
Probabilistic Shared Cache Management (PriSM)

R Manikantan1 Kaushik Rajan3 R Govindarajan1,2

1Department of Computer Science and Automation, Indian Institute of Science, Bangalore
2Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore

3Microsoft Research India, Bangalore

Abstract

Effective sharing of the last level cache has a significant
influence on the overall performance of a multicore system.
We observe that existing solutions control cache occupancy
at a coarser granularity, do not scale well to large core
counts and in some cases lack the flexibility to support a
variety of performance goals.

In this paper, we propose Probabilistic Shared Cache
Management (PriSM), a framework to manage the cache
occupancy of different cores at cache block granularity
by controlling their eviction probabilities. The proposed
framework requires only simple hardware changes to imple-
ment, can scale to larger core count and is flexible enough
to support a variety of performance goals. We demonstrate
the flexibility of PriSM, by computing the eviction probabil-
ities needed to achieve goals like hit-maximization, fairness
and QOS.

PriSM-HitMax improves performance by 18.7% over
LRU and 11.8% over previously proposed schemes in a six-
teen core machine. PriSM-Fairness improves fairness over
existing solutions by 23.3% along with a performance im-
provement of 19.0%. PriSM-QOS successfully achieves the
desired QOS targets.

1. Introduction

Efficient management of shared last level caches to
achieve various performance related goals has received sig-
nificant research attention [2, 5–10, 14, 15, 17, 19, 20]. Mul-
tiple cores can be allowed to share a cache by allocating
each core a portion of the cache space. This partitioning
can be done either at the coarser granularity of cache ways,
as done in [9, 14, 15, 18], or at the finer granularity of cache
blocks, as done in Vantage [17]. Way-partitioning is popu-
lar because of its simplicity of design. It allows for differ-
ent performance goals like hit maximization [14] and fair
sharing [9] to be enforced without introducing much ad-
ditional hardware complexity. However way-partitioning

can be inefficient as it only allows partition sizes to grow
or shrink by a fixed large size(inversely proportional to the
associativity) while it is possible that the optimal size for
a partition falls in between. As the number of cores in-
creases and becomes comparable to the number of ways,
such scenarios are likely to occur more frequently. We ob-
serve that while way-partitioning works very well at low
core counts, it is unable to deliver the same level of perfor-
mance at higher core counts. Therefore from a performance
point of view partitioning of cache at finer granularity such
as block level is more desirable [17]. However achieving
such a partitioning of the whole cache while also manag-
ing the partitions without introducing additional hardware
complexity remains a challenge to-date. Vantage [17] is the
only known scheme that proposes a fine grained partition-
ing framework. However it achieves this only for a portion
and not all of the cache and does so with significant changes
to the hardware.

In this paper, we propose Probabilistic Shared-Cache
Management (PriSM), a framework that achieves the scal-
able performance of partitioning the entire cache at a fine
granularity while retaining the simple hardware design of
way-partitioning. The proposed framework consists of two
components – (i) A simple hardware component which we
call the probabilistic cache manager to control the opera-
tion of the cache and (ii) an allocation policy [17], which
is a mechanism to translate high level performance goals
into an eviction probability distribution. Using a simple
analytical model we show that eviction probabilities leads
to fine-grained partitioning capability. The probabilistic
cache manager of PriSM uses the same two step replace-
ment mechanism as way-partitioning (i) identify a victim-
core and (ii) leverage the baseline cache replacement mech-
anism to identify a victim line belonging to the core iden-
tified in the first step. Unlike way-partitioning where the
victim core is identified based on the number of ways it oc-
cupies in the set, PriSM generates a victim-core id in line
with the eviction probability distribution computed by the
allocation policy. Thus PriSM achieves fine-grained par-
titioning at a hardware cost comparable to that of way-

428978-1-4673-0476-4/12/$31.00(c)2012 IEEE

partitioning. Another salient feature of PriSM is that unlike
way-partitioning, PriSM allows each cache set to make its
own decision and controls the overall cache occupancy of
each core at the whole cache level. As compared to Van-
tage, PriSM can partition the entire cache in a fine grained
manner and achieves it with simple hardware.

We demonstrate the versatility of our framework by
building a hit maximization scheme(PriSM-H), a fair cache
sharing scheme(PriSM-F) and a QoS scheme(PriSM-Q) on
top of PriSM. The key performance benefits achieved by the
PriSM framework include
• PriSM performs 7.8% - 11.8% better than Vantage

across a wide variety of cache configurations.
• PriSM-H outperforms LRU at various core counts. It

achieves an improvement in performance of 18.7%
over LRU in a sixteen core machine. It also consis-
tently achieves better performance than current best
performing solutions like UCP [14] and PIPP [20]
from 4—32 cores.

• PriSM-F improves the fairness by 23.3% over and
above an existing solution that achieves fairness by
managing cache using way-partitioning [9]. This im-
proved fairness is achieved along with a 4.8% improve-
ment in performance over the existing solution.

• PriSM-Q successfully achieves the QOS targets in 38
out of 41 workloads tried out.

• We show that the proposed cache management scheme
can work with other replacement schemes by studying
its performance with DIP [13] as the replacement pol-
icy.

2. Motivation

In this section we motivate the need for a fine-grained
and scalable partitioning mechanism by demonstrating the
(i) lack of scalability exhibited by current solutions (way-
partitioning in particular) for higher core counts and (ii)
the performance benefits provided by partitioning at a finer
granularity.

Scalability. Figure 1(a) shows the performance of hit-
maximization schemes UCP [14], PIPP [20] and the fair-
ness provided by a way-partitioning based fairness mech-
anism [9] for different machine configurations. The core
count varies from 4 to 32 (16 for fairness). The performance
of PIPP and UCP is shown in terms of Average Normalized
Turnaround Time (ANTT) [3] (Refer to Section 5 for simu-
lation methodology and performance metrics). It is a lower-
is-better metric. The performance is shown normalized to
that of the corresponding LRU and is averaged (geomean)
across all the workloads. With larger core counts the per-
formance benefits provided over LRU by UCP and PIPP
reduces. PIPP for instance performs worse than LRU at 32-

core configuration. A similar behaviour is observed in the
case of fairness (fairness is a higher-is-better metric), where
going from 4 to 8 and then 16 cores reduces the overall fair-
ness by a significant margin.

Fine-grained partitioning. Way-partitioning increases the
allocation at a coarser granularity of one way in all the cache
sets. For instance, in a 16 way cache allocating one more
way translates to providing 6.25% more cache space. To
demonstrate the benefits to be had by fine-grained partition-
ing, we study the performance of UCP [14] in 4MB caches
with 16/64/256 way associativity. In the case of the 64 and
256 way associative caches allocating one more way trans-
lates to increasing the occupancy by 1.6% and 0.39% re-
spectively. As the cache size remains unmodified, the high
associative configurations help us mimic the impact of par-
titioning at finer granularities. And increasing associativity
ensures that an allocation policy like UCP is aware of the
granularity of partition and hence can be applied as is with-
out any modifications. A set of quad and eight core work-
loads is used in this study.

Figure 1(b) summarizes the performance in terms of
IPC-Throughput (sum of IPC) [3] for LRU and UCP in the
three cache configurations. It can be seen that increasing as-
sociativity and the resultant finer-grained control over cache
occupancy helps improve the performance of UCP. It is in-
teresting to note that the magnitude of gain observed in UCP
as we move from 16 to 64 to 256 way associativity is higher
than the corresponding gain seen by LRU. This shows that
performance of existing allocation policies could be im-
proved by fine-grained partitioning control. But building
caches of very high associativity entails additional hardware
and different cache organizations like Zcache [16]. Hence it
is required to enable partitioning at granularities finer than
that of associativity.

In this work, we propose PriSM a probabilistic frame-
work that meets both the above requirements. By mov-
ing from a way-partitioning based scheme to a probabilistic
scheme PriSM provides the ability to reduce/increase the
space allocated in steps of 1/N , where N is the number of
cache blocks. Second, unlike way-partitioning where each
set of the cache is partitioned in the same manner, PriSM
introduces the flexibility of allowing each cache set to make
its own decisions and yet be able to control the overall oc-
cupancy at the shared cache level.

3. The Probabilistic Shared Cache Manage-
ment Framework

This section describes the proposed probabilistic shared
cache management (PriSM) framework. PriSM associates
an eviction probability with each context that shares the
cache. PriSM consists of three components that together

429

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

4C
ore

8C
ore

16C
ore

32C
ore

4C
ore

8C
ore

16C
ore

 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85

N
o

rm
a
li
z
e
d

 A
N

T
T

(L
o

w
e
r

is
 B

e
tt

e
r)

F
a
ir

n
e
s
s
 (

H
ig

h
e
r

is
 B

e
tt

e
r)

UCP PIPP

FairnessHit-Maximization

(a) Scalability

 1

 1.05

 1.1

 1.15

 1.2

 1.25

4C
ore

8C
ore

 1

 1.05

 1.1

 1.15

 1.2

 1.25

N
o

rm
a
li
z
e
d

 T
h

ro
u

g
h

p
u

t

Higher is Better

64Way-LRU

256Way-LRU

16Way-UCP

64Way-UCP

256Way-UCP

(b) Finer-Grained Partitioning

Figure 1. Motivation – (a) Performance of UCP, PIPP and Fairness [9] schemes with increasing core
count and (b) Benefits of finegrained partitioning with UCP.

Table 1. Terms used in the paper
N – Number of Cache blocks
W – Interval length. Measured in terms of number of cache
misses.
Ci – Fraction of cache space occupied by Corei at the begin-
ning of interval. 0 ≤ Ci ≤ 1.
Mi – Fraction of Misses caused by Corei at the beginning of
interval. 0 ≤Mi ≤ 1.
Ti – Desired cache occupancy at the end of interval for Corei.
0 ≤ Ti ≤ 1.
τi – Achieved target cache occupancy of Corei at the end of
interval. 0 ≤ τi ≤ 1.
Ei – Eviction probability for Corei. 0 ≤ Ei ≤ 1.

enable it to achieve high level performance goals (i) a sim-
ple cache hardware that uses the eviction probabilities dur-
ing a replacement to identify a victim block; (ii) an ana-
lytical model that shows how eviction probabilities actually
provide fine-grained partitioning capability and (iii) an al-
location policy that takes a high level performance goal,
computes the desired cache occupancy to meet the goal and
translates it into eviction probabilities using the analytical
model.

Some of the common terms used throughout this section
are defined below (also listed in Table 1). W represents an
interval of execution, measured in terms of misses in the
shared cache. The allocation policy recomputes the cache
space allocated to each program at the end of every interval.
N is the number of cache blocks. Ci is the cache occupancy
of corei and is defined as the ratio of the cache blocks oc-
cupied by corei to the total number of blocks in the cache
across all sets. Ti is the target occupancy for corei and
represents the desired cache occupancy to meet a certain
performance/fairness goal (details in Section 3.3). τi is the
occupancy likely to be achieved at the end of an interval.
Mi represents the fraction of misses contributed by corei
to the total misses in an interval. Ei is the probability of
choosing a block belonging to corei for eviction.

We use the term core interchangeably with program, as
is done in all the earlier works [6,7,9,14,15,18,20]. Further

we assume that the number of programs (used during eval-
uation) is same as the number of cores and there is no pro-
gram migration. In practice all the solutions in this space
require the partitioning information to be associated with
the program (identified using a unique-ID). Also all cache
accesses need to be tagged with the unique-ID of the pro-
gram causing the access so that the cache-controller is able
to keep track of occupancy. Note that these requirements are
common to all the cache partitioning/management schemes.
In short, in the rest of the paper, when we say occupancy or
eviction probability of corei, we actually mean the occu-
pancy or eviction probability associated with the program
running in corei.

3.1. Cache operations under PriSM

The operation of a cache under PriSM is governed by a
discrete probability distribution E that associates with each
Corei an eviction probability Ei such that Σ(Ei) = 1.
Eviction probabilities are recomputed for all cores at the
end of each interval by the allocation policy. In PriSM, hits
behave the same way as in a traditional cache. On a miss
there are two steps required to identify the victim block:
• Core-Selection: A core ID is generated in accordance

with E , the eviction probability distribution. Note that
it is possible for a core to have an eviction probabil-
ity of zero, which means it will never be selected for
eviction by Core-Selection step.

• Victim-Identification: A victim block belonging to the
core selected in the Core-Selection step is identified
using the underlying cache replacement policy.

In rare cases it is possible that the selected core does not
have any block in the given cache set. Under such a sce-
nario, we use the underlying replacement policy to se-
lect the first replacement candidate that belongs to a core
with non-zero eviction probability. Decoupling core selec-
tion from victim identification brings in the advantage that
PriSM can be used with any underlying replacement policy.

430

3.2. Controlling cache occupancy via eviction prob
abilities

Next we describe how eviction probabilities influence
the fraction of a cache occupied by a given core. This al-
lows us to derive eviction probabilities to achieve the de-
sired target cache occupancies.

Influence on cache occupancy over a single interval. In
any interval (of W misses) under consideration, let us as-
sume that corei accounts for a fraction Mi of the total
misses. Thus during the interval, corei contributes Mi×W
misses. If we had not evicted any cache lines belonging to
corei from any of the cache sets, then its cache occupancy
would have increased from Ci at the beginning of the in-
terval to (Ci + (Mi × W/N)) at the end of the interval.
However, with eviction probability Ei > 0, (Ei ×W) lines
would have been evicted over the interval. This amounts
to a reduction in cache occupancy by Ei × W/N and the
cache occupancy of corei at the end of the interval (a value
in [0, 1]) becomes τi = Ci + ((Mi − Ei) × W/N). The
occupancy achieved at the end of an interval, τi, can take
any value between [0, 1]. As the smallest allocation unit is a
cache block, in practice, τi can take values in [0, 1] in steps
of 1/N. Compared to this, all way-partitioning schemes are
restricted to choose the target cache occupancy at the end
of an interval to be one among A discrete values where A
is the associativity of the cache. In a 4MB32Way cache
with block size of 64B, N=65536 and A=32. As N is much
larger than A, PriSM allows fine-grained partitioning of the
shared cache.

Deriving eviction probabilities from target occupancy.
Let Ti denote the desired target occupancy for corei to
achieve a given performance goal. From the above calcu-
lation we know that τi = (Ci + ((Mi − Ei) × W/N)) is
the occupancy achieved at the end of an interval. Now our
goal is to determine Ei so that Ti can be reached as quickly
as possible. However, given specific values of Ci, Mi, N
and W it may not be possible to achieve Ti in a single inter-
val (for example, when Ti > Ci + (Mi × W/N)). Hence
multiple intervals might be required for acheiving Ti. This
brings about the complication of not knowing both τi and
Ei. We deal with this situation as follows. When Ti cannot
be reached from Ci in the current interval Ei should be ei-
ther 0 or 1 depending on whether (Ci < Ti) or (Ci > Ti).
Otherwise, Ei can be computed by solving the equation
Ti = τi = Ci + ((Mi − Ei) × W/N . In summary we
calculate Ei in every interval using the following equation.

Ei =

0, if ((Ci − Ti)×N/W +Mi) < 0,

1, if ((Ci − Ti)×N/W +Mi) > 1,

(Ci − Ti)×N/W +Mi, otherwise.
(1)

To compute Ei, we require Ci and Mi in addition to Ti.
Ci can be obtained easily by having a single counter per
core to provide the number of cache blocks (integral value)
occupied by each core. We use the value of Mi from the
previous interval which could either be obtained from per-
formance counters or through a set of hardware counters,
one for each core. As mentioned earlier Ti is computed by
the allocation policy. In fact in our proposed approach, we
compute both Ti and Ei in the allocation policy. N is typi-
cally a power of two. As long W is a power of two, Ei can
be computed using addition and shift operations on integers.
In the following subsection, We discuss a few simple allo-
cation policies that translate a variety of common high-level
objectives into target-cache occupancy Ti and subsequently
to eviction probability Ei.

3.3. Enforcing performance goals via PriSM

It is the job of an allocation policy [17] to convert a
higher level performance goal into a partitioning of the
cache. The allocation policy could be either implemented
in hardware [9, 14] or software [15, 18]. In this work we
envision the allocation policy to be implemented in soft-
ware as it provides the flexibility to implement and choose
from a variety of performance goals and the ability to in-
corporate newer and better versions of the allocation pol-
icy. It works by reading an augmented set of performance
counters, computes the eviction probability distribution and
communicates it to the cache controller. The performance
counters used are either already present in modern proces-
sors or proposed in earlier works [4](The only extension
to the set of performance counters required will be ones to
provide statistics regarding hits and misses experienced in
shadow tags by each core). The software scheme requires
ISA support to communicate the computed partition infor-
mation (eviction probabilities) to the hardware [15]. As we
show later in Section 5, it is enough to use 6 bits to capture
this probability information.

As most allocation policies are tuned to work with way-
partitioning, they are not able to take advantage of the fine-
grained partitioning capability without any modifications.
Hence to demonstrate the versatility of our framework, we
propose allocation policies that are aware of the ability of
PriSM to support fine-grained partitioning and can use it
constructively.

Hit Maximization. The allocation policy to achieve hit-
maximization is shown in Algorithm 1. The algorithm
tries to provide more cache space to the core that has the
maximum potential to gain hits. It computes the target oc-
cupancy by scaling the cache occupancy based on how well
it is likely to perform if the whole cache were assigned to
it. We assume the presence of shadow tags [14] to estimate

431

N : Number of cores;
TotalGain = 0;
for core← 1 to N do

PotentialGain[core] =
StandAloneHits[core]− SharedHits[core];
TotalGain+ = PotentialGain[core];

end
// Core with a higher potential to gain

hits gets more cache space.
for core← 1 to N do

Tcore =
Ccore × (1 + (PotentialGain[core]÷ TotalGain));

end
Normalize the target cache occupancy Tcore.
Tcore = Tcore ÷

∑
Tcore;

Compute eviction probability Ei using Equation 1 ;

Algorithm 1: Hit-Maximization

stand-alone hit values. For hardware implementations, it
is possible to round off TotalGain to the nearest power of
2 and convert the division to a shift operation. The total
computations(arithmetic operations) performed by this al-
gorithm ranges from 20 for 4-cores to 160 for 32-cores.

Fairness. Fairness is defined as all the cores suffering equal
slowdown in terms of execution time compared to the stand-
alone case [3]. Our proposed allocation policy to achieve
fairness is shown in Algorithm 2. To measure the slow-
down due to sharing, it is essential to know the perfor-
mance when the program runs alone(CPIstandAlone) and
when it runs with other programs as part of a workload
(CPIshared). CPIshared is the actual performance observed
when the workload is running and could be obtained by
reading the apporpriate performance counter. So the goal
is to estimate CPIstandAlone.

Our algorithm works by treating the program perfor-
mance(expressed in terms of Cycles Per Instruction, CPI) as
having two components: (i) CPIideal – the performance if
all accesses are to hit in the LLC and (ii)CPIllc – the impact
of LLC on performance. CPI = CPIideal+CPIllc. Sim-
ilar formulations have been used in earlier works too [4].
The difference between a program running alone and with
other programs will reflect in the CPIllc component.

In modern processors, performance counters provide
the number of cycles commit was stalled due to a long
latency load [4]. We use this value as an estimate for
CPIllc for a shared cache. Now CPIideal can be com-
puted as (CPIshared − CPIllc). If we can estimate
the contribution of LLC to CPI when a program is run
alone(CPIstandAlone

llc), then we can estimate its perfor-
mance when run alone(CPIstandAlone) as ((CPIshared −
CPIllc) + CPIstandAlone

llc). Shadow tags [14] can pro-
vide us with an estimate of increase in hits when we go
from shared cache scenario to stand-alone scenario for each

program. We use the estimate of benefits provided by
shadow tags to scale the CPIllc value linearly to arrive at
CPIstandAlone

llc . The space allocated to each core is in-

N :Number of Cores;
IntervalLength:Length of the most recent interval in
cycles;
LLCStallCycles[1, ..., N]: Number of cycles spent
waiting for a long latency load to commit;
for core ∈ 1toN do

StandAloneLLCStallCycles[core] =
LLCStallCycles[core] × (1 -
(StandAloneHitsGained[core] ÷ SharedMiss[core]));
StandAloneCycles[core] = (IntervalLength -
LLCStallCycles[core]) +
StandAloneLLCStallCycles[core];
Slowdown[core] = IntervalLength ÷
StandAloneCycles[core];
Tcore = Ccore × Slowdown[core];

end
Normalize Ti. Ti = Ti ÷

∑
Ti;

Translate Ti to Ei using Equation 1;

Algorithm 2: Fairness

creased proportional to the slowdown experienced by it. We
evaluated this algorithm in a quad-core machine and found
that the predicted CPIstandAlone was close to the actual
performance for most of the benchmarks. Due to lack of
space we do not show those results. For each core, the al-
gorithm requires us to read the performance counters for
CPI, instructions committed, cycles, shared and stand alone
misses in the shadow tags and number of shadow tag ac-
cesses. Other than the shadow tag metrics, the others are
standard performance counters. The number of computa-
tions required range between 28 for 4 cores to 224 for 32-
cores.

Quality of Service. Quality of Service (QOS) ensures spec-
ified minimum levels of performance for a given pro-
gram [6]. We use maximum slowdown in Instructions
Per Cycle (IPC) [18] to specify QOS targets. We spec-
ify QOS target for one of the cores and try to achieve hit-
maximization for the remaining cores. The allocation pol-
icy to achieve QOS is shown in Algorithm 3. Without loss
of generality, we show the algorithm to achieve a speci-
fied performance target for Core0. The algorithm increases,
decreases or maintains the cache occupancy(C0) of Core0
based on its performance relative to the specified target. The
scaling is done according to the parameters α and β and we
use the value 0.1 for both. Once the target occupancy T0 for
Core0 is computed, we attempt to maximize the hits pro-
vided by the other cores that will share the remaining (1 -
T0) of cache space. This algorithm requires IPC which can
be obtained from standard performance counters [4].

432

Input: N : Number of Cores
Input: TargetIPC : Minimum IPC to achieve for Core0
Input: CurrentIPC [0]: The current performance levels of

core0
T0 = C0;
if CurrentIPC [0] < TargetIPC then

// Increase the space allocated as
performance is below par.

T0 = (1 + α)× C0;
end
else if CurrentIPC [0] > TargetIPC then

/* Decrease the space allocated */
T0 = (1− β)× C0;

end
/* Allocation is not changed if the

performance target is being met */
Do hit maximization for cores 1, ..., N for using cache space
(1− T0);
Convert Ti to Ei using Equation 1;

Algorithm 3: QOS

3.4. Discussion

Below we highlight the key features of the proposed
PriSM framework and where relevant we report how it is
different from existing schemes :
• PriSM provides an ability to manage the shared cache

occupancy in a fine-grained fashion. Both the desired
target occupancy and achieved target occupancy for
an interval can take any value between [0, 1]. Van-
tage [17] is the only other framework that supports fine
grained cache management. But Vantage requires sig-
nificant changes to the hardware to enable fine-grained
partitioning.

• PriSM can be used with any replacement scheme. So-
lutions like PIPP [20] and TA-DIP [7] tightly integrate
performance goals with cache management and hence
do not have this flexibility. Interestingly UCP [14] is
also restrictive as it can only work with replacement
policies that exhibit the stack property.

• The actual hardware changes required to the cache
controller are (i) space to store the eviction probabili-
ties for each core, (ii) extend the replacement policy to
include a core-selection step and (iii) a random number
generator to be used by the core-selection step.

4. Simulation methodology

We use the M5 simulator [1] to evaluate our proposed
framework. The simulator is extended to support a de-
tailed DRAM memory model and to support multiple mem-
ory controllers. On top of this we implemented PriSM,
UCP, PIPP, Vantage and other schemes studied in this pa-
per. We simulate 4, 8, 16 and 32 core machines. The ma-

Table 2. System parameters
Front-End/Issue/Commit 4 Wide

Clock speed 4 GHz
ROB/IssueQueue/LQ/SQ 96/32/32/32

L1 D/I Cache 64KB, 64B blocks, 2 Way
L2 Cache (LLC) 4MB/8MB/16MB, 64B blocks, 16/32/64 Way
Number of Cores 4/8/16/32

Memory Controllers 1/2/4/8

chine configurations are given in Table 2. We use a set of
multi-programmed workloads to extensively evaluate our
proposed PriSM framework. We use a total of 71 work-
loads: 21 quad core workloads, 16 eight-core workloads, 20
sixteen-core workloads and 14 thirtytwo-core workloads.
The workloads are detailed in the technical report [12].
Each benchmark in the workload is fast-forwarded for 10B
instructions and detailed simulation is carried out until all
the programs execute 500M instructions. In the case of
16 and 32 cores we simulate 200M instructions in detail.
Statistics are reported only for the first 500M/200M in-
structions for each program under detailed simulation. The
experimental methodology and the number of instructions
simulated are in line with earlier works [14, 17, 20].

We use Average Normalized Turnaround Time
(ANTT) [3] to summarize performance. ANTT is de-
fined as

∑
(IPCSP

i /IPCMP
i)/n, where IPCSP

i is the
stand-alone IPC of program in corei and IPCMP

i is its IPC
when run as a part of the workload. ANTT is a metric of
interest for the user and is a lower-is-better metric. Fairness
is summarized by observing the relative gap between the
minimum and maximum slowdown [3]. Fairness =
Mini,j

((
IPCMP

i /IPCSP
i

)
/
(
IPCMP

j /IPCSP
j

))
.

Fairness is a higher-is-better metric with values in the range
of 0 to 1.

In all our experiments, L2 is the last level shared cache.
The default LLC replacement policy is LRU (unless speci-
fied otherwise). We use a 4MB 16-way associative L2 for 4
and 8 core machines. The 16-core machine uses a 8MB 32-
way associative L2 and the 32-core machine uses a 16MB
64-way associative cache. We use shadow tags in 1/32 of
the total number of sets. The allocation policies recompute
the probabilities after the shared cache sees the same num-
ber of misses as number of cache blocks. As found in earlier
work [18], the overheads of even a complex control theo-
retic allocation policy is negligible, less than 0.15% of the
execution time. As our allocation policies are much sim-
pler, we expect them to have practically no impact on the
performance. Even for alternative proposals with which we
compare, we assume that the computations performed by
allocation policies does not add to the execution time.

5. Results

Figure 2 shows the performance of PriSM-H and PriSM-
F with increasing core counts. The performance of PriSM-

433

H is normalized to the performance of LRU cache. For
PriSM-F we use the geomean of the fairness values. PriSM-
H and PriSM-F consistently provide gains with increasing
core count. It can be seen that PriSM-H achieves an average
gain of 17.9%, 16.5%, 18.7% and 12.7% over LRU in the
case of 4, 8, 16 and 32 cores respectively. Also our scheme
outperforms UCP and PIPP at higher core counts (8,16 and
32) and performs as well as them in the quad core scenario.
Similar trend is observed for fairness too where PriSM-F
consistently provides better performance compared to LRU
and the way-partitioning based solution [9].

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

4Core 8Core 16Core 32Core

N
o

rm
a

li
z
e

d
 A

N
T

T
(G

e
o

M
e
a

n
)

Lower is Better

PriSM-H UCP PIPP

(a) PriSM-H

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

4Core 8Core 16Core

F
a
ir

n
e
s
s
(G

e
o

M
e
a
n

)

Higher is Better

PriSM-F Way-Partition LRU

(b) PriSM-F

Figure 2. PriSM performance summary

5.1. Comparison with UCP and PIPP

In this section we compare the performance of PriSM-
H with UCP [14] and PIPP [20]. Figures 3(a) and 3(b)
show the performance of the quad-core and 32-core work-
loads respectively. A good number of programs show more
than 20% gain over LRU with Q7 showing as much as
50% gain over LRU. PIPP is able to provide more ways
to cache friendly benchmarks like 179.art, 300.twolf and
471.omnetpp in quad-core workloads Q5, Q6, Q8 and Q14.
In these workloads PIPP retains as many lines as possible
brought in by the cache friendly benchmarks by inserting
everything else closer to LRU. While this strategy helps in a
few quad-core workloads, it ends up harming PIPP at higher
core counts, as can be seen with most of the 32-core work-
loads. This behavior of PIPP has been observed in earlier
works too [2,11] and is primarily due to too many cores in-
serting lines closer to the LRU position and the lines being
replaced early due to the increased cache contention.

It can be seen that PriSM-H works better than UCP
in all the 32-core workloads and a large majority of the
quad core workloads. To understand the quad core per-
formance gap between UCP and PriSM better, we studied
the occupancy of different programs in the various work-
loads under both schemes. Figure 4 shows the cache occu-
pancy of individual cores when they finish 500M instruc-
tions in UCP and PriSM. As different programs finish at
different point of time, the cumulative sum of occupancies
need not equal 1 (whole cache). As expected, the cache
space allocated to different programs by the two schemes
differs. We discuss below the performance trends observed
in a representative subset of workloads. In workload Q1,
PriSM allocates more space to the relatively memory in-
tensive benchamrk 168.wupwise and hence performs better
than UCP. In workload Q4, PriSM allocates more space to
benchmarks 175.vpr and 471.omnetpp compared to UCP.
This is achieved at the expense of taking space allocated to
410.bwaves and 470.lbm. In workloads Q7, Q11 and Q12,
PriSM-H benefits by providing more space to memory in-
tensive benchmarks like 179.art and 471.omnetpp. On the
otherhand, in workloads like Q3 and Q9, UCP was able to
provide marginally more space to memory intensive bench-
marks 179.art and 471.omnetpp. Hence in those workloads,
UCP showed minor improvements over PriSM.

5.2. Benefits of finegrained partitioning

To compare the benefits provided by fine-grained parti-
tioning of PriSM over coarse-grained way-partitioning, we
study the performance of using the same allocation policy
(from Algo 1) with both the partitioning mechanisms. We
adapt the allocation policy for way-partitioning by round-
ing off the outcome of the algorithm to the nearest integral
number of ways. Figure 5 shows the relative performance
in terms of ANTT (normalized to that of LRU) for sixteen
core workloads. PriSM outperforms way-partitioning in all
the sixteen core workloads. Similar results were observed
for 4, 8 and 32 cores in the case of hit-maximization and
also for fairness.

As we partition the cache space rather than the associa-
tivity, our scheme can work well even when the number of
cores is equal to the number of ways. We demonstrate this
with a 8MB 16-Way L2 as shared LLC for a 16-core ma-
chine. For way-partitioning, the smallest unit that can be al-
located is 1 way or 512KB. So in this case, if each program
has to receive some cache space, the partitioning solution
becomes a trivial one of giving one way per core (hence we
do not evaluate it). But for PriSM, the smallest allocatable
unit is a cache block or 64Bytes. Figure 6 shows the per-
formance of PriSM-H in terms of ANTT normalized to that
of baseline LRU cache with 8MB-16 way configuration. It
can be seen that for all the workloads, PriSM-H improves

434

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1
Q

1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

Q
1
3

Q
1
4

Q
1
5

Q
1
6

Q
1
7

Q
1
8

Q
1
9

Q
2
0

Q
2
1

N
o

rm
a
li

z
e
d

 A
N

T
T

Workload

Lower is Better

PriSM-H UCP PIPP

(a) 4-Core

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

T
1
1

T
1
2

T
1
3

T
1
4

N
o

rm
a
li

z
e
d

 A
N

T
T

Workload

Lower is Better

PriSM-H UCP PIPP

(b) 32-Core

Figure 3. HitMaximization in Quad and 32Core

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

U
C

P
P

ri
S

M

C
a
c
h

e
 O

c
c
u

p
a
n

c
y

Core0 Core1 Core2 Core3

Q21Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

Figure 4. Cache occupancy of PriSMH and UCP in quadcores

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

N
o

rm
a
li

z
e
d

 A
N

T
T

Workload

Lower is Better

PriSM-H Way-Partition

Figure 5. HitMaximization: Gains provided
by PriSM over waypartitioning

the performance over LRU. The fine-grained partitioning
allows us to share the cache space efficiently across the var-
ious programs resulting in an average gain of 14.8% over
LRU.

5.3. Comparison with Vantage

In this section we compare the performance of PriSM
with Vantage [17] in the context of set-associative caches.
For a fair comparison, all the schemes use a timestamp
based LRU [16,17] as the baseline replacement mechanism.
We report results with both Vantage and PriSM using the ex-
tended UCP allocation policy that has been shown to work
well with Vantage [17]. For all the parameters like width of
timestamp, frequency of increment etc we use the values in

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

N
o

r
m

a
li
z
e

d
 A

N
T

T

Workload

Lower is Better

Figure 6. PriSMH in a sixteen Core machine
with 8MB 16Way cache

the original vantage paper [17] . In short, this allows us to
directly compare the efficiency of the partitioning mecha-
nism of Vantage and PriSMFigure 7 shows the performance
in terms of ANTT of vantage and PriSM, normalized to that
of baseline set-associative cache managed using time-stamp
LRU for 4 and 16 core machines. In quad-core workloads,
it can be seen that in a majority of the workloads (all but
Q12, Q17, Q19 and Q20), PriSM outperforms vantage. In
the case of 16-core machine, PriSM outperforms Vantage in
all the workloads. On average(geomean), PriSM performs
better than vantage by 7.8% on quad-core workloads and
11.8% on sixteen core workloads.

To get a better understanding of the performance dif-
ferences in the quad-core scenario, we plot (Figure 8) the
normalized misses incurred by the individual benchmarks
under PriSM. The misses are normalized to the misses ex-

435

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95

 1
 1.05

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

Q
1
3

Q
1
4

Q
1
5

Q
1
6

Q
1
7

Q
1
8

Q
1
9

Q
2
0

Q
2
1

N
o

rm
a
li
z
e
d

 A
N

T
T

Workload

Lower is Better

Vantage PriSM

(a) Quad-Core

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

N
o

rm
a
li
z
e
d

 A
N

T
T

Workload

Lower is Better

Vantage PriSM

(b) Sixteen-Core

Figure 7. Performance of Vantage and PriSM in 4 and 16 core machines

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1
6
8

1
7
3

4
3
4

4
6
2

1
6
8

2
5
5

4
0
1

4
7
0

1
7
1

4
0
1

4
7
1

4
2
9

1
7
5

4
1
0

4
7
1

4
7
0

1
7
8

1
8
3

1
8
1

4
7
1

1
7
9

4
6
2

4
2
9

1
8
7

1
7
9

4
7
0

4
3
4

2
5
6

1
7
9

4
8
2

1
7
1

4
1
0

1
7
9

4
8
2

3
0
1

4
6
5

1
8
3

4
5
9

1
8
9

4
3
5

1
8
7

1
7
9

4
7
0

4
3
3

1
8
7

4
5
9

4
7
0

4
7
1

4
3
4

1
8
8

4
0
1

1
7
9

4
3
4

4
5
9

4
7
1

4
1
0

4
5
9

1
9
7

4
3
5

4
7
1

4
5
9

4
3
3

4
8
2

1
7
3

4
5
9

4
3
7

1
8
7

3
0
0

4
6
2

1
7
9

1
7
2

4
5
0

4
7
0

4
6
2

1
8
9

3
0
0

4
8
2

3
0
0

4
6
2

4
5
0

4
8
2

4
7
0

1
8
3

1
8
7

N
o

r
m

a
li
z
e

d
 L

2
 M

is
s

e
s

Q21Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

Figure 8. Misses incurred by PriSM normalized to Vantage

perienced by the benchmark under vantage. As can be seen
PriSM reduces the misses incurred by at least three of the
four benchmarks in all the quad-core workloads. In fact it
improves the performance of all four benchmarks in 12 out
of the 21 workloads. Even though misses go up with PriSM
for one of the benchmarks in workloads Q4, Q5, Q6 and
Q15, the significant decrease in the misses experienced by
the other benchmarks helps PriSM to perform better than
vantage in those workloads. In Q19 and Q20 there is an
increase in misses for one benchmark (300.twolf). In these
workloads, none of the other programs benefit to a great ex-
tent. Hence Vantage performs better than PriSM in those
workloads. In the case of 16-core workloads, PriSM con-
sistently performs better than Vantage.

5.4. Fairness

This section compares the performance of PriSM-F with
a way-partitioning solution to achieve fairness [9]. PriSM
improves fairness by 1.4%, 13.1% and 23.3% over way-
partitioning in 4, 8 and 16-core workloads respectively. Fig-
ure 9 shows the absolute fairness of LRU, PriSM-F and
way-partitioning in a 16-core machine with 8MB32Way
shared L2 as LLC. A higher value indicates better fair-
ness. As seen with hit-maximization, in a larger machine
with more contention and sharing, fine-grained partition-
ing provided by PriSM gains in importance. This is re-
flected by the fact that the fairness improves with PriSM-
F for all the workloads. Improving fairness at the expense
of overall performance is undesirable. We observed that

improved fairness was accompanied by an improvement in
performance in all the workloads under PriSM-F. On an av-
erage(geomean), PriSM-F improves performance by 19%
compared to LRU.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

F
a
ir

n
e
s
s

Workload

Higher is Better

PriSM-F Way-Partition LRU

Figure 9. PriSMF in sixteen core. Fairness of
LRU, Waypartitioning and PriSMF

5.5. Achieving qualityofservice with PriSMQ

We define QOS as achieving a specified IPC target. We
tested the QOS scheme by fixing the target IPC value for the
program running in Core0 as 80% of its Stand-Alone IPC.
Figure 10 shows the slowdown achieved by Core0 com-
pared to Stand-Alone run for 16-core workloads. In a ma-
jority of the cases the slowdown is very close to the 80%
target specified. For cache-insensitive programs the slow-
down happens to be higher than 80% and we verified (by

436

setting the eviction probability to 1) that it is the maximum
slowdown that the program can experience.

 0

 0.2

 0.4

 0.6

 0.8

 1

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
lo

w
d

o
w

n

Workload

Figure 10. Achieving QOS using PriSMQ. Per
formance guarantee of 80% StandAloneIPC
for core0 in 16core workloads

5.6. Analysis and sensitivity study

Eviction Probabilities. Figure 11 shows the mean and stan-
dard deviation of the eviction probabilities observed under
PriSM-H. The values are shown for each individual bench-
mark in the various quad-core workloads. Each bar shows
the mean value of the eviction probability while the error
bar indicates the magnitude of standard deviation. The error
bar is from (mean−std.dev) to (mean+std.dev). The prob-
abilities are recomputed anywhere between 199 (Q2) and
1175 (Q5) times. It can be seen that the measured standard
deviation in the eviction probabilities is low indicating that
the probability values remain fairly stable. Similar stable
behaviour was observed in the case of 8, 16 and 32 core
workloads too.

Bits required for Eviction-probability. The probability
values have to be stored in the hardware and need to be com-
municated to the cache controller by the allocation policies.
To reduce the hardware overhead, we propose to store the
probability values as ‘K=6,8,10,12’ bit integers. Figure 12
shows the performance of the K-bit variants of PriSM-H
normalized to that of baseline PriSM-H which uses prob-
abilities in the range [0, 1]. It can be seen that the perfor-
mance with 6, 8, 10 and 12 bits is very similar to that of
using floating point to represent probability. We observed
similar behaviour in the case of 16-core workloads too with
6 and 8 bit precision. Hence it is enough to use 6 or 8 bits
to represent eviction probability in PriSM.

Victim core selection. PriSM relies on the fact that given a
sufficiently large interval, the actual evictions will match the
eviction probability distribution. As mentioned earlier, we
can face scenarios where no replacement candidate belong-
ing to a core identified by the core-selection step is found

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

Q
1
3

Q
1
4

Q
1
5

Q
1
6

Q
1
7

Q
1
8

Q
1
9

Q
2
0

Q
2
1

N
o

r
m

a
li
z
e
d

 A
N

T
T

Workload

6bit 8bit 10bit 12bit

Figure 12. Performance of schemes using N
bits to represent probabilities compared to
floating point representation

in the set. Figure 13 shows the impact of interval length on
the fraction of such instances for quad-core workloads with
PriSM-H. As expected, as the interval length increases from
32K misses to 128K misses, the fraction of cases where a
desired replacement candidate was not found falls steadily
from 3.8% of replacements on an average with 32K interval
to 2.5% of replacements with 128K interval (3.1% at inter-
val length of 64K misses). Similar trend was observed in
the case of sixteen core workloads too.

 0

 5

 10

 15

 20

 25

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

Q
1
3

Q
1
4

Q
1
5

Q
1
6

Q
1
7

Q
1
8

Q
1
9

Q
2
0

Q
2
1

%
 o

f
R

e
p

la
c
e
m

e
n

ts

Workload

32K 128K 128K

Figure 13. Fraction of replacements for which
victim block belonging to desired core is not
found

Changing the Replacement Policy. PriSM is agnostic to
the underlying replacement mechanism and can work with
any replacement policy with just an extension to include the
core-selection step. We studied the performance of PriSM
with DIP [13] as the underlying replacement policy. DIP
does not exhibit stack-property and hence makes for an in-
teresting choice. In the quad-core scenario, PriSM-H on a
cache with DIP replacement improves performance over the
baseline cache with DIP by 8.9%. TA-DIP [7] performed
similar to that of the baseline cache with DIP. Both DIP and
TA-DIP yeld better performance than LRU. Due to lack of
space we do not show the detailed results for this case.

437

-0.1

 0
 0.1
 0.2
 0.3

 0.4
 0.5

 0.6
 0.7
 0.8
 0.9

 1
1

6
8

1
7
3

4
3
4

4
6
2

1
6
8

2
5
5

4
0
1

4
7
0

1
7
1

4
0
1

4
7
1

4
2
9

1
7
5

4
1
0

4
7
1

4
7
0

1
7
8

1
8
3

1
8
1

4
7
1

1
7
9

4
6
2

4
2
9

1
8
7

1
7
9

4
7
0

4
3
4

2
5
6

1
7
9

4
8
2

1
7
1

4
1
0

1
7
9

4
8
2

3
0
1

4
6
5

1
8
3

4
5
9

1
8
9

4
3
5

1
8
7

1
7
9

4
7
0

4
3
3

1
8
7

4
5
9

4
7
0

4
7
1

4
3
4

1
8
8

4
0
1

1
7
9

4
3
4

4
5
9

4
7
1

4
1
0

4
5
9

1
9
7

4
3
5

4
7
1

4
5
9

4
3
3

4
8
2

1
7
3

4
5
9

4
3
7

1
8
7

3
0
0

4
6
2

1
7
9

1
7
2

4
5
0

4
7
0

4
6
2

1
8
9

3
0
0

4
8
2

3
0
0

4
6
2

4
5
0

4
8
2

4
7
0

1
8
3

1
8
7

E
v
ic

ti
o

n
P

ro
b

a
b

il
it

y

Q21Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

Figure 11. QuadCore – Mean and Std.Dev of replacement probability

6. Related Work

Cache sharing is a well studied problem [5–7, 9, 10, 14,
15, 18, 20] and a variety of solutions have been proposed
to achieve different performance and/or fairness goals.
Broadly these solutions have two components: (i) a cache
partitioning scheme to enforce partition decisions and (ii)
allocation policies that build on the partitioning support and
decide how much cache space each core should receive to
achieve the desired performance target.

Way-partitioning. The most widely used solution is to par-
tition the associativity (Way-partitioning) of the cache [6,
9, 14, 15, 18]. Other solutions include partitioning the sets
of the cache [19] or using page-coloring techniques [10].
Unlike way-partitioning, these solutions suffer from lim-
ited support for reconfigurability when the workload char-
acteristic changes. Enabling OS support to manage shared
caches and convey the partitioning information computed
by allocation policies has also been proposed to manage
cache sharing [15, 18].

Vantage. Vantage [17] is the only other partitioning scheme
that enables fine-grained partitioning. The key advantages
of PriSM over Vantage are given below. PriSM is built
from scratch to work with any standard cache while keep-
ing the hardware overhead low. PriSM achieves the de-
sired sharing goals by taking into account the incoming rate,
the current cache occupancy and by computing the eviction
rate/probability required to arrive at the desired target occu-
pancy. This can be layered on top of any simple but effi-
cient existing and well known cache. Vantage on the other
hand logically partitions the cache into ‘managed’ and ‘un-
managed’ regions and achieves the desired target occupancy
in the ‘managed’ portion of the cache by borrowing space
from the unmanaged region. This is a fundamental change
to the cache organization. Also vantage requires the re-
placement policies, including commonly used LRU, to be
implemented in a Vantage-friendly fashion.

A cache hit in vantage needs to be region aware and pro-
mote the block to managed region if it is in unmanaged re-
gion. Whereas, hits in PriSM behave exactly like the base-
line cache. On a miss, PriSM follows a two-step replace-

ment process involving a core-selection and victim identifi-
cation steps as explained earlier. Vantage on the other hand
requires demotion of multiple blocks to the unmanaged re-
gion during each miss and various book keeping activities
like recomputing the the SetPointTimeStamp and Aperture
periodically as part of replacement in addition to identifying
the victim block [17].

Allocation Policies. UCP [14] is an allocation policy built
on top of way-partitioning to maximize the number of cache
hits (Hit-Maximization). It allocated ways to different cores
based on the concept of marginal utility.

In [9], it was observed that rate of increase in misses
from stand-alone to shared cache scenario for any given
program correlates well with the increase in execution time.
The allocation policy proposed in [9] builds on top of way-
partitioning and provides more ways to the cores that are
doing poorly in terms of the miss-increase criterion while
taking away ways from cores that are doing well so as to
achieve similar levels of slowdown for all cores. CQos [6]
tries to use way-partitioning and selective insertion/bypass
into the cache to achieve QOS guarantees. These alloca-
tion policies are designed to work with way-partitioning and
cannot take advantage of fine-grained partitioning abilities
without modification.

Other schemes. There are a variety of other schemes of in-
terest which do not rely on way-partitioning. The most ef-
fective and well-known among these are the hit maximiza-
tion schemes TA-DIP [7] and PIPP [20]. These schemes
do not rely on explicit partitioning but build a monolithic
and complex replacement scheme that is a combination of
the cache partitioning support and allocation policy. TADIP
and PIPP work by adjusting the insertion and/or promotion
mechanisms in the LRU replacement policy. Though the
schemes are effective to achieve hit-maximization they can-
not support other performance goals in their current form
and hence lack the flexibility provided by the decoupling of
partitioning support from allocation policies.

Other proposals like RRIP [8], PE-LIFO [2] and NU-
cache [11] are replacement policies proposed to manage
shared caches. These schemes are primarily targeted to-
wards hit maximization. However it is tough to extend these

438

replacement policies to achieve other performance goals
like fairness or QOS.

7. Conclusions

In this paper, we proposed Probabilistic Shared Cache
Management (PriSM), a scalable framework to manage
shared cache occupancy in a fine-grained fashion. PriSM
controls the occupancy of the different cores by controlling
the eviction probabilities – the rate at which lines brought
in by any given core are evicted. From a hardware per-
spective, PriSM requires minimal extensions to the under-
lying cache replacement policy. We demonstrate the flex-
ibility of PriSM by implementing three allocation policies
to achieve Hit-Maximization (PriSM-H), Fairness (PriSM-
F) and QOS (PriSM-Q) in our proposed framework. We
demonstrate the scalable nature of our solution by studying
its performance from low core count (4-cores) to high core
count (32-cores).

Acknowledgments

The first author was supported by a Microsoft Research
India PhD fellowship during his PhD. The authors would
like to thank Prof Matthew Jacob, Prof Mainak Chaudhuri,
Ashwin Prasad, members of HPC lab and the anonymous
reviewers for their useful feedback on earlier drafts of this
paper.

References

[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling
Networked Systems. IEEE Micro, 26:52–60, 2006.

[2] M. Chaudhuri. Pseudo-LIFO: the foundation of a new fam-
ily of replacement policies for last-level caches. In MICRO
42, pages 401–412, New York, NY, USA, 2009. ACM.

[3] S. Eyerman and L. Eeckhout. System-Level Perfor-
mance Metrics for Multiprogram Workloads. Micro, IEEE,
28(3):42 –53, may-june 2008.

[4] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A performance counter architecture for computing accurate
CPI components. In ASPLOS-XII, pages 175–184, New
York, NY, USA, 2006. ACM.

[5] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Com-
munist, utilitarian, and capitalist cache policies on CMPs:
caches as a shared resource. In PACT ’06, pages 13–22,
New York, NY, USA, 2006. ACM.

[6] R. Iyer. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In ICS ’04, pages 257–266, New
York, NY, USA, 2004. ACM.

[7] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely,
Jr., and J. Emer. Adaptive insertion policies for managing
shared caches. In PACT ’08, pages 208–219, New York,
NY, USA, 2008. ACM.

[8] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP). In ISCA ’10, pages 60–71, New York,
NY, USA, 2010. ACM.

[9] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In PACT
’04, pages 111–122, Washington, DC, USA, 2004. IEEE
Computer Society.

[10] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partition-
ing: Bridging the gap between simulation and real systems.
In HPCA, pages 367–378, 2008.

[11] R. Manikantan, K. Rajan, and R. Govindarajan. NUcache:
An efficient multicore cache organization based on Next-
Use distance. In HPCA ’11, pages 243–253, Los Alamitos,
CA, USA, 2011. IEEE Computer Society.

[12] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilis-
tic shared cache management(PriSM). Technical report, Lab
for High Performance Computing, IISc, 2012.

[13] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high performance
caching. In ISCA ’07, pages 381–391, New York, NY, USA,
2007. ACM.

[14] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partition-
ing: A Low-Overhead, High-Performance, Runtime Mecha-
nism to Partition Shared Caches. In MICRO 39, pages 423–
432, Washington, DC, USA, 2006. IEEE Computer Society.

[15] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural
support for operating system-driven CMP cache manage-
ment. In PACT ’06, pages 2–12, New York, NY, USA, 2006.
ACM.

[16] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling
Ways and Associativity. In MICRO ’43, pages 187–198,
Washington, DC, USA, 2010. IEEE Computer Society.

[17] D. Sanchez and C. Kozyrakis. Vantage: scalable and effi-
cient fine-grain cache partitioning. In ISCA ’11, pages 57–
68, New York, NY, USA, 2011. ACM.

[18] S. Srikantaiah, M. Kandemir, and Q. Wang. SHARP control:
controlled shared cache management in chip multiproces-
sors. In MICRO 42, pages 517–528, New York, NY, USA,
2009. ACM.

[19] K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj,
R. Iyer, S. Makineni, and D. Newell. Molecular Caches:
A caching structure for dynamic creation of application-
specific heterogeneous cache regions. In MICRO 39, pages
433–442, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[20] Y. Xie and G. H. Loh. PIPP: promotion/insertion pseudo-
partitioning of multi-core shared caches. In ISCA ’09, pages
174–183, New York, NY, USA, 2009. ACM.

439

