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Abstract

This paper describes a probabilistic approach to state
space search. The presented method applies a ranking of
the design states according to their probability of reach-
ing a given target state based on a random walk model.
This ranking can be used to prioritize an explicit or par-
tial symbolic state exploration to �nd a trajectory from
a set of initial states to a set of target states. A symbolic
technique for estimating the reachability probability is
described which implements a smooth trade-o� between
accuracy and computing e�ort. The presented proba-
bilistic state space search complements incomplete veri�-
cation methods which are specialized in �nding errors in
large designs.

1 Introduction

A key problem in functional design veri�cation is to de-
cide whether a set of target states can be reached from
a set of initial states, and if so, to compute a trajectory
to demonstrate it. A large number of techniques and re-
�nements have been developed to make reachability anal-
ysis practical for larger designs. They can be classi�ed
in three major categories: (1) Inductive methods use a
given invariant to prove that no initial state can reach
a target state. They avoid the need for state space ex-
ploration and can utilize the rich set of practical SAT
solvers. However, the intrinsic diÆculty in determining
a suÆcient invariant signi�cantly limits the application
of inductive methods and they fail completely if a tar-
get state is reachable. (2) Forward state space traversal
techniques explicitly or symbolically execute the machine
from the initial states. If the enumeration of new states
saturates without encountering a target, unreachability is
proven, otherwise the execution trace provides a trajec-
tory from an initial to a target state. (3) Similarly, back-
ward state space traversal starts from the target states
and symbolically executes the machine in reverse mode to
check whether an initial state can be reached backwards.

The application of state space traversal techniques for
hardware designs is fundamentally handicapped by the
potentially exponential gap between the design size and
the number of states. Explicit methods [1] execute one
state transition at a time and can utilize the rich bag of
tricks from simulation based veri�cation methods. Un-
less special reduction rules are applicable, their usage
is limited to designs with a small number of reachable
state transitions. Symbolic methods [2, 3] are based on
compact representation and manipulation techniques for
large sets of states and are less sensitive to the actual
number of reachable transitions or states. However, de-
pending on the size and structure of the state space, the
symbolic representation may grow excessively large which
limits its predictable application to smaller designs.

A number of approximation techniques have been sug-
gested to address the capacity limitations of explicit and
symbolic state traversal techniques. Overapproximating
the set of reachable states provides a conservative method
that is useful in proving unreachability if all target states
remain outside the approximation. In [4] an overapprox-
imation is described which is based on partitioning the
design structure into subcomponents that are tractable
for symbolic traversal. For the computation of the reach-
able states of the individual components the actual cor-
relation of their interface signals is disregarded, which re-
sults in additional global state transitions and potentially
additional reachable states. In [5] a re�nement of this ap-
proximation approach using overlapping subcomponents
is described which yields a signi�cantly tighter bound.
A combination of overapproximating the set of reachable
states and exact backward traversal is described in [6],
however this approach is fundamentally limited by the
exact backward traversal step. Overall, overapproxima-
tion techniques are useful if unreachability can be proven,
but they are unable to demonstrate true reachability if a
target state lies in the approximation.

Conversely, methods to underapproximate the set of
reachable states are used to discover reachable targets
whereas they are incapable of proving unreachability. A
straightforward underapproximation can be computed by

1
0-7803-5832-X /99/$10.00 ©1999 IEEE.



a partial explicit or symbolic state traversal. For exam-
ple, symbolic simulation [7] is used to explore the state
space to a �xed depth. In order to reduce the memory
requirements in explicit state space traversal, hash com-
paction for tracking the reached states was introduced
at the expense of potentially missing parts of the state
space [8]. In [9] a pruning method for the BDD represent-
ing the set of reachable states is described. Its applica-
tion during state space traversal is targeted for \sparse"
subgraphs of the original BDD which require more BDD
nodes to represent a comparable number of states. All of
the above mentioned methods do not consider the actual
target states for constraining the state space exploration.
Since in many practical applications only a tiny fraction
of the design space can be traversed, this shortcoming
signi�cantly reduces the value of those approaches.

More recent research in the area of incomplete reach-
ability analysis focuses on methods to guide the explo-
ration speci�cally toward the target states. Guided state
space search requires a scoring mechanism that prioritizes
the state traversal according to the potential to reach a
target. In [10] a method to exercise all transitions of the
control part of the design is described. It is assumed that
this will expose all functional corner cases and therefore
increase the chance of hitting a target state. Based on
the same concept, a technique called saturated simula-
tion is presented in [11]. After applying an incomplete
forward and backward traversal a state distance function
is used to search for a \short" trajectory between the two
resulting sets of states. The proposed method applies
the Hamming distance of the state encodings to measure
their distance in state space. In [12, 13] an extension of
the explicit model checker Mur' to guide the state space
traversal is described. Here the reported results on us-
ing the Hamming distance to guide the search con�rm
the practical intuition that this metric does not correlate
with the actual distance in state space and is therefore of
limited value in this context. A second proposed distance
function is based on the length of the counter example
trajectory in the overapproximated state transition graph
using overlapping subcomponents. This metric provides
a better scoring function for the search, but due to the
assumed unconstrained execution of the individual sub-
components the accuracy decreases dramatically with in-
creasing distance from the target states.

In this paper we describe a probabilistic approach for
guiding the state space search. The scoring of the indi-
vidual states is based on their reachability probability to
lead to a target state in a random walk model. Since the
accurate computation of this probability is as complex
as the original reachability decision, an estimation tech-
nique is proposed which implements a trade-o� between
accuracy and computing e�ort. In contrast to previous

methods in the area of guided state space search, the pre-
sented work models the actual probabilistic nature of the
search process and uses it to focus the search toward tar-
get areas. For practical veri�cation tools, the described
probabilistic state space search provides a building block
that can e�ectively complement other heuristics. This
paper is focused on the actual probabilistic method and
will not elaborate on its combination with other methods.

2 Reachability Probability

A random simulation run can be characterized by a
Markov Chain [14] with a one-to-one correspondence of
its states to the states of the FSM model of the design.
For a random walk the events at each input are chosen
randomly and independently. Therefore, the transition
probability pij between states i and j corresponds to the
fraction of the Boolean input space that exercises this
transition in the FSM. More precisely:

pij =
jT (x; s; s0)s=i;s0=j j

jT (x; s; s0)s=ij

where j:j denotes the cardinality of a set, T (x; s; s0) repre-
sents the transition relation of the FSM from the current
states s to the next states s0 for inputs x, and the sub-
script denotes a projection onto the given values. The
given de�nition for pij can easily be modi�ed for a non-
equal distribution of the inputs. Let P be the probability
matrix composed of all pij . Note, that for the given def-
inition the following invariant holds:

8i :
X
8j

pij = 1:

To denote the set of target states, we introduce a vec-
tor t = (t1; � � � ; tk)

T for the k states of the FSM, where
ti = 1 if i is a target, 0 otherwise. Similarly, we use t

to denote the non-target states. We are interested in

the probability r
(m)
i that a random simulation run of

length m starting from state i reaches a target state. Let

r(m) = (r
(m)
1 ; � � � ; r

(m)
k )T be the vector of the reachability

probability for all states. r(m) cannot be determined by
simply computing the sum over all powers of P . This
would double count recurring visits of target states and
yield incorrect results. Instead we compute:

r(m) =
mX
n=0

Pn t

where P = t t
T
P . In essence, this scheme �rst removes

the outgoing transitions from all target states and then
adds the individual probabilities to reach a target in n

steps.
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Figure 1: General distribution of the probability r
(1)
i

to reach a

target state (black: r
(1)
i

= 1, white: r
(1)
i

= 0, gray: intermedi-
ate).

Note, that for m =1 the given formula resembles the
traditional backward reachability analysis: If the summa-
tion is replaced by disjunction and pij = 1 for all nonzero
transition probabilities, the resulting Boolean vector r(1)

denotes the reachability of a target from the individual
states.
A random walk model based on a simulation run with

a particular length m causes a dilemma: A �xed �nite
length will tailor the model toward a speci�c exploration
depth and mask targets that are beyond that limit. An
in�nite length of the simulation run is not realistic and
reduces the discrimination power of the model. As illus-
trated in Figure 1, the variation of r(1) is based on the
strongly connected components (SCC) of the state tran-
sition graph and the transitions between them. For ex-
ample, assuming that SCC4 constitutes a terminal SCC

without outgoing edges, the r
(1)
i of its states cannot be

distinguished. However, the transition from SCC2 to
SCC3 induces a \leakage" of reachability probability and
causes a discrimination of the internal states of SCC2.
A more accurate modeling of a random walk is based

on a set of �nite simulation runs with a given distribution
of their lengths. Basically any distribution could be used.
In this context we assume an exponential distribution for
which the number of simulation steps m is given by the
following density function:

d(m) =
1� �

�
�m for m > 0 and � < 1; constant

where E = 1
1�� is the mean of the number of simulation

steps. Let ri be the probability that state i reaches a tar-
get in the given simulation setting. The following formula
computes the reachability probability r = (r1; � � � ; rk)

T

for all states:

r =
1� �

�

1X
m=1

�m
mX
n=0

Pn t

= t+
1

�

1X
m=1

�mPm t:

in

out
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Figure 2: Circuit example of a shift register with signature detec-
tion: (a) circuit structure, (b) state transition graph with proba-
bilities to reach target state (110).

Note, that this scheme is similar to the \discounting"
method applied in dynamic programming [15].
As an example, Figure 2 shows design example con-

sisting of an n-bit shift register with signature detection.
This general structure poses a particular challenge for
many reachability algorithms. The reachability proba-
bilities of the drawn state transition graph are based on
a uniform transition probability of 0:5 and an expected
mean simulation length of E = 6. To demonstrate the
e�ect of a directed search scheme, all transitions that
compose a trajectory to the target state with increasing
reachability probabilities are drawn in bold.
The computation of the reachability probability can

be done symbolically using the \analog" version of
BDDs [16]. Due to their algorithmic similarity, many
heuristics developed for symbolic state traversal (e.g.,
variable ordering) can be adopted to the symbolic compu-
tation of the reachability probability resulting in compa-
rable application ranges for the design size. In section 4
we describe an approximation algorithm for the reacha-
bility probability using overlapping subcomponents.

3 State Space Search Guided by

Reachability Probability

The reachability probabilities of the states have an inter-
esting property that can be exploited in guiding a state
space search toward target states:

Theorem:

8i : (ti = 0 ^ ri > 0) ) ri < max
8j; pij>0

rj :

Proof:

For all non-target states with a non-zero reachability
probability the computation of the reachability probabil-
ity yields:

ri <
X
8j

pi;j rj �
X
8j

pi;j( max
8j; pij>0

rj) = max
8j; pij>0

rj :

In other words, for all states that can reach a target,
there exists a trajectory from that state to a target state

3



such that the reachability probability of the states along
this trajectory is strictly monotonically increasing. Once
a target is reached, the probability is 1.0 and cannot fur-
ther increase. If a state cannot reach a target, the reach-
ability probability of that state and its successors is zero.
The algorithm of Figure 3 outlines a guided state space
search based on this monotonic property.

Algorithm Search State Space (init; target) f
present = get_states_with_max_probability (queue);

next = get_partial_image (present; r);

if ((next \ target) != empty) return reachable;

add_to_queue (queue; next; r);

g
return undecided;

g

Figure 3: State space search guided by reachability probability.

The algorithm is based on a priority queue which holds
the states that are to be further explored. The queue is
prioritized by the reachability probabilities of the entries.
If no initial states has a nonzero reachability probability,
unreachability is proven and returned. Otherwise, in
each iteration, the states with the highest priority are
further explored by generating a set of successor states
which are added back to the queue. If a target state
is encountered during the search, the algorithm returns
reachable, otherwise undecided. The function of the
priority queue is to heuristically avoid dead ends during
the guided state space search which can be caused by
the inaccuracy of an approximated state ranking or the
incomplete image computation.

4 Approximation of the Reacha-

bility Probability

The calculation of the exact reachability probabilities is
computationally as hard as the original reachability de-
cision problem and therefore it does not simplify its so-
lution. However, in the context of incomplete veri�ca-
tion methods such as directed search, an approximation
of the reachability probabilities, is valuable as long as it
preserves the monotonicity of the probabilities along a
trajectory to a target from as many states as possible.
In the following we describe an approximation technique
that is based on a set of subcomponents of the design for
which the computation of the reachability probability is
tractable.
Similar to [4, 5], a subcomponent of a hardware design

is de�ned as a subset of its state registers and their next
state functions. The resulting bisection of the state reg-
isters de�nes a division of the set of global states s into
two parts ŝ and �s such that s = ŝ � �s. Let ŝ and x̂ be
the states and inputs of the subcomponent, respectively.

Further, let � : (x � �s) ! x̂ denote the mapping of the
global inputs and \environment" states onto the subcom-
ponent inputs. Using capital letters for individual inputs
and states, the transition relation T̂ of the subcomponent
is derived as follows:

T̂ (x̂; ŝ; ŝ0) = f(X̂; Ŝ; Ŝ0) j 9 �S : X̂ = �(X; �S) ^

(X; (Ŝ; �S); (Ŝ0; �S0)) 2 Tg:

Let � : s ! ŝ denote the projection of each global state
onto its corresponding state of the subcomponent. Sim-
ilar to the formula of Section 2, the projected transition
probability p̂ij between two global states i and j is de-
�ned as:

p̂ij =
jT̂ (x̂; ŝ; ŝ0)ŝ=�(i);ŝ0=�(j)j

jT̂ (x̂; ŝ; ŝ0)ŝ=�(i)j
:

t̂ = (t̂1; � � � ; t̂k)
T denotes the projected target vector such

that:

t̂i =

�
1 if 9 j (tj = 1 ^ �(i) = �(j))
0 otherwise .

Informally, a state of the subcomponent is a projected
target state if there is at least one global state that is
projected onto it. Similar to section 2, let P̂ and P̂ de-
note the projected probability matrix and its adjusted
version without outgoing transitions from projected tar-
gets, respectively. This results in the following scheme
to compute the projected reachability probability for a
subcomponent:

r̂ = t̂+
1

�

1X
m=1

�mP̂m t̂:

The computation of the global approximated reachability
probability is based on a set of subcomponents, which
are not necessarily disjoint. Let (r̂1; � � � ; r̂q) denote the
projected reachability probabilities of the q components.
The approximate reachability probability ~r = (~r1; � � � ; ~rk)
is de�ned as:

8i : ~ri =

qY
j=1

r̂
j
i :

In other words, the approximate reachability probability
of a state is computed by the product of the projected
reachability probabilities of the subcomponents. Using
the product to combine the individual probabilities as-
sumes that the subcomponents operate independently,
neglecting that their structural composition constrains
possible transitions. However, this heuristic scheme is
based on the fact that a higher reachability probability
reects a greater chance that the environment of a sub-
component can cooperate for a given transition.
In practice, the reachability probability of a subcom-

ponent can be directly computed from the subset of state
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Figure 4: Approximation of the reachability probability of the
circuit of Figure 2 using two subcomponents: (a) and (b) state
transition graphs and projected reachability probabilities r̂ for the
subcomponents fR1; R2g and fR2; R3g, respectively, (c) full state
transition graphs and resulting approximate reachability probabil-
ities ~r (r are given in brackets).

registers belonging to the component and the correspond-
ing next state functions. Moreover, the generation of the
subcomponents can be combined with the construction
of its transition relation. By incrementally adding one
state bit at a time, the BDD size of the transition re-
lation can be monitored and used to control the actual
size of the component by setting a limit on the memory
requirements. This scheme ensures a maximum size of
the subcomponents for which the projected reachability
probabilities can be computed with given resources.

For a practical application in a directed search algo-
rithm, the projected reachability probabilities r̂i are pre-
calculated. However, the computation of the approx-
imate reachability probability ~r is deferred until it is
needed to evaluate a state or set of states. An up front
computation for all states is computationally too expen-
sive and would diminish the bene�ts of the partitioned
computation. A concrete state is evaluated by �rst pro-
jecting it onto the subcomponents. For the resulting state
projections, the values of the vector (r̂1; � � � ; r̂q) are de-
termined and then combined to the global approximate
reachability probability of this particular state.

Figure 4 illustrates the resulting approximate reacha-
bility probability for the design of Figure 2 using two sub-
components. To illustrate the e�ect of a directed search,
all transitions that do not preserve the strict monotonic-
ity of the reachability probabilities are removed from the
global state transition graph (c). As shown, except for
state (111) the remaining seven states would still reach
the target.

An extreme case of the approximate reachability prob-
ability is based on the complete set of single bit subcom-
ponents. This essentially results in a guidance metric
similar to the Hamming distance. In addition to just

101 011

0 0 1 0

0000

010001

000 111100

1

1.00 0.86

10

0.86 1.00

10

0.86 1.00

1-- -1- --1
0

0.95 (0.51) 0.90 (0.71) 0.90 (0.51)

0.95 (0.36)0.95 (0.71)0.90 (0.51) 1.00 (1.00)

0.86 (0.51)

110

0-- -0- --0

Figure 5: Approximation of the reachability probability of the cir-
cuit of Figure 2 using three subcomponents, resembling a guidance
metric based on Hamming distance.

counting the \non-matching" state bits, this scheme also
weights them according to their probability to assume
the \matching" value in the future. This is a surpris-
ingly meaningful extension of the Hamming distance met-
ric and illustrates the overall validity of the proposed
method. As mentioned before, a symbolic computation
of the reachability probabilities can be based on fairly
large subcomponents, resulting in a signi�cantly higher
accuracy of the global approximation. Figure 5 gives the
resulting approximate reachability probability for the ex-
ample of Figure 2 based on three single bit subcompo-
nents. As shown, the accuracy is considerably lower, re-
sulting in three states that do not have a strictly mono-
tonic trajectory to the target.
The tracking approach presented in [13] can be viewed

as another special case of the presented method. As-
suming a uniform transition probability of 1.00 and a
simulation distribution consisting of a single long simu-
lation run, the state ranking resulting from the approxi-
mate reachability probability resembles the results of the
tracking method.

5 Results

For an evaluation of the e�ectiveness of the presented
technique, we compared the approximate reachability
probability with the exact values for several instances
of the shift register example of Figure 2 with random
signatures. To demonstrate the inuence of the subcom-
ponent size on the accuracy of the approximation, we
performed this experiment with di�erent sizes of the sub-
components. During each experiment, these components
were systematically generated by selecting a consecutive
subset of state bits of the shift register.
First, we computed the exact and the approximate

reachability probabilities for all states. Then we deter-
mined for each state, the successor state with the highest
probability using the exact and the approximate metric
and count the instances for which the successor states
are identical. This number provides an insight into the
e�ectiveness of the approximate reachability probability
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in preserving potential trajectories to target states in a
directed search scheme.
Table 1 reports the fraction of the transitions that are

identical for both metrics. As shown, the size of the sub-
components signi�cantly inuences the accuracy of the
approximate reachability probability. The results also
con�rm the intuitive ine�ectiveness of the Hamming dis-
tance metric which is similar to a subcomponent size of
one.

Subcomponents size (bits)
1 2 3 4 5 6 7 8

4 68.7 68.7 81.2 100
8 62.9 87.9 87.9 87.9 97.3 98.8 93.4 100
12 72.6 78.9 78.9 78.9 86.7 82.8 92.9 96.1
16 67.0 84.6 84.6 86.9 96.2 92.4 92.4 96.2

Table 1: Fraction (in %) of identical highest probable next states
in a guided search using the exact and approximate reachability
probability for various sizes of the shift register example.

6 Conclusions and Future Work

The paper presents a probabilistic approach for guiding
a state space search from a set of initial states to a set
of target states. The described technique uses a met-
ric which is based on the reachability probability that
a given state can get to a target state in a set of ran-
dom simulation runs. Since the exact computation of the
reachability probability is intractable, a symbolic approx-
imation technique is presented that implements a smooth
trade-o� between accuracy and computing e�ort.
The resulting probabilistic metric provides a signi�-

cantly better discrimination scheme for ranking states in
a guided search than previously published approaches.
Further, several existing methods such as the Hamming
distance metric, tracking metric, and reachability approx-
imations based on design partitioning or projections fold
into the presented model as special cases, yielding a more
global view on a wide set of distance metrics.
Future work will mainly focus on improving the ac-

curacy and eÆcient computation of the presented ap-
proximation technique and its e�ective combination with
other incomplete veri�cation methods. In particular, we
are interested in techniques for probabilistic design block
characterization that allow a compositional approach for
guided state space search. Further, we are investigat-
ing methods that gather statistics while performing the
state space search with the objective to correct the ap-
proximate reachability probabilities on the y.
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