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Abstract

Autonomous mobile robots need very reliable navigation capabilitiesin
order to operate unattended for long periods of time. We have developed an
approach that uses partially observable Markov models to robustly track a
robot’slocationand integratesit with aplanning and execution monitoring ap-
proach that uses thisinformation to control therobot’s actions. The approach
explicitly maintainsaprobability distributionover the possiblel ocationsof the
robot, taking into account various sources of uncertainty, including approxi-
mate knowledge of the environment, actuator uncertainty, and sensor noise. A
novel feature of our approach isitsintegration of topological map information
with approximate metric information. We demonstrate the reliability of this
approach, especially its ability to smoothly recover from errorsin sensing.

1. Introduction

While the state of the art in autonomous office navigation is fairly advanced, it is
not generally good enough to permit robotsto traverse corridorsfor long periods of
time without getting lost. Evidence for this can be seen in recent AAAI-sponsored
robot competitions [6, 15], where the robots often got confused as to where they
were, and had difficulty relocalizing once that occurred. While other aspects of the
overall navigation problem, such as path planning, are important, in practice, the
major difficulty in achieving reliable navigation is in maintaining a good estimate
of the robot’s whereabouts.

We have developed a navigation technique that uses Markov models to robustly
track arobot’s position and orientation and to control its goal-oriented actions. The
approach has several features that make it well-suited for the office navigation task.
For one, it explicitly accounts for uncertainty in sensors, actuation, and the robot’s
initial position. It seamlessly combines topological and metric map information,
enabling the robot to utilize as much, or as little, a priori metric information as it
hasavailable. The approach can utilize all of the robot’s sensor information to track
position, and is particularly amenable to adding new sources of sensor information.
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We presume that the robot can be easily supplied with topological information
about the connectivity of the environment (junctions between corridors, doorways,
and foyers). In addition, we presume that some prior metric information may be
available—for instance, we may know that all intersections are at 90 degree angles,
that corridors are two meters wide, and that the distance between doorwaysis no
more than ten meters. This information is used to construct a topological map,
with the nodes representing junctions and the edges augmented with approximate
lengthinformation. The augmented topol ogical map isthen compiled intoapartialy
observable Markov chain.

The Markov chain maintains the position and orientation of the robot in the form
of probability distributions over the states of the Markov chain. Thisinformationis
updated using Bayes' rule as the robot moves forward, turns, and processes sensor
information to detect distinctive features such as walls, doorways and corridor
junctions. To control the robot’s behavior, a planner associates an action with every
Markov state. Whenever the probability distribution of the Markov chainisupdated,
thetotal probability massfor each actioniscalculated, and the action with thelargest
probability massis chosen for execution.

An advantage of this approach is that it is very reactive — if the robot strays from
the nominal (optimal) path, it will automatically execute corrective action once it
realizes its mistake (that is, once there is enough probability that the robot is in
a different part of the environment). The approach is also relatively immune to
temporary uncertainty in position — for example, even if the robot does not know
for certain which of two parallel corridorsit is traversing, it will not have to stop
and replan, as long as both corridors recommend the same action. In this way, the
robot can continue making progresstowardsits desired goal, while at the same time
collecting evidence, in the form of sensor readings, that can help to disambiguate
itstrue location.

2. Related Work

Most recent work in robotic office navigation has used alandmark-based approach
that relies on topological maps whose nodes correspond to landmarks (locally dis-
tinctive places), such as corridor junctions, and whose edges indicate how the robot
should navigate between nodes [7, 9, 11]. This approach is attractive because it
does not depend on geometric accuracy and is reactive to sensed features of the
environment (the landmarks). It suffers, however, from problems of sensors occa-
sionally not detecting landmarks and of sensor aliasing (not being able to distinguish
between different landmark locations). On the other hand, using purely metric maps
is vulnerable to inaccuracies in both the map making and dead-reckoning abilities
of the robot. While some researchers augment the edges of the topological maps
with approximate metric information, such as ranges of distances between nodes,
such informationis primarily used to resolve topological ambiguities, and isnot in-
tegral to their navigation approach [9, 14]. In contrast, our Markov model approach
utilizes both the topological, landmark-based information and approximate metric



information to perform position estimation and control.

Like our own work, several researchers have investigated the use of a Bayesian
approach for representing uncertainty in probabilistic path planning and execution
monitoring in office navigation. [12] uses a Smilar approach that tracks position
using a partially observable Markov model, but does not encode any metric infor-
mation at al. The states of the robot are either at atopological node, or somewhere
in a connecting corridor. A planner finds the best (deterministic) path to the goal,
and replans if the currently most likely state is no longer on the planned path. In
contrast, by incorporating metric information, our approach can utilize both knowl-
edge how far the robot hastraveled and sensor reports that occur within a corridor —
for instance, seeing aclock in the middle of a corridor can place great constraintson
the robot’s location, even though it isnot asignal that the robot is at atopologically
interesting place. Our approach also enables the robot to continue making progress
even in the face of significant positional uncertainty, without having to stop and
replan.

Other Bayesian approaches to navigation include [5], in which the robot has to
track a mobile target in a known building with small unforeseen obstacles, while
localizing itself in order not to get lost. Temporal belief networks with a limited
lookahead are used to derive which action to execute next, based on sensor reports
that (probabilistically) differentiate locally distinct places. In similar work, [4]
assumes that unforeseen obstacles might block the robot’s path in an otherwise
completely known environments. A decision-theoretic approach isused to interpret
sonar sensor reports and to decide whether the current path is blocked. While these
approachesare similar to oursintheir Bayesian incorporation of probabilistic sensor
information, they differ in their reliance on accurate metric maps.

Other researchers have represented uncertainty in position using models that pre-
sume a certain probability distribution, typically Gaussian [8, 16]. While such
models are efficient to encode and update, they make assumptions that are not nec-
essarily valid for the office navigation domain. In particular, due to sensor aliasing,
one often wants to encode the belief that the robot might be in one of a number of
non-contiguous (but ssimilar looking) locations. Thiscannot be represented precisely
using Gaussian distributions, but is quite easy to do using our Markov models. On
the other hand, we need to tessellate space into discrete states, rather than represent-
ing position using real numbers. Thus, there is atradeoff between the precision and
expressiveness of the Gaussian and Markov representations. \We contend, however,
that for thetask of office navigation, the added expressiveness of the Markov models
outweighs the need to discretize the environment.

3. Using Markov Modelsfor Probabilistic Navigation

The task being addressed is long-term autonomous navigation in a peopled office
environment (with corridors, rooms, and foyers). The navigation problems consists
of both ascertaining therobot’s position and directing itscourse. Our approach deals
with both these aspects: it enables therobot to reliably know whereitis (and, failing
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that, to know when it is lost), and includes capabilities to guide the robot towards
agiven goal, even in the face of uncertainty about the robot’s exact position in the
environment.

Our basic approach isto use apartially observable Markov model to track therobot’s
position and to combine it with planning and execution monitoring that uses this
information to control the robot’s actions. A Markov model consists of afinite set
of states S afinite set of actions A, a set of actions A(s) C A, for each states € S
that can be executed in that state, and conditional transition probabilities p(Ss, a)
foral s, € Sand a € A(S) (the probability that the new state is S’ if action a is
executed in state ). In our case, the Markov model is partially observable because,
after executing an action, the robot is not told what the new stateis. Instead, it gets
clues from sensors i whose reports O; depend probabilistically on the state. The
sensors are characterized by the conditional observation probabilities pi(o|s) for all
se Sando€ O,

Since the robot does not know for certain which state it isin, it maintains a belief
of its current state in form of a probability distribution p(s) over the statess € S,
Updating these probabilitiesisfairly straightforward using Bayes' rule. If the robot
executes action a, the new probabilities are:

Pposterior(S) = K < Z p(sls, @) x p(s)

s'eSacA(s)

where K is a normalization factor to ensure that the probabilitiesall sum to one. If
the robot receives sensor report o from sensor i, the probabilities become:

Pposterior (S) = K < pi(0]s) x p(s)

While planning in this framework could theoretically be done with POMDP (Par-
tially Observable Markov Decision Process) algorithms [2], all known POMDP
algorithms are intractable even for modest sized state spaces [10]. Our approach,
therefore, is to have a planner associate a desired action ay(s) with each Markov
state. Since there istypically uncertainty over which state the robot is actually in,
thetotal probability mass of each action is cal culated and the action with the highest
probability is executed:

agmac > p(s)
seSjagi(s)=a

While Markov models are expressive and relatively efficient and straightforward
to use, they make strong independence assumptions, for instance that the outcome
of an action is independent of previoudly executed actions. Similarly, every sensor
report conditioned on the current state is assumed to be independent of all previous
reports from that sensor, and any others. While this Markov assumption is often
a good approximation, one can not expect the world to be ideally Markovian. For
example, repeatedly using the same sensor in the same location will usually produce
highly correlated results. Our navigation approach employs several techniques to
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Figure 1: Evidence Grid Showing Featuresin the Corridor

help preserve the Markov assumption. For example, we bundle sets of features that
are derived from the same sensor information (and, hence, are not independent) into
“virtual sensors,” and ensurethat, for each virtual sensor, the Markov model utilizes
only one sensor report at atime. In the end, however, one has to test empirically
whether the Markov assumption is satisfied well enough for thisapproach to achieve
good performance.

The Markov model must be integrated with the rest of the robot control and percep-
tion capabilities. For control purposes, notethat we use the Markov model to supply
adesired goa heading, not to control the low-level behavior of the robot. For that,
we use a potentia field approach [1] which combines goal-directed navigation with
local obstacle avoidance. Obstacles are represented as repulsive forces and the goal
heading is represented as an attractive force. The robot sums the force vectors and
locally movesin that direction.

For perception, the Markov model needs to be supplied with both positional and
feature-based information. Positional information comes from the robot’s dead-
reckoning, which uses interna sensors (wheel encoders) to estimate position and
orientation. In particular, the robot maintains a “virtual odometer” that keeps track
of the distance traveled along the commanded goal heading. This virtual odometer
is needed so that the distance the robot travels in avoiding obstacles is not counted
in determining how far it has traveled along the corridors.

For the feature-based capabilities, we process an evidence grid to detect walls and
openings of various sizes. Using an evidence grid [3], which probabilistically
combines sonar sensor readings taken over time as the robot travels, helps to filter
noisy sensor readings and produces a more global view of the robot’s surroundings
(Figure1). The evidence grid is processed by projecting rays perpendicular to the
direction of travel, until they intersect an occupied grid cell. Geometric processing
isthen applied to the end points of the rays. For example, if the points can befit to
aline reasonably well (i.e., with asmall chi-squared statistic), then awall has been
detected with high probability.

As mentioned, sets of non-independent features are combined into virtual sensors.
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Currently, we have virtual sensors for perceiving to the immediate left, right, and
in front of the robot. The virtual sensors must be characterized by their conditional
observation probabilities p;(0|s). Rather than characterizing each individual state s,
we characterize classes of states. For instance, the states of the world to the left of
the robot can be classified as “Wall,” “Door,” or “Open” (corridor junction) and the
left virtual sensor can detect walls and small, medium and large openings. Then, a
partial characterization of the left sensor isgiven by:

p(Wall|Open) =0.05
p(Small_Opening|Open) =0.20
p(Medium_Opening|Open) = 0.40
p(Large_Opening|Open) =0.30
p(Nothing|Open) =0.05

which indicates that corridor junctions are usually detected as medium-sized open-
ings, but can often be seen aslarge or small openings (although hardly ever are they
confused for walls). The feature “Nothing” is used to indicate that the sensor has
made no determination.

4. Constructingthe Markov Model

Three sources of information are used to construct the Markov model: the topology
of the environment, general domain knowledge about office environments, and
approximate knowledge about the lengths of corridors. In this paper, we assume
that the environment is stationary, and do not consider the problem of learning metric
or topological map information.

The topological information is encoded in a map structure of nodes and edges
(Figure 2). A topological node represents a junction between corridors and/or
doorways. A pair of directed edges connects nodes. Part of our genera domain
knowledge includes the assumptions that corridors are straight and that junctions
occur at 90 degree angles. Under these assumptions, it is sufficient to discretize
orientation into the four compass directions. North, South, East, West (while the
orientation of therobot may temporarily vary asit turnsto avoid obstacles, itsoverall
goal-directed heading can be safely assumed to be in one of those four directions).

Topological nodes are annotated with the type of environment (door, open, wall)
that existsin each of thefour directions. The edges are augmented with approximate
length information, in the form of a probability distribution over possible lengths
(Figure 2). Both the topological map and distance estimates are information that
can be easily acquired by humans (and robots) by simply exploring the environment
(as opposed to the difficulty and cost of obtaining exact distance information, since
one hasto carefully map the environment). Distance estimates can also be obtained
from general information about the office environment. For example, we know that
inour building corridors are two meters wide, and doorways are at least two meters
apart but no more than ten meters apart.

The Markov model is constructed directly from the augmented topological map.
6



Figure 3: Group of Four Markov States With Turn Action Transitions

The gpatial locations of the robot are discretized — the more fine-grained the
discretization, the more precise the model, but also the more time-consuming the
computations. We have found aresolution of one meter to be sufficient. Since each
Markov state encodes both the orientation and location of the robot, we need four
Markov states (corresponding to the four discrete orientations) to fully represent
each spatial location.

Four actions are modeled: turning left 90 degrees, turning right 90 degrees, going
forward 1 meter (the resolution of the model), and stopping. While, in practice,
we have found it sufficient to model turns deterministically (Figure 3), it would be
easy to make them probabilistic — for instance, having the left turn action change
orientation 95% of the time, but 5% of the time leave the robot in the same Markov
state.

Our representation of topological edgesisakey to our approach. If the edgelengths
are known exactly, it is smple to construct a Markov chain that models the ability
to traverse a corridor, including turning around in the middle of the corridor to
head back in the opposite direction (Figure4a). The model becomes more complex
when the edge length is known only approximately. While one approach is to
represent a corridor edge by a single Markov state [12], this loses the ability to
utilize dead-reckoned information in doing position estimation. In practice, this
sort of information is very powerful, and we do not want to eliminate it from
consideration.

Another approach is to model an edge as a series of Markov chains, each corre-
sponding to one of the possible lengths of the edge (Figure 4b — for space reasons
we show only the east-facing states). The transition probabilitiesinto thefirst state
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Figure 4. Representations of Topological Edges

of each chain would be determined by the probability distribution over edge lengths
associated with the topological map. Each forward transition after that would be
deterministic (except for dead-reckoning uncertainty, as described below). While
this representation best captures the actual structure of the environment, it is very
inefficient: the number of states is quadratic in the maximum length of the edges.

As a compromise between fidelity and efficiency, we have chosen to model edges
by collapsing the separate chains into one. Figure 4c shows one possible way of
collapsing the chains (here, of an edge with minimum length three and maximum
lengthfive), in away that we call the“comefrom” semantics. Inthisrepresentation,
the spatial location of a Markov state is known relative to the topol ogical node from
which the robot comes, but its location relative to the end of the chain is uncertain
(e.g., state B is 1 meter from state A, but is between 2 and 4 meters from state C).
If the distance from a state to the start state is less than the minimum length of the
edge, or if the stateisthelast of the chain, then the forward transition probability out
of that state is deterministic; Otherwise, there is some probability that the forward
action will transition to the next state in the chain and some probability that it will
transition directly to the state corresponding to the next topological node. Note that
if the robot turns around at some state s within the corridor and heads back towards
the start node, the model will correctly predict that the robot will reach the start
when it has travel ed the same distance it took to reach state sin thefirst place. That
is, even though the exact length of the edge is uncertain, the robot knows exactly
how long it has traveled in coming from a given topological node.

A similar way of representing edgesisto use*goto” semantics, inwhichthelocation
of a state is specified relative to the topological node toward which the robot goes,
but the distance from the start node is uncertain. While both the “come from” and
“go to” models are equivalent for the purpose of projecting probabilities forward
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Figure5: Representation of Topological Junctions

and can easily be compiled from the probability distribution over edge lengths, they
have different advantages for the purposes of navigation. For example, using the
“go to” semantics makes it easier to integrate virtual sensors (such as those based
onvision) that detect featureswell ahead of the robot. On the other hand, the “ come
from” semantics can accurately model the ability to turn around within a corridor
and return to the last topological node. In addition, the “come from” semantics
seems more natural: it models the intuition that one is typically more uncertain
about one’s destination than in where one just came from. For these reasons, we use
the “come from” semanticsin our model.

We also need to model topological nodes. Our first representation consisting of a
single group of four Markov states (as in Figure 3) proved somewhat inadequate,
since the spatial resolution of aMarkov state is one meter, but corridorsare actually
two meters across. While a straightforward fix would be to represent junctions
using four (two by two) groups of four states each, we achieve nearly the same
result with four groups of only two states each, which both saves space and makes
the model much ssimpler (Figure5). The basic ideaisthat turnswithin ajunction are
not modeled deterministically, but instead have equal probability of transitioning to
one of the two states of the appropriate orientation in the junction. For example,
in entering the junction of Figure 5 from the West, the robot would first encounter
state A, then state B. If it then turned right, it would be facing South, and would
transition to either states C or D with equal probability. Whilethere are some minor
inaccuracies with this representation (for instance, if the robot turns right in B and
then left again, it isnow with equal probability in A or B), in general it captureswell
how the robot actually traverses corridor intersections. In particular, it corresponds
to thefact that it is very difficult to pin down the robot’s |ocation exactly whileitis
turning in the middle of an intersection.



We have made several extensionsto the basic model described aboveto makeit more
generally useful for office navigation. First, to model dead-reckoning uncertainty
we include a self-transition, that is, a transition with some probability from each
state into itself, for all the forward actions. Doorways are modeled as exact-length
(Figure 4a), two meter long edges. In addition, similarly to [12], we associate a
probability p with the edge that indicates the likelihood that the door is open. Then,
the observation probabilities associated with seeing a doorway are:

pi(o|door) = p x pi(o]open-door) + (1 — p) x pi(o|closed-door)

5. Position Estimation

As the robot moves, it receives information that is used to update the probability
distribution over the Markov states. One source of information is dead-reckoning,
which providesthe current heading of therobot and the distancetraveled (its“virtual
odometer”). The navigation system is notified whenever the heading is changed,
and it periodically receives distance reports from the virtual odometer. The action
update rule presented in Section 3 is used to incorporate this information into the
Markov model.

In general, the action of moving forward tends to increase positional uncertainty,
dueto non-deterministic transitionsin the model. In some cases, however, knowing
that the robot moved forward can decrease uncertainty. This occurs where there
is some probability that the robot is a in state in which the forward action is not
feasible (forward ¢ A(s)). Such states are prevalent — for instance, al states
within a corridor whose orientation is perpendicular to the axis of the corridor (see
Figure4). In practice, thiseffect can be seen when the robot turns at an intersection:
beforethe turn, thereis often some probability that the robot has not yet reached the
intersection. After the robot has turned and successfully moved forward a bit, the
probability that it is still in the original corridor dropsto zero.

The other way to reduce positional uncertainty is through sensor reports. A sensor
report consists of the feature detected, aswell as the odometer reading and heading
of the robot at the time of detection. The navigation system uses the action update
rule, as described above, to move the model forward to the given distance, and then
uses the observation update rules presented in Section 3 to incorporate the sensor
information.

There are two practical problemsthat must be dealt with. First, sensor reports may
be out of date: either the odometer reading associated with the report has been
passed, or the heading reported is not the same as the current heading. This problem
arises because, since the evidence grid integrates physical sensor information over
time, the sensor reports are sometimes delayed up to the point where the the Markov
model aready incorporates actions that were executed after the sensor readings.
Given only the current probability distribution and the delayed sensor report, it is
impossible to update the probability distribution correctly. Currently, wejust ignore
such reports, but that loses information. A better approach would be to periodically
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record snapshots of the probability distributions and then, when a delayed sensor
report is received, to revert to an earlier snapshot and redo all calculations from
there, thistime taking the sensor report into account at the right time.

The other problem with handling sensor reports is that occasionally when more
information is integrated into the evidence grid, a previous sensor report is found
to be erroneous and a new one is issued instead. If no action update has occurred
between the old and new reports (and if all conditional probabilities of the sensor
are non-zero), one can easily undo the effects of the old report and then incorporate
the new one, as per usual. Given the current probability distribution p(s) for al
s ¢ S theold report o of sensor i, and the new report o/, one updates as follows:

pi('s)
pi(o]s)
where K is anormalizing factor. If intervening action updates have occurred or at

least one conditional probability pi(o|s) is zero, then the problem can be solved in
the same way as the one above.

Pposterior (S) = K x x p(s)

6. Planningand Action Execution

For self localization, the position estimation mechanism can be combined with a
simple wandering behavior, until positional uncertainty is sufficiently reduced. To
get the robot to move to a given goal, however, a planner assigns a desired action
with each Markov state and, after each model update, the navigation system chooses
the action with the highest total probability mass (the “best-action” strategy).

Given the large number of states, it isinfeasible to plan directly using the Markov
model. Rather, we plan using the augmented topol ogical map and then map that plan
to the Markov states. For each node and edge in the map, the planner associates
a preferred direction to travel, based on the expected total travel distance to the
goa. Then, the“forward” actionisassigned to each Markov state whose orientation
corresponds to the preferred direction of its associated topological entity. The
remaining states are assigned actions that will turn the robot to the desired heading.
For example, if the preferred direction at a topological node is North, then the
following actions are assigned to the corresponding Markov states: go forward in
the Markov stateswith orientation North, turn left in the stateswith orientation East,
and turnright in the Markov states with orientation West or South (although the last
action assignment is arbitrary — turning left isjust as reasonable). Finally, a stop
actionisassigned to the goal state and to nearby states (the latter decreases the time
until the stop action has the highest probability mass of all actions when the robot
has reached the goal).

While we model the actions as discrete turns and moves, in actuality, the robot does
not stop to turn, but continually moves forward while turning. In addition, turns
are cumulative, so that two successive right turn actions, for instance, resultsin a
smooth 180 degree turn. Since the robot continuesto move forward in the direction
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Figure 6: An Office Corridor Environment

of its current heading at all times (modulo detours to avoid obstacles), the forward
action isnever actually sent to the robot (unlessit is stopped).

One variation on the “best-action” selection strategy is to choose an action only if
its probability massis above some threshold, otherwise the robot continuesalong its
current heading (the “ best-action-above-threshold” strategy). An advantage of this
strategy isthat it reduces the chance of making awrong move due to spurious false
positive sensor reports (e.g., seeing an opening where none exists), since several
confirming reports will be needed to push the action over threshold. Also, if no
actionisclearly best, it may indicate that the robot is lost and needs to self-localize.
On the other hand, waiting until a threshold is reached may delay the robot from
taking the best action. In our smulation experiments, described below, the “best-
action-above-threshold” strategy, with an action threshold of 80%, performed worse
than the “best-action” strategy. However, we believe that using an action threshold
may be more useful on our real robot, since the smulator tends not to hallucinate
openings, while the real robot does this with some regularity [14].

7. Experiments

In this section, we demonstrate the performance of our navigation technique in a
prototypical office corridor environment. To perform the experiments, we used a
highly realistic smulation environment of Xavier, our mobile indoor robot [13].
Xavier is built on an RWI B24 base, includes bump sensors, sonars, a laser range
sensor, and a color camera on a pan-tilt head. Control, perception and planning
are carried out on two on-board, multi-processing 486-based machines. Xavier’'s
nominal navigation speed is currently about 30 centimeters per second. Xavier is
currently undergoing major hardware repairs which prevented us from performing
experiments with the robot itself. However, we will do experiments similar to the
ones described below with the real robot within the next two months and report the
resultsin the final version of this paper. We aso intend to compare its performance
against the navigation system described in [14].

Two experiments were performed in the office corridor environment shown in Fig-
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ure 6. The corresponding topological map has 17 nodes and 36 directed edges. We
model ed the uncertainty of the length of atopological edge asauniformdistribution
over the interval ranging from 80 to 150 percent of the real length of the edge, and
used aresolution of one meter to discretize the map. Theresulting Markov model is
relatively small: it has 1184 Markov states (the Markov model for half of one floor
of our building has nearly 3000 states).

Theinitial positional uncertainty for both experimentsis minimal: theinitia prob-
ability for Xavier’'s actual location is about 90 percent. The remaining probability
mass is distributed in the vicinity of the actual location.

In the first experiment, Xavier had to navigate from start; to goal;. Our planner
assigns the actions that are shown with solid arrowsin the figure. Note that thereis
achoice of whether the preferred direction of travel between B and C should be East
or West. Our planner decides to have therobot travel West (towards C) because this
way it does not have to turn around if it overshoots B. We ran atotal of 15 trials
for both the best-action and the best-action-above-threshold strategies, all of which
were completed successfully. The results are shown in the following table:

best-action best-action-above-threshold
path freg. ave time ave speed | freq. ave time ave speed
ABE (planned path) 12 68.2s 25.7 cm/s 5 63.6s 27.5cm/s
ABCDE 3 79.7s 29.5 cm/s 8 81.0s 29.0 cm/s
ABCKCDE — — — 2 104.1s N/A

The robot has to travel a rather long distance from the start before it has to make
itsfirst turn. Sincethisdistance is uncertain and corridor openings are occasionaly
missed (such asthe one at B) the robot occasionally overshoots B, and then becomes
uncertain whether it isreally at C or B. However, since the same action is assigned
to both nodes, this ambiguity does not need to be resolved: Xavier turnsleft in both
cases and then goes straight. The same thing happens when it getsto D or E. Now,
however, therobot correctsitsbelief about itsposition whenit then turnsleft, travels
forward, and suddenly notices a corridor opening to its left. At this point in time,
Xavier becomesfairly certainthat itisat E. A purely expectation-driven landmark-
based navigation technique can easily get confused in this situation. Although it
could successfully follow the plan so far, suddenly it sees aleft opening that should
not be there and is confused as to whether this sensor report is wrong or whether
its belief about its position iswrong. In the latter case, it cannot quantify its belief
about were it might be instead.

In our second experiment, Xavier had to navigate from start, to goal,. Our planner
assigns the actions that are shown with dashed arrows in the figure. Again, we ran
15 trialsfor both action selection strategies.

For reasons that are similar to the ones in the first experiment, Xavier can confuse
Gwith F If itisat G but thinksitisat F, it turnsright and goes forward. However,
when it detects the end of the corridor but does not detect a right corridor opening,
it realizesthat it isat H rather than I. Since the probability mass has now shifted, it
turns around and goes over G, F, and | to the goal. This shows that our navigation
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technique can recover from migudgements based on wrong sensor reports when it
getsnew cluesasto whereit is—even if it correctsits belief about its position very
late and has to navigate back along way. It isimportant to realize that this behavior
isnot triggered by any explicit exception mechanism, but results automatically from
the way the plan execution and monitoring operates.

best-action best-action-above-threshold
path freg. ave time ave speed | freq. ave time ave speed
JFI (planned path) 11 60.6 s 28.9 cm/s 8 65.4s 26.8 cm/s
JFGFI 2 915s 257cm/s | — — —
JFGHGFI 1 116.0s  23.7cm/s 5 1202s  229cm/s
JFGFGFI 1 133.0s 222cm/s | — — —
JFGDGFI — — — 2 176.5s N/A

We emphasized earlier that an empirical validation of algorithms based on Markov
models is important, because the world is not Markovian. Our experiments to date
confirm our belief that our navigation technique operates robustly in office corridor
environments, even in the presence of unreliable sensors and uncertainty in the
distances.

8. FutureWork and Conclusions

This paper has presented an approach to autonomous office navigation that uses
partially observable Markov models to track the robot’s position and to control its
heading towards agoal. Advantages of this approach include the ability to account
for uncertainty in the robot’sinitial position, actuator uncertainty, and sensor noise.
Also, by integrating topological and metric information, the approach easily deals
with uncertainty arising from incomplete descriptions of the environment.

We are pursuing severa directions to extend this work. Obvioudy, we will do
experiments on Xavier, when it becomes available. Foyers will be added to the
model by using a2D tessellation of thespace. Morefundamentally, weare exploring
methodsfor passively refining the metric and topol ogical map information contained
in the models. We are currently applying conventional EM approaches for learning
Markov modelsand, in parallel, devel oping our own, improved |earning approaches
that aremoreresistant to violationsof theMarkov assumption. Wearea so exploring
probabilistic planning algorithms, such as approximations of POMDP algorithms
and other, more efficient, algorithms that will take observation probabilities into
account when choosing paths. For example, given two paths of equal length, the
robot should prefer the one that minimizesthe chancethat it will missacritical turn.
Finally, we intend to add new sources of sensor information, primarily vision-based
feature detectors.

Our approach enablesarobot to utilize all its sensor information, both positional and
feature-based, in order to robustly track itslocation. We have demonstrated that this
approach leads to reliable goal-directed navigation, even in the face of significant
uncertainty. We believe that such probabilistic navigation techniques hold great
promisefor getting robots reliable enough to operate unattended for long periods of
time in complex, uncertain environments.
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