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Abstract

We formulate probabilistic numerical approximations to solutions of ordinary differential equations (ODEs) as problems
in Gaussian process (GP) regression with nonlinear measurement functions. This is achieved by defining the measurement
sequence to consist of the observations of the difference between the derivative of the GP and the vector field evaluated at the
GP—which are all identically zero at the solution of the ODE. When the GP has a state-space representation, the problem
can be reduced to a nonlinear Bayesian filtering problem and all widely used approximations to the Bayesian filtering and
smoothing problems become applicable. Furthermore, all previous GP-based ODE solvers that are formulated in terms of
generating synthetic measurements of the gradient field come out as specific approximations. Based on the nonlinear Bayesian
filtering problem posed in this paper, we develop novel Gaussian solvers for which we establish favourable stability properties.
Additionally, non-Gaussian approximations to the filtering problem are derived by the particle filter approach. The resulting
solvers are compared with other probabilistic solvers in illustrative experiments.

Keywords Probabilistic numerics · Initial value problems · Nonlinear Bayesian filtering

1 Introduction

We consider an initial value problem (IVP), that is, an ordi-
nary differential equation (ODE)

ẏ(t) = f (y(t), t) , ∀t ∈ [0, T ], y(0) = y0 ∈ R
d , (1)

with initial value y0 and vector field f : R
d × R+ → R

d .
Numerical solvers for IVPs approximate y : [0, T ] → R

d

and are of paramount importance in almost all areas of sci-
ence and engineering. Extensive knowledge about this topic
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has been accumulated in numerical analysis literature, for
example, in Hairer et al. (1987), Deuflhard and Bornemann
(2002) and Butcher (2008). However, until recently, a prob-
abilistic quantification of the inevitable uncertainty—for all
but the most trivial ODEs—from the numerical error over
their outputs has been omitted.

Moreover, ODEs are often part of a pipeline surrounded
by preceding and subsequent computations, which are them-
selves corrupted by uncertainty from model misspecification,
measurement noise, approximate inference or, again, numer-
ical inaccuracy (Kennedy and O’Hagan 2002). In particular,
ODEs are often integrated using estimates of its parame-
ters rather than the correct ones. See Zhang et al. (2018)
and Chen et al. (2018) for recent examples of such compu-
tational chains involving ODEs. The field of probabilistic

numerics (PN) (Hennig et al. 2015) seeks to overcome this
ignorance of numerical uncertainty and the resulting over-
confidence by providing probabilistic numerical methods.
These solvers quantify numerical errors probabilistically and
add them to uncertainty from other sources. Thereby, they can
take decisions in a more uncertainty-aware and uncertainty-
robust manner (Paul et al. 2018).

In the case of ODEs, one family of probabilistic solvers
(Skilling 1992; Hennig and Hauberg 2014; Schober et al.
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2014) first treated IVPs as Gaussian process (GP) regression
(Rasmussen and Williams 2006, Chapter 2). Then, Kersting
and Hennig (2016) and Schober et al. (2019) sped up these
methods by regarding them as stochastic filtering problems
(Øksendal 2003). These completely deterministic filtering
methods converge to the true solution with high polynomial
rates (Kersting et al. 2018). In their methods, data for the
‘Bayesian update’ is constructed by evaluating the vector
field f under the GP predictive mean of y(t) and linked to
the model with a Gaussian likelihood (Schober et al. 2019,
Section 2.3). See also Wang et al. (2018, Section 1.2) for alter-
native likelihood models. This conception of data implies
that it is the output of the adopted inference procedure. More
specifically, one can show that with everything else being
equal, two different priors may end up operating on different
measurement sequences. Such a coupling between prior and
measurements is not standard in statistical problem formula-
tions, as acknowledged in Schober et al. (2019, Section 2.2).
It makes the model and the subsequent inference difficult
to interpret. For example, it is not clear how to do Bayesian
model comparisons (Cockayne et al. 2019, Section 2.4) when
two different priors necessarily operate on two different data
sets for the same inference task.

Instead of formulating the solution of Eq. (1) as a Bayesian
GP regression problem, another line of work on probabilis-
tic solvers for ODEs comprising the methods from Chkrebtii
et al. (2016), Conrad et al. (2017), Teymur et al. (2016),
Lie et al. (2019), Abdulle and Garegnani (2018) and Tey-
mur et al. (2018) aims to represent the uncertainty arising
from the discretisation error by a set of samples. While mul-
tiplying the computational cost of classical solvers with the
amount of samples, these methods can capture arbitrary (non-
Gaussian) distributions over the solutions and can reduce
overconfidence in inverse problems for ODEs—as demon-
strated in Conrad et al. (2017, Section 3.2.), Abdulle and
Garegnani (2018, Section 7) and Teymur et al. (2018). These
solvers can be considered as more expensive, but statistically
more expressive. This paper contributes a particle filter as a
sampling-based filtering method at the intersection of both
lines of work, providing a previously missing link.

The contributions of this paper are the following: Firstly,
we circumvent the issue of generating synthetic data, by
recasting solutions of ODEs in terms of nonlinear Bayesian
filtering problems in a well defined state-space model. For
any fixed-time discretisation, the measurement sequence and
likelihood are also fixed. That is, we avoid the coupling
of prior and measurement sequence, that is for example
present in Schober et al. (2019). This enables application
of all Bayesian filtering and smoothing techniques to ODEs
as described, for example, in Särkkä (2013). Secondly, we
show how the application of certain inference techniques
recovers the previous filtering-based methods. Thirdly, we

discuss novel algorithms giving rise to both Gaussian and
non-Gaussian solvers.

Fourthly, we establish a stability result for the novel
Gaussian solvers. Fifthly, we discuss practical methods for
uncertainty calibration, and in the case of Gaussian solvers,
we give explicit expressions. Finally, we present some illus-
trative experiments demonstrating that these methods are
practically useful both for fast inference of the unique solu-
tion of an ODE as well as for representing multi-modal
distributions of trajectories.

2 Bayesian inference for initial value
problems

Formulating an approximation of the solution to Eq. (1) at a
discrete set of points {tn}N

n=0 as a problem of Bayesian infer-
ence requires, as always, three things: a prior measure, data,
and a likelihood, which define a posterior measure through
Bayes’ rule.

We start with examining a continuous-time formulation in
Sect. 2.1, where Bayesian conditioning should, in the ideal
case, give a Dirac measure at the true solution of Eq. (1) as the
posterior. This has two issues: (1) conditioning on the entire
gradient field is not feasible on a computer in finite time
and (2) the conditioning operation itself is intractable. Issue
(1) is present in classical Bayesian quadrature (Briol et al.
2019) as well. Limited computational resources imply that
only a finite number of evaluations of the integrand can be
used. Issue (2) turns, what is linear GP regression in Bayesian
quadrature, into nonlinear GP regression. While this is unfor-
tunate, it appears reasonable that something should be lost
as the inference problem is more complex.

With this in mind, a discrete-time nonlinear Bayesian fil-
tering problem is posed in Sect. 2.2, which targets the solution
of Eq. (1) at a discrete set of points.

2.1 A continuous-timemodel

Like previous works mentioned in Sect. 1, we consider priors
given by a GP

X(t) ∼ GP (x̄, k) ,

where x̄(t) is the mean function and k(t, t ′) is the covariance
function. The vector X(t) is given by

X(t) =
[(

X (1)(t)
)T

, . . . ,
(
X (q+1)(t)

)T]T
, (2)

where X (1)(t) and X (2)(t) model y(t) and ẏ(t), respectively.
The remaining q − 1 sub-vectors in X(t) can be used to
model higher-order derivatives of y(t) as done by Schober
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et al. (2019) and Kersting and Hennig (2016). We define such
priors by a stochastic differential equation (Øksendal 2003),
that is,

X(0) ∼ N
(
µ−(0),Σ−(0)

)
, (3a)

dX(t) =
[
F X(t) + u

]
dt + LdB(t), (3b)

where F is a state transition matrix, u is a forcing term, L is
a diffusion matrix, and B(t) is a vector of standard Wiener
processes.

Note that for X (2)(t) to be the derivative of X (1), F , u,
and L are such that

dX (1)(t) = X (2)(t)dt . (4)

The use of an SDE—instead of a generic GP prior—is
computationally advantageous because it restricts the priors
to Markov processes due to Øsendal (2003, Theorem 7.1.2).
This allows for inference with linear time-complexity in N ,
while the time-complexity is N 3 for GP priors in general
(Hartikainen and Särkkä 2010).

Inference requires data and an associated likelihood. Pre-
vious authors, such as Schober et al. (2019) and Chkrebtii
et al. (2016), put forth the view of the prior measure defining
an inference agent, which cycles through extrapolating, gen-
erating measurements of the vector field, and updating. Here
we argue that there is no need for generating measurements,
since re-writing Eq. (1) yields the requirement

ẏ(t) − f (y(t), t) = 0. (5)

This suggests that a measurement relating the prior defined
by Eq. (3) to the solution of Eq. (1) ought to be defined as

Z(t) = X (2)(t) − f (X (1)(t), t). (6)

While conditioning the process X(t) on the event Z(t) =
0 for all t ∈ [0, T ] can be formalised using the concept
of disintegration (Cockayne et al. 2019), it is intractable in
general and thus impractical for computer implementation.
Therefore, we formulate a discrete-time inference problem
in the sequel.

2.2 A discrete-timemodel

In order to make the inference problem tractable, we only
attempt to condition the process X(t) on Z(t) = z(t) � 0 at
a set of discrete time points, {tn}N

n=0. We consider a uniform
grid, tn+1 = tn +h, though extending the present methods to
non-uniform grids can be done as described in Schober et al.
(2019). In the sequel, we will denote a function evaluated
at tn by subscript n, for example zn = z(tn). From Eq. (3),
an equivalent discrete-time system can be obtained (Grewal

and Andrews 2001, Chapter 3.7.3).1 The inference problem
becomes

X0 ∼ N (µF
0 ,Σ F

0 ), (7a)

Xn+1 | Xn ∼ N
(

A(h)Xn + ξ(h), Q(h)
)
, (7b)

Zn | Xn ∼ N
(
Ċ Xn − f (C Xn, tn), R

)
, (7c)

zn � 0, n = 1, . . . , N , (7d)

where zn is the realisation of Zn . The parameters A(h), ξ(h),
and Q(h) are given by

A(h) = exp(Fh), (8a)

ξ(h) =
∫ h

0
exp(F(h − τ))udτ, (8b)

Q(h) =
∫ h

0
exp(F(h − τ))L LT exp(FT(h − τ))dτ. (8c)

Furthermore, C = [I 0 . . . 0] and Ċ = [0 I 0 . . . 0].
That is, C Xn = X

(1)
n and Ċ Xn = X

(2)
n . A measurement

variance, R, has been added to Z(tn) for greater generality,
which simplifies the construction of particle filter algorithms.
The likelihood model in Eq. (7c) has previously been used in
the gradient matching approach to inverse problems to avoid
explicit numerical integration of the ODE (see, e.g. Calder-
head et al. 2009).

The inference problem posed in Eq. (7) is a standard prob-
lem in nonlinear GP regression (Rasmussen and Williams
2006), also known as Bayesian filtering and smoothing in
stochastic signal processing (Särkkä 2013). Furthermore, it
reduces to Bayesian quadrature when the vector field does
not depend on y. This is Proposition 1.

Proposition 1 Let X
(1)
0 = 0, f (y(t), t) = g(t), y(0) = 0,

and R = 0. Then the posteriors of {X
(1)
n }N

n=1 are Bayesian

quadrature approximations for

∫ nh

0
g(τ )dτ, n = 1, . . . , N . (9)

A proof of Proposition 1 is given in “Appendix A”.

Remark 1 The Bayesian quadrature method described in
Proposition 1 conditions on function evaluations outside the
domain of integration for n < N . This corresponds to the
smoothing equations associated with Eq. (7). If the integral
on the domain [0, nh] is only conditioned on evaluations of
g inside the domain, then the filtering estimates associated
with Eq. (7) are obtained.

1 Here ‘equivalent’ is used in the sense that the probability distribution
of the continuous-time process evaluated on the grid coincides with the
probability distribution of the discrete-time process (Särkkä 2006, P.
17).
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2.3 Gaussian filtering

The inference problem posed in Eq. (7) is a standard prob-
lem in statistical signal processing and machine learning,
and the solution is often approximated by Gaussian filters
and smoothers (Särkkä 2013). Let us define z1:n = {zl}n

l=1
and the following conditional moments

µF
n � E[Xn | z1:n], (10a)

Σ F
n � V[Xn | z1:n], (10b)

µP
n � E[Xn | z1:n−1], (10c)

Σ P
n � V[Xn | z1:n−1], (10d)

where E[· | z1:n] and V[· | z1:n] are the conditional mean and
covariance operators given the measurements Z1:n = z1:n .
Additionally, E[· | z1:0] = E[·] and V[· | z1:0] = V[·]
by convention. Furthermore, µF

n and Σ F
n are referred to as

the filtering mean and covariance, respectively. Similarly, µP
n

and Σ P
n are referred to as the predictive mean and covariance,

respectively. In Gaussian filtering, the following relation-
ships hold between µF

n and Σ F
n , and µP

n+1 and Σ P
n+1:

µP
n+1 = A(h)µF

n + ξ(h), (11a)

Σ P
n+1 = A(h)Σ F

n AT(h) + Q(h), (11b)

which are the prediction equations (Särkkä 2013, Eq. 6.6).
The update equations, relating the predictive moments µP

n

and Σ P
n with the filter estimate, µF

n , and its covariance Σ F
n ,

are given by (Särkkä 2013, Eq. 6.7)

Sn = V
[
Ċ Xn − f (C Xn, tn) | z1:n−1

]
+ R, (12a)

Kn = C
[
Xn, Ċ Xn − f (C Xn, tn) | z1:n−1

]
S−1

n , (12b)

ẑn = E
[
Ċ Xn − f (C Xn, tn) | z1:n−1

]
, (12c)

µF
n = µP

n + Kn(zn − ẑn), (12d)

Σ F
n = Σ P

n − Kn Sn K T

n , (12e)

where the expectation (E), covariance (V) and cross-covariance
(C) operators are with respect to Xn ∼ N (µP

n ,Σ P
n ). Evalu-

ating these moments is intractable in general, though various
approximation schemes exist in literature. Some standard
approximation methods shall be examined below. In par-
ticular, the methods of Schober et al. (2019) and Kersting
and Hennig (2016) come out as particular approximations to
Eq. (12).

2.4 Taylor series methods

A classical method in filtering literature to deal with non-
linear measurements of the form in Eq. (7) is to make a
first-order Taylor series expansion, thus turning the problem

into a standard update in linear filtering. However, before
going through the details of this it is instructive to interpret
the method of Schober et al. (2019) as an even simpler Taylor
series method. This is Proposition 2.

Proposition 2 Let R = 0 and approximate f (C Xn, tn) by its

zeroth order Taylor expansion in Xn around the point µP
n

f
(
C Xn, tn

)
≈ f

(
CµP

n , tn
)
. (13)

Then, the approximate posterior moments are given by

Sn ≈ ĊΣ P
n ĊT + R, (14a)

Kn ≈ Σ P
n ĊTS−1

n , (14b)

ẑn ≈ ĊµP
n − f

(
CµP

n , tn
)
, (14c)

µF
n ≈ µP

n + Kn(zn − ẑn), (14d)

Σ F
n ≈ Σ P

n − Kn Sn K T

n , (14e)

which is precisely the update by Schober et al. (2019).

A first-order approximation The approximation in Eq. (14)
can be refined by using a first-order approximation, which is
known as the extended Kalman filter (EKF) in signal pro-
cessing literature (Särkkä 2013, Algorithm 5.4). That is,

f
(
C Xn, tn

)
≈ f

(
CµP

n , tn
)

+ J f

(
CµP

n , tn
)
C

(
Xn − µP

n

)
, (15)

where J f is the Jacobian of y → f (y, t). The filter update
is then

C̃n = Ċ − J f

(
CµP

n , tn
)
C, (16a)

Sn ≈ C̃nΣ P
n C̃T

n + R, (16b)

Kn ≈ Σ P
n C̃T

n S−1
n , (16c)

ẑn ≈ ĊµP
n − f

(
CµP

n , tn
)
, (16d)

µF
n ≈ µP

n + Kn(zn − ẑn), (16e)

Σ F
n ≈ Σ P

n − Kn Sn K T

n . (16f)

Hence the extended Kalman filter computes the residual,
zn−ẑn , in the same manner as Schober et al. (2019). However,
as the filter gain, Kn , now depends on evaluations of the
Jacobian, the resulting probabilistic ODE solver is different
in general.

While Jacobians of the vector field are seldom exploited in
ODE solvers, they play a central role in Rosenbrock methods,
(Rosenbrock 1963; Hochbruck et al. 2009). The Jacobian of
the vector field was also recently used by Teymur et al. (2018)
for developing a probabilistic solver.

Although the extended Kalman filter goes as far back as
the 1960s (Jazwinski 1970), the update in Eq. (16) results in
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a probabilistic method for estimating the solution of (1) that
appears to be novel. Indeed, to the best of the authors’ knowl-
edge, the only Gaussian filtering-based solvers that have
appeared so far are those by Kersting and Hennig (2016),
Magnani et al. (2017) and Schober et al. (2019).

2.5 Numerical quadrature

Another method to approximate the quantities in Eq. (12)
is by quadrature, which consists of a set of nodes {Xn, j }J

j=1

with weights {wn, j }J
j=1 that are associated to the distribution

N (µP
n ,Σ P

n ). These nodes and weights can either be con-
structed to integrate polynomials up to some order exactly
(see, e.g. McNamee and Stenger 1967; Golub and Welsch
1969) or by Bayesian quadrature (Briol et al. 2019). In either
case, the expectation of a function ψ(Xn) is approximated
by

E[ψ(Xn)] ≈
J∑

j=1

wn, jψ(Xn, j ). (17)

Therefore, by appropriate choices of ψ the quantities
in Eq. (12) can be approximated. We shall refer to filters
using a third degree fully symmetric rule (McNamee and
Stenger 1967) as unscented Kalman filters (UKF), which is
the name that was adopted when it was first introduced to
the signal processing community (Julier et al. 2000). For a
suitable cross-covariance assumption and a particular choice
of quadrature, the method of Kersting and Hennig (2016) is
retrieved. This is Proposition 3.

Proposition 3 Let {Xn, j }J
j=1 and {wn, j }J

j=1 be the nodes and

weights, corresponding to a Bayesian quadrature rule with

respect to N (µP
n ,Σ P

n ). Furthermore, assume R = 0 and

that the cross-covariance between Ċ Xn and f (C Xn, tn) is

approximated as zero,

C
[
Ċ Xn, f (C Xn, tn) | z1:n−1

]
≈ 0. (18)

Then the probabilistic solver proposed in Kersting and
Hennig (2016) is a Bayesian quadrature approximation to

Eq. (12).

A proof of Proposition 3 is given in “Appendix B”.
While a cross-covariance assumption of Proposition 3

reproduces the method of Kersting and Hennig (2016),
Bayesian quadrature approximations have previously been
used for Gaussian filtering in signal processing applications
by Prüher and Šimandl (2015), which in this context gives a
new solver.

2.6 Affine vector fields

It is instructive to examine the particular case when the vector
field in Eq. (1) is affine. That is,

f (y(t), t) = Λ(t)y(t) + ζ(t). (19)

In such a case, Eq. (7) becomes a linear Gaussian system,
which is solved exactly by a Kalman filter. The equations for
implementing this Kalman filter are precisely Eq. (11) and
Eq. (12), although the latter set of equations can be simplified.
Define Hn = Ċ −Λ(tn)C , then the update equations become

Sn = HnΣ P
n HT

n + R, (20a)

Kn = Σ P
n HT

n S−1
n , (20b)

µF
n = µP

n + Kn

(
ζ(tn) − HnµP

n

)
(20c)

Σ F
n = Σ P

n − Kn Sn K T

n . (20d)

Lemma 1 Consider the inference problem in Eq. (7) with an

affine vector field as given in Eq. (19). Then the EKF reduces

to the exact Kalman filter, which uses the update in Eq. (20).
Furthermore, the same holds for Gaussian filters using a

quadrature approximation to Eq. (12), provided that it inte-

grates polynomials correctly up to second order with respect

to the distribution N (µP
n ,Σ P

n ).

Proof Since the Kalman filter, the EKF, and the quadrature
approach all use Eq. (11) for prediction, it is sufficient to
make sure that the EKF and the quadrature approximation
compute Eq. (12) exactly, just as the Kalman filter. Now the
EKF approximates the vector field by an affine function for
which it computes the moments in Eq. (12) exactly. Since this
affine approximation is formed by a truncated Taylor series, it
is exact for affine functions and the statement pertaining to the
EKF holds. Furthermore, the Gaussian integrals in Eq. (12)
are polynomials of degree at most two for affine vector fields
and are therefore computed exactly by the quadrature rule by
assumption. ⊓⊔

2.7 Particle filtering

The Gaussian filtering methods from Sect. 2.3 may often
suffice. However, there are cases where more sophisticated
inference methods may be preferable, for instance, when
the posterior becomes multi-modal due to chaotic behaviour
or ‘numerical bifurcations’. That is, when it is numerically
unknown whether the true solution is above or below a certain
threshold that determines the limit behaviour of its trajectory.
While sampling-based probabilistic solvers such as those of
Chkrebtii et al. (2016), Conrad et al. (2017), Teymur et al.
(2016), Lie et al. (2019), Abdulle and Garegnani (2018)
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and Teymur et al. (2018) can pick up such phenomena, the
Gaussian filtering-based ODE solvers discussed in Sect. 2.3
cannot. However, this limitation may be overcome by approx-
imating the filtering distribution of the inference problem in
Eq. (7) with particle filters that are based on a sequential for-
mulation of importance sampling (Doucet et al. 2001).

A particle filter operates on a set of particles, {Xn, j }J
j=1, a

set of positive weights {wn, j }J
j=1 associated to the particles

that sum to one and an importance density, g(xn+1 | xn, zn).
The particle filter then cycles through three steps (1) propa-
gation, (2) re-weighting, and (3) re-sampling (Särkkä 2013,
Chapter 7.4).

The propagation step involves sampling particles at time
n + 1 from the importance density:

Xn+1, j ∼ g(xn+1 | Xn, j , zn). (21)

The re-weighting of the particles is done by a likelihood
ratio with the product of the measurement density and the
transition density of Eq. (7), and the importance density. That
is, the updated weights are given by

ρ(xn+1, xn) = p(zn+1 | xn+1)p(xn+1 | xn)

g(xn+1 | xn, zn+1)
, (22a)

wn+1, j ∝ ρ
(
Xn+1, j , Xn, j

)
wn, j , (22b)

where the proportionality sign indicates that the weights need
to be normalised to sum to one after they have been updated
according to Eq. (22). The weight update is then followed
by an optional re-sampling step (Särkkä 2013, Chapter 7.4).
While not re-sampling in principle yields a valid algorithm,
it becomes necessary in order to avoid the degeneracy prob-
lem for long time series (Doucet et al. 2001, Chapter 1.3).
The efficiency of particle filters depends on the choice of
importance density. In terms of variance, the locally optimal
importance density is given by (Doucet et al. 2001)

g(xn | xn−1, zn) ∝ p(zn | xn)p(xn | xn−1). (23)

While Eq. (23) is almost as intractable as the full filtering
distribution, the Gaussian filtering methods from Sect. 2.3
can be used to make a good approximation. For instance,
the approximation to the optimal importance density using
Eq. (14) is given by

Sn = Ċ Q(h)ĊT + R, (24a)

Kn = Q(h)ĊTS−1
n , (24b)

ẑn = Ċ A(h)xn−1 − f
(
C A(h)xn−1, tn

)
, (24c)

µn = A(h)xn−1 + Kn(zn − ẑn), (24d)

Σn = Q(h) − Kn Sn K T

n , (24e)

g(xn | xn−1, zn) = N (xn;µn,Σn). (24f)

An importance density can be similarly constructed from
Eq. (16), resulting in:

C̃n = Ċ − J f

(
C A(h)xn−1, tn

)
C, (25a)

Sn = C̃n Q(h)C̃T

n + R, (25b)

Kn = Q(h)C̃T

n S−1
n , (25c)

ẑn = Ċ A(h)xn−1 − f
(
C A(h)xn−1, tn

)
, (25d)

µn = A(h)xn−1 + Kn(zn − ẑn), (25e)

Σn = Q(h) − Kn Sn K T

n , (25f)

g(xn | xn−1, zn) = N (xn;µn,Σn). (25g)

Note that we have assumed ξ(h) = 0 in Eqs. (24) and (25),
which can be extended to ξ(h) �= 0 by replacing A(h)xn−1

with A(h)xn−1 + ξ(h). We refer the reader to Doucet et al.
(2000, Section II.D.2) for a more thorough discussion on the
use of local linearisation methods to construct importance
densities.

We conclude this section with a brief discussion on the
convergence of particle filters. The following theorem is
given by Crisan and Doucet (2002).

Theorem 1 Let ρ(xn+1, xn) in Eq. (22a) be bounded from

above and denote the true filtering measure associated with

Eq. (7) at time n by pR
n , and let p̂

R,J
n be its particle approx-

imation using J particles with importance density g(xn+1 |
xn, zn+1). Then, for all n ∈ N0, there exists a constant cn

independent of J such that for any bounded Borel function

φ : R
d(q+1) → R the following bound holds

EMC[(〈 p̂R,J
n , φ〉 − 〈pR

n , φ〉)2]1/2 ≤ cn J−1/2‖φ‖ , (26)

where 〈p, φ〉 denotes φ integrated with respect to p and

EMC denotes the expectation over realisations of the particle

method, and‖·‖ is the supremum norm.

Theorem 1 shows that we can decrease the distance (in the
weak sense) between p̂

R,J
n and pR

n by increasing J . However,
the object we want to approximate is p0

n (the exact filter-
ing measure associated with Eq. (7) for R = 0) but setting
R = 0 makes the likelihood ratio in Eq. (22a) ill-defined
for the proposal distributions in Eqs. (24) and (25). This is
because, when R = 0, then p(zn+1 | xn+1)p(xn+1 | xn)

has its support on the surface Ċxn+1 = f (Cxn+1, tn+1)

while Eqs. (24) or (25) imply that the variance of Ċ Xn+1 or
C̃n+1 Xn+1 will be zero with respect to g(xn+1 | xn, zn+1),
respectively. That is, g(xn+1 | xn, zn+1) is supported on a
hyperplane. It follows that the null-sets of g(xn+1 | xn, zn+1)

are not necessarily null-sets of p(zn+1 | xn+1)p(xn+1 | xn)
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and the likelihood ratio in Eq. (22a) can therefore be unde-
fined. However, a straightforward application of the triangle
inequality together with Theorem 1 gives

EMC[(〈 p̂R,J
n , φ〉 − 〈p0

n, φ〉)2]1/2

≤ EMC[(〈 p̂R,J
n , φ〉 − 〈pR

n , φ〉)2]1/2

+ EMC[(〈pR
n , φ〉 − 〈p0

n, φ〉)2]1/2

= EMC[(〈 p̂R,J
n , φ〉 − 〈pR

n , φ〉)2]1/2

+
∣∣〈pR

n , φ〉 − 〈p0
n, φ〉

∣∣

≤ cn J−1/2‖φ‖ +
∣∣〈pR

n , φ〉 − 〈p0
n, φ〉

∣∣. (27)

The last term vanishes as R → 0. That is, the error can
be controlled by increasing the number of particles J and
decreasing R. Though a word of caution is appropriate, as
particle filters can become ill-behaved in practice if the like-
lihoods are too narrow (too small R). However, this also
depends on the quality of the proposal distribution.

Lastly, while Theorem 1 is only valid if ρ(xn+1, xn) is
bounded, this can be ensured by either inflating the covari-
ance of the proposal distribution or replacing the Gaussian
proposal with a Student’s t proposal (Cappé et al. 2005, Chap-
ter 9).

3 A stability result for Gaussian filters

ODE solvers are often characterised by the properties of their
solution to the linear test equation

ẏ(t) = λy(t), y(0) = 1, (28)

where λ is some complex number. A numerical solver is said
to be A-stable if the approximate solution tends to zero for
any fixed step size h whenever the real part of λ resides in
the left half-plane (Dahlquist 1963). Recall that if y0 ∈ R

d

and Λ ∈ R
d×d then the ODE ẏ(t) = Λy(t), y(0) = y0 is

said to be asymptotically stable if limt→∞ y(t) = 0, which is
precisely when the real part of eigenvalues of Λ are in the left
half-plane. That is, A-stability is the notion that a numerical
solver preserves asymptotic stability of linear time-invariant
ODEs.

While the present solvers are not designed to solve com-
plex valued ODEs, a real system equivalent to Eq. (28) is
given by

ẏ(t) = Λtest y(t), yT(0) = [1 0], (29)

where λ = λ1 + iλ2 and

Λtest =
[
λ1 − λ2

λ2 λ1

]
. (30)

However, to leverage classical stability results from the
theory of Kalman filtering we investigate a slightly different
test equation, namely

ẏ(t) = Λy(t), y(0) = y0, (31)

where Λ ∈ R
d×d is of full rank. In this case, Eqs. (11) and

(20) give the following recursion for µP
n

µP
n+1 = (A(h) − A(h)Kn H)µP

n , (32a)

µF
n = (I − Kn H)µP

n , (32b)

where we recall that H = Ċ −CΛ and zn = 0. If there exists
a limit gain limn→∞ Kn = K∞ then asymptotic stability
of the filter holds provided that the eigenvalues of (A(h) −
A(h)K∞H) are strictly within the unit circle (Anderson and
Moore 1979, Appendix C, p. 341). That is, limn→∞ µP

n = 0
and as a direct consequence limn→∞ µF

n = 0.
We shall see that the Kalman filter using an IWP(q) prior

is asymptotically stable. For the IWP(q) process on R
d we

have u = 0, L = eq+1 ⊗ Γ 1/2, and F = (
∑q

i=1 ei eTi+1) ⊗ I,
where ei ∈ R

d is the i th canonical eigenvector, Γ 1/2 is
the symmetric square root of some positive semi-definite
matrix Γ ∈ R

d×d , I ∈ R
d×d is the identity matrix, and ⊗ is

Kronecker’s product. By using Eq. (8), the properties of Kro-
necker products and the definition of the matrix exponential
the equivalent discrete-time system are given by

A(h) = A(1)(h) ⊗ I, (33a)

ξ(h) = 0, (33b)

Q(h) = Q(1)(h) ⊗ Γ , (33c)

where A(1)(h) ∈ R
(q+1)×(q+1) and Q(1)(h) ∈ R

(q+1)×(q+1)

are given by (Kersting et al. 2018, Appendix A)2

A
(1)
i j (h) = Ii≤ j

h j−i

( j − i)! , (34a)

Q
(1)
i j (h) = h2q+3−i− j

(2q + 3 − i − j)(q + 1 − i)!(q + 1 − j)! ,

(34b)

and Ii≤ j is an indicator function. Before proceeding, we need
to introduce the notions of stabilisability and detectability
from Kalman filtering theory. These notions can be found in
Anderson and Moore (1979, Appendix C).

Definition 1 (Complete stabilisability) The pair [A, G] is
completely stabilisable if wTG = 0 and wT A = ηwT for
some constant η implies|η| < 1 or w = 0.

2 Note that Kersting et al. (2018) uses indexing i, j = 0, . . . , q while
we here use i, j = 1, . . . , q + 1.
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Definition 2 (Complete detectability) 3 [A, H ] is completely
detectable if [AT, HT] is completely stabilisable.

Before we state the stability result of this section, the fol-
lowing two lemmas are useful.

Lemma 2 Consider the discretised IWP(q) prior on R
d as

given by Eq. (33). Let h > 0 and Γ be positive definite.

Then, the d × d blocks of Q(h), denoted by Qi, j (h), i, j =
1, 2, . . . , q + 1 are of full rank.

Proof From Eq. (33c), we have Qi, j (h) = Q
(1)
i, j (h)Γ . From

Eq. (34b) and h > 0, we have Q
(1)
i, j (h) > 0, and since Γ is

positive definite it is of full rank. It then follows that Qi, j (h)

is of full rank as well. ⊓⊔

Lemma 3 Let A(h) be the transition matrix of an IWP(q)

prior as given by Eq. (33a) and h > 0, then A(h) has a

single eigenvalue given by η = 1. Furthermore, the right-

eigenspace is given by

span[e1, e2, . . . , ed ],

where ei ∈ R
(q+1)d are canonical basis vectors, and the

left-eigenspace is given by

span[eqd+1, eqd+2, . . . , e(q+1)d ].

Proof Firstly, from Eqs. (33a) and (34a) it follows that A(h)

is block upper-triangular with identity matrices on the block
diagonal, hence the characteristic equation is given by

det(A(h) − ηI) = (1 − η)(q+1)d = 0, (35)

we conclude that the only eigenvalue is η = 1. To find
the right-eigenspace let wT = [wT

1 , wT

2 , . . . , wT

q+1], wi ∈
R

d , i = 1, 2, . . . , q + 1 and solve A(h)w = w, which by
using Eqs. (33a) and (34a) can be written as

(A(h)w)l =
q+1−l∑

r=0

hr

r ! wr+l , l = 1, 2, . . . , q + 1, (36)

where (·)l is the lth sub-vector of dimension d. Starting with
l = q+1, we trivially have wq+1 = wq+1. For l = q we have
wq + wq+1h = wq but h > 0, hence wq+1 = 0. Similarly
for l = q − 1 we have wq−1 = wq−1 + wq h + wq+1h2/2 =
wq−1 +wq h + 0 · h2/2. Again since h > 0 we have wq = 0.
By repeating this argument we have w1 = w1 and wi =
0, i = 2, 3, . . . , q + 1. Therefore all eigenvectors w are

3 Anderson and Moore (1979) denotes the measurement matrix by HT

while we denote it by H . With this in mind, our notion of complete
detectability does not differ from Anderson and Moore (1979).

of the form wT = [wT

1 , 0T, . . . , 0T] ∈ span[e1, e2, . . . , ed ].
Similarly, for the left eigenspace we have

(wT A(h))l =
l−1∑

r=0

hr

r ! wT

l−r , l = 1, 2, . . . , q + 1. (37)

Starting with l = 1 we have trivially that wT

1 = wT

1 . For l = 2
we have wT

2 +wT

1h = wT

2 but h > 0, hence w1 = 0. For l = 3
we have wT

3 = wT

3 +wT

2h +wT

1h2/2 = wT

3 +wT

2h +0T ·h2/2
but h > 0 hence w2 = 0. By repeating this argument, we
have wi = 0, i = 1, . . . , q and wq+1 = wq+1. Therefore, all
left eigenvectors are of the form wT = [0T, . . . , 0T, wT

q+1] ∈
span[eqd+1, eqd+2, . . . , e(q+1)d ]. ⊓⊔

We are now ready to state the main result of this section.
Namely, that the Kalman filter that produces exact inference
in Eq. (7) for linear vector fields is asymptotically stable if
the linear vector field is of full rank.

Theorem 2 Let Λ ∈ R
d×d be a matrix with full rank and

consider the linear ODE

ẏ(t) = Λy(t). (38)

Consider estimating the solution of Eq. (38) using an

IWP(q) prior with the same conditions on Γ as in Lemma 2.

Then the Kalman filter estimate of the solution to Eq. (38) is

asymptotically stable.

Proof From Eq. (7), we have that the Kalman filter operates
on the following system

Xn+1 = A(h)Xn + Q1/2(h)Wn+1, (39a)

Zn = H Xn, (39b)

where H = [−Λ, I, 0, . . . , 0] and Wn are i.i.d. standard
Gaussian vectors. It is sufficient to show that [A(h), H ]
is completely detectable and [A(h), Q1/2(h)] is completely
stabilisable (Anderson and Moore 1979, Chapter 4, p. 77).
We start by showing complete detectability. If we let wT =
[wT

1 , . . . , wT

q+1], wi ∈ R
d , i = 1, 2, . . . , q + 1, then by

Lemma 3 we have that wT AT(h) = ηwT for some η implies
that either w = 0 or wT = [wT

1 , 0T, . . . , 0T] for some w1 ∈
R

d and η = 1. Furthermore, wTHT = −wT

1ΛT + wT

2 = 0
implies that w2 = Λw1. However, by the previous argu-
ment, we have w2 = 0; therefore, 0 = Λw1 but Λ is full
rank by assumption so w1 = 0. Therefore, [AT(h), HT] is
completely detectable. As for complete stabilisability, again
by Lemma 3, we have wT A(h) = ηwT for some η, which
implies either w = 0 or wT = [0T, . . . , 0T, wT

q+1] and η = 1.

Furthermore, since the nullspace of Q1/2(h) is the same as
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the nullspace of Q(h), we have that wTQ1/2(h) = 0 is equiv-
alent to wTQ(h) = 0, which is given by

wTQ(h) =
[
wT

q+1 Qq+1,1(h) . . . wT

q+1 Qq+1,q+1(h)
]

= 0,

but by Lemma 2 the blocks Qi, j (h) have full rank so
wq+1 = 0 and thus w = 0. To conclude, we have that
[A(h), Q1/2(h)] is completely stabilisable and [A(h), H ]
is completely detectable and therefore the Kalman filter is
asymptotically stable. ⊓⊔

Corollary 1 In the same setting as Theorem 2, the EKF and

UKF are asymptotically stable.

Proof Since the vector field is linear and therefore affine
Lemma 1 implies that EKF and UKF reduce to the exact
Kalman filter, which is asymptotically stable by Theorem 2.⊓⊔

It is worthwhile to note that Λtest is of full rank for all
[λ1 λ2]T ∈ R

2 \{0}, and consequently Theorem 2 and Corol-
lary 1 guarantee A-stability for the EKF and UKF in the sense
of Dahlquist (1963).4 Lastly, a peculiar fact about Theorem 2
is that it makes no reference to the eigenvalues of Λ (i.e. the
stability properties of the ODE). That is, the Kalman filter
will be asymptotically stable even if the underlying ODE is
not, provided that, Λ is of full rank. This may seem awkward
but it is rarely the case that the ODE that we want to inte-
grate is unstable, and even in such a case most solvers will
produce an error that grows without a bound as well. Though
all of the aforementioned properties are at least partly con-
sequences of using IWP(q) as a prior and they may thus be
altered by changing the prior.

4 Uncertainty calibration

In practice the model parameters, (F, u, L), might depend on
some parameters that need to be estimated for the probabilis-
tic solver to report appropriate uncertainty in the estimated
solution to Eq. (1). The diffusion matrix L is of particular
importance as it determines the gain of the Wiener process
entering the system in Eq. (3) and thus determines how ’dif-

fuse’ the prior is. Herein we shall only concern ourselves with
estimating L , though, one might anticipate future interest in
estimating F and u as well. However, let us start with a few
words on the monitoring of errors in numerical solvers in
general.

4 Some authors require stability on the line λ1 = 0 as well (Hairer and
Wanner 1996). Due to the exclusion of origin EKF and UKF cannot be
said to be A-stable in this sense.

4.1 Monitoring of errors in numerical solvers

An important aspect of numerical analysis is to monitor the
error of a method. While the goal of probabilistic solvers is
to do so by calibration of a probabilistic model, the approach
of classical numerical analysis is to examine the local and
global errors. The global error can be bounded but is typ-
ically impractical for monitoring error (Hairer et al. 1987,
Chapter II.3). A more practical approach is to monitor (and
control) the accumulation of local errors. This can be done
by using two step sizes together with Richardson extrapola-
tion (Hairer et al. 1987,Theorem 4.1). Though, perhaps more
commonly this is done via embedded Runge–Kutta methods
(Hairer et al. 1987, Chapter II.4) or the Milne device Byrne
and Hindmarsh (1975).

In the context of filters, the relevant object in this regard
is the scaled residual S

−1/2
n (zn − ẑn). Due to its role in the

prediction-error decomposition, which is defined below, it
directly monitors the calibration of the predictive distribu-
tion. Schober et al. (2019) showed how to use this quantity to
effectively control step sizes in practice. It was also recently
shown in (Kersting et al. 2018, Section 7), that in the case of
q = 1, fixed σ 2 (amplitude of the Wiener process) and Inte-
grated Wiener Process prior, the posterior standard deviation
computed by the solver of Schober et al. (2019) contracts at
the same rate as the worst-case error as the step size goes to
zero—thereby preventing both under- and overconfidence.

In the following, we discuss effective strategies for cal-
ibrating L when it is given by L = σ L̆ for fixed L̆ , thus
providing a probabilistic quantification of the error in the
proposed solvers.

4.2 Uncertainty calibration for affine vector fields

As noted in Sect. 2.6, the Kalman filter produces the exact
solution to the inference problem in Eq. (7) when the vector
field is affine. Furthermore, the marginal likelihood p(z1:N )

can be computed during the execution of the Kalman filter by
the prediction error decomposition (Schweppe 1965), which
is given by:

p(z1:N ) = p(z1)

N∏

n=2

p(zn | z1:n−1)

=
N∏

n=1

N (zn; ẑn, Sn). (40)

While the marginal likelihood in Eq. (40) is certainly
straightforward to compute without adding much computa-
tional cost, maximising it is a different story in general. In
the particular case when the diffusion matrix L and the initial
covariance Σ0 are given by re-scaling fixed matrices L = σ L̆
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and Σ0 = σ 2Σ̆0 for some scalar σ > 0, then uncertainty cal-
ibration can be done by a simple post-processing step after
running the Kalman filter, as is shown in Proposition 4.

Proposition 4 Let f (y, t) = Λ(t)y + ζ(t), Σ0 = σ 2Σ̆0,

L = σ L̆, R = 0 and denote the equivalent discrete-time

process noise covariance for the prior model (F, u, L̆) by

Q̆(h). Then the Kalman filter estimate to the solution of

ẏ(t) = f (y(t), t)

that uses the parameters (µF
0 ,Σ0, A(h), ξ(h), Q(h)) is

equal to the Kalman filter estimate that uses the param-

eters (µF
0 , Σ̆0, A(h), ξ(h), Q̆(h)). More specifically, if we

denote the filter mean and covariance at time n using the

former parameters by (µF
n ,Σ F

n ) and the corresponding fil-

ter mean and covariance using the latter parameters by

(µ̆F
n , Σ̆ F

n ), then (µF
n ,Σ F

n ) = (µ̆F
n , σ 2Σ̆ F

n ). Additionally,

denote the predicted mean and covariance of the mea-

surement Zn by z̆n and S̆n , respectively, when using the

parameters (µF
0 , Σ̆0, A(h), ξ(h), Q̆(h)). Then the maximum

likelihood estimate of σ 2, denoted by σ̂ 2
N , is given by

σ̂ 2
N = 1

Nd

N∑

n=1

(zn − z̆n)T S̆−1
n (zn − z̆n). (41)

Proposition 4 is just an amalgamation of statements from
Tronarp et al. (2019). Nevertheless, we provide an accessible
proof in “Appendix C”.

4.3 Uncertainty calibration for non-affine vector
fields

For non-affine vector fields, the issue of parameter estimation
becomes more complicated. The Bayesian filtering problem
is not solved exactly and consequently any marginal likeli-
hood will be approximate as well. Nonetheless, a common
approach in the Gaussian filtering framework is to approx-
imate the marginal likelihood in the same manner as the
filtering solution is approximated (Särkkä 2013, Chapter
12.3.3), that is:

p(z1:N ) ≈
N∏

n=1

N (zn; ẑn, Sn), (42)

where ẑn and Sn are the quantities in Eq. (12) approxi-
mated by some method (e.g. EKF). Maximising Eq. (42) is
a common approach in signal processing (Särkkä 2013) and
referred to as quasi maximum likelihood in time series liter-
ature (Lindström et al. 2015). Both Eqs. (14) and (16) can be
thought of as Kalman updates for the case where the vector
field is approximated by a piece-wise affine function, without

modifying Σ0, Q(h), and R. For instance the affine approxi-
mation of the vector field due to the EKF on the discretisation
interval [tn, tn+1) is given by

ζ̂n(t) = f
(
CµP

n , tn
)
− J f

(
CµP

n , tn
)
CµP

n , (43a)

Λ̂n(t) = J f

(
CµP

n , tn
)
, (43b)

f̂n(y, t) = Λ̂n(t)y + ζ̂n(t). (43c)

While the vector field is approximated by a piece-wise
affine function, the discrete-time filtering problem Eq. (7) is
still simply an affine problem, without modifications of Σ0,
Q(h), and R. Therefore, the results of Proposition 4 still
apply and the σ 2 maximising the approximate marginal like-
lihood in Eq. (42) can be computed in the same manner as in
Eq. (41).

On the other hand, it is clear that dependence on σ 2 in
Eq. (12) is non-trivial in general, which is also true for the
quadrature approaches of Sect. 2.5. Therefore, maximising
Eq. (42) for the quadrature approaches is not as straight-
forward. However, by Taylor series expanding the vector
field in Eq. (12) one can see that the numerical integration
approaches are roughly equal to the Taylor series approaches
provided that Σ̆ P

n is small. Therefore, we opt for plugging
in the corresponding quantities from the quadrature approx-
imations into Eq. (41) in order to achieve computationally
cheap calibration of these approaches.

Remark 2 A local calibration method for σ 2 is given by
[Schober et al. 2019, Eq. (45)], which in fact corresponds
to an h-dependent prior, with the diffusion matrix in Eq. (3)
L = L(t) being piece-wise constant over integration steps.
Moreover, Schober et al. (2019) had to neglect the depen-
dence of Σ P

n on the likelihood. Here we prefer the estimator
given in Eq. (41) since it is attempting to maximise the likeli-
hood from the globally defined probability model in Eq. (7),
and it succeeds for affine vector fields.

More advanced methods for calibrating the parameters
of the prior can be developed by combining the Gaussian
smoothing equations (Särkkä 2013, Chapter 10) with the
expectation maximisation method (Kokkala et al. 2014) or
variational Bayes (Taniguchi et al. 2017).

4.4 Uncertainty calibration of particle filters

If calibration of Gaussian filters was complicated by hav-
ing a non-affine vector field, the situation for particle filters
is even more challenging. There is, to the authors’ knowl-
edge, no simple estimator of the scale of the Wiener process
(such as Proposition 4) even for the case of affine vector
fields. However, the literature on parameter estimation using
particle methods is vast so we proceed to point the reader
towards some alternatives. In the class of off-line methods,
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Schön et al. (2011) uses a particle smoother to implement an
expectation maximisation algorithm, while Lindsten (2013)
uses a particle Markov chain Monte Carlo methods to imple-
ment a stochastic approximation expectation maximisation
algorithm. One can also use the iterated filtering method of
Ionides et al. (2011) to get a maximum likelihood estimator,
or particle Markov chain Monte Carlo (Andrieu et al. 2010).

On the other hand, if online calibration is required then the
gradient based recursive maximum likelihood estimator by
Doucet and Tadić (2003) can be used, or the online version
of iterated filtering by Lindström et al. (2012). Furthermore,
Storvik (2002) provides an alternative for online calibration
when sufficient statics of the parameters are finite dimen-
sional and can be computed recursively in n. An overview
on parameter estimation using particle filters was also given
by Kantas et al. (2009).

5 Experimental results

In this section, we evaluate the different solvers presented in
this paper in different scenarios. Though before we proceed to
the experiments we define some summary metrics with which
assessments of accuracy and uncertainty quantification can
be made. The root-mean-square error (RMSE) is often used
to assess accuracy of filtering algorithms and is defined by

RMSE =

√√√√ 1

N

N∑

n=1

∥∥y(nh) − CµF
n

∥∥2
.

In fact y(nh) − CµF
n is precisely the global error at

time tn (Hairer et al. 1987, Eq. (3.16)). As for assessing
the uncertainty quantification, the χ2-statistics is commonly
used (Bar-Shalom et al. 2001). That is, in a linear Gaussian
model the following quantities

(
y(nh)−CµF

n

)T[CΣ F
n CT]−1(y(nh)−CµF

n

)
, n=1, . . . , N ,

are i.i.d. χ2(d). For a trajectory summary we define the aver-
age χ2-statistics as

χ̄2 = 1

N

N∑

n=1

(
y(nh)−CµF

n

)T[CΣ F
n CT]−1(y(nh)−CµF

n

)
.

For an accurate and well-calibrated model, the RMSE is
small and χ̄2 ≈ d. In the succeeding discussion, we shall
refer to a method producing χ̄2 < d or χ̄2 > d as undercon-

fident or overconfident, respectively.

5.1 Linear systems

In this experiment, we consider a linear system given by

Λ =
[
λ1 − λ2

λ2 λ1

]
, (44a)

ẏ(t) = Λy(t), y(0) = e1. (44b)

This makes for a good test model as the inference problem
in Eq. (7) can be solved exactly, and consequently its ade-
quacy can be assessed. We compare exact inference by the
Kalman filter (KF)5 (see Sect. 2.6) with the approximation
due to Schober et al. (2019) (SCH) (see Proposition 2) and
the covariance approximation due to Kersting and Hennig
(2016) (KER) (see Proposition 3). The integration interval
is set to [0, 10], and all methods use an IWP(q) prior for
q = 1, 2, . . . , 6, and the initial mean is set to E[X ( j)(0)] =
Λ j−1 y(0) for j = 1, . . . , q + 1, with variance set to
zero (exact initialisation). The uncertainty of the methods
is calibrated by the maximum likelihood method (see Propo-
sition 4), and the methods are examined for 10 step sizes
uniformly placed on the interval [10−3, 10−1].

We examine the parameters λ1 = 0 and λ2 = π (half a
revolution per unit of time with no damping). The RMSE is
plotted against step size in Fig. 1. It can be seen that SCH
is a slightly better than KF and KER for q = 1 and small
step sizes, and KF becomes slightly better than SCH for large
step size while KER becomes significantly worse than both
KF and SCH. For q > 1, it can be seen that the RMSE
is significantly lower for KF than for SCH/KER in general
with performance differing between one and two orders of
magnitude. Particularly, the superior stability properties of
KF are demonstrated (see Theorem 2) for q > 3 where both
SCH and KER produce massive errors for larger step sizes.

Furthermore, the average χ2-statistic is shown in Fig. 2.
All methods appear to be overconfident for q = 1 with SCH
performing best, followed by KER. On the other hand, for
1 < q < 5, SCH and KER remain overconfident for the most
part, while KF is underconfident. Our experiments also show
that unsurprisingly all methods perform better for smaller
|λ2| (frequency of the oscillation). However, we omit visu-
alising this here.

Finally, a demonstration of the error trajectory for the first
component of y and the reported uncertainty of the solvers
is shown in Fig. 3 for h = 10−2 and q = 2. Here it can
be seen that all methods produce similar errors bars, though
SCH and KER produce errors that oscillate far outside their
reported uncertainties.

5 Again note that the EKF and appropriate numerical quadrature meth-
ods are equivalent to this estimator here (see Lemma 1).
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Fig. 1 RMSE of KF, SCH, and KER on the undamped oscillator using
IWP(q) priors for q = 1, . . . , 6 plotted against step size

5.2 The logistic equation

In this experiment, the logistic equation is considered:

ẏ(t) = r y(t) (1 − y(t)) , y(0) = 1 · 10−1, (45)

which has the solution:

y(t) = exp(r t)

1/y0 − 1 + exp(r t)
. (46)

In the experiments, r is set to r = 3. We compare the
zeroth order solver (Proposition 2) (Schober et al. 2019)
(SCH), the first-order solver in Eq. (16) (EKF), a numeri-
cal integration solver based on the covariance approximation
in Proposition 3 (Kersting and Hennig 2016) (KER), and a
numerical integration solver based on approximating Eq. (12)
(UKF). Both numerical integration approaches use a third
degree fully symmetric rule (see McNamee and Stenger
1967). The integration interval is set to [0, 2.5], and all meth-
ods use an IWP(q) prior for q = 1, 2, . . . , 4, and the initial
mean of X (1), X (2), and X (3) are set to y(0), f (y(0)), and
J f (y(0)) f (y(0)), respectively (correct values), with zero
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Fig. 2 Average χ2-statistic of KF, SCH, and KER on the undamped
oscillator using IWP(q) priors for q = 1, . . . , 6 plotted against step
size. The expected χ2-statistic is shown in black (E)
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Fig. 3 The errors (solid lines) and ± 2 standard deviation bands
(dashed) for KF, SCH, and KER on the undamped oscillator with q = 2
and h = 10−2. A line at 0 is plotted in solid black

covariance. The remaining state components X ( j), j > 3
are set to zero mean with unit variance. The uncertainty
of the methods is calibrated by the quasi maximum likeli-
hood method as explained in Sect. 4.3, and the methods are
examined for 10 step sizes uniformly placed on the interval
[10−3, 10−1].

The RMSE is plotted against step size in Fig. 4. It
can be seen that EKF and UKF tend to produce smaller
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Fig. 4 RMSE of SCH, EKF, KER, and UKF on the logistic equation
using IWP(q) priors for q = 1, . . . , 4 plotted against step size

errors by more than an order of magnitude than SCH and
KER in general, with the notable exception of the UKF
behaving badly for small step sizes and q = 4. This is
probably due to numerical issues for generating the inte-
gration nodes, which requires the computation of matrix
square roots (Julier et al. 2000) that can become inaccu-
rate for ill-conditioned matrices. Additionally, the average
χ2-statistic is plotted against step size in Fig. 5. Here it
appears that all methods tend to be underconfident for
q = 1, 2, while SCH becomes overconfident for q =
3, 4.

A demonstration of the error trajectory and the reported
uncertainty of the solvers is shown in Fig. 3 for h = 10−1

and q = 2. SCH and KER produce similar errors, and
they are hard to discern in the figure. The same goes
for EKF and UKF. Additionally, it can be seen that the
solvers produce qualitatively different uncertainty estimates.
While the uncertainty of EKF and UKF first grows to
then shrink as the solution approaches the fixed point at
y(t) = 1, the uncertainty of SCH grows over the entire
interval with the uncertainty of KER growing even faster
(Fig. 6).

5.3 The FitzHugh–Nagumomodel

The FitzHugh–Nagumo model is given by:

[
ẏ1(t)

ẏ2(t)

]
=

⎡
⎣c

(
y1(t) − y3

1 (t)

3 + y2(t)

)

− 1
c
(y1(t) − a + by2(t))

⎤
⎦ , (47)
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Fig. 5 Average χ2-statistic of SCH, EKF, KER, and UKF on the logistic
equation using IWP(q) priors for q = 1, . . . , 4 plotted against step size.
The expected χ2-statistic is shown in black (E)
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Fig. 6 The errors (solid lines) and ± 2 standard deviation bands
(dashed) for EKF, SCH, KER, and UKF on the logistic with q = 2
and h = 10−1. A line at 0 is plotted in solid black

where we set (a, b, c) = (.2, .2, 3) and y(0) = [− 1 1]T.
As previous experiments showed that the behaviour of KER
and UKF are similar to SCH and EKF, respectively, we opt
for only comparing the latter to increase readability of the
presented results. As previously, the moments of X (1)(0),
X (2)(0), and X (3)(0) are initialised to their exact values and
the remaining derivatives are initialised with zero mean and
unit variance. The integration interval is set to [0, 20], and
all methods use an IWP(q) prior for q = 1, . . . , 4 and the
uncertainty is calibrated as explained in Sect. 4.3. A base-
line solution is computed using MATLAB’s ode45 function
with an absolute tolerance of 10−15 and relative tolerance
of 10−12, all errors are computed under the assumption
that ode45 provides the exact solution. The methods are
examined for 10 step sizes uniformly placed on the interval
[10−3, 10−1].

The RMSE is shown in Fig. 7. For q = 1, EKF produces an
error orders of magnitude larger than SCH and for q = 2 both
methods produce similar errors until the step size grows too
large, causing SCH to start producing orders of magnitude
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Fig. 7 RMSE of SCH and EKF on the FitzHugh–Nagumo model using
IWP(q) priors for q = 1, . . . , 4 plotted against step size

larger errors than EKF. For q = 3, 4 EKF is superior in
producing lower errors and additionally SCH can be seen to
become unstable for larger step sizes (at h ≈ 5 ·10−2 for q =
3 and at h ≈ 2 · 10−2 for q = 4). Furthermore, the averaged
χ2-statistic is shown in Fig. 8. It can be seen that EKF is
overconfident for q = 1 while SCH is underconfident. For
q = 2, both methods are underconfident while EKF remains
underconfident for q = 3, 4, but SCH becomes overconfident
for almost all step sizes.

The error trajectory for the first component of y and the
reported uncertainty of the solvers is shown in Fig. 9 for h =
5 · 10−2 and q = 2. It can be seen that both methods have
periodically occurring spikes in their errors with EKF being
larger in magnitude but also briefer. However, the uncertainty
estimate of the EKF is also spiking at the same time giving
an adequate assessments of its error. On the other hand, the
uncertainty estimate of SCH grows slowly and monotonically
over the integration interval, with the error estimate going
outside the two standard deviation region at the first spike
(slightly hard to see in the figure).

5.4 A Bernoulli equation

In this following experiment, we consider a transformation
of Eq. (45), η(t) =

√
y(t), for r = 2. The resulting ODE

for η(t) now has two stable equilibrium points η(t) = ±1
and an unstable equilibrium point at η(t) = 0. This makes
it a simple test domain for different sampling-based ODE
solvers, because different types of posteriors ought to arise.
We compare the proposed particle filter using both the pro-
posal Eq. (24) [PF(1)] and EKF proposals [Eq. (25)] [PF(2)]
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Fig. 8 Average χ2-statistic of SCH and EKF on the FitzHugh–Nagumo
model using IWP(q) priors for q = 1, . . . , 4 plotted against step size
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Fig. 9 The errors (solid lines) and ± 2 standard deviation bands
(dashed) for EKF and SCH on the FitzHugh–Nagumo model with q = 2
and h = 5 · 10−2. A line at 0 is plotted in solid black

with the method by Chkrebtii et al. (2016) (CHK) and the
one by Conrad et al. (2017) (CON) for estimating η(t) on the
interval t ∈ [0, 5]with initial condition set toη0 = 0. Both PF
and CHK use and IWP(q) prior and set R = κh2q+1. CON
uses a Runge–Kutta method of order q with perturbation
variance h2q+1/[2q(q!)2] as to roughly match the incremen-
tal variance of the noise entering PF(1), PF(2), and CHK,
which is determined by Q(h) and not R.

First we attempt to estimate y(5) = 0 for 10 step sizes
uniformly placed on the interval [10−3, 10−1] with κ = 1
and κ = 10−10. All methods use 1000 samples/particles, and
they estimate y(5)by taking the mean over samples/empirical
measures. The estimate of y(5) is plotted against the step size
in Fig. 10. In general, the error increases with the step size for
all methods, though most easily discerned in Fig. 10b, d . All
in all, it appears that CHK, PF(1), and PF(2) behave similarly
with regards to the estimation, while CON appears to produce
a bit larger errors. Furthermore, the effect of κ appears to be
the greatest on PF(1) and PF(2) as best illustrated in Fig. 10c.
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Fig. 10 Sample mean estimate of the solution at T = 5

Additionally, kernel density estimates for the different
methods are made for time points t = 1, 3, 5 for κ = 1,
q = 1, 2 and h = 10−1, 5 · 10−2. In Fig. 11 kernel density
estimates for h = 10−1 are shown. At t = 1, all methods
produce fairly concentrated unimodal densities that then dis-
perse as time goes on, with CON being a least concentrated
and dispersing quicker followed by PF(1)/PF(2) and then
last CHK. Furthermore, CON goes bimodal as time goes on,
which is best seen in for q = 1 in Fig. 11e. On the other hand,
the alternatives vary between unimodal (CHK in 11f, also to
some degree PF(1) and PF(2)), bimodal (PF(1) and CHK in
Fig. 11e), and even mildly trimodal (PF(2) in Fig. 11e).

Similar behaviour of the methods is observed for h =
5 · 10−2 in Fig. 11, though here all methods are generally
more concentrated (Fig. 12).

6 Conclusion and discussion

In this paper, we have presented a novel formulation of prob-
abilistic numerical solution of ODEs as a standard problem
in GP regression with a nonlinear measurement function, and
with measurements that are identically zero. The new model
formulation enables the use of standard methods in signal
processing to derive new solvers, such as EKF, UKF, and
PF. We can also recover many of the previously proposed
sequential probabilistic ODE solvers as special cases.

Additionally, we have demonstrated excellent stability
properties of the EKF and UKF on linear test equations, that
is, A-stability has been established. The notion of A-stability
is closely connected with the solution of stiff equations,
which is typically achieved with implicit or semi-implicit
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Fig. 11 Kernel density estimates of the solution of the Bernoulli equa-
tion for h = 10−1 and κ = 1. Mind the different scale of the axes

methods (Hairer and Wanner 1996). In this respect, our
methods (EKF and UKF) most closely fit into the class of
semi-implicit methods such as the methods of Rosenbrock
type (Hairer and Wanner 1996, Chapter IV.7). Though it does
seem feasible, the proposed methods can be nudged towards
the class of implicit methods by means of iterative Gaus-
sian filtering (Bell and Cathey 1993; Garcia-Fernandez et al.
2015; Tronarp et al. 2018).

While the notion of A-stability has been fairly successful
in discerning between methods with good and bad stability
properties, it is not the whole story (Alexander 1977, Sec-
tion 3). This has lead to other notions of stability such as
L-stability and B-stability (Hairer and Wanner 1996, Chap-
ter IV.3 and IV.12). It is certainly an interesting question
whether the present framework allows for the development
of methods satisfying these more strict notions of stability.

An advantage of our model formulation is the decoupling
of the prior from the likelihood. Thus future work would
involve investigating how well the exact posterior to our
inference problem approximates the ODE and then analysing
how well different approximate inference strategies behave.
However, for h → 0, we expect that the novel Gaussian
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Fig. 12 Kernel density estimates of the solution of the Bernoulli equa-
tion for h = 5 · 10−2 and κ = 1. Mind the different scale of the axes

filters (EKF,UKF) will exhibit polynomial worst-case con-
vergence rates of the mean and its credible intervals, that
is, its Bayesian uncertainty estimates, as has already been
proved in Kersting et al. (2018) for 0th order Taylor series
filters with arbitrary constant measurement variance R (see
Sect. 2.4).

Our Bayesian recast of ODE solvers might also pave
the way towards an average-case analysis of these meth-
ods, which has already been executed in Ritter (2000) for
the special case of Bayesian quadrature. For the PF, a thor-
ough convergence analysis similar to Chkrebtii et al. (2016),
Conrad et al. (2017), Abdulle and Garegnani (2018) and
Del Moral (2004) appears feasible. However, the results on
spline approximations for ODEs (see, e.g. Loscalzo and Tal-
bot 1967) might also apply to the present methodology via the
correspondence between GP regression and spline function
approximations (Kimeldorf and Wahba 1970).
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A Proof of Proposition 1

In this section, we prove Proposition 1. First note that, by
Eq. (4), we have

dC
[
X (1)(t), X (2)(s)

]

dt
= C

[
X (2)(t), X (2)(s)

]
, (48)

where C is the cross-covariance operator. That is the cross-
covariance matrix between X (1)(t) and X (2)(t) is just the
integral of the covariance matrix function of X (2). Now define

(X(i))T =
[(

X
(i)
1

)T
. . .

(
X

(i)
N

)T]
, i = 1, . . . , q + 1, (49a)

gT =
[
gT(h) . . . gT(Nh)

]
, (49b)

zT =
[
zT1 . . . zTN

]
. (49c)

Since Equation (3) defines a Gaussian process, we have
that X(1) and X(2) are jointly Gaussian distributed and from
Eq. (48) the blocks of C[X(1), X(2)] are given by

C
[
X(1), X(2)

]
n,m

=
∫ nh

0
C

[
X (2)(t), X (2)(mh)

]
dt

which is precisely the kernel mean, with respect to the
Lebesgue measure on [0, nh], evaluated at mh, see (Briol
et al. 2019, Section 2.2). Furthermore,

V
[
X(2)

]
n,m

= C
[
X (2)(nh), X (2)(mh)

]
,

that is, the covariance matrix function (referred to as ker-
nel matrix in Bayesian quadrature literature (Briol et al.
2019)) evaluated at all pairs in {h, . . . , Nh}. From Gaus-
sian conditioning rules, we have for the conditional means
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and covariance matrices given X(2) − g = 0, denoted by
ED[X (1)(nh)] and VD[X (1)(nh)], respectively, that

ED

[
X (1)(nh)

]
= E

[
X (1)(nh)

]
+ wn

(
z + g − E

[
X(2)

])

= E
[
X (1)(nh)

]
+ wn

(
g − E

[
X(2)

])
,

VD

[
X (1)(nh)

]
= V

[
X (1)(nh)

]
− wnV

[
X(2)

]
wT

n,

where we used the fact that z = 0 by definition and wn are
the Bayesian quadrature weights associated to the integral of
g over the domain [0, nh], given by (see Briol et al. 2019,
Proposition 1)

wT

n = V
[
X(2)

]−1

⎡
⎢⎢⎣

C
[
X (1)(nh), X (2)(h)

]T
...

C
[
X (1)(nh), X (2)(Nh)

]T

⎤
⎥⎥⎦ .

⊓⊔

B Proof of Proposition 3

To prove Proposition 3, expand the expressions for Sn and
Kn as given by Eq. (12):

Sn = ĊΣ P
n ĊT + V

[
f (C Xn, tn) | z1:n−1

]

− ĊC
[
Xn, f (C Xn, tn) | z1:n−1

]

− C
[
Xn, f (C Xn, tn) | z1:n−1

]T
ĊT

≈ ĊΣ P
n ĊT + V

[
f (C Xn, tn) | z1:n−1

]

Kn =
(
Σ P

n ĊT − C
[
Xn, f (C Xn, tn) | z1:n−1

])
S−1

n

≈ Σ P
n ĊTS−1

n ,

where in the second steps the approximation C[Xn, f

(C Xn, tn) | z1:n−1] ≈ 0 was used. Lastly, recall that zn � 0;
hence, the update equations become

Sn ≈ ĊΣ P
n ĊT + V

[
f (C Xn, tn) | z1:n−1

]
, (50a)

Kn ≈ Σ P
n ĊTS−1

n , (50b)

µF
n ≈ µP

n + Kn

(
E

[
f (C Xn, tn) | z1:n−1

]
− ĊµP

n

)
, (50c)

Σ F
n ≈ Σ P

n − Kn Sn K T

n . (50d)

When E[ f (C Xn, tn) | z1:n−1] and V[ f (C Xn, tn) |
z1:n−1] are approximated by Bayesian quadrature using a
squared exponential kernel and a uniform set of nodes trans-
lated and scaled by µP

n and Σ P
n , respectively, the method of

Kersting and Hennig (2016) is obtained. ⊓⊔

C Proof of Proposition 4

Note that (µ̆F
n , Σ̆ F

n ) is the output of a misspecified Kalman
filter (Tronarp et al. 2019, Algorithm 1). We indicate that a
quantity from Eqs. (11) and (12) is computed by the mis-
specified Kalman filter by .̆ For example µ̆P

n is the predictive
mean of the misspecified Kalman filter. If Σ F

n = σ 2Σ̆ F
n and

µ̆F
n = µF

n holds then for the prediction step we have

µP
n+1 = A(h)µF

n + ξ(h) = A(h)µ̆F
n + ξ(h) = µ̆P

n+1,

Σ P
n+1 = A(h)Σ F

n AT(h) + Q(h),

= σ 2
(

A(h)Σ̆ F
n AT(h) + Q̆(h)

)
,

= σ 2Σ̆ P
n+1,

where we used the fact that Q(h) = σ 2 Q̆(h), which follows
from L = σ L̆ and Eq. (8). Furthermore, recall that Hn+1 =
Ċ − Λ(tn+1)C , which for the update gives

Sn+1 = Hn+1Σ
P
n+1 HT

n+1

= σ 2 Hn+1Σ̆
P
n+1 HT

n+1

= σ 2 S̆n+1.

Kn+1 = Σ P
n+1 HT

n+1S−1
n+1

= σ 2Σ̆ P
n+1 HT

n+1[σ 2 S̆n+1]−1

= Σ̆ P
n+1 HT

n+1 S̆−1
n+1

= K̆n+1.

ẑn+1 = Hn+1µ
P
n+1 − ζ(tn)

= Hn+1µ̆
P
n+1 − ζ(tn)

= z̆n+1,

µF
n+1 = µP

n+1 + Kn+1(zn+1 − ẑn+1)

= µ̆P
n+1 + K̆n+1(zn+1 − z̆n+1)

= µ̆F
n+1.

Σ F
n+1 = Σ P

n+1 − Kn+1Sn+1 K T

n+1

= σ 2
(
Σ̆ P

n+1 − K̆n+1 S̆n+1 K̆ T

n+1

)

= σ 2Σ̆ F
n+1.

It thus follows by induction that µF
n = µ̆F

n , Σ F
n = σ 2Σ̆ F

n ,
ẑn = z̆n , and Sn = σ 2 S̆n for n ≥ 0. From Eq. (40), we have
that the log-likelihood is given by

log p(z1:N ) = log
N∏

n=1

N (zn; ẑn, Sn)

= log
N∏

n=1

N (zn; z̆n, σ 2 S̆n)
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= − Nd

2
log σ 2

−
N∑

n=1

(zn − z̆n)T S̆−1
n (zn − z̆n)

2σ 2
.

Taking the derivative of log-likelihood with respect to σ 2

and setting it to zero gives the following estimating equation

0 = − Nd

2σ 2
+ 1

2(σ 2)2

N∑

n=1

(zn − z̆n)T S̆−1
n (zn − z̆n),

which has the following solution

σ 2 = 1

Nd

N∑

n=1

(zn − z̆n)T S̆−1
n (zn − z̆n).
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