di Bruno’s formula [41]

dkψn

dλk
(λ) =

∑
π∈�

C(|π |, λ)
∏
B∈π

(
ψ

(|B|)
ξ (λ/n1/N )

n|B|/N

)
, (18)

where π runs over the set � of all partitions of the set {1, . . . , k}, B ∈ π means that
the variable B runs through the list of blocks of the partition π , |π | denotes the number
of blocks of the partition π and |B| is the cardinality of a set B, while the function
C : N × R → C is equal to

C( j, λ) =
{ �nt�!

(�nt�− j)!
(
ψξ (λ/n1/N )

)�nt�− j
, �nt� ≥ j

0, otherwise.
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Formula (18) can be written in the equivalent form:

dkψn

dλk
(λ) =

∑ k!
m1!m2! · · ·mk !

�nt�!
(�nt� − (m1 + m2 + · · · + mk))!

×
(
ψξ (λ/n1/N )

)�nt�−(m1+m2+···+mk )

�k
j=1

⎛
⎝ψ

( j)
ξ (λ/n1/N )

j !n j/N

⎞
⎠

m j

,

(19)

where the sum is over the k-tuple of nonnegative integers (m1,m2, . . . ,mk) such that
m1 + 2m2 + · · · + kmk = k and m1 +m2 + · · · +mk ≤ �nt�. In particular, we have:

dkψn

dλk
(0) =

∑
π∈�

�nt�!
(�nt� − |π |)!�B∈π

(
ψ

(|B|)
ξ (0)

n|B|/N

)
, (20)

where the first sum runs over the partitions π such that |π | ≤ �nt� or equivalently

dkψn

dλk
(0) =

∑ k!
m1!m2! · · ·mk !

�nt�!
(�nt� − (m1 + m2 + · · · + mk))!�

k
j=1

⎛
⎝ψ

( j)
ξ (0)

j !n j/N

⎞
⎠
m j

.

(21)

Since ψ
( j)
ξ (0) = (i) jE[ξ j ], and E[ξ j ] �= 0 iff j = mN , with m ∈ N, then product

�k
j=1

(
ψ

( j)
ξ (0)

j !n j/N

)m j

is non-vanishing iffm j = 0 for j �= lN and k = NmN +2Nm2N +
· · · , i.e., if k is a multiple of N . Analogously in the sum appearing in formula (20),
the only terms giving a non-vanishing contribution correspond to those partitions π

having blocks B with a number of elements which is a multiple of N , giving, for
k = hN :

dhNψn

dλhN
(0) = i hN

βh

nh
∑
π∈�

�nt�!
(�nt� − |π |)! , (22)

where again the sum runs over the partitions π such that |π | ≤ �nt�. Equivalently:
dhNψn

dλhN
(0) =

∑ (hN )!
(mN )!(m2N )! · · · (mhN )!

�nt�!
(�nt� − (mN + m2N + · · · + mhN ))!�

h
l=1

×
⎛
⎝ψ

(lN )
ξ (0)

(lN )!nl

⎞
⎠
mlN

,

=
∑ (hN )!

(mN )!(m2N )! · · · (mhN )!
�nt�!

(�nt� − (mN + m2N + · · · + mhN ))!�
h
l=1

×
(

i lNβl

(lN )!nl
)mlN

,
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= ihNβh

nh

∑ (hN )!
(mN )!(m2N )! · · · (mhN )!

× �nt�!
(�nt� − (mN + m2N + · · · + mhN ))!�

h
l=1

1

((lN )!)mlN
,

where the sum is over the h-tuple of nonnegative integers (mN ,m2N , . . . ,mhN ) such
that mN + 2m2N + · · · + hmhN = h and mN +m2N + · · · +mhN ≤ �nt�. Hence, we
have

E[(WN ,β
n (t))hN ] = βh

∑ (hN )!
(mN )!(N !)mN (m2N )!(2N )!m2N · · · (mhN )!(hN )!mhN

× �nt�!
nh(�nt� − (mN + m2N + · · · + mhN ))! .

When n → ∞, the leading term in the previous sum is the one corresponding to
mN = h (hence m2N = · · · = mhN = 0), which is equal to

βh (hN )!
(mN )!(N !)h

�nt�!
nh(�nt� − h)! = βhth

(hN )!
h!(N !)h + βh (hN )!

h!(N !)h
( �nt�!
nh(�nt� − h)! − th

)
.

In the case where �nt� < h, this term does not appear in the sum and we can set it
equal to 0. In the case where �nt� ≥ h, we can estimate the quantity inside brackets
as:

∣∣∣∣
�nt�!

nh(�nt� − h)! − th
∣∣∣∣ = 1

nh

∣∣∣−(nt)h + �h−1
j=0(�nt� − j)

∣∣∣

= 1

nh

∣∣∣�h−1
j=0

(
(�nt� − j) + ({nt} + j)

)− �h−1
j=0(�nt� − j)

∣∣∣

≤ 1

nh

h−1∑
j=0

({nt} + j)�k �= j nt

= (nt)h−1

nh

h−1∑
j=0

({nt} + j) ≤ (nt)h−1

nh

h−1∑
j=0

(1 + j) = th−1(h2 + h)

2n
,

where in the second line we have used that if a j , b j ∈ R, with a j , b j ≥ 0 for all
j = 0, . . . ,m, then (see Appendix)

�m
j=0(a j + b j ) − �m

j=0a j ≤
m∑
j=0

b j�k �= j (ak + bk).

Hence,

|R1(n, h; t)| =
∣∣∣∣βh (hN )!

(mN )!(N !)h
�nt�!

nh(�nt� − h)! − βhth
(hN )!
h!(N !)h

∣∣∣∣

≤ |β|hth−1(h2 + h)

2n

(hN )!
h!(N !)h .
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By using formula (22), the remaining terms in the sum (corresponding to the h-tuple
(mN ,m2N , . . . ,mhN ) with mN < h) are bounded by

R2(n, h; t) = βh

nh
∑
π∈�

�nt�!
(�nt� − |π |)! − βh (hN )!

(mN )!(N !)h
�nt�!

nh(�nt� − h)!

≤ βh

nh
∑
π∈�

�nt�h−1 = βh

n
th−1BhN ,

where BhN is the Bell number, i.e., the number of partitions of the set {1, . . . , hN }.
In particular, for any h ∈ N (see [13]) BhN <

(
0.792hN

log(hN+1)

)hN
; hence,

|R2(n, h; t)| ≤ |β|hth−1

n

(
0.792hN

log(hN + 1)

)hN

.

�

A direct consequence of Lemma 1 is the following theorem, which generalizes
formula (16) to the sequence of random walks WN ,β

n .

Theorem 1. For any β ∈ C and N ∈ N, N ≥ 2, the sequence of random walks W N ,β
n

converges weakly to a N-stable process in the sense that for any t ≥ 0 and λ ∈ R the
following holds:

lim
n→∞ E[exp(iλWN ,β

n (t))] = exp

(
i Nβt

N ! λN
)

. (23)

Proof.

lim
n→∞ E[exp(iλWN ,β

n (t))] = lim
n→∞ lim

m→∞

m∑
k=0

1

k! i
kλkE[(WN ,β

n (t))k]

= lim
n→∞

�nt�∑
h=0

i hNλhN

(hN )!
(

βt

N !
)h

(hN )!
h!

+ lim
n→∞ lim

m→∞

m∑
h=2

i hNλhN

(hN )! R(n, hN ; t)

= exp

(
i Nβt

N ! λN
)

.

Indeed for m, n ∈ N

∣∣∣∣∣
m∑

h=2

i hNλhN

(hN )! R(n, hN ; t)
∣∣∣∣∣ ≤ C

n
, C :=

∞∑
h=2

th−1 |β|h |λ|hN
(hN )!

(
(h2 + h)(hN )!

2h!(N !)h +
(

0.792hN

log(hN + 1)

)hN
)

< ∞.

�
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Theorem 2. Let f : C → C be an entire analytic function with the power series
expansion f (z) = ∑∞

k=0 akz
k , such that the coefficients {ak} satisfy the following

condition:

∞∑
h=2

|ahN |ch
(

hN

log(hN + 1)

)hN

< ∞ ∀c ∈ R
+. (24)

Then

lim
n→∞ E[ f (WN ,β

n (t))] =
∞∑
h=0

ahN
(hN )!
h!

(
βt

N !
)h

=
∞∑
h=0

f (hN )(0)

h!
(

βt

N !
)h

.

Proof.

lim
n→∞ E[ f (WN ,β

n (t))] = lim
n→∞

∞∑
k=0

akE[(WN ,β
n (t))k]

= lim
n→∞

�nt�∑
h=0

ahN

(
βt

N !
)h

(hN )!
h! + lim

n→∞

∞∑
h=2

ahN R(n, hN ; t)

=
∞∑
h=0

ahN

(
βt

N !
)h

(hN )!
h! .

Indeed, by assumption (24), we have
∣∣∣∣∣

∞∑
h=2

ahN R(n, hN , t)

∣∣∣∣∣ ≤ C

n
,

C :=
∞∑
h=2

|ahN |
(

|β|hth−1(h2+h)

2

(hN )!
h!(N !)h +|β|hth−1

(
0.792hN

log(hN+1)

)hN
)

<∞,

where the series on the right-hand side is convergent thanks to condition (24). �

Remark 1. Let us discuss further the assumption (24).

1. First, we provide the following simple, yet widely applicable, condition about
the coefficients {ak}:
there exist C1,C2 ∈ R such that for all k the coefficients ak satisfy

the inequality |ak | ≤ C1 Ck
2

k! . (25)

Then, if condition (25) holds, the sequence of coefficients {ak} satisfies assump-
tion (24).

2. Recall that an analytic function f is said to be of exponential type c if f (z) =∑∞
k=0 akz

k and (akk!)1/k → c as k → ∞.
3. If f is of exponential type, then it satisfies assumption (24), since (25) holds.
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4. If f : C → C is the Fourier transform of a complex bounded variation measure
μ onRwith compact support, then f is of exponential type; hence, in particular,
it satisfies assumption (24).

5. If f : C → C is the Fourier transform of a complex bounded variation measure
μ on R with compact support, i.e.,

f (x) =
∫

R

eixy dμ(y),

then for all t ∈ R
+, x ∈ R it holds

lim
n→∞ E[ f (x + WN ,β

n (t))] =
∫

eiyx ei
nβt y

N

N ! dμ(y). (26)

3. A sequence of subordinated processes

Given a positive integer N ∈ N with N ≥ 2 and a constant α ∈ (0, 1), in the
present section we construct by means of Bochner’s subordination a sequence of jump
processes on the complex plane converging weakly (in the sense of Theorem 4) to an
Nα-stable process. Our aim is the derivation of the limit of subordinated processes
WN ,β

n (Hα(t)), whereWN ,β
n is the sequence of complex randomwalks defined in Sect.

2 and Hα(t), α ∈ (0, 1) and t ≥ 0, is the α-stable subordinator.
The first step is the construction of a sequence {Sα

m(t)}m∈N of compound Poisson
processes (with finite moments of any order) approximating the α-stable subordinator
Hα(t) (see Appendix A for the definition of α-stable processes).
Let Sα

m(t) be defined by

Sα
m(t) = 1

m

X∑
j=0

Y j , (27)

where X ∼ Po(λtm2α) is a Poisson random variable of parameter λ t m2α , with
λ = (�(1 − α))−1, and Y j are independent identically distributed1 copies of the
random variable Y[m], with density fm(y) = cm y−α−1 111( 1

m ,m2
)(y), cm = α

mα(1−m−3α)

(see Appendix B), X and the {Y j } being independent as well.

Theorem 3. The sequence of random variables {Sα
m(t)}m converges weakly to the

α-stable subordinator Hα(t):

lim
m→∞ E

[
eiyS

α
m (t)
]

= exp
(−t (−i y)α

)
, y ∈ R. (28)

1For notational simplicity, we do not write explicitly the dependence of Y j and X on the index m
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Proof.

E

[
eiyS

α
m (t)
]

=E

[(
E[ei y

m Y j ]
)X] = exp

(
−λ t m2α

(
1 − E

[
ei

y
m Y[m]

]))

= exp

(
−λ t m2α cm

∫ m2

1/m

(
1 − ei

y
m z
)
z−α−1 dz

)
,

by means of a change of variable x = z/m we get

E

[
eiyS

α
m (t)
]

= exp

(
−λ t m2α cm

∫ m

1/m2

(
1 − eiyx

)
x−α−1m−α−1+1 dx

)

= exp

(
−λ t mα cm

∫ m

1/m2

(
1 − eiyx

)
x−α−1 dx

)
.

Since limm→∞ mαcm = α, we eventually obtain

lim
m→∞ E

[
eiyS

α
m (t)
]

= exp

(
− t

α

�(1 − α)

∫ ∞

0

(
1 − eiyx

)
x−α−1 dx

)

= exp
(−t (−i y)α

)
.

�

Remark 2. Formula (28) remains valid by replacing iy, for y ∈ R, with a complex
variable z ∈ C with Re(z) ≤ 0

lim
m→∞ E

[
ezS

α
m (t)
]

= exp

(
− t

α

�(1 − α)

∫ ∞

0

(
1 − ezx

)
x−α−1 dx

)

= exp
(−t (−z)α

)
. (29)

Lemma 2. There exists a constantC(α) ∈ R
+ such that themoments of the compound

Poisson process Sα
m(t) given by (27) satisfy the following estimate

E[(Sα
m(t))k] ≤ C(α)k tkmk+2αk−3α

(
k + 1

log(k + 2)

)k+1

, (30)

for every k ≥ 1 and for every m ≥ (�(1 − α)/t)1/2α

Proof.

E[(Sα
m(t))k] = E

⎡
⎣ 1

mk

X∑
j1=0

· · ·
X∑

jk=0

Y j1 . . . Y jk

⎤
⎦ ,

so we can rearrange the expectations and the sums as follows

E[(Sα
m(t))k] = 1

mk

∞∑
x=0

P(X = x)

⎛
⎝

x∑
j1,..., jk=0

E
[
Y j1 . . . Y jk

]
⎞
⎠ .
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By the estimate (B.11) (see Appendix B), we obtain that for any choice of indexes
j1, . . . , jk = 0, . . . , x the following inequality holds:

E
[
Y j1 . . . Y jk

] ≤ c(α)km2k−3α,

where c(α) = 1 ∨ α
1−α

; hence, by estimate (B.10):

E[(Sα
m(t))k] ≤ c(α)kmk−3α

∞∑
x=0

P(X = x)(x + 1)k

= c(α)kmk−3α �(1 − α)

tm2α

∞∑
x=1

P(X = x)xk+1

≤ c(α)kmk−3α �(1 − α)

tm2α

(
1 ∨

(
tm2α

�(1 − α)

)k+1
)
Bk+1

≤ c(α)kmk−3α �(1 − α)

tm2α

(
1 ∨

(
tm2α

�(1 − α)

)k+1
)(

0.792(k + 1)

log(k + 2)

)k+1

.

In particular, for m sufficiently large, i.e., for m ≥ (�(1 − α)/t)1/2α , the following
holds

E[(Sα
m(t))k] ≤ C(α)k tkmk+2αk−3α

(
k + 1

log(k + 2)

)k+1

,

where C(α) = c(α)0.792/�(1 − α).
�

Let us now consider the sequence of random walks {WN ,β
n (t)}n described in Sect.

2, and for any couple (n,m) ∈ N
2, let us consider the subordinated process Xn,m(t) =

WN ,β
n (Sα

m(t)). We can think of Xn,m as a jump process in the complex plane, where a

random number of jumps, uniformly distributed on the set β1/N

n1/N
R(N ), occur, namely:

Xn,m(t) = 1

n1/N

�nSα
m(t)�∑
j=1

ξ j , (31)

where ξ j are iid uniformly distributed on the set β1/N R(N ) [see Eq. (14)].
The following theorem is the analog of Theorem 1 for processes that are driven by

subordinators, and shows that Xn,m(t) converges in a suitable sense to an Nα-stable
process.

Theorem 4. Let the parameters N ∈ N and β ∈ C be chosen in such a way that the
following inequality is satisfied

Re((−i)NβyN ) ≤ 0 ∀y ∈ R. (32)
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Then the following holds

lim
m→∞ lim

n→∞ E[e−iyW N ,β
n (Sα

m (t))] = e
−t
(
(−1)N+1i N yN β

N !
)α

.

Before proving Theorem4,we give an alternative estimate of the difference between

E[e−iyW N ,β
n (t)] and its limit for n → ∞.

Lemma 3. Under the assumption (32), there exists a constant C(y) depending con-
tinuously on the parameter y such that the following estimate holds

|E[e−iyW N ,β
n (t)] − e(i)Nβt yN /N !| =C(y)t

n
etC(y) + 1

n

|β||y|N
N ! . (33)

Proof. By definition ofWN ,β
n (t),E[e−iyW N ,β

n (t)] = (ψξN ,β
(y/n1/N ))�nt�, whereψξN ,β

is the characteristic function of the complex random variable ξN ,β defined in (14).
Hence,

|E[e−iyW N ,β
n (t)] − e(i)Nβt yN /N !| = |(ψξN ,β

(y/n1/N ))�nt�

− e
(i)N β
N !

�nt�
n yN + e

(i)N β
N !

�nt�
n yN − e(i)Nβt yN /N !|

≤ |(ψξN ,β
(y/n1/N ))�nt� − e

(i)N β
N !

�nt�
n yN | + |e (i)N β

N !
�nt�
n yN − e(i)Nβt yN /N !|. (34)

The first term can be estimated as

|(ψξN ,β
(y/n1/N ))�nt� − e

(i)N β
N !

�nt�
n yN | ≤ |(ψξN ,β

(y/n1/N ))

− e
(i)N β
N !

yN

n |
�nt�−1∑
j=0

|ψξN ,β
(y/n1/N ))| j .

By setting r(n, β, y) := ψξN ,β
(y/n1/N ) − e

(i)N β
N !

yN

n , the latter estimate takes the
following form:

|(ψξN ,β
(y/n1/N ))�nt� − e

(i)N β
N !

�nt�
n yN | ≤|r(n, β, y)|

�nt�−1∑
j=0

|e (i)N β
N !

�nt�
n yN + r(n, β, y)| j

≤|r(n, β, y)|
�nt�−1∑
j=0

(1 + |r(n, β, y)|) j

≤|r(n, β, y)|�nt�(1 + |r(n, β, y)|)�nt�.
Moreover,

|r(n, β, y)| = |ψξN ,β
(y/n1/N ) − e

(i)N β
N !

yN

n |

= |
ψ

(N )
ξN ,β

(0)

N !
yN

n
+

ψ
(2N )
ξN ,β

(z̃)

(2N )!
y2N

n2
− i N yNβ

N !n − 1

2

(
i N yNβ

N !n
)2

e
(i)N β
N ! z |,
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where z, z̃ ∈ R, with z ∈ [0, yN

n ] and z̃ ∈ [0, y/n1/N ]. By formula (15) and the

boundedness of the continuousmapψ
(2N )
ξN ,β

over the interval [0, y], i.e., |ψ(2N )
ξN ,β

(z̃)| ≤ M

∀z̃ ∈ [0, y], we obtain:

|r(n, β, y)| ≤ |β|2|y|2N
n2

(
1

(2N )! |ψ
(2N )
ξN ,β

(z̃)| + 1

2(N !)2
)

≤ |β|2|y|2N
n2

(
M

(2N )! + 1

2(N !)2
)

;

hence, there exists a constant C(y) depending continuously on the parameter y such
that |r(n, β, y)| ≤ C(y)

n2
. We then obtain

|(ψξN ,β
(y/n1/N ))�nt� − e

(i)N β
N !

�nt�
n yN | ≤C(y)

n2
�nt�

(
1 + C(y)

n2

)�nt�
≤ C(y)t

n
etC(y).

Further, the second term in (34) can be estimated as:

|e (i)N β
N !

�nt�
n yN − e(i)Nβt yN /N !| = |e (i)N β

N !
�nt�−nt

n yN − 1| ≤ 1

n

|β||y|N
N ! ,

and we eventually obtain

|E[e−iyW N ,β
n (t)] − e(i)Nβt yN /N !| =C(y)t

n
etC(y) + 1

n

|β||y|N
N ! .

�

Proof of Theorem 4.
By lemma 3,

E

[
e−iyW N ,β

n (Sα
m (t))

]
=E

[
e(i)NβSα

m (t)yN /N !]+ R(n,m, y, t),

where |R(n,m, y, t)| ≤ E

[
C(y)Sα

m (t)
n eS

α
m (t)C(y) + 1

n
|β||y|N

N !
]
.

Since, by estimate (30), the expectation E
[
Sα
m(t)eS

α
m(t)C(y)

]
is finite for anym ∈ N,

we obtain

lim
n→∞ E

[
e−iyW N ,β

n (Sα
m(t))

]
= E

[
e(i)NβSα

m (t)yN /N !] .

Eventually, by using (29), we get

lim
m→∞ lim

n→∞ E

[
e−iyW N ,β

n (Sα
m(t))

]
= lim

m→∞ E

[
exp

(
(−i)N yN

βSα
m(t)

N !
)]

= exp

(
−t

(
(−1)N+1i N yN

β

N !
)α)

.

�
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Theorem 5. Let f : C → C be the Fourier transform of a complex bounded measure
μ on R with compact support, i.e., f be of the form f (x) = ∫

e−iyxdμ(y). Then
under the above assumptions on β and N

lim
m→∞ lim

n→∞ E[ f (WN ,β
n (Sα

m(t)))] =
∫

R

e
−t
(
(−1)N+1i N yN β

N !
)α

dμ(y). (35)

Proof. Let K ⊂ R be the support of themeasureμ. By lemma 3, there exists a positive
constant M ∈ R

+ such that for any y ∈ K the following holds:

E

[
e−iyW N ,β

n (Sα
m(t))

]
=E

[
e(i)NβSα

m (t)yN /N !]+ R(n,m, t),

where |R(n,m, t)| ≤ E

[
MSα

m (t)
n eS

α
m (t)M + 1

n
|β||y|N

N !
]

< +∞.

By Fubini theorem,

E[ f (WN ,β
n (Sα

m(t))] =
∫

R

E

[
e−iyW N ,β

n (Sα
m (t))

]
dμ(y)

=
∫

R

E

[
exp

(
(−i)N yN

βSα
m(t)

N !
)]

dμ(y) + |μ|R(n,m, t),

where |μ| denotes the total variation of the complex measure μ. By letting n → ∞,
we obtain:

lim
n→∞ E[ f (WN ,β

n (Sα
m(t))] =

∫

R

E

[
exp

(
(−i)N yN

βSα
m(t)

N !
)]

dμ(y).

Eventually, by dominated convergence theorem, the following holds

lim
m→∞ lim

n→∞ E[ f (WN ,β
n (Sα

m(t))] = lim
m→∞

∫

R

E

[
exp

(
(−i)N yN

βSα
m(t)

N !
)]

dμ(y)

=
∫

R

lim
m→∞ E

[
exp

(
(−i)N yN

βSα
m(t)

N !
)]

dμ(y)

=
∫

R

e
−t
(
(−1)N+1i N yN β

N !
)α

dμ(y).

�

Remark 3. Theorem 4 allows to interpret formally the limit process of Xn,m as an
Nα-stable process. In fact, such a process cannot exist in the case Nα > 2 and,
analogously to the random walk WN ,β

n studied in Sect. 2, the sequence of complex
random variables Xn,m(t) does not converge in distribution. Theorems 4 and 5 have
to be interpreted in a weaker sense; indeed, even if the distribution of WN ,β

n (Sα
m(t))

does not converge to a well-defined probability measure on the complex plane, the
integral of suitable functions (i.e., linear combinations of exponentials) converges and
the limit is given by formula (35).

Author's personal copy



S. Bonaccorsia et al. J. Evol. Equ.

It is particularly interesting the study of the case N being an integer strictly greater
than 2 and the product Nα satisfies the inequality Nα ≤ 2. In this case, an Nα-
stable process HNα(t) exists and its relation with the sequence of jump processes
{WN ,β

n (Sα
m(t))}m,n is worth of investigation. We can consider, for instance, the case

where N = 2M with M ∈ N, α = 1/M and β = (−1)M+1 (2M)!
2M

. According to
Theorem 4, we have the following convergence result

lim
m→∞ lim

n→∞ E[e−iyW N ,β
n (Sα

m (t))] = e−t y
2

2 , y ∈ R.

Nevertheless this is not sufficient to interpret the limit ofWN ,β
n (Sα

m(t)) as a real-valued
Wiener process.
Indeed, for any (n,m) ∈ N

2 the process WN ,β
n (Sα

m(t)) has complex paths and

we can prove that for any t > 0 given, the law of the random variable WN ,β
n (Sα

m(t))
cannot converge to a Gaussian distribution on the real axis. Actually, a straightforward
computation shows that

lim
n,m→∞ P

(
WN ,β

n (Sα
m(t)) ∈ BR(0)

)
= 0,

for any given R > 0, with BR(0) ⊂ C. Therefore,

lim
n,m→∞ P

({∣∣Re[WN ,β
n (Sα

m(t))]∣∣ ≤ √
2R
}

∩
{∣∣Im[WN ,β

n (Sα
m(t))]∣∣ ≤ √

2R
})

= 0;

hence, even in the case where the imaginary part disappears, the real part cannot have
a Gaussian distribution since it is concentrated outside the interval (−√

2R,
√
2R).

4. Probabilistic representation of evolution equations with fractional-order
space derivative

Let AN ,β : D(AN ,β) ⊂ L2(R) → L2(R) be the operator defined by

ÂN ,β f (y) := (−i)NβyN

N ! f̂ (y),

where f̂ is the Fourier transform of f ∈ L2(R), i.e., f̂ (y) = ∫
R
eixy f (x)dx for

f ∈ L1(R), with

D(AN ,β) = { f ∈ L2(R) :
∫

R

y2N | f̂ (y)|2 dy < ∞}.

In other words, AN ,β is the Fourier integral operator with symbol 
(y) := (−i)NβyN

N ! .
On smooth functions f ∈ L2(R) ∩ CN (R), it is given by

AN ,β f (x) = β

N !
∂N

∂xN
f (x).
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In the following, we shall always assume that β ∈ R is a real constant such that,
whenever N ∈ N is even, the inequality Re((−1)N/2β) ≤ 0 is satisfied. Under this
assumption, the operator AN ,β generates a strongly continuous contraction semigroup
on L2(R). In addition, for N ∈ N odd, the operator i AN ,β is self-adjoint and generates
a strongly continuous unitary group on L2(R).

Let B : D(B) ⊂ L2(R) → L2(R) be the operator defined by

B̂ f (y) := |y| f̂ (y).
with

D(B) = { f ∈ L2(R) :
∫

R

y2| f̂ (y)|2 dy < ∞}.

B is called Riesz operator, formally written as B ≡ ∂|x |. It is given by

∂|x | f (x) = −k
∫ ∞

0

f (x − s) − 2 f (x) + f (x + s)

s2
ds, x ∈ R,

k =
(
2
∫ ∞

0

1 − cos s

s2
ds

)−1

= 1

π
.

Via functional calculus, it is straightforward to define the N -power of B, as the
operator BN with symbol 
(y) = |y|N and domain D(BN ) = { f ∈ L2(R) :∫
R
y2N | f̂ (y)|2 dy < ∞}. For N even we have that AN ,β = (−i)Nβ

N ! BN .
For a given real constant α ∈ (0, 1), let us define the fractional power of −AN ,β

and BN as the operators (−AN ,β)α and BN ,α with symbols, respectively

̂(−AN ,β)α f (y) =
(

(−1)N+1i NβyN

N !
)α

f̂ (y),

B̂N ,α f (y) = |y|Nα f̂ (y),

where, given a complex number z ∈ C, with z = |z|eiθ , with θ ∈ (−π, π ], the
α-power of z is taken as

zα = |z|αeiαθ .

Note that when N is odd and i Nβ is a purely imaginary number the symbol of

(−AN ,β)α is explicitly given by
(

(−1)N+1i NβyN

N !
)α := |β|α

N !α |y|Nαe(−1)
N−1
2 iπα

2
βy
|βy| .

The action of the operator (−AN ,β)α can be also represented by the following
formula

(−AN ,β)α f (x) = α

�(1 − α)

∫ ∞

0

f (x) − esAN ,β f (x)

sα+1 ds

= α

�(1 − α)

∫ ∞

0
lim
n→∞

f (x) − E[ f (x + WN ,β
n (s))]

sα+1 ds,
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esAN ,β being the semigroup generated by AN ,β and WN ,β
n the sequence of complex

random walks defined in Sect. 2. For N an even integer, there is a trivial relation
between the operators (−AN ,β)α and BN ,α , namely

(−AN ,β)α =
(

(−1)N+1i Nβ

N !
)α

BN ,α.

For N odd, we have BN ,α = (AN ,β )α+(−AN ,β )α

2(|β|/N !)α cos(πα/2) . The action of BN ,α can be also written
in the following form:

BN ,α f (x) =
(
2
∫ ∞

0

1 − cos s

sα+1 ds

)−1

×
∫ ∞

0

esAN ,1 f (x) − 2 f (x) + e−s AN ,1 f (x)

sα+1 ds

=
(
2
∫ ∞

0

1 − cos s

sα+1 ds

)−1

×
∫ ∞

0
lim
n→∞

E[ f (x + WN ,1
n (s))] − 2 f (x) + E[ f (x + WN ,−1

n (s))]
sα+1 ds.

Let f ∈ L2(R) be a function of the form

f (x) = 1

2π

∫

R

e−i xy f̂ (y) dy, x ∈ R, (36)

with f̂ ∈ L2(R) being a compactly supported function. It is straightforward to verify
that f belongs to the domain of any of the operators above. Furthermore, the subset
D ⊂ L2(R) of functions of the form (36) is an operator core. By considering the
complex boundedBorelmeasure on the real lineμ f absolutely continuouswith respect

to the Lebesgue measure with density f̂
2π , we can look at the function f defined by

(36) as the Fourier transform of μ f . Hence, f can be extended to an entire analytic
function f : C → C of exponential type (see Remark 1).

For any of the following initial value problems

∂t u(t) = Au(t)

u(t0) = f, t ≥ t0, f ∈ D (37)

with A being either one of the operators AN ,β and −BN or one of their fractional
powers −(−AN ,β)α and −BN ,α and with f of the form (36), we are going to con-
struct a sequence of complex jump processes {Xn,m}n,m∈N providing a probabilistic
representation for the solution u(t, x) of the form

u(t, x) = lim
m→∞ lim

n→∞ E[ f (x + Xn,m(t − t0))].

The first result is taken from [15] and is a direct consequence of Remark 1.
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Theorem 6. Let f : R → C be an L2(R) function of the form (36). Then the
(classical 2) solution of

∂t u(t, x) = AN ,βu(t, x)

u(t0, x) = f (x), t ≥ t0, x ∈ R (38)

is given by

u(t, x) = lim
n→∞ E[ f (x + WN ,β

n (t − t0))], (39)

where {WN ,β
n (t)}n∈N is the sequence of complex random walks defined in (17).

Proof. By formula (26), we have

u(t, x) = lim
n→∞ E[ f (x + WN ,β

n (t − t0))]

= 1

2π

∫

R

e−i xy exp

(
(−i)Nβ(t − t0)

yN

N !
)

f̂ (y) dy.

By the compactness of the support of the function f̂ , the function u(t, x) is smooth
and, by direct computation, a classical solution of the PDE

∂t u(t, x) = β

N !∂
N
x u(t, x).

�

Let us consider now the fractional power (−AN ,β)α of the N th-order differential
operator −AN ,β and construct a probabilistic representation of the associated C0-
contraction semigroup.

Theorem 7. Let f : R → C be an L2(R) function of the form (36). Then the solution
of

∂t u(t, x) = −(−AN ,β)αu(t, x)

u(t0, x) = f (x), t ≥ t0, x ∈ R (40)

is given by

u(t, x) = lim
m→∞ lim

n→∞ E[ f (x + Xn,m(t − t0))], (41)

where {Xn,m(t)}n,m∈N is the sequence of complex random walks defined in (31) as
Xn,m(t) = WN ,β

n (Sα
m(t)).

2For a classical solution of the initial value problem (38), we mean a function u : [0,+∞) × R → C

which is of class C1 in the time variable t , of class CN in the space variable x and such that for any

(t, x) ∈ [0, +∞) × R the equality ∂t u(t, x) = β
N !

∂N

∂xN
u(t, x) holds.
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Equation (40) can be formally written as

∂

∂t
u(t, x) = −

(
− β

N !
)α

∂Nα

∂xNα
u(t, x).

Proof. By Theorem 5, the function u(t, x) defined by the r.h.s. of (41) is equal to

u(t, x) = lim
m→∞ lim

n→∞ E[ f (x + Xn,m(t − t0))]

= 1

2π

∫

R

e−i xye
−(t−t0)

(
(−1)N+1i N yN β

N !
)α

f̂ (y) dy.

The last line is exactly the action of the semigroup e−(−AN ,β )α(t−t0) on the vector
f ∈ L2(R). Moreover, because of the assumptions (32) on the constants N , β and the
compactness of the support of f̂ ∈ L2(R), the function u(t, x) is smooth in both the
time and space variables. �

Let us now consider the Riesz operator B and its powers. Given N ∈ N, let us
consider the initial value problem

∂t u(t, x) = −BNu(t, x)

u(t0, x) = f (x), t ≥ t0, x ∈ R (42)

with f of the form (36) as above. For N even, the operator BN coincideswith (−AN ,β),

with β ≡ (−1)
N
2 +1N !. By Theorem 6, the solution of (42) is given by (39). In the

case where N is odd, the construction of the associated process is neither simple, nor
unique, as the following result shows.

Theorem 8. Let us consider problem (42) with N ∈ N and f ∈ D. For any M ∈ N,
let us consider the sequence of processes {W 2MN ,β

n (t)} defined as in (17), with β =
(−1)MN+1(2MN )!. Then, choosing α = 1

2M , according to Theorem 7 the solution of
the initial value problem (42) is given by

u(t, x) = lim
m→∞ lim

n→∞ E[ f (x + W 2MN ,β
n (S

1
2M
m (t − t0)))], (43)

where Sα
m(t) is the sequence of processes (27)approximating theα-stable subordinator.

Proof. By an application of Theorem 5, the function u(t, x) defined by the r.h.s. of
(43) is equal to

u(t, x) = 1

2π

∫

R

e−i xye−(t−t0)|y|N f̂ (y) dy.

�

More generally, let us consider the operator BN ,α , and the corresponding associated
initial value problem
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∂t u(t, x) = −BN ,αu(t, x),

u(t0, x) = f (x), (44)

with f ∈ L2(R) of the form (36). For N even, we can take the process WN ,β
n (t)

associated with the operator AN ,β , with β = (−1)N/2N ! and the solution of (44) is
given by

u(t, x) = lim
m→∞ lim

n→∞ E[ f (x + WN ,β
n (Sα

m(t − t0)))].
The following construction allows to handle the case where N is odd. Indeed, recall

from [15] that the distribution of −ξN ,β is equal to the distribution of ξN ,−β and the

same holds for the corresponding continuous time processes WN ,β
n (t).

Theorem 9. LetW N ,β
n (t) and W̃ N ,β ′

n (t) be two independent copies of the process (17),
with β = N ! and β ′ = −N !, respectively, and let Sα

m(t) and S̃α
m(t)be two independent

copies of the process (27). Taking a rescaled time variable t̃ := (2 cos
(

απ
2

)
)−1t , the

solution of (44) with f ∈ D is given by

u(t, x) = lim
m→∞ lim

n→∞ E

[
f
(
x + WN ,β

n

(
Sα
m(t̃ − t̃0)

)+ W̃ N ,β ′
n

(
S̃α
m(t̃ − t̃0)

))]
.

Proof. By applying Theorem 5, we obtain

u(t, x) = 1

2π

∫

R

e−i xye−(t̃−t̃0)
(
(iyN )α+(−iyN )α

)
f̂ (y) dy

= 1

2π

∫

R

e−i xye−(t−t0)|y|Nα

f̂ (y) dy.

�
Remark 4. In fact for any operator of the form BN , with N ∈ N, there exists a family
of associated processes. For instance, if N = 2, the solution of the heat equation

∂t u(t, x) = 1

2
∂2x u(t, x) (45)

can be represented by means of the Feynman–Kac formula, as the expectation with
respect to the distribution of the Wiener process W (t):

u(t, x) = E[u(t0, x + W (t − t0))], t ≥ t0, x ∈ R,

but alternative constructions are possible. Let us consider, for instance, the sequence
of processes WN ,β

n (Sα
m(t)), with N = 4, α = 1/2 and β = −3!. Then the solution of

(45) can also be represented by

u(t, x) = lim
m→∞ lim

n→∞ E[u(t0, x + WN ,β
n (Sα

m(t − t0)))], t ≥ t0, x ∈ R.

The same formula holds by taking a generic M ∈ N and setting N ≡ 2M , α ≡ 1/M
andβ ≡ (−1)M+1 (2M)!

2M
It is important to remark that, even in these cases, the sequence

of jump processes {WN ,β
n (Sα

m(t))}m,n does not converge to the Wiener process W , as
discussed in Remark 3.
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5. Time fractional diffusion equations

In this section, we consider time fractional equations of the form

DDDα
t u(t, x) =AN ,βu(t, x)

u(0, x) = f (x),
(46)

where the time fractional derivative DDDα
t must be understood in the sense of Caputo

derivative. Since throughout the paper α ∈ (0, 1), we can define

DDDα
t v(t) = 1

�(1 − α)

∫ t

0
(t − s)−α ∂

∂s
v(s) ds.

The Caputo derivative DDDα
t v(t), for α ∈ (0, 1), can also be defined as the function with

Laplace transform D̃DDαv(λ) = λαṽ(λ) − λα−1v(0+). The reader can consult the book
by Samko et al. [62] for further details.
In our construction, equation (46) is solved with the aid of a random time change of

the complex randomwalkWN ,β
n (t). In order to explain our construction, we introduce

the α-stable subordinator Hα(t), i.e., a subordinator with zero drift and Lévy measure

mα(dx) = c

x1+α
1(0,∞)(x) dx,

where c > 0 is a given constant. If we choose c = 1
�(1−α)

, then the Laplace exponent
becomes �(λ) = λα .
We denote by Lα(t) the inverse of the subordinator Hα(t) (see Appendix A), namely:

Lα(t) = inf{s ≥ 0 : Hα(s) ≥ t}.
The moments of Lα

t are equal to

E[(Lα(t))k] = k!tαk
�(αk + 1)

, k ∈ N,

while its Laplace transform is

E[e−zLα(t)] =
∑
k≥0

(−z)k tαk

�(αk + 1)
, z ∈ C.

In the following result, we show that the sequence of subordinated processes
WN ,β

n (Lα
t ) can be associatedwith the PDE (46).Notice that, as opposite to the previous

section, here we only need to take one limit.

Theorem 10. Assume β ∈ C and N ∈ N satisfy assumption (32). If f : R → R is an
analytic function that is the Fourier transform of a bounded complex Borel measure
on R with compact support, i.e.,

f (x) =
∫

R

e−iλx dμ f (λ),
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then of the solution of the initial value problem

DDDα
t u(t, x) =AN ,βu(t, x)

u(0, x) = f (x),
(46)

is given by

u(t, x) = lim
n→∞ E

[
f (x + WN ,β

n (Lα(t)))
]
.

Proof. By explicit computation,

u(t, x) = lim
n→∞ E

[
f (x + WN ,β

n (Lα(t)))
]

=
∫

R

e−iλx
E[e β

N ! (−iλ)N Lα(t)] dμ f (λ)

=
∫

R

e−iλx Eα

(
β

N ! (−iλ)N tα
)

dμ f (λ), (47)

where Eα denotes the Mittag-Leffler function, namely Eα(t) = ∑
k≥0

tk
�(αk+1) .

Under the stated assumption on the constants β ∈ C and N ∈ N, the argument
z ≡ β

N ! (−iλ)N tα is a complex number with non-positive real part for any t ∈ R
+ and

λ ∈ R; hence, the map λ �→ Eα

(
β
N ! (−iλ)N tα

)
is bounded and the integral (47) is

absolutely convergent and defines a C∞ function of the x variable. Furthermore, for
any t ∈ R

+ the function u(t, x) is still the Fourier transform of a complex measure μt

on R with compact support which is also absolutely continuous with respect to μ f ,
namely :

dμt

dμ f
:= Eα

(
β

N ! (−iλ)N tα
)

.

In particular,

AN ,βu(t, x) =
∫

R

e−iλx β

N ! (−iλ)N Eα

(
β

N ! (−iλ)N tα
)

dμ f (λ).

In order to prove that this is equal to Dα
t u(t, x), and hence that equation (46) holds, let

us take the Laplace transform of both sides. Denoting ũ(ρ, x) the Laplace transform
of u(t, x) and applying Fubini theorem as well as the properties of the Mittag-Leffler

function and the condition Re
(

β
N ! (−iλ)N

)
≤ 0, first of all we have

ũ(ρ, x) =
∫ ∞

0
e−ρt u(t, x) dt =

∫

R

e−iλx
∫ ∞

0
e−ρt Eα

(
β

N ! (−iλ)N tα
)

dt dμ f (λ)

=
∫

R

e−iλx

ρ

1

1 −
(

β
N ! (−iλ)Nρ−α

) dμ f (λ). (48)

On the other hand, by taking the Fourier–Laplace transform of both sides of (46) we
obtain

ρα ũ(ρ, λ) − ρα−1ũ(0, λ) = β

N ! (−iλ)N ũ(ρ, λ),
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which yields

ũ(ρ, λ) = ρ−1

1 − β
N ! (−iλ)Nρ−α

ũ(0, λ). (49)

By comparing (48) and (49), we obtain the final result. �

5.1. Time fractional equations and non-local space fractional equations

In this section, we discuss the relationship between equation (46) and the diffusion
equation with non-local forcing term of the form

∂t u(t, x) = (AN ,β)1/αu(t, x) +
1/α−1∑
k=1

1

�(αk)
tαk−1Ak

N ,β f (x),

u(0, x) = f (x).

(50)

We shall require that α = M−1 for some M ∈ N, M > 1, so in particular α ∈ (0, 1).
The proof of the equivalence follows by taking Laplace (in time, parameter s) and

Fourier (in space, parameter λ) transform of both equations, proving that the Laplace–
Fourier transforms of the solutions coincide.
Let us first consider equation (46). By taking Laplace and Fourier transform on both

sides, we get

sα ˆ̃u(s, λ) − sα−1 f̂ (λ) = (−i)NβλN

N !
ˆ̃u(s, λ);

hence,

ˆ̃u(s, λ) = sα−1

sα − (−i)NβλN

N !
f̂ (λ). (51)

(It is worth noticing that the assumption on the sign of β: Re((−i)Nβ) ≤ 0 implies
that the quantity we simplify on both sides is never zero.)
Next, we apply the same machinery to the solution of equation (50). We have

s ˆ̃u(s, λ) − f̂ (λ) =
(

(−i)NβλN

N !
)M

ˆ̃u(s, λ) +
M−1∑
k=1

s−αk
(

(−i)NβλN

N !
)k

f̂ (λ),

and rearranging both sides, we get

(
s −

(
(−i)NβλN

N !
)M

)
ˆ̃u(s, λ) =

M−1∑
k=1

s−αk
(

(−i)NβλN

N !
)k

f̂ (λ)

=
1 −

(
s−α (−i)NβλN

N !
)M

1 − s−α (−i)NβλN

N !
f̂ (λ)
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=
s −

(
(−i)NβλN

N !
)M

s − s1−α (−i)NβλN

N !
f̂ (λ),

so we simplify the quantity in the numerator

ˆ̃u(s, λ) = 1

s − s1−α (−i)NβλN

N !
f̂ (λ),

which coincides with (51), as required.

Informally, we notice that a fractional time derivative of order α has become a
fractional space derivative of order 1/α, but this transformation affects, in a rather
complicated way, the initial condition. In the next and last example of this section, we
shall see what happens if we start with an equation involving fractional derivatives of
the same order in both time and space, and we compare it with an equation of integer-
order derivatives. To be precise, the following equation takes place instead of (46)

DDDα
t u(t, x) =(AN ,β)αu(t, x)

u(0, x) = f (x),
(52)

while the following non-local problem takes the place of (50):

∂t u(t, x) = AN ,βu(t, x) +
1/α−1∑
k=1

1

�(αk)
t−αk Aαk

N ,β f (x)

u(0, x) = f (x).

(53)

The proof is analogous to the previous one. Let us first consider equation (52); we
have that

sα ˆ̃u(s, λ) − sα−1 f̂ (λ) =
(

(−i)NβλN

N !
)α

ˆ̃u(s, λ),

so that

ˆ̃u(s, λ) = sα−1

sα −
(

(−i)NβλN

N !
)α f̂ (λ). (54)

Consider now (53); we have

s ˆ̃u(s, λ) − f̂ (λ) =
(

(−i)NβλN

N !
)

ˆ̃u(s, λ) +
M−1∑
k=1

s−αk
(

(−i)NβλN

N !
)αk

f̂ (λ),

from which we obtain
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(
s −

(
(−i)NβλN

N !
))

ˆ̃u(s, λ) =
M−1∑
k=1

s−αk
(

(−i)NβλN

N !
)αk

f̂ (λ)

=
1 − 1

s

(
(−i)NβλN

N !
)

1 − 1
sα

(
(−i)NβλN

N !
)α f̂ (λ),

which, compared with (54), implies that the solution of (53) coincides with that of
(52), as required.
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Appendix A. Fractional derivatives and Bochner’s subordination

Fractional derivative

Let α ∈ (0, 1) be a real constant and let us consider the Lévy measure M on the
positive half line defined by

M(ds) = α

�(1 − α)

ds

sα+1 . (A.1)

It is well known that M is the Lévy measure of an α-stable subordinator ( [14]) that is
a totally (positively) skewed stable process for which the Lévy–Khinchin formula is
written in terms of the Bernstein function

xα =
∫ ∞

0
(1 − e−xs) M(ds). (A.2)

Formula (A.2) is valid for any x ∈ C, with Re(x) ≥ 0, in particular for x = |x |eiθ ,
θ ∈ [−π/2, π/2] it gives |x |αeiαθ = ∫∞

0 (1 − e−xs)M(ds). The representation (A.2)
is therefore associated with the symbol of a positively skewed stable process, say
Hα(t), t ≥ 0. Indeed, for λ > 0, we have that E

[
e−λHα(t)

] = e−tλα
and we say that

Hα(t) is a stable subordinator of order α ∈ (0, 1). It has nonnegative increments and
therefore non-decreasing paths. Thus, Hα(t) can be considered as a time change and,
given a stochastic process X (t), one can consider the subordinated process X (Hα(t)).
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We recall that, for α ↑ 1, Hα(t) becomes the elementary subordinator t . The density
law h = h(t, x) of Hα(t) solves the problem

⎧
⎨
⎩

∂t h = −∂α
x h

h(0, x) = δ(x), x ∈ R
+

h(t, 0) = 0, t ∈ R
+

(A.3)

where ∂α
x = ∂α/∂xα is the Riemann–Liouville fractional derivative with symbol

(−iy)α = |y|αe−i πα
2

y
|y| :

dα f

dxα
(x) := 1

2π

∫
e−i xy(−iy)α f̂ (y) dy, f̂ (y) =

∫
eixy f (x) dx .

According to (A.2),

dα f

dxα
(x) =

∫ ∞

0
( f (x) − f (x − s)) M(ds). (A.4)

We also introduce the inverse to a stable subordinator that is the non-Markovian
process

Lα(t) = inf{s ≥ 0 : Hα(s) ≥ t}, t ≥ 0.

We have that P(Lα(t) < x) = P(Hα(x) > t) and E
[
exp−λLα(t)

] = Eα(−λtα)

with λ ≥ 0 where

Eβ(z) := 1

2π i

∫

Ha

ζ β−1eζ

ζ β − z
dζ =

∞∑
k=0

zk

�(βk + 1)
, Re (β) > 0, z ∈ C, (A.5)

(Ha is the Hankel path) is theMittag-Leffler function.We observe that, for α ∈ (0, 1),
u(t) = Eα(wtα) with t > 0, w > 0, is the fundamental solution to the fractional
relaxation equation

Dα
t u(t) − w u(t) = 0, (A.6)

where

Dα
t u(t) := 1

�(1 − α)

∫ t

0

∂su(s) ds

(t − s)α
, (A.7)

is the so-called Caputo derivative or the Dzerbayshan–Caputo fractional derivative.

Fractional power of a generator

Given a strongly continuous contraction semigroup T (t) on (C∞(R), ‖ · ‖∞) with
infinitesimal generator (A, D(A)), we write T (t) = et A, t > 0. Let us consider the
Markov process X = ({X (t)}t≥0; Px , x ∈ R) with

T (t) f (x) = Ex f (X (t)), f ∈ D(A),
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where Ex1A(X (t)) = Px (X (t) ∈ A). We can define the subordinated semigroup
given by the Bochner integral

T α(t) f (x) :=
∫ ∞

0
T (s) f (x) h(t, s) ds = Ex f (X (Hα(t))), x ∈ R, t ∈ R

+,(A.8)

where h(t, s) = P(Hα(t) ∈ ds)/ds has been introduced before. According to the
representation given by Phillips [61], for f ∈ D(A), we also define

− (−A)α f (x) :=
∫ ∞

0
(T (s) f (x) − f (x)) M(ds). (A.9)

The formal representation et A of T (t) shows that Aα = −(−A)α given in (A.9)
is the generator of T α given in (A.8) by considering a functional calculus which is
referred to as Bochner–Phillips calculus (see, for example, [12]). The special case we
introduced here can be extended to general time-changed processes with infinitesimal
generators−φ(−A)where φ : (0,∞) �→ [0,∞) is a Bernstein function, which is the
symbol of a time change (a non-decreasing process). Then, −φ(−A) is characterized
via resolvents in terms of Dunford–Taylor integrals ( [12,64]). For the generators we
considered so far, we evidently have that the corresponding (Fourier) symbols are
written in terms of Bernstein functions. If −
 is the symbol of the generator A, i.e.,
for f belonging to the Schwartz space S(R) of rapidly decaying C∞(R) functions,

A f (x) = − 1

2π

∫ +∞

−∞
e−iλx
(λ) f̂ (λ) dλ,

then the fractional power of −A can be represented as:

(−A)α f (x) = 1

2π

∫ +∞

−∞
e−iλx (
(λ))α f̂ (λ) dλ.

Appendix B. Some estimates

Appendix B.1: Moments of the Poisson distribution

Let X be a Poisson random variable with parameter λ. Then the moments are given
by

mk = E[Xk] =
k∑

l=0

λl
{
k
l

}
,

where

{
k
l

}
denotes the Stirling numbers of the second kind, defined as

{
k
l

}
= 1

l!
l∑

j=0

(−1)l− j
(
l

j

)
j k .
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In particular,

{
n
1

}
= 1 and

{
n
n

}
= 1 for any n ≥ 1. Moreover, the sum over the first k

values of the Stirling numbers of the second kind gives
∑k

l=0

{
k
l

}
= Bk , where Bk is

the kth Bell number. Hence, if λ > 1, thenmk ≤ λk Bk , while if λ < 1, thenmk ≤ Bk .
This eventually yields

mk ≤ (λk ∨ 1)Bk ≤ (λk ∨ 1)

(
0.792k

log(k + 1)

)k

. (B.10)

Appendix B.2: Power-law distributions

Given α ∈ (0, 1), let us consider a sequence of random variables Y[m] with density

fm(y) = cm y−α−1 111( 1
m ,m2

)(y),

where

cm = α

mα(1 − m−3α)
.

The moments of Y[m] are given by

E[Y k[m]] =cm

∫ m2

1/m
yk−α−1 dy = α

k − α

1

mα(1 − m−3α)

(
m2(k−α) − m−(k−α)

)

= α

k − α
m2k−3α 1 − m−3(k−α)

1 − m−3α ,

and for every m > 1 and every k ≥ 1 we obtain the estimate

E[Y k[m]] ≤ c(α)m2k−3α, (B.11)

where c(α) := 1 ∨ α
1−α

.
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