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 
Abstract—The paper presents comparative analysis of per-

formance of three efficient estimation methods when applied to 

the probabilistic assessment of small-disturbance stability of 

uncertain power systems. The presence of uncertainty in system 

operating conditions and parameters results in variations in the 

damping of critical modes and makes probabilistic assessment of 

system stability necessary. The conventional Monte Carlo (MC) 

approach, typically applied in such cases, becomes very computa-

tionally demanding for very large power systems with numerous 

uncertain parameters. Three different efficient estimation 

techniques are therefore compared in this paper – point estima-

tion methods (PEM), an analytical cumulant-based approach, 

and the probabilistic collocation method (PCM) – to assess their 

feasibility for use with probabilistic small disturbance stability 

analysis of large uncertain power systems. All techniques are 

compared with each other and with a traditional numerical MC 

approach and their performance illustrated on a multi-area 

meshed power system. 

 
Index Terms— Cumulant, eigenvalues, electromechanical os-

cillations, Monte Carlo, point estimation, probabilistic collocation 

method, small disturbance stability, uncertainty.  

I.  LIST OF SYMBOLS 

C set of coefficients used in the PCM. 

F conditional probability density function. 

H matrix of orthogonal polynomials used in the PCM. 

 
n

H   nth order orthogonal polynomial of a function. 

m number of uncertain parameters. 

o order of PCM model implemented. 

w  weight value associated with the PEM. 

Y uncertain distributed system output parameter. 

Ŷ  estimate of Y. 

α  raw moment of a randomly distributed variable. 

β  central moment of randomly distributed variable. 

Γ set of uncertain system input parameters. 

γ  uncertain system input parameter. 

δ c r i t  damping of the critical electromechanical mode. 

εARMS average root mean squared error 
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η  normal distribution with μ = 0, and σ = 1. 

κ  cumulant of a randomly distributed variable. 

μ  mean of a randomly distributed variable. 

ξ  standard locations associated with the PEM. 

σ  standard deviation of a randomly distributed variable. 

ψ  standardized moment of randomly distributed variable. 

II.  INTRODUCTION 

OWER systems are operated in increasingly uncertain 

conditions as stochastic and intermittent renewable energy 

sources see greater levels of penetration and new load types 

are introduced. The effect of these uncertain conditions and 

system parameters on all aspects of system performance needs 

be thoroughly investigated and quantified. Probabilistic 

studies provide a way in which to include these uncertainties 

in system planning and operation analysis and yield a better 

depiction of expected system variation than conventional 

deterministic approaches.  

Low frequency oscillations are inherent to large power sys-

tems [1] and they can often be exacerbated by the use of fast 

acting, high gain, generator exciters introduced to improve 

power system transient recovery [2]. As complex conditions 

evolve within uncertain power systems, these underlying 

oscillatory modes can become poorly damped or even unsta-

ble. This can lead to equipment disconnection, loss of supply 

and, in some cases, eventual system collapse.  

Due to increased uncertainties associated with the operation 

of modern power systems, probabilistic approaches towards 

small-disturbance stability analysis have started to receive 

greater research attention recently, e.g. [3]–[5]. The benefits of 

the probabilistic approach are evident and result in more 

accurate depictions of the true modal variation. The depend-

ence of the methods proposed in [3], [4] on numerical studies, 

however, severely limits their potential applications. The need 

for a large number of numerical simulations (typically thou-

sands) means that the computational burden of the technique 

can often be too high for repeated probabilistic studies, or 

online applications. A more efficient approach was proposed 

first in [6] and implemented more recently in [5]. It utilizes 

tetrachoric series in order to generate a probabilistic stability 

region for a power system. This work, however, is limited in 

its assumption that all electromechanical modes can be de-

scribed by a multivariate normal distribution which does not 

generally hold for non-linear power systems.  
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Efficient estimation techniques which do not impose 

parametric output distributions include point estimate methods 

(PEM) [7]–[10], analytical cumulant-based approaches [11]–
[14], and the probabilistic collocation method (PCM) [15]–
[17]. These methods have typically been applied within the 

area of probabilistic load flow, though some have also been 

used to analyse the effects of uncertainties on small-

disturbance studies studies, such as [10]–[12] and [17]. All 

these techniques can be used to derive the probability density 

functions (pdfs) of an uncertain system output, based on 

known input uncertainty, using signifcantly fewer sample 

points than are required for traditional numerical Monte Carlo 

(MC) approaches. This significant reduction in the number of 

required sample points means that these methods are fast 

enough for online application and repeated probabilistic 

studies (though this will be ultimately dependent on system 

size and complexity). 

This paper presents the first comparative analysis of the 

reported efficient estimation techniques against each other in 

order to establish their applicability to probabilistic small-

disturbance stability studies. Previous studies such as [10]–
[12] and [17] have compared individual methods against the 

numerical MC approach, however a comparison of these 

estimation techniques against each other has not been done. 

These methods are referred to as efficient throughout this 

paper to differentiate them from the traditional numerical 

approach – however it should be noted that the accuracy of 

these techniques is not guaranteed. The accuracy of the 

efficient approaches at producing both descriptive moments 

and entire pdfs of system outputs, for differing levels of 

system parameter uncertainty, is tested on a multi-area meshed 

power system. Based on the comprehensive results obtained, 

recommendations are made regarding suitability of the 

examined methods for probabilistic small disturbance stability 

analysis of uncertain power systems.  

III.  EFFICIENT ESTIMATION TECHNIQUES FOR PROBABILISTIC 

SMALL-DISTURBANCE STABILITY ANALYSIS 

Small-disturbance stability relates to the ability of a power 

system to maintain synchronous operation when subjected to 

the small disturbances that occur constantly during operation 

[18]. By linearizing the power system model and calculating 

the eigenvalues of the state matrix, the system modes of 

oscillation can be identified. In large power systems, low 

frequency, inter-area, electromechanical oscillations are 

typically the least damped most persistent modes which 

dominate post-disturbance system behavior and therefore, 

represent the critical modes in the system. Conventional, 

deterministic, small-disturbance stability analysis identifies 

and characterizes these modes. Probabilistic small-disturbance 

stability analysis incorporates system uncertainties (e.g., in 

system loading or power generation from renewable energy 

sources) in small-disturbance stability assessment in order to 

produce statistical distributions of critical modes which more 

accurately describe the behavior of uncertain power systems. 

There are a variety of efficient estimation techniques that 

can be used for probabilistic small-disturbance stability 

analysis [7]–[17]. This section presents a brief theoretical 

background on several of the most promising and commonly 

used methods. These methods are further investigated and 

their application illustrated in subsequent sections. In all cases 

it is assumed that the uncertain parameter set Γ is known and 

that probability density functions are fully detailed for each 

uncertain input parameter γ jΓ . 

Throughout this section, reference is made to raw moments 

α , central moments β , and standardized moments ψ  of 

distributions. The following definitions apply for a random 

variable x  with probability density function  f x  [19]. 

The n
th

 order raw moment 
x

n
  is given by (1). The first raw 

moment is the mean μ x . 

 x n

n
x f x dx




   (1) 

The n
th

 order central moment 
x

n
  is given by (2). The sec-

ond central moment is the variance 
2

x
 . 

   nx

n x
x f x dx 




   (2) 

The n
th

 order standardized moment 
x

n
  is given by (3). The 

third and fourth standardized moments are the measures of 

skewness and kurtosis of the distribution, respectively. 

x

x n

n n

x





  (3) 

A. Monte Carlo (Numerical) Method 

The numerical Monte Carlo (MC) approach is used as the 

benchmark against which the other methods described in this 

paper are assessed (in terms of both accuracy and computa-

tional burden). This approach relies on extensive and repeated 

random sampling of system uncertainties in order to obtain a 

large data set from which output pdfs can be determined [20]. 

For each input set, randomly generated using the MC ap-

proach, a deterministic study is performed (consisting of load 

flow, system linearization, eigenvalue analysis, and modal 

identification) in order to calculate the details of critical 

system modes. As the number of samples increases, it be-

comes increasingly probable that the distribution of output 

variation is an accurate representation of the true variation. It 

is therefore necessary to run large numbers of full determinis-

tic studies, which can limit the application of the MC method 

when performing probabilistic studies of large uncertain 

power systems. Efficient sampling techniques aim to reduce 

the number of deterministic studies required, whilst maintain-

ing the accuracy of the results produced. 

B. Point Estimate Method 

A number of Point Estimation Methods (PEM) have been 

developed, with varying levels of application to probabilistic 

power system research [7]–[9]. The aim of all point estimate 

techniques is to compute the moments of the system output Y 

that is a function of m uncertain input variables. The distribu-

tion of Y can be subsequently established using a variety of 

expansion techniques.  
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The PEM techniques used within this study are taken from 

[21] and were shown to be effective for probabilistic load flow 

studies in [9]. These PEM approaches can be used with sym-

metric or asymmetric variables but not with correlated system 

uncertainties. Other PEM approaches also exist and if input 

correlation is essential, different PEM techniques such as 

[22]–[24] may be more suitable – however accuracy and 

efficiency may be sacrificed. PEM variants are developed in 

[21] where K m  or K m + 1  full deterministic studies are 

required (where K  is a positive integer). The variants that can 

be used are dependent on the distribution of input uncertain-

ties. In this study (considering input uncertainties with 

Gaussian distributions), both the 2 m  and 4 m + 1  PEM vari-

ants are investigated. The PEM details are briefly presented 

below, with full details given in [9] and [21].  

1) Theoretical Background 

Deterministic studies are required at K m  or K m + 1  sepa-

rate operating points (termed concentrations). The k
th

 

concentration  , ,,
j k j k

w  is defined as a pair consisting of a 

location γ j , k  and an associated weight value w j , k . This loca-

tion represents the k
th

 value that the variable γ j  will take 

during full deterministic studies. 

For PEM deterministic studies, only one input variable is 

varied at a time and the remaining uncertainties in Γ take their 

mean values μ γ j
. Therefore only K m  deterministic studies are 

required, i.e., K  variations of each of the m  uncertain inputs. 

In the Km + 1 PEM variants, an additional deterministic study 

is completed with all uncertainties at their mean values.  

Locations are determined using (4), in which μ γ j
 and σ γ j

 

are the mean and standard deviation (st.d.) of the j
th

 uncertain 

parameter γ j , and ξ j , k  is the standard location.  

, ,j jj k j k       (4) 

Standard locations and weights are determined by solving 

the nonlinear equations (5) [21].  

   

,

1

, , ,

1

1

1, , 2 1

K

j k

k

K
n

j k j k j j

k

w
m

w n K
 






 


  





 (5) 

In (5), ,j n

  is the n
th

 standardized moment of the j
th

 uncer-

tain parameter γ j  [21]. As per standard definitions, ,1 0,
j

   

,2 1,
j

   ,3j


 is the skewness, and ,4j

  is the kurtosis of γ j . 

Equation (5) can only be solved analytically for K = 2 . For 

K > 2  numerical solutions are required. 

Full deterministic studies are performed for each concentra-

tion at the operating point (μ γ 1
, μ γ 2

,…, γ j , k ,…, μ γm
) to obtain 

the value of the system output Y ( j , k ) for that concentration. 

These values are subsequently combined with the previously 

determined weight factors using (6) to determine the n
th

 raw 

moment 
Y

n
  of the system output Y.  

  ,

1 1

,
m K

nY n

n j k

j k

E Y w Y j k
 

      (6) 

The raw moments 
Y

n
  can be used to establish the central 

moments 
Y

n
 of the system output. If sufficient moments are 

estimated, the pdf of Y can be estimated using a suitable 

expansion. However, the accuracy of PEM approaches typical-

ly deteriorates as the order of the estimated raw moment 

increases [9]. Distributions produced using this approach will, 

therefore, be more accurate if they are predominantly de-

scribed by low order moments. 

2) 2m Variant 

For the 2 m  PEM variant, only the first three standardized 

moments 
  of each uncertain input are required. The stand-

ard locations and weights of the uncertain input γ j  are 

calculated using (7) and (8) [9].  

   21,3

, ,31 2
2

kj

j k j
m




      (7) 

   
,2 ,1

,1 ,2

,1 ,2 ,1 ,2

j j

j j

j j j j

w w
m m

 

   


 

 
 (8) 

3) 4m + 1 Variant 

For the 4 m + 1  PEM variant, the standard locations are 

calculated as the roots of the polynomial (9), where the coeffi-

cients are found by solving the linear equations in (10) [9]. 

  4 3 2

3 2 1 0f C C C C          (9) 

0,3 ,4 ,5

1,3 ,4 ,5 ,6

2,3 ,4 ,5 ,6 ,7

3,4 ,5 ,6 ,7 ,8

0 1

1

j j j

j j j j

j j j j j

j j j j j

C

C

C

C

  

   

    

    

  
   

    
    

    
    
          
           

 (10) 

The weights are subsequently determined by solving (11), 

with the weight value w0  in (12) used for the ‘+ 1’ operating 

point where all uncertainties take their mean values. 

,1 ,2 ,3 ,4 ,1

2 2 2 2

,1 ,2 ,3 ,4 ,2

3 3 3 3

,1 ,2 ,3 ,4 ,3 ,3

4 4 4 4

,1 ,2 ,3 ,4 ,4 ,4

0

1

j j j j j

j j j j j

j j j j j j

j j j j j j

w

w

w

w





   
   
    
    

    
    
        
        
    

 (11) 

0 ,

1

1
m K

j k

j k

w w


   (12) 

4) Summary 

The PEM approach can be summarized as follows: i) Cal-

culate concentrations (locations and weights) for each 

uncertain input using (4), (7) and (8) for the 2 m  variant, and 

(4), (9)–(12) for the 4 m + 1  variant; ii) Perform deterministic 

studies at each concentration; iii) Calculate the output raw 

moments using (6); iv) If desired, calculate output central 

moments or standard moments and generate pdfs. 

C. Cumulant Method 

The cumulants κ  of a probability distribution provide an 

alternative mathematical description to the moments of the 

distribution. The use of cumulants allows an analytical solu-

tion to be derived for the output variation based on system 
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input uncertainty. 

Analytically, the moments of the system output Y are de-

scribed by a mathematical convolution of the moments of the 

independent input uncertainties Γ. This is extremely complex 

to calculate for high order moments when there are multiple 

uncertainties. However, the cumulants κ Y
 of the system output 

can be described simply by a sum of the cumulants κ Γ
 of the 

independent input uncertainties [13]. This is much easier to 

calculate, and the output cumulants can subsequently be used 

to establish the output moments. 

The cumulant-based approach has been used in power sys-

tem studies to determine probabilistic load flow solutions in 

[13], [14], and also for probabilistic small disturbance stability 

studies in [11], [12]. The method is typically used alongside 

the Gram-Charlier expansion [25] in order to generate output 

pdfs from the calculated output cumulants and yielded good 

results [11]–[14]. The mathematical analysis required, howev-

er, is complex, and it is often necessary to include numerical 

approximations within the calculations in order to converge on 

a solution within an acceptable length of time. 

The cumulant-based approach can also be used with corre-

lated input uncertainties [11], [12]. This has not been 

investigated in this paper as both the PEM and PCM ap-

proaches studied here assume independence of uncertainty 

distributions. 

1) Theoretical Background  

The n
th

 order cumulants ,j n

  of the j
th

 uncertain parameter 

γ j  are determined from its mean μ γ j
 and central moments ,j n

  

using the standard relationships given by (13) [13]. 

 
,1 ,2 ,2 ,3 ,3

2

,4 ,4 ,2

, , ,

3

jj j j j j

j j j

    


  

     

  

  

 
 (13) 

The cumulants of the change in system output ΔY can then 

be calculated directly using (14).  

  ,

1

m
n

Y

n j j n

j

Y
  



    (14) 

The sensitivity term  j
Y    in (14) can be determined 

either numerically or analytically. For probabilistic small-

disturbance studies, an analytical sensitivity determination 

requires knowledge of the full linearized state matrix and is 

detailed in [12]. Many power system simulation software 

programs do not provide this, and instead the numerical 

approximation (15) is required.  

   
j jj

j j

Y YY    

 

  


 
 (15) 

In (15), Δγ j  represents a small change in the uncertain input 

γ j . A 1% positive variation is used for all uncertain inputs in 

this study. Numerical calculation of this sensitivity will 

require m + 1  deterministic studies for m  system uncertainties 

(once for each change, and one more with all mean values for 

comparison). This represents the only deterministic studies 

required for this efficient estimation technique. The numerical 

calculation of sensitivity is used within this work and the 

cumulant-based approach can therefore be considered as an 

analytical technique that utilizes a numerical approximation. 

Once sufficient output cumulants have been established, the 

central moments of ΔY (equal to the central moments of Y) can 

be calculated using the relationships given by (16) [13]. These 

moments are used to determine the probability distribution of 

ΔY (and subsequently Y) using suitable expansions (such as 

the Gram-Charlier) if required.  

 
1 1 2 2 2 3 3 3

2

4 4 4 2

0, , ,

3

Y Y Y Y Y Y Y Y

Y Y Y Y

       

   

    

  

     

  
 (16) 

2) Summary 

The cumulant based method can be summarized as follows: 

i) Calculate uncertain input cumulants based on input mean 

and input central moments using (13); ii) Perform m + 1  

deterministic studies in order to numerically calculate the 

sensitivity of the output to each uncertainty using (15); iii) 

Calculate the cumulants of the change in system output direct-

ly using (14); iv) Calculate the central moments of the system 

output using the relationships detailed in (16); v) If desired, 

calculate output standard moments and generate pdfs. 

D. Probabilistic Collocation Method 

With the Probabilistic Collocation Method (PCM), the ap-

proximated system output Ŷ  is modeled directly a as a 

polynomial function of the uncertain parameter set Γ, as in 

(17).  

 ˆ ΓY g  (17) 

The key aspects of the PCM are (a) the selection of the 

function, and (b) specifying the points at which to run deter-

ministic power system simulations to gather the data from 

which the PCM model is formed. These details are provided 

briefly here and are covered in greater depth in [15]–[17]. 

1) Theoretical Background  

Orthogonal polynomials of increasing order are derived for 

the known probability distributions of each uncertain parame-

ter γ j . The model function  Γg  is formed as a sum of 

products of these polynomials (selected based on the desired 

order of the final PCM model) which are weighted by a set of 

coefficients C. Orthogonal polynomials can be created for any 

known probability density function (pdf). Normally distributed 

parameters are simply represented by the transformation (18). 

  1j jj
H       (18) 

In (18), μ γ j
 and σ γ j

 are as previous described, and  1H   

is the first order orthogonal polynomial of the standard normal 

distribution η .  

The orthogonal polynomials  n
H  , where n is the poly-

nomial order, are given by the standard Hermite polynomials 

[26]. Orthogonal polynomials for other distributions can be 

found using recursive methods, for example with functions 

available from the orthpol set for Matlab [27]. 

The number of combinations c of the orthogonal polynomi-
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als (and therefore the number of coefficients to find) increases 

with both the number of uncertainties m and the PCM model 

order o, according to (19), where ! is the factorial operation.  

 !
! !

m om o
c

m m o

 
  
 

 (19) 

This number increases rapidly as m and o increase, and for 

each new coefficient, a deterministic study must be performed. 

These deterministic simulations must be run in order to pro-

vide the points around which to solve the set of coefficients C 

and fit the model as shown in (20).  

Y = HC  (20) 

In (20), Y is a vector of observed system output values; and 

H is a matrix with rows formed by the combinations of or-

thogonal polynomials for each uncertain parameter evaluated 

at the points resulting in the corresponding system output in Y.  

The points for deterministic studies (the collocation points) 

are selected by taking inspiration from the Gaussian quadra-

ture technique of estimating integrals [28]. The roots of the 

next higher order polynomial are chosen as the points at which 

to perform deterministic simulations and collocation points 

with the greatest probability of occurring are selected. By 

doing this, the accuracy of the PCM model is concentrated in 

the regions defined by the pdfs as most likely to occur. 

The PCM differs from the point estimation methods and the 

cumulant-based approach as it does not directly estimate the 

moments of the system output. Instead, The PCM function can 

be used as a computationally inexpensive substitute for run-

ning a full simulation of the power system during a standard 

MC based uncertainty study. Output moments, if desired, can 

subsequently be determined from the data set produced.  

It is also possible to extract the pdfs directly from the PCM 

model functions without using an MC approach. However this 

requires the inversion of the PCM function. This is not trivial 

for non-monotonic multi-dimensional functions and often the 

numerical methods would take so long as to negate all the 

computational benefits associated with using the PCM.  

2) Uncertainty Reduction 

The number of full deterministic studies required, given by 

(19), increases extremely rapidly as the number of system 

uncertainties m increases. For example, in order to produce a 

3
rd

 order PCM model, 56 simulations are required if m = 5; 

286 simulations are required if m = 10; and 1771 if m = 20. 

This exponential increase is different from the other efficient 

methods examined where the number of deterministic studies 

increases linearly with the number of uncertainties. As a 

result, for larger power systems, a reduction in the number of 

uncertainties considered is required in order to preserve the 

advantages of using an efficient estimation method.  

All uncertain parameters are ranked using (21) which de-

scribes the sensitivity of the damping of the critical mode δcrit 

to the uncertain parameter γ j , derived from [16].  

j

crit j

j

crit

j

r


 



 





 (21) 

The first term (the sensitivity measure) is determined using 

a 1% positive increase in γ j  from its mean value. The second 

term weights this sensitivity by the variation in that uncertain 

parameter. Based on this ranking only the most influential 

parameters are selected for further studies. The effectiveness 

of this parameter reduction technique is illustrated in [17]. 

3)  Summary 

The PCM can be summarized as follows: i) Reduce the 

number of considered uncertainties (if large) based on ranking 

completed using (21) and illustrated in [17]; ii) Establish 

orthogonal polynomials to represent considered system uncer-

tainties based on desired model order; iii) Determine 

collocation points for each considered system uncertainty 

using the roots of higher order orthogonal polynomials, and 

order based on the joint probability density associated with the 

operating point; iv) Complete sufficient number of determinis-

tic studies to calculate all coefficients for the PCM model as in 

(20), selecting the most probable collocation points first; v) 

Use the PCM model function as a computationally inexpen-

sive substitute for full deterministic studies in a standard MC 

simulation process to generate a large data set for the system 

output; vi) If desired, calculate output moments or produce a 

pdf based on the obtained data set. 

IV.  TEST SYSTEM 

The efficient estimation methods described within this pa-

per are illustrated using the 16 machine, 68 bus reduced order 

representation of the New England Test System and the New 

York Power System (NETS& NYPS) [29], shown in Fig. 1. 

All methods and deterministic system studies are performed 

within the MATLAB/Simulink environment making use of 

MATPOWER [30] functions to perform power flows.  

A. System Description 

Generators G1–8 use slow DC excitation (IEEE-DC1A), G9 

is equipped with a fast acting static exciter (IEEE-ST1A) and 

power system stabilizer (PSS), and the remaining generators 

G10–16 are under manual excitation as in [29]. All generators 

are represented by full sixth order models. System loads are 

modeled as constant impedance. Full system details, generator 

and exciter parameters are given in [29] with PSS settings for 

G9 taken from [2]. 

B. System Uncertainties 

System uncertainties are represented for all generator out-

puts and system loads within the network. There are therefore 

a total of 50 uncertain parameters within the test system being 

investigated (15 generators excluding the slack, and 35 loads). 

Generator outputs and loads are both modeled using Gaussian 

distributions with nominal values set as mean values of corre-

sponding Gaussian distributions. Different levels of standard 

deviation are considered in order to assess the accuracy of the 

various methods for differing levels of system parameter 

variation. Load power factors are considered to be constant at 

the nominal values.  

The uncertainties considered in this work are assumed to 

follow Gaussian distributions. It should be noted that these 

efficient methods can be used with any continuous distribution 
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provided that moments, cumulants and orthogonal polynomi-

als can be derived. 

 
Fig. 1: 16 machine, 68 bus reduced order model of NETS & NYPS. 

V.  SIMULATION RESULTS  

The test network displays four inter-area modes with damp-

ing factors lower than 5% as detailed in [31]. The analysis 

presented here focusses on the lowest frequency inter-area 

mode (of approximately 0.4 Hz) which is the critical mode for 

the system. Specifically, the aim of the simulations is to 

produce the moments and pdfs for the damping (real part δ crit) 

of this critical electromechanical oscillation.  

A. Simulation details 

In all cases presented here, comparisons are made relative 

to the Monte Carlo (MC) numerical approach that was carried 

out using 10,000 simulations. 

Point Estimate Method – The 2 m  and 4 m + 1  point esti-

mate variants are implemented requiring a total of 100 and 

201 deterministic studies respectively. 

Cumulant Method – The cumulant-based approach requires 

a total of 51 deterministic studies to complete the integral 

sensitivity analysis. The analytical calculation of the critical 

damping moments was performed using uncertain input 

cumulants up to 4
th

 order (though higher order cumulants can 

also be included). 

Probabilistic Collocation Method – For the PCM approach, 

different orders of model function are considered. To enable a 

balanced comparison, the same number of uncertainties is 

used for each model. This number is limited by the highest 

order model considered, which is of 3
rd

 order in this work. The 

limit imposed in this research is such that the PCM approach 

does not greatly exceed the number of deterministic studies 

required by the 4 m + 1  point estimate variant. This restricts 

the number of considered uncertainties to nine for all models. 

This results in 10 deterministic studies for the 1
st
 order model, 

55 for the 2
nd

 order model, and 220 for the 3
rd

 order model.  

The ranking of parameters using the sensitivity-based rank 

of (21) must first be completed (requiring 51 deterministic 

studies). The highest ranked uncertainties are selected, creat-

ing a reduced set of uncertainties consisting of six generators 

and three loads. The final PCM models are used as a computa-

tionally inexpensive substitute for full deterministic studies in 

a standard MC approach consisting of 10,000 runs in order to 

produce the final data sets. 

B. Accuracy of Moment Estimation 

The results from each efficient estimation method for the 

calculated selected moments (mean, st.d., skewness, and 

kurtosis) are shown in Table 1. These results are shown for a 

level of input uncertainty variation equal to 5% at 3σ (i.e. 

99.7% of input variation is found within ±5% of nominal 

mean values).  

A number of features can be observed from the results col-

lated in Table 1. All methods are very accurate at estimating 

the mean value of δ crit with errors never exceeding 0.38%. 

Estimation of the st.d. is more variable, with errors between 

0.66% (with the cumulant method) to approximately 40% 

(with the PCM and 2 m  PEM variant). It can also be observed 

that the methods are less accurate at determining higher order 

moments. The skewness is never estimated more accurately 

than to within an 87% error typically cause be estimations 

near zero. Although the PCM models and cumulant approach 

can estimate the kurtosis to within 14.8%, the point estimate 

methods provide results that are over 76% in error. 

TABLE 1 

MOMENTS OF MODE DAMPING AND PERCENTAGE ERRORS USING VARIOUS 

EFFICIENT ESTIMATION METHODS FOR 5% VARIATION OF UNCERTAINTIES 

Method used 

Critical Mode Damping Moments 

Mean (s–1) St.d. (s–1) Skewness Kurtosis 

crit   crit  
3

crit  
4

crit  

Monte Carlo –0.1232 0.0050 –0.3274 3.3725 

PEM 
2 m  –0.1234 0.0068 –4.8405 38.3624 

4 m + 1  –0.1232 0.0049 –0.0500 0.8834 

Cumulant –0.1229 0.0050 0.0028 2.9938 

PCM 

1st Order –0.1229 0.0030 0.0012 3.1146 

2nd Order –0.1229 0.0030 0.0255 3.0283 

3rd Order –0.1229 0.0030 0.0033 3.0214 

1) Effect of Level of Uncertainty 

These moments have also been collated for different levels 

of input variation with 3σ levels of 2.5% and 7.5% also con-

sidered in addition to the 5% variation previously shown in 

Table 1. The percentage errors of the mean of δ crit is shown in 

Fig. 2 for the different estimation methods at differing levels 

of variation in input uncertainty. 

 
Fig. 2: Error in estimation of mean for different levels of uncertainty. 

 

It can be seen that the error increases with input variability 

for all methods. It is also evident that the point estimate 
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methods display lower error than the cumulant and PCM 

approaches (with the exception of the 2 m  PEM variant which 

becomes the least accurate once input variation reaches 7.5%). 

Very little change is evident between the different order PCM 

models, suggesting the additional computational requirements 

of higher order models may not be necessary. 

Similar plots could also be produced for the st.d., skewness 

and kurtosis. With the st.d. estimation, the increase in input 

variation has the greatest effect on the 2 m  PEM variant (with 

an error of 176% once this input variation reaches 7.5%). 

Errors for the PCM models are relatively unchanged by 

increasing input uncertainty and are approximately 40% in all 

cases with the PCM consistently underestimating the true st.d. 

of δ crit. The 4 m + 1  PEM variant and the cumulant-based 

approach display the best results. Errors remain below 5.5% in 

all cases, even with 7.5% input variation. It is these two 

approaches which appear to be the most promising for the 

efficient estimation of modal parameters. 

It should be noted that skewness is poorly estimated by all 

methods with errors never smaller than 84.5%. Kurtosis is also 

poorly estimated by both PEM variants with errors greater 

than 78.0%. However, this is more accurately estimated by the 

cumulant and PCM approaches with errors below 4.9% for 

2.5% input variation, below 14.8% for 5% input variation, and 

below 45.3% when input variation is 7.5%. 

C. Accuracy of Probability Density Function Estimation 

In addition to assessing the accuracy of the estimated mo-

ments of δ crit, the accuracy of the final probability density 

functions is also assessed. Both the numerical MC approach 

and the PCM result in the production of large data sets. Proba-

bility distributions are subsequently produced using a kernel 

smoothing density estimate [32]. 

1) Expansion for PEM Variants 

Due to the large inaccuracy in the estimation of moments 

above 2
nd

 order using the PEM, only the mean and st.d. are 

used to generate pdfs for δ crit. A Gaussian distribution is, 

therefore, used for both considered PEM variants. It should be 

noted that other expansions (such as the Cornish-Fisher [33]) 

may also provide good results and should be considered when 

applying these methods to further power system studies. The 

Cornish-Fisher expansion, though originally considered for 

this study, was not used due to problem specific parameters 

which violate restrictions specified in [33] for application of 

this expansion. 

2) Expansion for the Cumulant Approach 

As in previous research [11]–[14], the cumulant approach 

is combined with the Gram Charlier expansion in order to 

produce pdfs for δ crit. Investigations into expansions of vary-

ing order were completed and it was found that no significant 

improvement in accuracy was gained by using expansions 

above 4
th

 order – as in [13]. Fourth order Gram-Charlier 

expansions have therefore been used to produce the cumulant-

based pdfs for comparison. 

3) Comparison of Probability Density Functions 

The pdfs and cumulative probability density functions 

(cdfs) of δ crit produced using different techniques are shown in 

Fig. 3 for the case when uncertain input variation is equal to 

5%. Only one plot is shown for the PCM approach as all 

models produce very similar traces. As predicted from the 

analysis of the moments, the 4 m + 1  PEM variant and the 

cumulant-based approach both accurately track the MC-based 

results. The effect of the underestimation of the st.d. by the 

PCM and of the overestimation of the st.d. by the 2 m  PEM 

variant can clearly be seen – resulting in a loss of accuracy. 

To numerically calculate the accuracy of these estimated 

distributions, the Average Root Mean Square error (ε ARMS) 

measure given by (22) is used.  

 2

1

N
MC Est

i i

i

ARMS

F F

N
 





 
(22) 

In (22), 
MC

i
F  is the i

th
 value of the cdf obtained using the 

Monte Carlo approach, 
Est

i
F  is the i

th
 value of the cdf obtained 

using an efficient estimation technique, and N is the number of 

samples considered when calculating ε ARMS. In this study, 

ε ARMS is calculated in the range between the 1
st
 and 99

th
 

percentiles of 
MC

i
F  (to avoid large low error tail regions from 

skewing ε ARMS towards misrepresentative low values) using 

1000 samples. 

(a)

(b)

 
Fig. 3: (a) Pdfs, and (b) cdfs of σ crit produced for 5% input uncertainty. 

4) Effect of Level of Uncertainty 

The values of ε ARMS are collated in Table 2, not only for the 

5% variation shown in Fig. 3, but also for 2.5% and 7.5% 

input variability. These figures enable a thorough analysis of 

the suitability of different efficient estimation methods for 

probabilistic small-disturbance stability studies. 

As suggested by Fig. 3, the ε ARMS values for the 4 m + 1  

PEM variant and cumulant-based approach are similar (and 

low) for all levels of system uncertainty. It can also be seen 

that the distribution errors increase slightly with increasing 

uncertainty. The 2 m  PEM variant displays the greatest sensi-

tivity to the level of uncertainty. When input variability is 

2.5%, the ε ARMS value is acceptable at just 1.14%. However, as 
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the input variability rises to 5% and subsequently to 7.5%, the 

distribution error values rise to 5.60% and 12.67% respective-

ly. No other efficient estimation method reduces so greatly in 

accuracy. All PCM models display approximately the same 

error (7–8%) for all model orders at all levels of uncertain 

input variation. This efficient estimation approach appears to 

be largely unaffected by the level of uncertainty, however it is 

also typically the least accurate. 

TABLE 2 

VALUES OF ε ARMS  FOR DIFFERENT ESTIMATION METHODS WITH INCREASING 

LEVELS OF UNCERTAIN INPUT VARIABILITY 

Method used 
ε A R M S  

2.5% 5.0% 7.5% 

PEM 
2 m  1.14% 5.60% 12.67% 

4 m + 1  0.66% 1.00% 1.93% 

Cumulant 0.63% 1.47% 1.84% 

PCM 

1st Order 7.80% 7.71% 8.25% 

2nd Order 7.56% 7.21% 7.28% 

3rd Order 7.38% 7.59% 7.19% 

A common practical measure of distribution fit is the 90% 

confidence interval (the range between the 5
th

 and 95
th

 percen-

tiles). Plotting these ranges for all efficient estimation 

techniques in Fig. 4, the best estimations produced by the 

cumulant and 4 m + 1  PEM approach are clearly evident.  

 
Fig. 4: 90% confidence intervals of δ crit for 5% input uncertainty. 

D. Accuracy and Efficiency 

The results obtained have shown that the cumulant and 

4 m + 1  PEM variant consistently provide the most accurate 

results. It is also important to assess this error against the 

efficiency of the methods when assessing which technique is 

most suitable for fast probabilistic small-disturbance stability 

studies.  

 
Fig. 5: Accuracy and efficiency of different techniques. 

 

Fig. 5 shows the values of the distribution error (at all con-

sidered levels of uncertainty) plotted against the n / m  ratio, 

where n is the number of full deterministic studies required to 

complete the analysis, and m is the number of uncertainties. 

Results in the bottom left of this plot display both low error 

and low computational requirements – the characteristics 

desired from such techniques. It is clear that although both the 

cumulant and 4 m + 1  PEM variant are comparable in terms of 

error performance, the cumulant approach is approximately 

four times more efficient. It should be noted that all methods 

demonstrate considerable efficiency savings over the tradi-

tional numerical MC approach. The least efficient method 

used here (the 3
rd

 order PCM model) still requires just 2.71% 

of the number of full deterministic studies required by the MC 

approach. For the most efficient method – the cumulant 

approach – this drops to 0.51%. 

VI.  DISCUSSION AND RECOMMENDATIONS 

Based on the results obtained within this work, it is rec-

ommended that the cumulant-based approach is used as an 

efficient estimation technique in future probabilistic small-

disturbance stability studies. This approach is the most effi-

cient technique considered (with an n/m ratio of approximately 

one) and it consistently produces results with low error.  

It should be noted that the 4 m + 1  PEM variant also pro-

vides results with low error, albeit with lower efficiency than 

the cumulant approach. In [9], the 2 m + 1  PEM variant was 

shown to provide results as accurate as the 4 m + 1  variant, 

improving the efficiency of the method. This variant however, 

cannot be used with normally distributed uncertainties if 

3m   [21] and it was, therefore, unsuitable for application in 

this study. Although the PEM approach does not impose a 

parametric distribution for the output, it was found that esti-

mated moments above second order were too erroneous to 

include. The modeling of output distributions was therefore 

effectively restricted to Gaussian. If outputs are known to be 

non-Gaussian, then the cumulant approach should be used as it 

estimates high order moments more accurately.  

It should also be noted that the cumulant method estimates 

the mean output value as the output when all inputs are at their 

mean values. For this test network this did not lead to any 

significant error, however in some systems it has been ob-

served that this results in inaccuracies. In these cases, 

alternative methods may be required to maintain accuracy – 

compromising on efficiency. The cumulant method is also 

dependent on the accuracy of the sensitivity term in (14) and 

may become less accurate if the system moves far from the 

linear region of behaviour. This could occur (though it was not 

observed during this study) during stressed conditions, such as 

very high loading, and requires further investigation. Finally, 

it was observed that all the considered techniques are able to 

reproduce the mean values (first raw moment) with very low 

error. If only mean values are required then any method would 

suffice – though the 2 m  PEM variant should be avoided when 

input uncertainty variability increases. 

VII.  CONCLUSIONS 

The paper presented a comparative investigation of a num-

ber of efficient estimation techniques in order to assess their 

suitability for probabilistic small-disturbance stability studies 

of large uncertain power systems. The analysis presented here 
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is not only the first comparison of different efficient estima-

tion techniques for these type of studies but also the first 

analysis of the way in which the level of uncertainty affects 

the accuracy of the different proposed techniques. The accura-

cy of the methods has been assessed through comparisons with 

traditional numerical Monte Carlo simulation. Errors have 

been compared for both descriptive moments and also entire 

probability distributions of damping of critical electro-

mechanical mode.  

It has been established that the cumulant-based analytical 

approach (utilizing a numerical approximation to calculate 

system sensitivities) is the most suitable method for such 

studies. It provides the highest efficiency, best accuracy, and 

can be used with non-parametric distributions (both input and 

output). Furthermore, although not investigated within this 

work, it has been shown in the past that input correlation can 

also be included in the formulation of this method [11], [12]. 

The study enables more informed decisions to be made when 

selecting efficient estimation methods for probabilistic small 

disturbance stability studies of large uncertain power systems. 

These efficient techniques could also be used to gather further 

statistical information about the system modes (such as partic-

ipation factors or residual values) that could enable 

probabilistic controller design. 
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