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Abstract

Background

With enough advanced notice, dengue outbreaks can be mitigated. As a climate-sensitive

disease, environmental conditions and past patterns of dengue can be used to make predic-

tions about future outbreak risk. These predictions improve public health planning and deci-

sion-making to ultimately reduce the burden of disease. Past approaches to dengue

forecasting have used seasonal climate forecasts, but the predictive ability of a system

using different lead times in a year-round prediction system has been seldom explored.

Moreover, the transition from theoretical to operational systems integrated with disease con-

trol activities is rare.

Methods and findings

We introduce an operational seasonal dengue forecasting system for Vietnam where Earth

observations, seasonal climate forecasts, and lagged dengue cases are used to drive a

superensemble of probabilistic dengue models to predict dengue risk up to 6 months ahead.

Bayesian spatiotemporal models were fit to 19 years (2002–2020) of dengue data at the

province level across Vietnam. A superensemble of these models then makes probabilistic

predictions of dengue incidence at various future time points aligned with key Vietnamese

decision and planning deadlines. We demonstrate that the superensemble generates more

accurate predictions of dengue incidence than the individual models it incorporates across a
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suite of time horizons and transmission settings. Using historical data, the superensemble

made slightly more accurate predictions (continuous rank probability score [CRPS] = 66.8,

95% CI 60.6–148.0) than a baseline model which forecasts the same incidence rate every

month (CRPS = 79.4, 95% CI 78.5–80.5) at lead times of 1 to 3 months, albeit with larger

uncertainty. The outbreak detection capability of the superensemble was considerably

larger (69%) than that of the baseline model (54.5%). Predictions were most accurate in

southern Vietnam, an area that experiences semi-regular seasonal dengue transmission.

The system also demonstrated added value across multiple areas compared to previous

practice of not using a forecast. We use the system to make a prospective prediction for

dengue incidence in Vietnam for the period May to October 2020. Prospective predictions

made with the superensemble were slightly more accurate (CRPS = 110, 95% CI 102–575)

than those made with the baseline model (CRPS = 125, 95% CI 120–168) but had larger

uncertainty. Finally, we propose a framework for the evaluation of probabilistic predictions.

Despite the demonstrated value of our forecasting system, the approach is limited by the

consistency of the dengue case data, as well as the lack of publicly available, continuous,

and long-term data sets on mosquito control efforts and serotype-specific case data.

Conclusions

This study shows that by combining detailed Earth observation data, seasonal climate fore-

casts, and state-of-the-art models, dengue outbreaks can be predicted across a broad

range of settings, with enough lead time to meaningfully inform dengue control. While our

system omits some important variables not currently available at a subnational scale, the

majority of past outbreaks could be predicted up to 3 months ahead. Over the next 2 years,

the system will be prospectively evaluated and, if successful, potentially extended to other

areas and other climate-sensitive disease systems.

Author summary

Whywas this study done?

• A climate-driven dengue early warning system would allow public health decision-mak-

ers to design, implement, and target timely interventions to the most at-risk places.

• Dengue is sensitive to changes in temperature, rainfall, humidity, and wind speed.

Therefore, a dengue prediction model driven by seasonal climate forecasts offers a valu-

able tool for predicting dengue risk in advance.

What did the researchers do and find?

• We developed a superensemble of probabilistic models to predict dengue incidence

across Vietnam up to 6 months ahead. The predictive ability of the superensemble was

assessed using multiple verification metrics and compared to a baseline model at multi-

ple lead times, seasons, and locations.
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• We found that the model superensemble generated more accurate predictions than the

baseline model 1 to 3 months ahead but not 4 to 6 months ahead.

• The model superensemble, however, was better able to predict outbreaks than the base-

line model across all lead times.

• The predictive ability of the model varied with geographic location, forecast horizon,

and time of the year and performed best in the peak season in areas experiencing a high

level of transmission.

What do these findings mean?

• While outbreaks of infectious diseases are difficult to predict, particularly several

months ahead, model superensembles, which combine multiple climatic drivers with

dengue surveillance data at the time of forecast issue date, provide a useful decision-sup-

port tool.

• Early warning systems driven by seasonal climate forecasts could shift dengue control

towards a more preventative approach, guiding bespoke and targeted public health

interventions and a more efficient allocation of scarce resources.

Introduction

Dengue is a mosquito-transmitted viral infection spread by Aedesmosquitoes in urban and

peri-urban environments in tropical and subtropical countries [1–3]. About half of the global

population is at risk of dengue transmission [4,5]. Dengue infection is characterised by flu-like

symptoms that may include sudden intermittent high fever, retro-orbital pain, muscle and

joint pain, severe headache, and widespread red skin rash. Its treatment typically includes the

supportive care of symptoms. There is no specific antiviral treatment for dengue, and efforts to

control transmission focus on controlling vector populations [6]. A live, attenuated, tetravalent

dengue vaccine has demonstrated efficacy in 2 large-scale Phase III trials [7] and has now been

licensed. However, while the vaccine shows high levels of protection against disease in people

with previous exposure to dengue viruses, it may increase the risk of severe dengue if given to

seronegative individuals [7]. A lack of reliable and scalable tests for seropositivity currently

hinders wider rollout of the Dengvaxia vaccine and so most countries still primarily rely on

insecticide-based mosquito control interventions to limit dengue virus transmission [8]. The

increasing resistance to insecticides highlights the need for targeted and effective interventions

[9].

Vietnam is particularly affected by dengue with an estimated burden of about 2 million

yearly infections [5,10], although, on average, only 95,000 cases have been reported annually to

the Ministry of Health over the period 2002 to 2020. Underreporting may be due to 2 main fac-

tors. First, dengue surveillance in Vietnam is mostly passive, relying on clinical cases reported

by patients seeking healthcare [11]. Second, up to 80% of the cases may be asymptomatic or

minimally symptomatic and will likely not seek healthcare [12]. The economic impact of den-

gue in Vietnam is estimated to be US$30 to US$95 million per annum [10,13,14]. Dengue in

Vietnam is primarily spread by Aedes aegypti and, to a lesser extent, by Aedes albopictus

[15,16].
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In Vietnam, dengue is characterised by strong seasonality and substantial interannual and

spatial variability (S1 Fig). Dengue exhibits different behaviour in different parts of the coun-

try. In the north, where temperatures are lower than in the rest of the country, most provinces

have few or no cases. An exception is Hanoi, which has reported, on average, about 8,700 den-

gue cases per year over the past 10 years. In central and southern provinces where tempera-

tures are warmer, many provinces report thousands of cases annually, albeit with large

interannual variation.

Dengue control in the country primarily involves community engagement and mobilisation

to reduce breeding sites and outdoor low-volume insecticide spraying in the vicinity of

reported dengue cases to kill adult mosquitoes [11]. One limitation of dengue control mea-

sures is that they are essentially reactive, meaning they take place after cases have occurred.

Thus, vector control, dengue diagnosis, and reporting all suffer delays which vary across time

and space [17]. This situation hinders the timely generation and communication of informa-

tion on when and where transmission occurs, limiting the ability of health professionals to

plan and execute control measures.

If accurate predictions are available, public health decision-makers and planners could

design, implement, and target interventions to the most at-risk places in a timely fashion. Dis-

ease models driven by Earth observations have been valuable for predicting dengue risk ahead

of time, supporting decision-making in multiple settings [18–20]. Climate variation is one of

the main drivers of dengue ecology. It is known that temperature regulates the development,

biting, reproduction rates, and the spatial distribution of Aedesmosquitoes [21–23]. The titre

and replication of dengue viruses within mosquitoes is temperature dependent [21,24]. For

example, rising temperatures increase dengue transmission to an optimum range of 26 to

29˚C [25], and large diurnal temperature ranges (DTRs; above 20˚C) reduce transmission and

increase mosquito mortality [26]. Mosquito survival is also affected by humidity. Research

indicated that A. aegypti eggs survive across a wide range of humidity and temperature combi-

nations. However, Ae. albopictus eggs experience high mortality when relative humidity is

lower than 95% if temperatures are above 22˚C [27]. Under high humidity conditions (i.e.,

above 80%), adult mosquitoes survive and remain active by replenishing transient body fluid

depletion with plant sugars and host blood [28]. This behaviour is also observed in lower

humidity environments, although to a lesser extent [28]. The effect of precipitation on dengue

is related to the creation or flush away of mosquito breeding sites [29]. The effects of wind

speed have been seldom explored in the literature. However, research suggests that wind speed

reduces the biting activity of mosquitoes, reducing dengue risk [30]. Most of the effects of cli-

mate on dengue incidence are delayed by 1 to 2 months due to their effect on the life cycle of

both mosquitoes and the dengue virus [31]. Thus, the climatic conditions just before the trans-

mission season starts may be indicative of dengue incidence in the following dengue transmis-

sion season [32,33].

Multiple studies have highlighted the potential usefulness of seasonal climate-driven epide-

miological surveillance for decision-making and planning [32,34–36]. These studies have used

subseasonal (i.e., between 2 weeks and 2 months ahead) forecasts to inform disease models

and compute predictions of dengue risk. There has been limited progress in using subseasonal

to seasonal climate forecasting to compute prospective forecasts on a routine basis. There are

several challenges for implementing operational and sustainable subseasonal (henceforth sea-

sonal) early warning systems [37]. Some of these challenges include the lack of multi-decadal

health data sets with which to train and validate seasonal climate-driven early warning systems,

the common mismatch of scales between climate data outputs and data used for decision-mak-

ing, and a general lack of consensus as to how to communicate uncertainties to users [36].
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Dengue early warning systems driven by Earth observations and seasonal climate forecasts

have been proposed using a range of modelling approaches [38], including autoregressive inte-

grative moving average (ARIMA) [39], point forecasts [32,40], spatiotemporal Bayesian hierar-

chical models [18,19], least absolute shrinkage and selection operator (LASSO) regression

[41,42], and machine learning [43]. Often, models are validated using block cross-validation to

select the model specification with the lowest out-of-sample predictive error [18,32]. This

approach takes advantage of all available data to make repeated out-of-sample model predic-

tions, which increases the robustness of model adequacy and verification statistics. One draw-

back of this method is that it does not preserve the time ordering of the data. Also, predictions

are computed for some time periods using a model trained on data from a later time period

[44].

Previous dengue risk prediction studies have relied on outputs from 1 or 2 competing mod-

els [18,32]. However, combining forecasts from multiple competing models into a superen-

semble may result in more accurate predictions than those from any individual model [38,45].

The use of model superensembles for the development of dengue early warning systems has

been seldom explored. Moreover, predictions are typically made for a selected year or month

[18,32,34] rather than for a series of lead times into the future, or a whole season [19,41]. In

some cases, systems are designed exclusively for research purposes in isolation from relevant

stakeholders who may become potential users. This situation is partly due to the difficulties

related to the integration of these systems into existing public health procedures and occa-

sional lack of technical expertise.

Typically, dengue early warning systems are based on deterministic models [32,39,40]

which may underrepresent heterogeneity and stochastic cessation of transmission. However,

decision-makers are increasingly interested in understanding the uncertainties related to the

models used to develop decision-support tools and in the probabilities that an event of public

health concern may or may not take place [34,46,47]. Spatiotemporal probabilistic models

have the advantage of being able to quantify the probability that an event (e.g., an outbreak)

may occur at specific times and for specific locations. Public health officials may be more

inclined to take action if the probability of observing an outbreak exceeds a certain value [18].

Both modellers and decision-makers should pay attention to and agree on the definition of

outbreaks thresholds so that model predictions are a useful guide for planning and decision-

making.

In several countries, including Vietnam, outbreaks are defined using a so-called endemic

channel [48,49], which corresponds to the mean number of cases per month or season over a

long-term period [50]. In Vietnam, endemic channels are defined for each province using the

last 5 years of dengue surveillance data. Outbreak years are removed from the computation of

the endemic threshold. When dengue cases exceed the mean plus 2 standard deviations, an

outbreak is declared. One limitation of this approach is that often, outbreak years are removed

arbitrarily or quasi-quantitatively to increase the sensitivity of the outbreak threshold [50]. In

areas where dengue incidence is typically low (e.g., less than 10 cases per month), the endemic

channel may be frequently exceeded, generating statistical alarms of little public health impor-

tance [51]. Despite these limitations, endemic channels are widely used for dengue control

decision-making in a variety of countries and provide a practical decision point around which

forecasts can be targeted [52,53].

Here, we introduce a superensemble of probabilistic spatiotemporal hierarchical dengue

models driven by Earth observations and seasonal climate forecasts. The model framework

was codesigned with stakeholders from the World Health Organization (WHO), the United

Nations Development Programme, the Vietnamese Ministry of Health, the Pasteur Institute

Ho Chi Minh City, the Pasteur Institute Nha Trang, the Institute of Hygiene and Epidemiology
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Tay Nguyen (TIHE), and the National Institute of Hygiene and Epidemiology (NIHE). The

system is designed to generate monthly estimates of dengue risk across Vietnam (331,210

km2) at the province level (n = 63) in near-real time (i.e., current time minus processing time).

The superensemble is used in an expanding window time series cross-validation (TSCV)

framework [54] to generate probabilistic dengue forecasts, which allow us to calculate the

probability of exceeding predefined dengue outbreak thresholds for a forecast horizon (i.e.,

lead time) of 1 to 6 months.

The superensemble constitutes the dengue fever component of a forecasting system called

D-MOSS (i.e., Dengue forecasting MOdel Satellite-based System). The system operates using a

suite of Earth observation data sources from satellites and has its first implementation in Viet-

nam. Vietnam is divided into 63 provinces which are subdivided into 713 districts and has an

estimated population of 95.5 million people. The D-MOSS system produces results at the prov-

ince level and is accompanied by an assessment of its predictive ability that is applied consis-

tently across the whole of Vietnam. The intention is to give an overall evaluation of the

performance of our method, rather than an assessment that pertains to the characteristics of

any particular province.

Materials andmethods

The analysis plan was described in a UK Space Agency grant proposal for the International

Partnership Programme in September 2017. The aims, objectives, and proposed methodology

were developed prior to data analysis and are described in S1 Text. Changes to the analytical

plan in response to suggestions from reviewers took place between August and October 2020.

These changes include (1) calculating the bias and sharpness of each of the competing models

included in the superensemble to decompose the overall prediction error; (2) formulating a cli-

mate naïve baseline model that captures the spatial dependency and seasonality for each prov-

ince and estimates the same seasonal average of dengue incidence each month; (3) modifying

the model superensemble specification from Bayesian moving averaging to model stacking

based on the continuous rank probability score (CRPS); (4) using weights based on the vari-

ance of errors rather than maximum likelihood; and (5) modifying the colour palette and the

methodology used for communicating and visualising the outputs from the probabilistic

superensemble. Our study did not require a separate ethical approval.

Dengue surveillance data

Monthly dengue cases were obtained from the Vietnamese Ministry of Health. Data were

retrieved for the period August 2002 to December 2019 at the province level (n = 63). Data

comprised suspected and confirmed dengue cases, although there was no indication as to

how many cases fell within each category. The data set did not contain serotype-specific

information.

According to the national guidelines on dengue surveillance, suspected cases are defined as

people living in or coming from endemic areas or from areas that have had dengue outbreak

foci over the previous 14 days with manifestation of sudden high fever lasting for 2 to 7 days

and with at least 2 of the following signs: hemorrhagic manifestation (positive tourniquet test,

hypodermic petechiae or ecchymosis, and stump hemorrhage or nasal hemorrhage), headache,

anorexia, nausea, vomiting, skin flush, rash, muscular, joint and orbital pains, writhe, uncon-

sciousness, pain in liver area or pain when pressing on the liver area, hepatomegaly, thrombo-

cytopenia, or increased hematocrit. Confirmed cases correspond to those confirmed by

laboratory tests using MAC-ELISA, PCR, and NS1, or virus isolation. Over the period 2002 to
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2019, there have been no changes in the classification of suspected and confirmed dengue

cases in Vietnam.

Historical demographic and land cover data

Total population per province and per year were retrieved from the Socioeconomic Data and

Applications Center (SEDAC) Gridded Population of the World project version 4.11 [55] at a

1 km2 resolution, 5 yearly for the period 2000 to 2020. Intervening years were generated using

linear interpolation. The percentage of urban, peri-urban, and rural land cover per province

and per year for the period 2002 to 2019 was derived from the ESA CCI Land Cover project

[56,57], which describes the land surface into 22 classes at a spatial resolution of 0.00277

degrees.

Historical Earth observation data

Minimum, maximum, and mean air temperature at 2 metres above ground (˚C) were derived

fromMODIS daily L3 global land surface temperature products [58] with a spatial resolution

of 1 km2. Precipitation amount per day (mm day−1) was initially retrieved from from the Trop-

ical Rainfall Measurement Mission [59] at a spatial resolution of 25 km2 up to April 2014.

After April 2014, precipitation data were obtained from the Global Precipitation Mission [60]

at a spatial resolution of 10 km2. Daytime-specific surface humidity (dimensionless) was calcu-

lated using the daytime MODIS L2 water vapour near infrared MOD 5 products [61] with a

spatial resolution of 1 km2. Average daily wind speed at 10 metres above ground (m s−1) was

retrieved from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-5

reanalysis [57] for the period 2002 to 2011, at a spatial resolution of 31 km2. After 2011, wind

speed data were obtained from the NOAA Climate Forecast System [62] at a 20 km2 resolu-

tion. Monthly sea surface temperature anomalies for the Niño region 3.4 (5˚S−−5˚N and 170˚

−120˚W) were obtained from the NOAA Center for Weather and Climate Prediction Climate

Prediction Center [63] for the period 2002 to 2020.

Earth observation data were obtained as a gridded data set in netcdf format. Sociodemo-

graphic data were averaged at the province level using the rasterstatsmodule in Python

3.6 [64]. When a polygon covered only part of a grid cell, averages were calculated for the

approximate fraction of the cell covered by the polygon (rounded 1/100). The administrative

boundaries of each province were defined using a shapefile provided by the Vietnamese Gen-

eral Department of Preventive Medicine, Hanoi.

Climate data were aggregated at the province level using population weighted averages for

each month. SEDAC population data, although gridded, had identical values at each pixel fall-

ing within a given administrative district (i.e., admin 2 level). SEDAC data could not be used

for the computation of population weighted averages as each grid cell within an administrative

district would carry the same weight. As a compromise, we used WorldPop [65] estimates for

which population estimates vary per pixel. Population data from the WorldPop project [65] at

a 100 m2 spatial resolution was used to calculate annual gridded weights for each province

using the rasterstatsmodule in Python 3.6 [64]. At the time of processing, WorldPop

data were only available for the years 2009, 2010, 2015, and 2020. Intervening years were calcu-

lated using linear interpolation. Province-specific population-weighted averages were calcu-

lated as follows:

x̂ ¼

Pn

i¼1
wixiPn

i¼1
wi

; ð1Þ

where n is the total number of pixels i falling within a given province polygon, x is the value of
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each climate predictor at pixel i, and w denotes the pixel-specific weights calculated as

wi ¼
pi
N
; ð2Þ

where pi is the pixel-specific population count, and N is the total population count falling into

a given province.

There were multiple changes in the administrative boundaries of the provinces over the

study period. The last change took place in 2008. Consequently, we froze the administrative

boundaries of the country at their 2008 level. Dengue data were allocated to each of the 2008

level administrative boundaries using district-level records. The allocation of dengue cases to

each province was conducted by the General Department of Preventive Medicine, Hanoi.

Seasonal climate forecasts

Seasonal climate forecasts of minimum temperature, maximum temperature, daily precipita-

tion, specific humidity, wind speed, and sea surface temperature anomalies for the Niño region

3.4 were obtained from the UKMet Office Global Seasonal Forecasting System version 5 (Glo-

Sea5) [66,67]. GloSea5 comprises 42 ensemble members built around a high-resolution climate

prediction model (HadGEM3). Ensemble members differ due to small stochastic physics per-

turbations provided by the Stochastic Kinetic Energy Backscatter v2 [68]. GloSea5 has a resolu-

tion of 0.83 degrees in latitude and 0.56 degrees in longitude for the atmosphere and

0.25 × 0.25 degrees for the ocean. GloSea5 has 2 major components, the forecast itself and the

associated hindcasts or historical re-forecasts, which are used for calibration and assessment.

An evaluation of the predictive ability of the GloSea5 system can be found elsewhere [66]. S2

Fig shows that compared to the climatology (i.e., the month-specific mean for each variable),

the out-of-sample errors of the GloSea5 system are considerably low.

Seasonal climate hindcasts

Hindcast data (i.e., historical forecasts) from the GloSea5 system [66,67] were retrieved using

the Copernicus Climate Data Store [57] at monthly time steps for each of the 28 ensemble

members, for lead times of 1 to 6 months ahead, and for the period January 2007 to December

2016. At the time of the computations, data for the period May to October 2016 were unavail-

able from the Copernicus Climate Data Store.

Model specification

Let Yi,t be the number of dengue cases for province i = 1, � � �, I and time t = 1, � � �, T where I is

the total number of provinces in the data set, and T is the total number of time steps for which

the model is fitted using Bayesian generalised linear mixed models (GLMM). Models were fit-

ted with a conditional negative binomial distribution given the number of dengue cases in the

previous time step. The general algebraic definition of the models at the linear predictor scale

is given by

log ðmi;tÞ ¼ aþ log ðPi;a½t�Þ þ r log ðYi;t�1
þ 1Þ þ

P
kbkXk;i;t þ

P
j�jLj;a½t� þ gi;a½t� þ di;m½t� þ ui

þ ni; ð3Þ

where α corresponds to the intercept; log (Pi,a[t]) denotes the logarithm of the population at

risk for province i and year a[t], included as an offset to adjust case counts by population; log

(Yi,t−1+1) denotes the logarithm of the observed number of dengue cases in the previous

month plus one with an autoregressive parameter ρ; X is a matrix of k seasonal meteorological
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explanatory variables with regression coefficients β; and Lj,a[t] is a matrix of j land cover (peri-

urban and urban) variables with regression coefficients �. Long-term trends are modelled

using province-specific unstructured random effects for each year (γi,a[t]). Seasonality is
accounted for by using province-specific structured random effects for each calendar month

(δi,m[t]) with first order autoregressive prior to allow each month to depend on the previous

one. Unknown confounding factors, such as interventions and spatial dependency structures

representing, for example, human mobility, were incorporated using structured (νi) and

unstructured (ui) random effects for each province i.

Spatial random effects were specified using a Besag–York–Mollie model [69], which incor-

porates a spatial effect with a Gaussian exchangeable prior to account for unstructured varia-

tion and a spatial effect with an intrinsic conditional autoregressive prior to account for

spatially structured variability. Delayed effects of meteorological factors on dengue were

accounted for by incorporating a 3-month moving average of temperature, precipitation, spe-

cific humidity, and DTR centred at lag of 1 month (i.e., each value is given the average of lag 0

to a lag of 2 months). Sea surface temperature anomalies in the Niño region 3.4 were lagged 0

to 3 months based on previous research [20,33,70] and exploratory analyses. No delayed effects

were considered for wind speed based on previous studies, indicating a highest effect of wind

at a lag of 0 months [71].

Flat priors were set to regression coefficients (α,ρ,β), and penalising complexity priors were

assumed for the precision for all random effects [72]. Priors were specified using a Gaussian

distribution. We did not explicitly specify a prior distribution for the dispersion parameter (ϕ).

We used the default pc.gamma specification in the INLA R package [73], which assumes a

Gamma distribution with values of ϕ within the interval 1–5668.2. Models were fitted in R ver-

sion 3.6.1 using the INLA package [73]. The relevant R code is available at https://github.com/

FelipeJColon/paper_dengue_superensemble.

Model selection

The best subset of seasonal climate predictors leading to the lowest observed prediction dis-

crepancies for a given model was obtained using an expanding window TSCV algorithm [54].

Land cover variables were included in all competing models as they varied annually and are

unlikely to change significantly at monthly time steps. We iteratively fitted all possible models

containing 1 seasonal climate predictor at the time, then 2 seasonal climate predictors, and so

on, until all seasonal climate variables were included in a full model [20]. Thus, we tested 128

unique model specifications across 114 forecast months (i.e., January 2007 to December 2016).

The predictive ability of each model was evaluated using the CRPS which generalises the mean

absolute error for the case of probabilistic forecasts. The advantage of the CRPS compared to

the mean absolute error (MAE) or root mean squared error (RMSE) is that the CPRS does not

focus on a specific point of the probability distribution of the forecasts, but on their distribu-

tion as a whole. CRPS values were computed in R using the SpecsVerification package

[74]. In response to peer review comments, we also evaluated the bias of the forecasts with the

lowest CRPS to investigate whether models systematically over- or underpredicted dengue

counts [75]. The bias for a continuous forecast at time t was defined as [76]

BtðPt; xtÞ ¼ 1� 2� ðPtðxtÞÞ; ð4Þ

where Pt is the empirical cumulative distribution function of the prediction for the true value

xt [75]. Bias values range from −1 to 1, with Bt = 0 as an ideal value. The sharpness of the best

performing models was assessed to investigate their ability to generate predictions within a

narrow range [75]. The sharpness of forecasts at time t was defined using the normalised
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median absolute deviation about the median (MADN) [75,76]. We defined sharpness as

St Ptð Þ ¼
1

0:675
median jy�median yð Þjð Þ; ð5Þ

where y is a forecast with cumulative distribution function Pt; the division by 0.675 ensures a

value equivalent to the standard deviation if the predictive distribution is normal [75]. Sharpest

models have St = 0, while blurred forecasts have St!1 [75]. Bias and sharpness were calcu-

lated using the scoringutils [76] R package.

TSCV was implemented using an expanding window approach dividing the data set into

multiple training and testing sets. The initial training set comprised data from August 2002

to December 2006. Each time step (k), a further month of data was added to the training set

until the training set contained n-6 observations, where n is the total number of observations

in the set. The testing set comprised the climate hindcast data for the 6 months immediately

after the last observation in the training set for each geographical area. Seasonal climate

hindcast data were used to simulate the behaviour of an operational system over the period

2007 to 2016. We calculated the mean CRPS for each model specification across all time

steps and ensemble members. The best 5 performing models were selected to create a super-

ensemble.

Prospective lagged dengue cases

The number of dengue cases occurring at time t is directly dependent on the number of cases

that occurred in the recent past. Previous research suggests that including the logarithm of the

number of cases in the previous month log(Yt−1) helps accounting for such temporal correla-

tion in disease transmission [77]. Additionally, incorporating log(Yt−1) as a covariate improves

the predictive ability of seasonal climate-informed disease models by reducing residual disper-

sion [77]. One complication of accounting for the number of cases in the previous month in

an operational system is that log(Yt−1) in the temporal window of the forecast can only be

known up to time t+1. More specifically, to generate dengue forecasts 1 month ahead, log(Yt

−1) for time t+1 corresponds to the logarithm of the number of dengue cases at time t. We used

a GLMMwith a negative binomial specification to estimate the log(Yi,t−1) for time t+1 to time

t+6 to ensure that the number of cases in the previous month were exactly the same for all

competing models. Thus, reconstructed lagged dengue time series was exactly the same for all

models. The algebraic definition of the model is

log ðmitÞ ¼ aþ log ðPi;a½t�Þ þ r log ðYi;t�1
þ 1Þ þ gi;a½t� þ di;m½t� þ ui þ ni; ð6Þ

with α as the intercept; log (Pi,a[t]) as the population at risk in province i at time a[t], included

as an offset; log (Yi,t−1+1) is the logarithm of the observed dengue cases plus one in the previ-

ous month with regression coefficient ρ; γi,a[t] as province-specific unstructured yearly ran-

dom effect; δi,m[t] as province-specific structured monthly random effect with an AR1 auto-

correlation term; and ui and νi as province-specific structured and unstructured random

effects.

We then predicted the number of dengue cases for time t+1. The logarithm of the predicted

number of cases at time t+1 was then used as log(Yi,t−1) for time t+2. We repeated these steps

for each lead time in the forecast until time t+6. Note we assumed a conditional negative bino-

mial distribution to generate one-step-ahead point predictions for the reconstructed lagged

dengue time series. Once the reconstructed lagged dengue time series was complete, we fitted

all competing models as indicated in the Model selection section.
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Baseline model

We developed a historical baseline model, which forecasts the same seasonal average of dengue

incidence every month at each model run following [18,34,78] to compare all models to a com-

mon reference. The baseline model is specified as follows:

log ðmitÞ ¼ aþ log ðPi;a½t�Þ þ di;m½t� þ ui þ ni; ð7Þ

where α is the intercept; log (Pi,a[t]) is the population at risk in province i at time a[t], included

as an offset; δi,m[t] are province-specific monthly structured random effects with an AR1 auto-

correlation term; and ui and νi as province-specific structured and unstructured random

effects. We compared the predictive ability of the superensemble to that of the baseline model

using the continuous rank probability skill score (CRPSS). The CRPSS is defined as follows:

CRPSS ¼ 1�
CRPSf

CRPSb
; ð8Þ

where CRPSf is the CRPS value of the forecast, and CRPSb is the corresponding CRPS value of

the baseline model.

Model superensemble

Given a number of competing models, we generated a model superensemble [38] stacking

models according to their CRPS following suggestions from peer reviewers. Stacking involves

averaging predictions from multiple models using weighted averages. We found model stack-

ing outperformed Bayesian moving average. Therefore, this technique was adopted for the

final version of the system. Stacking was performed in 3 stages [79]. On the first stage, we sim-

ulated 1,000 samples from the posterior distribution of dengue cases for each of the best per-

forming models and the baseline model. Then, we calculated their CRPS for the historical

period comparing the samples against observed dengue counts. In the second stage, optimal

weights [80,81] were calculated for each model as follows:

wi ¼
ðViÞ

�1

Pn

j¼1
ðVjÞ

�1
; ð9Þ

where V is the variance represented by the square of the CRPS of the ith forecast errors. A new

set of weights were computed each time a forecast was issued using training data from all pre-

vious years. On the last stage, the 1,000 samples were combined using a weighted average. We

then calculated the 2.5th, 50th, and 9.75th percentiles of their distribution.

Outbreak detection evaluation

The predictive ability of the model for outbreak detection was evaluated using the Brier score

[82]. For the Brier score, smaller values indicate better predictions. Four moving outbreak

thresholds were defined to evaluate the predictive ability of the superensemble for outbreak

prediction: (i) the endemic channel plus 1 standard deviation; (ii) the endemic channel plus 2

standard deviations; (iii) the 75th percentile of the distribution of dengue cases per month;

and (iv) the 95th percentile of the distribution of dengue cases per month. The endemic chan-

nel was calculated as the number of dengue cases per month and per province over the previ-

ous 5 years in agreement with current practice at the Vietnamese Ministry of Health. The 75th

and 95th percentiles were calculated over the whole observational period at each time step. We

then calculated the probability of exceeding the moving outbreak threshold generating 1,000

samples from the posterior distribution of the point forecasts to reflect forecast uncertainty.
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The Brier score was calculated as follows:

BS ¼
1

N

PN

t¼1
ðft � OtÞ

2
; ð10Þ

where N is the number of predictions; ft is the forecast probability that an outbreak may hap-

pen; and Ot takes the value of 1 if there was an outbreak or 0 if there was no outbreak. Brier

scores were computed in R using the scoring package [83].

Public health officials may be more likely to take preventive action if the probability of

observing an outbreak exceeds a certain value [18]. We undertook a signal detection analysis

to determine the ability of the forecast probabilities to classify the predicted number of dengue

cases as outbreaks. There are 4 possible outcomes in this analysis: hit (true positive), correct

rejection (true negative), false alarm (false positive), and missed (false negative). A count for

each of the 4 possible outcomes was produced.

Relative value of using a forecasting system

Unlike other measures, the relative value (V) of the forecasts generated by the superensemble

depends on requirements set by the user [84]. Typically, V is evaluated in monetary terms and

is particularly useful when the probability of occurrence of an adverse event (e.g., a major out-

break) is known. If the probability of occurrence of an outbreak is greater than the ratio of the

cost of taking preventive action divided by the loss incurred by not taking action (C/L ratio)

and an outbreak occurs, then it will pay off to take action. If the probability of occurrence of an

outbreak is lower than the C/L ratio, then it does not pay off to take preventive action. If the

probability is equal to the C/L ratio, it does not matter if action is taken or not. Our analysis

provides an initial screening process to identify areas where a forecast is most likely to be cost-

effective and thus, target of comprehensive economic evaluation studies in the future.

Given that data on the cost of taking preventive action and on the losses incurred by not

taking action were unknown to us at the time of writing this manuscript, V was estimated for a

range of theoretical C/L ratios following [84] by comparing the mean cost of using the fore-

casting system for outbreak detection compared to the mean expense incurred by either never

preventing outbreaks or, on the contrary, taking preventive action every month of the year. V

takes a value of 1 if the forecast is perfect and a value of 0 if it is no better than the default

action plan. If V is negative, it indicates that the forecast is so poor that it would be more cost

effective not to use it. The algebraic definition of V is

V ¼
EðSÞ � EðAÞ

EðSÞ � EðPÞ
; ð11Þ

where E(S) is the theoretical expense incurred by taking preventive action each month or the

losses incurred by no taking action at all even when an outbreak occurred, whichever is the

least expensive method when not using the forecast; E(A) represents the total cost of the fore-

cast calculated as the cost of type 1 (false positive) and type 2 (false negative) errors plus the

cost of acting when an outbreak was predicted and it occurred (true positive); and E(P) indi-

cates the cost incurred with a perfect forecast where outputs are exclusively true positives and

true negatives.

Results

Model selection

We fitted a total of 14,592 different models (128 unique model specifications across 114 fore-

cast months, i.e., January 2007 to December 2016) by using all climate variable in isolation, as
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well as all their possible combinations. One major issue with regression models is potential

overfitting which may arise from data redundancy due to high correlation between predictors.

The Spearman rank correlation coefficients calculated for all pairs of candidate predictors was

less than 0.7, except for between minimum and maximum temperature (ρ = 0.94). However,

these 2 variables were not present in any of the best performing models.

Model superensemble evaluation

The 5 models with the lowest CRPS values (i.e., best performing) and the baseline model were

used to generate a superensemble. It is noted that the 5 best performing models were the only

models with a CRPS below 90 when computing prospective predictions. For CRPS, lower val-

ues indicate a smaller difference between the forecasts and the observations. There was strong

seasonal variation in the weights assigned to each model (S3 Fig). All competing models had

similar weights across the whole evaluation period (January 2007 to December 2016), whereas

the baseline model had the lowest weights. We note that the weights assigned to the baseline

model gradually decreased with time.

Averaged across all lead times, the superensemble led to slightly lower CRPS values than

each of the competing models, including the baseline (Table 1). However, when stratified by

lead time, the superensemble outperformed the competing models at all time leads but only

outperformed the baseline at leads of 1 to 3 months (Fig 1A). The uncertainty of the forecasts

increased with lead time. This is also evident when using the CRPSS for which values above 0

(indicating better predictions) were observed for the superensemble only for leads 1 to 3

months (Fig 1B). The CRPSS can be interpreted as the relative improvement observed from

using a model compared to a reference baseline. Thus, a value of 0.4 would suggest that the val-

ues from a given model have an absolute error that is 40% smaller than the absolute error of

the baseline model. The CRPSS indicates that at a lead time of 1 month, the superensemble

and the competing models outperform the baseline by about 42%, whereas at a time lead of 6

months, their absolute error is 12.5% larger than that of the baseline model.

All models showed a tendency to overestimate the predicted number of dengue cases indi-

cated by bias values above 0 (Table 1). Bias also increased as the forecast horizon increased,

suggesting that the tendency to overestimate increases as the forecast horizon increases (Fig

1C). The model with the smallest bias was the baseline followed by the superensemble. The

sharpness of the forecasts deteriorates with lead time (Fig 1D) as smaller values indicate a bet-

ter forecast. The superensemble showed slightly worse sharpness than 2 of the competing

Table 1. Verification metrics and seasonal climate predictors of the model superensemble and the best performing models.

Model CRPS Bias Sharpness Seasonal climate predictors

Baseline 79.9 0.37 0.01 None

Superensemble 73.4 0.44 1.90 All included in Models 1–5

1 79.8 0.49 3.12 SH02, WS0, DTR02, SST03

2 80.2 0.49 1.67 SH02, DTR02

3 80.9 0.48 1.69 SH02, WS0

4 81.4 0.50 2.79 SH02, DTR02, SST03

5 81.5 0.50 2.67 SH02, WS0, SST03

DTR02, diurnal temperature range averaged over a 3-month period lagged 0 to 2 months (˚C); SH02, specific humidity averaged over a 3-month period lagged 0 to 2

months (dimensionless); WS0, wind speed in the current month (m s−1); SST03, sea surface temperature anomalies in the Niño region 3.4 averaged over a 4-month

period lagged 0 to 3 months (˚C). CRPS, continuous rank probability score. CRPS and sharpness assume values between 0 and infinity with an ideal value of 0. Bias

assumes values between −1 and 1, with 0 as ideal.

https://doi.org/10.1371/journal.pmed.1003542.t001

PLOS MEDICINE Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1003542 March 4, 2021 13 / 30

https://doi.org/10.1371/journal.pmed.1003542.t001
https://doi.org/10.1371/journal.pmed.1003542


models for lead times of 4 to 6 months. It is noted that the sharpness of the baseline model was

always 0 as it generates the same seasonal values for all years in the data set (Table 1).

Across all metrics, the predictive ability of the superensemble deteriorated as the forecast

horizon increased from 1 to 6 months. This situation is also evident where the forecast ensem-

ble mean and its 95% credible interval (i.e., the interval in the domain of the posterior proba-

bility distribution) are plotted against the observed number of dengue cases (S4 Fig). Notice

that the accuracy of the predictions worsens as the forecast horizon expands. We noted that

the credible intervals of the predictions gradually became narrower as the number of months

used to train the models increased (S4 Fig).

The predictive ability of the superensemble also varied with the month of the year. Overall,

better performance was observed over the period July to December for CRPS, CRPSS, and bias

Fig 1. Verification metrics by lead time.Variation across all lead times averaged across the whole of Vietnam for (A) the CRPS, (B) the CRPSS, (C) the bias
of the forecasts, and (D) the sharpness of the forecasts. Red lines indicate the performance of the model superensemble; blue lines depict the metrics for each
of the 5 competing models; and grey lines indicate the behaviour of the baseline model. CRPS and sharpness assume values between 0 and infinity, with 0
representing a perfect forecast. Bias assumes values between −1 and 1, with 0 representing unbiased forecasts. CRPS, continuous rank probability score;
CRPSS, continuous rank probability skill score.

https://doi.org/10.1371/journal.pmed.1003542.g001
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(Fig 2A–2C). The sharpness of the forecasts, however, deteriorated over the same period

(Fig 2D).

Compared to the baseline model, the predictive ability of the forecast evaluated using the

CRPSS showed significant spatiotemporal variation. Fig 3 shows that the CRPSS was consis-

tently better than the baseline (red shaded areas) across most of the country for the period July

to January. From February to June, however, the predictive ability of the baseline model is bet-

ter than that of the superensemble for multiple provinces identified by CRPSS values below 0

particularly during March and April.

Outbreak detection

Predictive ability was also evaluated by comparing the predicted probability of predicting out-

breaks using the Brier score and 4 moving outbreak thresholds. Observed outbreak months

were defined as months where the number of predicted dengue cases exceeded outbreak

thresholds. As expected, highest predictive ability was achieved at a lead time of 1 month, after

which the predictive ability of the superensemble gradually declined (Fig 4A). Across the fore-

cast horizon, the highest predictive ability was observed when using an outbreak threshold

based on the endemic channel plus 2 standard deviations, closely followed by the 95th

Fig 2. Verification metrics by month of the year. Variation across the months of the year averaged across the whole of Vietnam for (A) the CRPS, (B) the CRPSS, (C) the
bias of the forecasts, and (D) the sharpness of the forecasts. Red lines indicate the performance of the model superensemble; blue lines depict the metrics for each of the 5
competing models; and grey lines indicate the behaviour of the baseline model. CRPS and sharpness assume values between 0 and infinity with an ideal value of 0. Bias
assumes values between −1 and 1, with 0 as ideal. CRPS, continuous rank probability score; CRPSS, continuous rank probability skill score.

https://doi.org/10.1371/journal.pmed.1003542.g002
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percentile. Stratified by month of the year, the predictive ability of the superensemble was gen-

erally greater between April and September for all thresholds except for the 75th percentile.

When stratified by month, predictive ability was also larger using the endemic channel plus 2

standard deviations closely followed by the 95th percentile of the distribution of dengue cases.

There was significant spatial variation in the outbreak detection ability of the superensem-

ble. Fig 5 shows that across all moving outbreak thresholds, outbreak detection ability was

greater in the northern provinces compared to the central and southern provinces. It is noted

that the 95th percentile threshold results in a larger number of provinces with low Brier scores

(i.e., lower than 0.1) than the endemic channel plus 2 standard deviations.

A signal detection analysis indicates that using the superensemble with a moving outbreak

threshold based on the endemic channel plus 2 standard deviations resulted in 73% correct

predictions. Similarly, using the superensemble with an outbreak threshold based on the 95th

percentile led to 72.5% correct predictions. The baseline model had the lowest predictive abil-

ity, with 61.3% correct predictions (Fig 6). However, using the 95th percentile outbreak thresh-

old resulted in a slightly higher probability of detection (70% of all observed outbreaks) than

using the endemic channel plus 2 standard deviations (68%). The baseline model had the low-

est probability of detecting outbreaks (54.5%).

Decision-support tools

Portraying prospective forecasts. The model superensemble was driven by seasonal cli-

mate forecasts to generate dengue forecasts for the period May to October 2020 using near-

real time seasonal climate forecast data from the UKMet Office Global Seasonal forecasting

system version 5 (GloSea 5) [66,67]. For the historical period (i.e., August 2002 to April 2020),

Fig 3. Predictive ability across time and space. Spatiotemporal variation of the CRPSS of the model superensemble. Orange shaded
areas indicate a better performance of the superensemble compared to a baseline model. Blue areas indicate a lower performance of the
superensemble compared to a baseline model. The shapefile used to create this figure was obtained from DIVA-gis (https://www.diva-gis.
org). CRPSS, continuous rank probability skill score.

https://doi.org/10.1371/journal.pmed.1003542.g003

Fig 4. Temporal variation of the Brier score. Temporal variation of the Brier score averaged across all 63 Vietnamese provinces stratified by (A) lead time and (B) month
of the year. The red lines indicate variation in the Brier score using percentile-related moving outbreak thresholds. The blue lines indicate variation in the Brier score using
the endemic channel–related thresholds. The Brier scores assume values between 0 and 1, with 0 as ideal.

https://doi.org/10.1371/journal.pmed.1003542.g004
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the superensemble made slightly more accurate predictions (CRPS = 66.8, 95% CI 60.6 to

148.0) than a baseline model which forecasts the same incidence rate every month (CRPS =

79.4, 95% CI 78.5 to 80.5) at lead times of 1 to 3 months, albeit with larger uncertainty. For the

period May to October 2020, the posterior median of the predictions made with the superen-

semble was also slightly more accurate (CRPS = 110, 95% CI 102 to 575) than the posterior

Fig 5. Spatial variation in the Brier score. Spatial variation of the mean Brier score averaged across all lead times
calculated for 4 different moving outbreak thresholds over the period January 2007 to December 2016 and for each of
the 63 Vietnamese provinces. Lower Brier scores (in orange) indicate a greater accuracy for detecting outbreaks. The
Brier scores assume values between 0 and 1, with 0 as ideal. The shapefile used to create this figure was obtained from
DIVA-gis (https://www.diva-gis.org).

https://doi.org/10.1371/journal.pmed.1003542.g005
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median of the predictions made with the baseline model (CRPS = 125, 95% CI 120 to 168),

albeit with larger uncertainty. Fig 7 shows an example of how this information could be por-

trayed to users. In the figure, solid black lines indicate the posterior mean of the predicted val-

ues for each ensemble member. The red lines depict the observed dengue cases which were not

known to the model at the time of the computation and are included here as a reference. Dot-

ted black lines indicate the 95% credible interval of the predictions. Shaded areas indicate the

low risk, moderate risk, high risk, and very high risk areas based on the endemic channel cal-

culated using historical data from the previous 5 years (Table 2).

S5 Fig shows the posterior mean of the predicted values for each ensemble member and for

4 Vietnamese provinces where the system is being piloted along with their corresponding 95%

credible interval (dashed lines). It can be observed that there is little spread between the 42

ensemble members indicating little between-member variability. As expected, the credible

intervals increase as the forecast horizon increases, reflecting the uncertainties associated with

the seasonal climate models used to generate the forecasts. It is noted that for none of the 4

provinces, the predicted mean number of dengue cases is above the high-risk region, suggest-

ing that the September to February transmission season may be at normal conditions.

The spatial distribution of the posterior mean of the Model predictions could also be por-

trayed using risk maps (Fig 8) so that users can be made aware of the high-risk areas. Maps

indicating the probability of exceeding a predefined outbreak threshold could also be easily

created using the system outputs.

Relative value. An analysis of the relative value of using dengue forecasts generated by the

superensemble can be undertaken using the model outputs to guide decisions-making pro-

cesses. For such analysis, a value index ranging between 0 and 1 is used, with 1 indicating a

perfect forecast [85,84]. The relative value of the forecasts is interpreted in comparison to

either never taking preventative action or always taking action.

We defined a range of theoretical epidemic thresholds ranging between the 51st and the

99th percentiles of the distribution of dengue cases for the whole time series. Outbreak

Fig 6. Signal detection analysis. Proportion of hits (dark orange), correct rejections (light orange), false alarms (light blue), and missed outbreaks (dark blue) for the
baseline model and the model superensemble. Similar results were obtained at all lead times.

https://doi.org/10.1371/journal.pmed.1003542.g006
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thresholds were province and month specific. Overall, the forecasts generated by the superen-

semble showed relative value in 76% of the provinces 1 month ahead, 73% of the provinces 2

months ahead, 68% of them 3 months ahead, and 65% of the provinces 4 to 6 months ahead

(Fig 9). We note that the superensemble has relative value in areas where dengue is typically

endemic such as the central and southern provinces. The superensemble had no relative value

in the northern provinces where dengue is typically absent.

Discussion

This study details a probabilistic dengue early warning system based on a model superensem-

ble, formulated using Earth observations and driven by seasonal climate forecasts. The system

Fig 7. Portraying prospective predictions. Predicted dengue incidence rate for the periodMay to October 2020 for the Vietnamese province of Dong Nai using a model
superensemble. The forecast was issued on May 10, 2020. The x axis indicates the time lead of the predictions. The y axis indicates the predicted dengue incidence rate.
Solid black lines indicate the posterior mean estimate for each of the 42 forecast ensemble members. Red lines indicate the observed dengue incidence rate which was not
known by the model at the time of the computation. The black dashed lines indicate the upper and lower bounds of the 95% credible intervals for each of the 42 ensemble
members. The upper bound of the shaded areas indicate the month-specific risk based on the endemic channel plus 2 standard deviations calculated with historical data
from the previous 5 years.

https://doi.org/10.1371/journal.pmed.1003542.g007

Table 2. Thresholds used to define low, moderate, high, and very high risk levels based on an endemic channel.

Risk level Endemic channel

Low 0 to mean

Moderate Mean to mean + 1 SD

High Mean + 1 SD to mean + 2 SD

Very high Larger than mean + 2 SD

Mean, the mean number of dengue cases in the previous 5 years; SD, standard deviation of the observed number of

dengue cases in the previous 5 years.

https://doi.org/10.1371/journal.pmed.1003542.t002
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is able to generate accurate probabilistic forecasts of dengue metrics that have the potential for

guiding policy- and decision-making processes in Vietnam. We make predictions for each of

the 28 ensemble members of the seasonal climate forecast and generate 1,000 samples from the

posterior distribution of the predicted number of cases.

Deciding which predictive model is the best from a suite of competing models is not a

straightforward task. Each model carries somewhat different information of the modelled pro-

cesses. Here, we present a method for reconciling between-model disagreements while

improving forecast accuracy. The combination of models into a superensemble helps offset

individual model biases across time and space [86]. Superensembles were initially developed

for climate modelling [87] and have gradually gained popularity in disease modelling (see, for

example, [38,45,88]).

Our novel dengue early warning system relies on probabilistic models to reflect forecast

uncertainty and to explicitly assign probabilities to outcomes [89]. The system has been devel-

oped to aid policy- and decision-making processes in Vietnam with the guidance of key stake-

holders in the Ministry of Health of Vietnam, WHO regional office, the Pasteur Institutes in

Nha Trang and Ho Chi Minh, Province-level Ministries of Health, the Vietnamese NIHE,

and the Tay Nguyen Institute of Hygiene and Epidemiology. A range of stakeholder engage-

ment workshops, face-to-face meetings with users, and surveys were conducted to tailor the

system to the users’ needs. Our results demonstrate that the forecasts generated by our spatio-

temporal superensemble have the potential to guide changes to the current practice in dengue

control towards a more preventative approach allowing bespoke and targeted public health

Fig 8. Risk maps. (A) Spatial distribution of the posterior mean of the predicted number of dengue cases 1 month ahead for a forecast initialised on May 10, 2020. (B)
Spatial distribution of the probability of exceeding an outbreak threshold based on the 95th percentile. The shapefile used to create this figure was obtained from DIVA-gis
(https://www.diva-gis.org).

https://doi.org/10.1371/journal.pmed.1003542.g008
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interventions and a more efficient allocation of scarce resources. Research on use of the system

by stakeholders and its effect on changing dengue control practices is currently ongoing.

We demonstrate that the superensemble slightly outperforms the predictive ability of the

individual probabilistic models selected from a suite of top performing models at multiple lead

times and months of the year in line with previous research [38,45,87,88]. Compared to a base-

line model that predicts the same dengue incidence rate for each season and province, the

superensemble generated more accurate predictions at lead times of 1 to 3 months but not

beyond. Model performance was assessed using a range of verification metrics for probabilistic

forecasts across time and space. To our knowledge, this is one of the first early warning systems

informed by Earth observations to demonstrate predictive ability for prospective year-round

Fig 9. Spatial variation of the relative value of the forecasts. Spatial variation of the relative value of the forecasts
generated by the model superensemble 1 to 6 months ahead. Orange shaded areas indicate provinces where there is
relative value (based on a range of theoretical cost–loss ratios and outbreak thresholds). Blue shaded areas indicate
provinces where the superensemble had no relative value. The shapefile used to create this figure was obtained from
DIVA-gis (https://www.diva-gis.org).

https://doi.org/10.1371/journal.pmed.1003542.g009
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dengue prediction in a robust out-of-sample framework. It is also one of the first prototypes

for routine dengue early warning at multiple time leads.

We found that the performance of the superensemble varied with geographic location, fore-

cast horizon, and time of the year. The system showed ability in predicting spatiotemporal var-

iations in dengue cases and outbreak occurrence at forecast horizons of up to 6 months ahead.

Predictions deteriorated, and uncertainty increased with lead time, as previously observed in

other settings and diseases [36,42,75,90]. Forecasts improved, and the credible intervals

decreased as time progressed and dengue data increased, likely due to an improvement in the

associations learned by the superensemble. Forecast errors increased for the onset and peak of

the transmission season, possibly due to substantial interannual variation (S6 Fig).

Relative to a baseline model, the superensemble made slightly more accurate predictions of

the estimated number of dengue cases across most provinces, at lead times of 1 to 3 months in

agreement with previous studies [18,42,45]. At lead times beyond 3 months, however, the base-

line model made more accurate predictions possibly because, as suggested by [45], incorporat-

ing seasonal climate data into predictive models may increase model complexity at the expense

of lower out-of-sample predictive ability. Previous research has found that climate naïve mod-

els may outperform climate-informed models [32,45]. Those studies, however, used different

sources of climate and environmental data than our study and were conducted in different set-

tings (i.e., Thailand, Peru, and Puerto Rico) where the effects of climate might be significantly

different to those observed in Vietnam. In addition, those studies initialised their prospective

forecasts at fixed times of the year, whereas our study initialised forecasts at each calendar

month, providing the model with more opportunities to learn the relationships between den-

gue incidence and each of the climatic and sociodemographic predictors.

Outbreaks are difficult to predict, even more so at forecast horizons of several months

ahead. Nevertheless, our superensemble demonstrated predictive ability for outbreak detection

up to a lead time of 6 months, evaluated using proper scores over a suite of moving outbreak

thresholds. One of the best performing outbreak thresholds was the endemic channel plus 2

standard deviations, computed using data from the previous 5 years. This method is currently

in use across Vietnam [48,49], although with the difference of excluding outbreak years from

the computation of the threshold. Following our results, however, we recommend the use of

the 95th percentile as a threshold for outbreak detection as it gave slightly better results for

detecting outbreaks. Recognising the limitations of the province-level data, it is encouraging

that our predictions are accurate in most provinces up to 6 months in advance.

In disease forecasting, each decision (e.g., to prevent or not to prevent an outbreak) has an

associated cost that will lead to a benefit or a loss depending on the outcome. Decision-makers

have the task of selecting the action that minimises potential losses. We used a simple analysis

[84] to assess the relative value of the forecasts generated by the superensemble. Our figures

are only illustrative. Still, they highlight that using a dengue early warning system has relative

value compared to not using a forecast. The superensemble had considerable value across

most provinces. However, in northern provinces, where dengue is essentially absent, the fore-

cast is predicted to have limited relative value compared to always preparing for an outbreak

or never preparing for it. The assessment of the relative value of the dengue early warning sys-

tem may help stakeholders justify public investment in the development and generation of sea-

sonal forecasts or to help raise awareness of their potential value.

Although our proposed early warning system provides useful information for public health

preparedness and response, it has some limitations worth mentioning. First, while our model-

ling framework incorporates important determinants of dengue occurrence such as climate

and urbanisation, it does not explicitly incorporate, at this stage, the potential effects of other

important determinants of disease such as the deployment of mosquito control interventions,
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vector indices, serotype-specific circulation, herd immunity, and the mobility of people and

goods, all of which may lead to significant changes in the level of risk experienced locally [91].

Stakeholders in Vietnam have recently started collecting supporting data on vector indices and

dengue virus serotypes. However, there is a lack of publicly available, continuous, and long-

term data sets that could be used to inform modelling efforts. In this study, we account for

some of the variation that might be attributed to these factors by using spatiotemporal random

effects in each of the models included in the superensemble. Future developments of the sys-

tem may incorporate some of these factors if data are made available. Second, the quality and

consistency of the dengue data are affected by the limited confirmation of suspected cases

through laboratory diagnostic test, leading to large uncertainties that are difficult to quantify.

Third, our computations of dengue risk do not take into consideration uncertainties due to

the potential under- or misreporting of dengue cases. Consequently, our model superensemble

forecasts may underestimate the real number of cases occurring at any given time. Finally, our

forecasts do not carry forward the uncertainty of the one-step-ahead forecasts used to simulate

prospective lagged cases. Future developments may represent this uncertainty more accurately

by using simulation-based path forecasts in a Bayesian framework [92].

Conclusions

We have demonstrated that a superensemble of probabilistic dengue models, formulated using

Earth observations and driven by seasonal climate forecasts and a reconstructed/prospective

estimate of lagged dengue cases, is useful to generate probabilistic predictions of dengue risk

across Vietnam at multiple lead times and months of the year. We acknowledge that there are

alternative state-of-the-art approaches to dengue forecasting that may be equally as effective as

the one presented here. However, our aim was to develop a system that outperformed previous

practice in Vietnam where no forecasting system was used to guide decision-making processes.

A theoretical analysis showed that compared to not using a forecasting system, the superen-

semble has relative value across most of the country, suggesting that it has potential for guiding

decision-making processes. The dengue forecasting system presented here has been rolled out

across Vietnam and could be tailored for other dengue-endemic countries. Further work may

include investigating the feasibility of producing probabilistic forecasts with sufficient predic-

tive ability at the district or commune levels and a comparison with other statistical and mech-

anistic approaches.

Supporting information

S1 Text. Prospective analysis plan.

(DOCX)

S1 Fig. Observed dengue cases across Vietnam. Time series of monthly dengue cases from

the 63 provinces in Vietnam (August 2002 to March 2020). Provinces are ordered from north

(top) to south (bottom) according to the latitude coordinates of their centroid. White boxes

indicate missing data.

(TIF)

S2 Fig. Verification metrics of the seasonal climate forecasts evaluated across Vietnam.

The x axis indicates the month of the year. The y axis indicates value of the CRPS for each vari-

able. The lines indicate the lead time for the forecast. CRPS, continuous rank probability score.

(TIF)
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S3 Fig. Optimal weights. Seasonal variation of the optimal weights assigned to each of the

models included in the superensemble over the period January 2007 to December 2016.

(TIF)

S4 Fig. Observed vs. predicted dengue cases.Observed (dashed lines) and predicted (solid

lines) dengue cases across Vietnam aggregated at the national level. Shaded areas represent the

95% credible interval. Predictions are shown for the forecast horizons of 1 (top), 3 (middle),

and 6 (bottom) months ahead. Data correspond to the period January 2007 to December 2016.

(TIF)

S5 Fig. Prospective dengue predictions. Predicted dengue cases for the period May to Octo-

ber 2020 for 4 pilot Vietnamese provinces using a model superensemble. The forecast was

issued on May 10, 2020. The x axis (top) indicates the month of the predictions. The x axis

(bottom) indicates the time lead of the predictions. The y axis indicates the predicted incidence

rate. Black solid lines indicate the posterior mean estimate for each of 42 forecast ensemble

members. Red lines indicate the observed dengue incidence rate which was not known by the

model at the time of the computation and are included here as a reference. The black dashed

lines indicate the upper and lower bounds of the 95% credible intervals for the 42 ensemble

members. The upper bound of the shaded areas indicates the month- and province-specific

percentiles based on dengue data for previous 5 years.

(TIF)

S6 Fig. Month-specific variability in dengue cases across Vietnam. The x axis indicates the

month of the year. The y axis indicates increases in the number of dengue cases (square root

transformed). The upper and lower limits of each box represent the interquartile range of the

distribution of dengue cases for each month. The middle solid line indicates the median value.

The upper and lower whiskers indicate the maximum and minimum values of the dengue case

distribution (excluding outliers which are indicated with dark purple circles). Outliers are val-

ues beyond 1.5 times the interquartile range.

(TIF)
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Visualization: Felipe J. Colón-González, Leonardo Soares Bastos.
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