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Information retrieval (IR) systems typically compress their indexes in order to increase their ef-

ficiency. Static pruning is a form of lossy data compression: it removes from the index, data that

is estimated to be the least important to retrieval performance, according to some criterion. Gen-

erally, pruning criteria are derived from term weighting functions, which assign weights to terms

according to their contribution to a document’s contents. Usually, document-term occurrences that

are assigned a low weight are ruled out from the index. The main assumption is that those entries

contribute little to the document content.

We present a novel pruning technique that is based on a probabilistic model of IR. We employ

the Probability Ranking Principle as a decision criterion over which posting list entries are to be

pruned. The proposed approach requires the estimation of three probabilities, combining them in

such a way that we gather all the necessary information to apply the aforementioned criterion.

We evaluate our proposed pruning technique on five TREC collections and various retrieval

tasks, and show that in almost every situation it outperforms the state of the art in index pruning.

The main contribution of this work is proposing a pruning technique that stems directly from the

same source as probabilistic retrieval models, and hence is independent of the final model used for

retrieval.
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1. INTRODUCTION

Information retrieval (IR) systems address the problem of how to retrieve in-
formation in response to a user need or task at hand, from a given repository of
information, such as a document collection. IR systems organize the document
collection in an index (also known as inverted file), for efficient access. An index
is a data structure that maps terms to the documents that contain them. The
most efficient index structure for IR systems [Witten et al. 1999] is the inverted
file, which records information on which terms appear in which documents and
how often (posting lists). The relevance of a document to a query is estimated
mainly using term weights, which capture the contribution of a term in a doc-
ument. There exist different ways for computing term weights [van Rijsbergen
1979].

Today, the amount and type of information stored in the index is increasing
exponentially. Additionally, the emergence of new environments for IR sys-
tems, for example mobile devices, desktop search in personal computers, or
distributed and peer to peer IR, has produced new IR applications in which
memory managing is crucial. This fast growth of indexable data forces modern
IR systems to face new challenges: how and which data is stored and retrieved
is an open problem, and there is a need for fast and effective systems that solve
this issue. This article addresses the problem of efficient indexing through a
compression mechanism, namely pruning. Index pruning consists of removing
from the index data estimated to be the least important to retrieval perfor-
mance, according to some criterion [Carmel et al. 2001b].

In this work, we propose an index pruning technique that uses a novel de-
cision mechanism. Previous approaches to the problem are mostly fuelled by
the fact that a user is only interested in a reduced number of top retrieved
documents. Hence, based on the retrieval model employed by a particular IR
system, pruning techniques decide which information is processed for answer-
ing users’ queries. Our pruning technique is based on the Probability Ranking
Principle [Robertson 1977], and is independent of the retrieval model in use.

The proposed technique requires the estimation of three different probabil-
ities, and its outcome depends on the quality of these estimations and their
combination. Therefore, as a side result, we propose novel techniques for these
estimations, which are based on some well-stated facts in the IR field.

We evaluate our technique extensively, using five standard TREC [Voorhees
and Harman 2005] collections of different size and genre, and assess it by
queries of different size and nature. We compare the new pruning algorithm
with a well-known baseline [Carmel et al. 2001b]. Experimental evaluation
shows that our technique outperforms the baseline in terms of mean average
precision, and performs better than, or at least comparably to, the baseline in
terms of early precision. Also, we show that our proposed pruning method can
result in improvements in retrieval precision over a full (not pruned) index,
independently of the way parameters are tuned in the retrieval models.

The remainder of this article is organized as follows. Section 2 presents the
background for index pruning, with emphasis on Carmel’s pruning method,
[Carmel et al. 2001b], which is used extensively in this work. Section 3 presents
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the theoretical background of this work, and the derivation of our proposed
pruning technique. Section 4 presents a way for estimating the probabilities
involved in the pruning technique, and a way to obtain some recommended
parameter values. Section 5 presents and discusses an experimental evalua-
tion of our technique. Further discussion can be found in Section 6. Section 7
summarizes our findings and gives intended future work.

2. INDEX PRUNING

IR systems need to be efficient to keep low response times. Efficient perfor-
mance is usually achieved by employing suitable data structures (inverted files
[Witten et al. 1999]), policy-driven memory caches [Baeza-Yates et al. 2007],
and by using adequate algorithms to access these data structures (e.g. posting
file ordering [Anh and Moffat 2002]).

Index pruning can be dynamic or static. Dynamic index pruning aims to
improve system efficiency by stopping the inverted file scanning during query
time, when some criterion is satisfied. Some examples of dynamic pruning are
the MAXSCORE optimization [Turtle and Flood 1995], or its more recent varia-
tion described in Strohman et al. [2005]. Anh and Moffat [2006] presented a
different approach in which document pointers have to be sorted according to
impacts. These impacts reflect the partial contribution of the term occurrence
in a document, and provide fast index scanning. The work by Long and Suel
[2003] addresses the issue of dynamic pruning when there is a global page
ordering for documents, given by any query-independent document ranking
metric (like Pagerank [Brin and Page 1998], for instance) and presents six
heuristics to tackle this problem. The work by Theobald et al. [2004] presents
a dynamic pruning method that preserves the top-k results (when using the
pruned or unpruned index) using a probabilistic score prediction for each query
term and efficiently managing priority queues. Dynamic pruning is a very ef-
ficient strategy for reducing answering times [Zobel and Moffat 2006] without
compromising the retrieval performance.

Static pruning consists of compressing the index size, by pruning entries from
the postings file, according to some criterion. Unlike dynamic pruning, this is
done off-line and is query-independent. Static pruning is a lossy compression
technique, because it is not possible to bring the compressed data back to its
exact uncompressed form.

Static pruning has two advantages: it not only reduces query time, but also
disk occupancy, and it is query- independent; hence it can be done off-line. The
trade-off between efficiency and effectiveness is of outmost importance for static
pruning approaches.

Static index pruning attempts to discard the least important data from the
index. This data is estimated according to some relevance criteria [Carmel et al.
2001b]. A number of proposals have been made to address static pruning, which
can fall into two different categories: term-based and document-based.

Document-based pruning discards the terms from a document that are less
representative of the document’s content. The main advantage of document-
based pruning is that it can be applied on-the-fly while indexing the collection
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Fig. 1. Carmel et al. [2001b] Top-k algorithm. The procedure takes two parameters, ε and zt and

discards the posting entries that score less than ε · zt , where zt is the k-th highest score in the

whole posting.

[Büttcher and Clarke 2006]. However, on-the-fly pruning requires estimating
collection statistics using only partial subcollections, which may not be accurate
enough. Term-based pruning reduces the index size by discarding the term
occurrences that are less likely to affect the retrieval performance of a specific
retrieval model.

Index pruning is uniform when it is applied to all the terms or documents
in the same way. A first detailed overview of static index pruning methods is
given in Carmel et al. [2001b], where an experimental overview of uniform and
term-based pruning is presented. The work presented in [Carmel et al. 2001b]
forms the baseline of our work.

The algorithm of Carmel’s method (see Figure 1) aims at preserving the top
results when either the original or the pruned index is used by a retrieval
system. It is an idealized pruning algorithm, which ensures the similarity of
the top k returned results for queries of less than r = 1/ε terms, where k and ε

are parameters. This property holds if the scores assigned by the IR system are
the same before and after pruning. The procedure operates on a term-by-term
fashion, selecting which term-document pairs are ruled out from the index on
the basis of their scores (in the original paper TF-IDF). For every term in the
dictionary, the algorithm computes the scores of the documents contained in
its posting list: this reflects the partial contribution of the term in any query
it appears in. Then, the method selects the k-th highest score, zt , and sets
τt = ε ∗ zt . Every document-term pair in that posting that scores lower than τt

is discarded from the index.
Finally, although the algorithm preserves the similarity of the top k returned

results, which is a nice theoretical property, the pruning levels achieved are neg-
ligible [Carmel et al. 2001b]. In order to obtain any significant index reduction,
it is necessary to shift every term-document score in the index by subtracting
the minimum score of the index from every document score. In practice, the
pruning algorithm is applied after this ad hoc modification of the inverted file.
This accomplishes excellent results, but the property of preserving the top-k
results despite the index used (pruned or unpruned), is not guaranteed.

In this work we do not impose any similarity preserving conditions, as the
retrieval quality is measured in terms of precision and not by document ranking
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similarity. Hence, we omit the shifting step and increment the amount of prun-
ing by setting higher ε thresholds.

Carmel’s pruning method has been further investigated repeatedly [Carmel
et al. 2001a; Büttcher and Clarke 2006; Blanco and Barreiro 2007a], and is
considered state of the art in index pruning. Other work uses different ideas to
tackle static pruning. Blanco and Barreiro [2007b] presented a comparison of
four collection-dependent algorithms for pruning low-contribution terms and
their impact on the efficiency and retrieval performance. Büttcher and Clarke
[2006] proposed a document-centric pruning approach that uses a query ex-
pansion technique based on Kullback-Leibler (KL) divergence. Their algorithm
produces excellent outcomes in terms of query processing speed gains. Results
were reported on the .GOV2 collection, which is a 428 Gigabyte collection, and
effectiveness figures were reported on 50 short queries. Another approach for
performing document-based pruning is to replace the documents by their re-
spective summaries. Summary indexing seems to improve precision while in-
curring a large recall loss [Brandow et al. 1995; Sakai and Sparck-Jones 2001].
The work by Ntoulas and Cho [2007] addresses the issue of resource handling
for the pruning of terms and posting entries, by keeping the unpruned index on
disk and determining the conditions and pruning level necessary to keep the
top results the same, under a uniform pruning regime.

This work proposes a different approach, based solely on relevance estima-
tions and not retrieval models. It is shown that our proposed algorithm is both
theoretically sound and also beneficial to retrieval.

3. PROBABILITY RANKING PRINCIPLE FOR INDEX PRUNING

3.1 Derivation of Pruning Criterion from Probability Ranking Principle

In this section, we show how to formally derive a pruning mechanism based on
the Probability Ranking Principle (PRP).

The Probability Ranking Principle (PRP) [Robertson 1977; van Rijsbergen
1979] states: “If a [...] retrieval system’s response to each request is a ranking of
the documents in the collections in order of decreasing probability of relevance
to the user who submitted the request, where the probabilities are estimated
as accurately as possible on the basis of whatever data has been made available
to the system for this purpose, then the overall effectiveness of the system to
its users will be the best that is obtainable on the basis of that data.”

PRP can be used for the retrieval of documents, and it is the foundation
of the probabilistic model of IR. The fundamental idea behind this work is to
introduce this principle for index pruning as opposed to document retrieval.

Given a document and a query, represented by the random variables D
and Q , a probabilistic IR model calculates the probability of D being relevant
p(r|D, Q) and nonrelevant p(r|D, Q). It was shown in van Rijsbergen [1979]
that the ranking produced by the odds-ratio of relevance and nonrelevance is
equivalent to the ranking produced by PRP.

PRP can be seen as a Bayes decision rule considering the classes of relevance
r and not relevance r. The probability of a document being relevant (respectively
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nonrelevant) to a query has an associated error (ξ ). Formally,

p(ξ |D, Q) =
{

p(r|D, Q) if we decide D ∈ r
p(r|D, Q) if we decide D ∈ r.

(1)

Each type of error can be associated with a cost, so that our decision rule
would minimise the risk of assigning a document to a wrong class. Consider the
following definitions:

—let crr be the cost of deciding D ∈ r when D ∈ r;

—let crn be the cost of deciding D ∈ r when D ∈ r;

—let cnn be the cost of deciding D ∈ r when D ∈ r;

—let cnr be the cost of deciding D ∈ r when D ∈ r.

Under the risk-minimization perspective, the risk of classifying nonrelevant
documents as relevant should be lower than the risk of classifying relevant
documents as nonrelevant:

crr p(r|Q , D) + crn p(r|Q , D) < cnr p(r|Q , D) + cnn p(r|Q , D). (2)

Or equivalently,

p(r|Q , D)

p(r|Q , D)
>

crn − cnn

cnr − crr
. (3)

Equation (3) states that the ratio of the probability that a document is rele-
vant to a query over the probability that a document is not relevant to a query
should be greater than the cost ratio that acts as a threshold:

ε = crn − cnn

cnr − crr
. (4)

The basic idea in this article is to consider every term in the lexicon as a
single-term query. We are not interested in the ranking produced by PRP for
this query, but only in identifying which document-query pairs satisfy Equa-
tion (3). If a document-query pair satisfies Equation (3) it is kept in the index,
otherwise it is pruned. Therefore, Equation (3) acts as our pruning criterion
where ε (Equation (4)) acts as a pruning threshold. More simply, this is a way
of deciding, for every term-document occurrence, if it would be acceptable to
consider that entry as relevant, given a query. In essence, the odds-ratio states
how characterizing a term is in the context of a document.

The threshold ε can be set in several ways; some choices could be to estimate
the collection difficulty or to use relevance information. In this work, we set the
basic costs to crn = cnr = 1, and cnn = crr = 0, and hence the starting threshold
is 1. This is a typical assumption in retrieval scenarios. However, as it will be
shown in the experimental section, we increase this threshold in order to assess
the pruning versus precision trade-offs.

For the estimation of the left hand side of Equation (3) we employ a decompo-
sition of the odds-ratio of relevance and nonrelevance [Lafferty and Zhai 2003].
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Applying Bayes’ rule, this becomes:

p(r|Q , D)

p(r|Q , D)
= p(D, Q |r) p(r)

p(D, Q |r)p(r)

= p(Q |D, r) p(D|r) p(r)

p(Q |D, r) p(D|r) p(r)

= p(Q |D, r) p(r|D)

p(Q |D, r) p(r|D)
. (5)

Equation (5) states that the ratio of the probability that a document is relevant
to a query over the probability that a document is not relevant to a query can be
decomposed into two odds: one query-dependent and one query-independent.
Now assume that the document D is independent of the query Q under the
conditioned event r, p(D, Q |r) = p(D|r) p(Q |r). Therefore,

p(r|Q , D)

p(r|Q , D)
= p(Q |D, r)

p(Q |r)
· p(r|D)

p(r|D)
, (6)

or under a binary term-independence assumption [Robertson et al. 1981] for a
query of |Q | terms:

p(r|Q , D)

p(r|Q , D)
=

|Q |∏
i=1

(
p(qi|D, r)

p(qi|r)

)
· p(r|D)

1 − p(r|D)
. (7)

Equation (7) decomposes the ratio of the probability that a document is relevant
to a query over the probability that a document is not relevant to a query
into three distinct probabilities. The first probability, p(qi|D, r), is the query
likelihood. The second probability, p(r|D), is the prior document. The third
probability, p(qi|r), is the probability of a term given nonrelevance. We show
how we estimate each of these probabilities separately in Section 4.

In the formulation presented in Equation (7), it is assumed that query terms
occur independently of each other (term-independence assumption). During the
pruning stage we do not have any query information and it seems reasonable to
follow the term-independence assumption. This makes sense because typically,
scoring functions are additive, which means that the partial score that a term
produces has nothing to do with the contribution of the other, and thus to the
final score.

Our proposed pruning method is uniform because the threshold is the same
for every term in the index. However, the probabilities to be estimated bias the
amount of data to be pruned more towards some terms than others. This is a
first procedural difference of this method from Carmel et al. [2001b]. The latter
method decides the amount of pruning on the basis of the differences between
the scores of a single term in different documents. A second difference is that the
intention of this pruning mechanism is not to be faithful to the original ranking
produced by a given scoring function, nor to make results imperceptible for a
user, but to detect which terms are not significant in the context of a document,
so those term occurrences can be discarded from the index. The pruning process
is summarized in Figure 2.
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Fig. 2. PRP-based uniform pruning algorithm. The procedure takes a parameter ε that acts as a

threshold. It calculates three probabilities and combines them in a score. Finally, it discards the

posting entries that score less than the threshold.

In the framework presented here, it is possible to incorporate additional
information about which terms are more likely to be pruned, or equivalently,
less relevant, by altering the estimation of the probabilities in use.

Finally, it is worth stating that this algorithm is well-founded, because it
uses PRP. If the conditions of PRP were to hold, indexes pruned using this tech-
nique would be optimal for retrieval tasks, (in the same way PRP is optimal for
retrieval). In Section 4, we present each probability appearing in Equation (6),
and show a feasible way of estimating them.

3.2 PRP and Probabilistic Retrieval Models

PRP [Robertson 1977; van Rijsbergen 1979] is the foundation of probabilistic
retrieval models, and it has been stated as a criterion of optimum retrieval
since the 70s. BIR (binary independence retrieval) is the probabilistic retrieval
model that follows the term independence assumption and PRP [Robertson and
Sparck-Jones 1976; van Rijsbergen 1977]. Robertson et al. [1981] developed a
retrieval model based directly on the log-odds ratio and on following PRP. The
relevance of a document to a query was estimated using within-document term
frequencies, modeled with a 2-Poisson mixture distribution. The parameters
of the distributions were estimated directly by the within-document frequency
distributions, and its usage in weighting functions resulted in few performance
benefits. Based on these same assumptions, Robertson and Walker [1994] devel-
oped a simpler model that incorporated some variables present in the 2-Poisson
model in an ad hoc fashion. This model further resulted in the successful BM25
retrieval model. The work in Manmatha et al. [2001] considers a probabilistic
model where the main focus is to calculate the probability of relevance and non-
relevance. The model employs the distribution of scores provided by a search
engine in order to obtain the probability of relevance of a certain document.
Assuming that different search engines provide independent rankings, those
probabilities are combined. Probabilities and PRP allow for ranking fusion in
a more principled way. Finally, an interesting connection between language
and probabilistic models for IR using PRP was presented in Lafferty and Zhai
[2003].
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4. PROBABILITY ESTIMATIONS

Generally, statistical methods rely on the goodness of their estimations. In this
section, we present how we estimate each component of Equation (6), namely,

—the probability of a term given a document and relevance, or query likelihood
(Section 4.1),

—the prior probability of relevance of a document (Section 4.2),

—the probability of a term given non-relevance (Section 4.3).

We present and discuss each estimation separately. The estimations proposed
are not the only ones possible; however, they turned out to work very well for
pruning purposes.

It is important that the estimates of the probabilities combine well with
each other. Weighting schemes make explicit assumptions for assigning term
weights like doing logarithmic transformations and smoothing probabilities in
a particular way. Those assumptions do not affect the ranking process, because
the final value of the score is taken to be meaningless in most cases: ranking only
needs a final ordering of the documents. The scenario presented here implies a
more complex modelling approach, as the probabilities to be estimated should
combine well with each other (considering smoothed estimations).

4.1 Query Likelihood

In Equations (3), (4), and (6), we presented our pruning criterion, which consists
of the combination of three probabilities and a threshold. The first of these
probabilities is p(Q |D, r), which is the probability of a document generating a
given query. This probability corresponds to the well-known query likelihood
probability, a fundamental part of the language modelling approach [Zhai and
Lafferty 2004].

The query likelihood probability refers to the probability of a document gen-
erating a given term qi. This probability has to be smoothed for being of real
use in retrieval. Some well known smoothing methods are Dirichlet prior and
the linear interpolation scheme (or Jelinek-Mercer (JM) smoothing) [Zhai and
Lafferty 2004]. The performance of smoothing methods is dependent on some
particular parameters. In this work we chose JM smoothing, because of its
relative stability for short queries. Hence, for every term qi, p(Q |D, r) is ap-
proximated by p(qi|D), as follows:

p(qi|D) = (1 − λ)pmle(qi|D) + λ p(qi|C), λ ∈ [0, 1], (8)

where pmle is the maximum likelihood estimator for a term qi, given a document
D, pmle(qi|d ) = tf(qi ,d )

|D| , t f is the frequency of a term in a document, |D| =∑
wi∈D tf(wi, D) (the document length), and λ is a parameter (we set λ to 0.6 in

every collection; see Section 5.1).
p(qi|C) is also the maximum likelihood estimator for a term qi, given a col-

lection C:

p(qi|C) = count(qi , C)∑
q j ∈C count(qj , C)

, (9)

where count(qi, C) is the number of occurrences of qi in collection C.
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In language models, the query likelihood component represents the prob-
ability of a document model generating a string of text (query): p(Q |D). We
approximate the probability of the document generating the query given rele-
vance p(Q |D, r) with a simpler probability estimate. A possible alternative way
to tackle this issue is to use relevance-based language models [Lavrenko and
Croft 2001], which capture the notion of relevance in the language modelling
framework. In practice, relevance LMs can be seen as a way of incorporating
pseudo-relevance feedback to the language modelling approach in a principled
way. A relevance language model would incorporate estimation information
about terms related to the query (in our case, a single term). We did not follow
that path in this work, due to the ease of computing Equation (8), and the high
performance it brings on its own for pruning.

4.2 Document Prior

The second of these probabilities to be estimated is p(r|D), which is the prior
probability of relevance of a document, without any query information. This
corresponds to the likelihood that the document is relevant just by query-
independent evidence. A document prior can be based on certain knowledge
on the document structure or content, and this is currently an active area of
research. For instance, in Web IR, the typical sources for document priors in-
formation come from the link structure of Web pages [Kraaij et al. 2002], such
as the number of incoming links (in-links) and URL depth [Westerveld et al.
2002], or even the Pagerank [Brin and Page 1998] algorithm for ranking Web
documents according to their popularity [Upstill et al. 2003].

In most cases p(r|D) is taken to be uniform [Zhai and Lafferty 2004], there-
fore it has no effect on retrieval. However, there have been several studies where
the document length and link structure have been encoded as a prior probabil-
ity, for ad hoc and some non-ad-hoc tasks [Kraaij et al. 2002; Westerveld et al.
2002]. Overall, incorporating prior knowledge on documents into retrieval has
been particularly effective for Web retrieval, namely homepage and named page
finding, which refer to the retrieval of a single Web page.

Using the formulation presented here, even a uniform document prior would
have an effect on pruning. The only way of avoiding the prior effect over the
pruning algorithm is to set p(r|D) = p(r|D) so that the document prior compo-
nent cancels out.

We further explored the issue of estimating this probability and developed
a way for estimating the prior that worked well for every collection tested in
the pruning framework. In this work p(r|D) is estimated solely as a function of
document length and without any linkage structure information; therefore our
findings can also be applied to collections without link information.

The derivation of the length-based document prior is as follows. A previous
approach for deriving a prior based on document length, considered p(r|D) as a
linear function on the number of tokens of a document, as it is supposedly rem-
iniscent of the true shape of relevance [Singhal et al. 1996]. The work by Kraaij
et al. [2002] models the prior probability and document length dependency
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as a straight line, which tries to reflect this fact. The idea behind this prior
is that longer documents are more likely to embody more topics, and hence
should receive a higher prior probability. This agrees with the scope hypoth-
esis [Robertson and Walker 1994], which states that longer documents cover
more topics than shorter ones. On the other hand, the verbosity hypothesis
states that longer documents cover the same number of topics than shorter
ones, but they just use more words to do it. Some effective retrieval models
(like BM25 for instance) are also based on a parameterized combination of both
hypotheses. The detailed analysis of the true shape of relevance by Singhal et al.
[1996] shows that a sigmoid (pseudo-linear) function fits better the relevance
curve. This also allows for incorporating more elements into the modelling, as
shown next.

The hyperbolic tangent function is one of the hyperbolic transcendental func-
tions and a member of the sigmoid family. It has some nice properties we shall
exploit, like

—tanh(0) = 0;

—its inflexion point is x = 0;

—tanh(x) ∈ [−1, 1].

We employ linear transformations (in the form of ax + b) to adjust the hy-
perbolic tangent:

S(x) = a + b · tanh(c · (x − d )). (10)

It is possible to model the behavior of the sigmoid function S(x) using four
parameters, a, b, c, and d . In particular, the slope is controlled with c, d is the
inflexion point, and its bounding interval is determined by a and b.

These parameters should be adjusted in order to transform Equation (10)
depending on some particular assumptions, with the goal of assigning a prior
probability -S(x)- to every document based on its length -x-. A different set of
assumptions/intuitions on how the document prior probability should behave
may lead to interpretations different than the one presented next.

First of all, we take the center point to be the average document length X d .
This decision is in accord with the study by Singhal et al. [1996], where the
relation between document length and relevance followed a sigmoid function
centered over the mean document length. The shape of the curve implies there
are some bounding values x1, x2 in the x-axis (x1 < X d , x2 > X d ) that decide
for which document lengths the normalization is quasilinear and for which it is
quasiuniform. This would be the same as considering i f x < x1 ⇒ S(x) ≈ S(x1)
and i f x > x2 ⇒ S(x) ≈ S(x2).

Now, let S(x1) = lo and S(x2) = hi, and let μ be the point where we consider
the tangent reaches its maximum, tanh(μ) ≈ 1 (we take μ ≈ 2), then the curve
family results in:

p(r|D) ≈ S(dl) = hi − lo
2

· tanh
(

μ · (2dl − (x1 + x2))

x2 − x1

)
+ hi + lo

2
. (11)

ACM Transactions on Information Systems, Vol. 28, No. 1, Article 1, Publication date: January 2010.



1:12 • R. Blanco and A. Barreiro

Fig. 3. p(r|D) estimation using document lengths and a sigmoid function. X d is the average

document length, Sd the typical deviation over the document lengths, and hi, lo, and k are set to

constant values.
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Fig. 4. f (x) = x/(1 − x).

In particular, the sigmoid function is useful for bounding both the effect of the
prior on the pruning score and the range of document lengths the quasilinear
effect is applied to. In the following paragraphs we model the dependency of
p(r|D) by just using document length and with the shape of a sigmoid function
(Figure (3)).

First, we set the bounds [lo, hi] for the contribution of the document prior
probability to the right-hand side of Equation (7): p(r|D)/(1 − p(r|D)). Then,
we discuss the document length range that the linear effect will be applied to.

Figure 4 is a plot of the x/(1 − x) function. In our case, this function reflects
the contribution of the document prior to the pruning score (y-axis), given a
prior probability p(r|D) (x-axis). Moving to the right side of the x-axis implies a
greater contribution if that value is accepted as a probability estimation. After a
certain point, the growth of the function is exponential. Moving to the left side of
the x-axis results in a very low contribution to the pruning score (Equation (7)),
therefore its effect on discriminating between documents diminishes. In other
words, this plot reveals some interesting facts about the bounds of the prior:
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priors on the right of the x-axis will affect the pruning score more, and priors
on the left side will result in a uniform effect for all the documents, regardless
of their length. For these reasons, a reasonable interval for the prior (in this
particular application) could be around 0.5, as this is the point where the prior
contribution is 1: a prior value higher than 0.5 boosts the query-independent
score, while it is decreased by values lower than 0.5. In this work we narrow
the prior to the [0.4, 0.6] interval, taking a conservative approach.

Now that those bounds are set, we determine the document length range
that produces a quasilinear behavior of p(r|D) in the [lo, hi] ([0.4, 0.6]) range,
and asymptotical outside that interval. We relate that range to the standard
deviation of the document lengths over a whole collection. More precisely, Equa-
tion (12) determines which fraction of the documents are going to be affected
linearly, ruled by parameter k. Chebyshev’s inequality states that in any data
sample or probability distribution, nearly all the values are close to the mean
value, and it provides a quantitative description of“nearly all” and “close to” in
terms of the typical deviation. More formally, let X be a random variable with
mean X and variance S2, then

P (|X − X | > k · S) ≤ 1

k2
. (12)

Figure 3 is the sigmoid function, as presented here: it grows linearly between
a certain range, and it is possible to determine bounds for both axes. In the
figure, hi and lo stand respectively for the maximum and minimum values of
the prior estimation p(r|D): 0.6 and 0.4, decided after the illustration of its
effect on the pruning score, shown in Figure 4. The document length range
affected is set by an interval around the average document length X d , with the
help of Equation (12). The size of the interval is 2k times the typical deviation
Sd over the document lengths: [X d − kSd , X d + kSd ]. Thus, x1 = X d − kSd ,
x2 = X d + kSd and k is set empirically to 2.

Substituting those values in Equation (11), the final equation governing the
S-shaped document prior depends on the document length dl in the following
way:

p(r|D) ≈ S(dl ) = 1

2
+ tanh

(
dl − X d

Sd

)
· 1

10
. (13)

It is worth pointing out that this prior can be tweaked in many different
ways, and some parameters can be tuned for specific collections, and thus it is
possible to increase its overall performance. However, in all the experimental
results presented in Section 5 the prior has been calculated with Equation (13),
which is only dependent on collection statistics, for every collection tested.

4.3 Probability of a Term Given Nonrelevance

The last component needed to estimate in Equation (7) is the probability of see-
ing a term given nonrelevance p(qi|r). This is the only document-independent
probability of our technique. Even though the pruning algorithm sets the
same pruning threshold for every term, this probability biases the amount of
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pruning towards some terms more than others. Recall Equation (6): document-
dependent probabilities combined should score less than ε · p(qi|r) to be pruned.
In this particular case, this probability determines how likely the term is to be
pruned, when compared to document-dependent factors (query likelihood and
document prior).

Traditional estimations of this probability [Croft and Harper 1979] consider
the whole document set as nonrelevant to a query term, and so the probability
of a term being nonrelevant would be:

p(qi|r) = df(qi)

N
, (14)

where d f (qi) is the number of documents qi appears in, and N the total num-
ber of documents in the collection. This is the well-known inverse document
frequency (idf) [Robertson and Sparck-Jones 1976] formulation, which is an
integral part of many retrieval models. Equation (14) turned out to be an over-
estimation for p(qi|r), and of little use in the formulation derived in this work.
The estimation is too aggressive: it is higher than the two document-dependent
probabilities combined, if they are estimated as presented in previous sections.
The consequence is that even with a threshold ε of 1, the majority of the inverted
file would be pruned.

Instead of deriving an alternative formulation for idf (like smoothing it, for
instance), we follow a different path and consider the collection as a model of
nonrelevance. In this case, the probability of a term being nonrelevant is mod-
elled according to the probability of the collection language model of generating
the term. The collection language model is the maximum likelihood estimator
(MLE) of the probability of seeing a term in a collection. It is worth pointing
out that the role of this probability for LMs is considered equivalent to the role
of idf for classical retrieval models [Zhai and Lafferty 2004]; if it is calculated
using Equation (9), where the event space is the total number of occurrences of
a term in the collection, the probability of nonrelevance of a term would be to
consider every occurrence in the corpus as nonrelevant (just like idf considers
every document as nonrelevant). We refine this probability next.

p(qi|r) = p(qi|C). (15)

If idf is seen as a probability, it refers to the random event of selecting a single
document that contains the term qi (the total event space is determined by the
documents). On the other hand, for p(qi|C), the event is to select a random term
occurrence that happens to be qi (the total event space is determined by the
total term occurrences).

This estimation turns out to be useful in the framework presented here,
and gives good practical results. This good behavior is likely due to the query
likelihood component already incorporating the collection MLE p(qi|C) into its
model.

However, it is still appealing to relate the nonrelevance probability with doc-
ument frequency. In particular, the probability should increase monotonically
with respect to document frequency, like in the case of idf. How we incorporated
this property into the estimation is presented next.
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Fig. 5. p(qi |C) and estimated exponential fit (least-square), LATimes collection.

The points in Figure 5 represent the individual p(qi|C) values for every term
in the LATimes collection. The probabilities (y-axis) are plotted against the
term document frequency (x-axis). Data reveals that the probability grows ex-
ponentially after a certain document frequency level.

In order to correlate p(qi|C) with idf, we take the straight approximation of
Equation (15) and fit the data to an exponential function with the form:

p(qi|r) = a · eb·x . (16)

In this case x corresponds to the document frequency of term qi. We employ the
well-known least squares technique in order to fit the data. It is the simplest
form of regression, which provides a solution to the problem of how to find the
best curve matching a given set of points, in our case p(qi|C). The procedure
tries to minimize the sum of the squares of the residuals of the points of the
curve, adjusting a and b iteratively.

For providing an estimate for the first iteration, we opted to calculate the
initial values for the a and b parameters in Equation (16) by forcing the curve
to pass through two points:

—the maximum value in the y-axis;

—(xav, yav), where xav is the average value on the x-axis, and yav is the average
y-value on the [xav − 10000, xav + 10000] interval. The choice of the width
of this interval does not greatly affect the final parameter estimation and
consequently, the shape of the exponential curve.

The least squares algorithm finds the best-fitting curve to a given set of
points by minimizing the sum of the squares of the residuals (SSR) of the point
from the curve. At each step (iteration) the procedure calculates the SSR, and
then the parameter values for the next iteration. The process continues until
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a stopping criterion is met: either the relative change in SSR is less than a
convergence threshold (10−5 in this case), or it reaches a maximum number of
iterations (100).

This fit is accurate and adequate for terms with low document frequency, but
it is not completely adequate for some of the high document frequency terms,
which appear at the rightmost extreme of Figure 5. The points below the solid
line representing the fit are a few high-frequency terms, which only occur a
few times in each document (tag words like column or page in a journalistic-
domain collection or http in a Web collection); and the fit behaves well, boosting
its probability of nonrelevance. On the other hand, the fit is not adequate for
terms that appear several times in many documents. In IR such terms are
called “stopwords” and are usually excluded from most computations, because
they are of little significance to the final ranking of an IR system. Blanco and
Barreiro [2007a] present an aggressive variation of Carmel’s method, which
prunes every term with document frequency df > N/2. This modification is
simple and worked well in some test collections (retrieval-wise). In this work
we follow a conservative approach and maintain the fit for terms with df < N/2
and rule out from the index the rest of them, that is equivalent to automatically
assigning them a high probability of nonrelevance.

In this section we proposed one of several possible estimations for p(qi|r).
It is possible to estimate this probability in other ways that use terms-specific
information that is also document-independent. In Section 6 we assess the effect
of removing stopwords for different pruning techniques.

5. EXPERIMENTS AND RESULTS

This section describes the experimental evaluation of our proposed probabilistic
pruning method. The objective is to assess the trade-off between pruning level
and retrieval precision. For detailed effects on the retrieval efficiency of pruning
algorithms see Büttcher and Clarke [2006] and Carmel et al. [2001b].

This section is structured as follows: first we describe the experimental set-
tings. Then, we define a baseline starting from Carmel’s method and following
some design considerations pointed out in Blanco and Barreiro [2007a]. Next,
we compare the baseline and the proposed pruning model with three differ-
ent retrieval models: TF-IDF (the model originally employed in Carmel et al.
[2001b]), BM25 with standard and optimized settings (to avoid bias depending
on parameter tuning) for every collection, and finally a parameter-free model
based on divergence from randomness: DLHH [Amati 2006]

5.1 Experimental Settings

Retrieval performance has been assessed on five different TREC collections,
which exhibit different characteristics. LATimes and TREC Disks 4 and 5
contain documents of single sources of news-press media, assumed to be fairly
homogeneous. On the contrary, WT2G, WT10G, and .GOV contain crawls of
Web pages, which come from a heterogeneous source (the World Wide Web).
Overall, the collections vary in content, size, and statistics, so they form a
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Table I. Collections and Topics

Collection Size Terms Documents Topics Task

LATimes 450M 189,790 131,896 401–450 ad hoc

WT2G 2G 1,002,586 247,491 401–450 ad hoc

Disks 4&5 1.9G 521,469 528,155 301–450 + 601–700 ad hoc

WT10G 10G 3,140,837 1,692,096 451–550 ad hoc

.GOV 18.1G 2,788,457 1,247,753 1–225 NP & HP + TD

wide-ranged testbed for the pruning techniques. Evaluation has been done in
two different ways:

—standard ad hoc retrieval with short and long queries;

—mixed Web track 2004 topics: topic distillation and homepage and namepage
finding tasks.

Both types of experiments employ well-known TREC-style evaluation. This
means that every collection has an associated set of queries and a human-
assessed set of relevance judgements, relating which documents are relevant
to those queries; this set of judgements is not complete across the whole set of
documents. Standard TREC queries are formed of three types of fields, each
describing the topic in more detail, namely title, description, and narrative. In
this work we experiment with two types of queries for the ad hoc task: short
(title only) and long (title and description). The Web track 2004 is formed of
225 short queries with different tasks (75 each) [Craswell and Hawking 2004]:
homepage finding (the query is the name of a homepage Web site the user wants
to reach), named page finding (the query is the name of a non-homepage Web
site the user wants to reach) and topic distillation (queries describe general
topics).

Retrieval performance is measured with mean average precision (MAP) and
precision at 10 (P@10) [Baeza-Yates and Ribeiro-Neto 1999]. The latter mea-
sures the number of relevant documents retrieved from the top 10. This is
generalizable to any P@k value. Let P (Rk) be the precision obtained when Rk

relevant documents have been retrieved. Then, MAP averages P (Rk) over all
the recall levels [Baeza-Yates and Ribeiro-Neto 1999].

The experimentation is designed in order to assess the effect of the pruning in
retrieval. Results are reported for MAP and P@10 with respect to the percentage
of postings kept in the inverted file (pruning level). Measuring the percentage
of posting entries removed from the index turns out to be a good indicator of
both final disk space savings in a compressed index and query performance
gains [Blanco and Barreiro 2007b].

The evaluation is as follows. Given a collection, a judged query set and a
retrieval model, first we evaluate the original unpruned index using the queries
and relevance judgements. Then, we produce two sets of pruned indexes, one
using Carmel’s method (by varying the ε parameter) and the other with PRP-
based pruning (varying the threshold). Every index in those sets is evaluated
using the same conditions as the original unpruned index.

We employ three different retrieval models for the query-document ranking,
two probabilistic and one vector-space based, which are presented next.
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Weighting functions usually normalize the document length contribution to
the final score by a factor that can be controlled by a parameter. Other models
are built on some assumptions that permit surpassing the parameter depen-
dency, and so they are parameter-free; for instance some models found in the
DFR framework [Amati and van Rijsbergen 2002].

For each of the equations, we employ the following notation: Q is a query
that contains |Q | terms {q1, q2, . . . , q|Q |}, dl is the document length, avgdl the
average document length in the collection, N the number of documents in a
collection, tf the term frequency inside the document, avgtf the average term
frequency in the document, TF the term frequency in the collection, df the
document frequency of the term and qtf the term frequency in the query.

The first matching function considered, Equation (17), is a normalized TF-IDF

variant as implemented in the SMART system [Buckley et al. 1995]:

sim(q, d ) =
|Q |∑
i=1

log(1+t f )
log(1+avgtf) · log N

df√
(1 − slope) · avgdl + slope · dl

. (17)

This matching function is based on the vector-space retrieval
model by Salton et al. [1975]. The document-length normalization√

(1 − slope) · avgdl + slope · dl normalizes document length so that there
is no bias for longer documents. We use the pivoted normalization [Singhal
et al. 1996], and the default value for slope is 0.2 [Buckley et al. 1995]. We use
this function because it was the one employed in the first evaluation in Carmel
et al. [2001b] as a core part of the JURU search engine Carmel et al. [2001a].

The second matching function is the probabilistic Okapi’s Best Match25
(BM25) [Robertson et al. 1995], Equation (18). BM25 has been shown to be
robust and stable in many IR studies.

sim(q, d ) =
|Q |∑
i=1

log
N − df + 0.5

df + 0.5

(k1 + 1) · t f
K + t f

(k3 + 1)qtf
k3 + qtf

, (18)

where K = k1·((1−b) + b· dl
avgdl ). BM25 includes three parameters, namely k1, k3,

and b. Some studies [Chowdhury et al. 2002; He and Ounis 2003], have shown
that both k1 and k3 have little impact on retrieval performance compared to the b
parameter. We set k1 and k3 to the constant values recommended in Robertson
et al. [1995] (k1 = 1.2, k3 = 1000). The b parameter controls the document
length normalization factor. The experiments have been carried out using two
different settings:

—using the recommended value for b = 0.75 [Robertson et al. 1995];

—optimizing the value for b with 1D exploration (b ∈ [0 . . . 1], b = 0.1, 0.2...).
For every pruning level, we optimize b for MAP and P@10, and we choose the
values of b that maximize both measures.

DLHH [Amati 2006] is a recent probabilistic-based weighting model based
on measuring the divergence between a random draw of occurrences of terms
in documents and the actual distribution, Equation (19). It is based upon
a hypergeometrical model, which embodies two probabilities: the relative
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within-document term frequency and the entire collection term frequency. This
model is useful because it is parameter-free, and therefore tuning is not neces-
sary for obtaining high retrieval performance. We want to assess whether re-
trieval performance can benefit from pruning or not—if discarding information
from an inverted file can result in increased retrieval performance. Parameter-
free models reduce their number of variables and factors to take into account
such a validation, and thus their convenience for this particular purpose.

sim(q, d ) =
|Q |∑
i=1

log

(
1 + 1

tf

)
· tf · log

(
tf + avgdl

dl
· N

T F

)
+

1

2
· log

(
2π · tf ·

(
1 − tf

dl

))
. (19)

The parameter settings for the estimations of our proposed pruning algo-
rithm described in Section 3 are set to the following values.

—To calculate the query-likelihood component p(qi|D, r), Section 4.1, λ in Equa-
tion (8) was set to 0.6. Preliminary experiments on some test collections
demonstrated that setting this value performs well, although better perfor-
mance can be obtained if it is tuned for a given dataset. However, we decided
to skip any further tuning of λ in order to prove that the technique is robust.

—The document prior component p(r|D), Section 4.2, is estimated by document
length using Equation (13).

—The probability of a term given nonrelevance p(qi|r) is calculated by Equa-
tion (15) and interpolated with the algorithm described in Section 4.3. We
effectively discard terms for which df > N/2 by assigning a high p(qi|r)
value.

It is possible to obtain better results by tuning those parameters sepa-
rately for each collection, but we omit those experiments to assess the behav-
ior of the method using a default setup. The cost-associated threshold for the
probabilistic-based pruning was initially set to 1. In the following figures the
first point corresponds to the pruning level obtained with ε = 1. The subsequent
pruning levels were obtained by increasing that value.

Regarding the settings for Carmel’s method, k was set to 10, as it is beneficial
for P@10 [Blanco and Barreiro 2007a], and the subsequent pruning levels were
obtained by modifying ε.

Next, we present a set of six different experiments. The first (Section 5.2)
defines the baseline from a minor variant of Carmel’s method, that considers
the update of the statistics in the pruned index. In Section 5.3, we repeat the
experiments presented in Carmel et al. [2001b] by using pivoted TF-IDF. In Sec-
tions 5.4 and 5.5, we focus on a high-performing parameterized model (BM25)
without and with parameter tuning. In Section 5.6 we repeat the experiments
using a parameter-free model (DLHH). Section 5.7 summarizes the results ob-
tained by setting the threshold ε to a default value (1). Finally, Section 5.8 tests
our proposed pruning method on a bigger collection (.GOV), with a competitive
model (BM25) on optimized settings, and using non-ad-hoc queries. The aim
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is to see the effect of our technique on a different environment than ad hoc
retrieval.

In the following sections, we present the results for the WT10G collection
using MAP, in several figures. We provide figures for P@10 for pivoted TF-IDF re-
sults only, to keep the number of graphs low and because when a set of relevance
judgements has already been created MAP is a more reliable effectiveness mea-
sure than P@10 [Sanderson and Zobel 2005]. In any case, those results with
P@10 are reported to assess the good behavior of the pruning techniques with
respect to that metric. Due to the high number of experiments and results, we
present in an appendix the results for Disks 4 and 5, and results using an op-
timized setting for BM25 (Section 5.5) for the WT2G and LATimes collections,
to avoid further graph overload. We report that those results confirm that the
robustness of the PRP-based pruning technique is independent of the dataset
employed.

5.2 Updating Document Lengths

The original formulation of the pruning algorithm described in Carmel et al.
[2001b] is ruled by some theoretical guarantees. Starting from that method we
define a baseline by improving its performance with a slight modification. The
algorithm aims at keeping the search engine’s top returned results, whether
the original or the pruned inverted file is used. However, there are some re-
strictions that need to be fulfilled in order for these properties to hold. The
score of the matching function should be the same before and after pruning in
order to ensure the ranking-preserving theoretical guarantees. Pruning affects
collection statistics (term document frequencies most notably) and document
sizes (which should remain the same in order to preserve the aforementioned
guarantees).

On the contrary, our belief is that collection and document statistics should
be updated after pruning. Weighting functions are modelled under some as-
sumptions over those statistics, which might be breaking up if the information
contained in the index does not reflect the statistics in use. For instance, one
document might be pruned much more than others (with many nonrelevant
keywords), and not updating its document length would imply not retrieving it
even if the remaining terms match some query. Next, we present a simple exper-
iment comparing the performance of Carmel’s pruning method when updating
document lengths and when not updating them.

Figure 6 shows that updating the collection statistics in every pruning
method brings better results, and thus a stronger baseline, for both short and
long queries. Note that the top-k similarity preserving condition is therefore no
longer guaranteed, but it performs better, with respect to MAP and P@10.

5.3 PRP-Based Pruning and Pivoted tf-idf Retrieval

The first batch of experiments mimicked the settings of the experiments re-
ported in the first static pruning paper [Carmel et al. 2001b]. This implies using
pivoted TF-IDF (Equation (17)) for retrieval, with slope set to 0.2. The pruning
scores for Carmel’s method were derived from pivoted TF-IDF as well (as implied
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Fig. 6. Carmel method, WT2G, MAP, and P@10 for short(left) and long(right) queries BM25 re-

trieval updating and not-updating the document lengths.
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Fig. 7. PRP vs Carmel, short(left) and long (right) queries, WT10G, TF-IDF.

from the algorithm). As a consequence of the results presented in Section 5.2
our implementation updates the document lengths and the rest of the collection
statistics, therefore implying a higher baseline for the comparison.

These results are presented in Figure 7. The PRP-pruning with this partic-
ular retrieval model outperforms the baseline for MAP and P@10 at all levels
and for both query lengths, in the WT10G collection. Overall, the original pre-
cision values can be retained up to a 40–50% pruning level, and at earlier levels
PRP-based pruning is able to improve them.

ACM Transactions on Information Systems, Vol. 28, No. 1, Article 1, Publication date: January 2010.



1:22 • R. Blanco and A. Barreiro

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0  10  20  30  40  50  60

M
A

P

Pruning

carmel
prp

 0.18
 0.185
 0.19

 0.195
 0.2

 0.205
 0.21

 0.215
 0.22

 0.225

 0  10  20  30  40  50  60

M
A

P

Pruning

carmel
prp

Fig. 8. PRP vs Carmel. BM25 retrieval with b = 0.75, short(left) and long (right) queries, WT10G.
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Fig. 9. PRP vs Carmel. BM25 retrieval with the best b, short(left) and long (right) queries, WT10G.

5.4 PRP-Based Pruning and BM25 Retrieval (Recommended Settings)

This second batch of experiments make use of BM25 [Robertson et al. 1995], a
scoring function that performs better than pivoted TF-IDF in ordinary retrieval
tasks, in most cases, and regardless of the metric employed for measuring per-
formance. First, we set the b parameter to its recommended value (b = 0.75) to
see how the pruning algorithms work in a default-settings scenario.

Figure 8 presents the result in the WT10G collection. Results are very con-
sistent across collections. The PRP-based pruning performs as well as, or out-
performs (in most cases the latter) the baseline. Overall, original precision can
be increased for every collection, and the method behaves well for both short
and long queries.

5.5 PRP-Based Pruning and BM25 Retrieval (Optimized Settings)

In order to rule out any possible bias introduced by the document length normal-
ization effect, this batch of experiments optimizes the value of the b parameter
in the BM25 formula, for every pruned index. This means that the MAP and
P@10 results obtained are the best that the BM25 scoring function can achieve
in every pruning level (for both the baseline and PRP-based pruning methods).
The b value used for retrieval is optimized for both MAP and P@10. The b value
Carmel’s method uses for pruning was set to 0.75.

Results are shown in Figure 9. In this case, the probabilistic pruning out-
performs the baseline in terms of MAP, and this effect is most likely to be
independent of the normalization effect. Results are consistent for MAP (in most
cases PRP-based pruning works better) across collections. With respect to P@10
our technique works clearly better for the WT10G collection; in other collections
the behavior is not so clear: in disks 4 and 5 (Figure 20, Appendix A) the PRP-
based method outperforms the baseline for short queries and long queries at
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Fig. 10. PRP vs Carmel. DLHH retrieval, short(left) and long (right) queries, WT10G.

early pruning levels (<40%). In the WT2G collection (Figure 19, Appendix A)
our technique works better than the baseline for short queries and worse for
long queries. In the LATimes collection (Figure 18, Appendix A) it works better
with short queries and high pruning levels.

5.6 Pruning Using a Parameter-Free Retrieval Model

In previous experiments we showed that our new pruning algorithm performs
well with both TF-IDF and BM25, that these results are robust across different
collections, and that the performance of our pruning technique is independent of
a particular choice of parameters. In order to furthermore assess this last prop-
erty, we focus our attention into a completely parameter-free retrieval model.
BM25 and pivoted TF-IDF have parameters controlling the amount of normal-
ization assigned to long documents. Even when we tuned those parameters for
BM25 in Section 5.5, it is not totally clear whether pruning is discarding irrele-
vant (or noisy) data from the inverted file, or it is altering the collection statistics
in a way that they might be more suitable for a particular weighting function.
As well, it would be interesting to see how the pruning behaves when using
a third matching function, as our pruning algorithm is score-independent (un-
like the baseline). We employed DLHH [Amati 2006], which is a parameter-free
matching function derived from the DFR framework [Amati and van Rijsbergen
2002].

Figure 10 presents the last batch of experiments. Results report that the
parameter-free model benefits from pruning in every collection and with long
and short queries. Hence, this experiment gives empirical support for the claim
that pruning can bring beneficial parameter-independent effects in retrieval.
It is particularly important to remark that the probabilistic pruning algorithm
is able to improve the retrieval performance, even at high pruning levels, a fact
that also occurred in many of the previous experiments.

5.7 Pruning with a Default Threshold

Table II summarizes the values obtained with the threshold set to ε = 1 for the
PRP-based pruning algorithm, as recommended in Section 3.1, in the WT10G
collection. In this case, the pruning level resulted in ≈ 14%, and the resulting
indexes produce gains in retrieval performance, despite the retrieval method
employed, for both MAP and P@10. This supports the claim that controlled
pruning can be beneficial for both efficiency and effectiveness of IR systems.

ACM Transactions on Information Systems, Vol. 28, No. 1, Article 1, Publication date: January 2010.



1:24 • R. Blanco and A. Barreiro

Table II. WT10G Collection. MAP and P@10 Values Obtained by Setting the Threshold ε to 1

Using PRP-Based Pruning, Compared to Those of an Unpruned Index. The Pruning Level

is ≈ 14%

WT10G

Short queries Long queries

Original Pruned Original Pruned

MAP P@10 MAP P@10 MAP P@10 MAP P@10

TF-IDF 0.1678 0.2918 0.1744 0.2939 0.1868 0.3480 0.1992 0.3560

BM25 b = 0.75 0.1764 0.2847 0.1779 0.2888 0.2207 0.3560 0.2231 0.3650

BM25 best b 0.1949 0.3112 0.1982 0.3122 0.2345 0.3650 0.2372 0.3720

DLHH 0.1532 0.2561 0.1581 0.2663 0.2015 0.3460 0.2032 0.3530
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Fig. 11. .GOV collection, namepage-homepage finding + topic distillation. BM25 retrieval with

the best b.

5.8 Experiments with the .GOV Collection

In this batch of experiments, we ran both pruning algorithms on the .GOV, a
larger Web collection (actually WT10G has more documents, although they are
shorter). The reason for these experiments is that we are performing retrieval
with queries of a different nature, namely page finding and topic distillation.
We did not employ any kind of query detection mechanism or link information
to obtain the scores, just a raw BM25 (with the b parameter tuned like in
Section 5.5). The topic set employed was the one developed for the TREC Web
track 2004. It contains a mix between three types of queries: home page finding,
named page finding, and topic distillation.

Figure 11 presents the results for both pruning regimes. The probabilistic
pruning outperforms the baseline for most of the pruning levels, although this
time the original MAP value could not be improved.

6. DISCUSSION

The final formulation for the PRP-based pruning presented in this article
(Equation 7) could also be seen as a term-weighting function derived in a prob-
abilistic fashion, much in the same way as language models. PRP pruning can
therefore be stated as a uniform pruning method, using the same cut-off value
for pruning every posting list. However, the benefits of this particular formula-
tion are clear: if we run Carmel’s method with either BM25 (pure probabilistic)
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or TF-IDF, in every situation the PRP-pruned indexes behave better retrieval-
wise (using the same scoring function for ranking). It is also important to stress
that the pruning criterion (to decide which posting entries we keep/rule out) is
stated in a completely different way than other pruning techniques.

The probabilities presented in Section 4 can be split into term-dependent
and term-independent. The most discriminative factor in the derivation is
the query likelihood probability. The effect of the document prior (term-
independent probability), is to adjust the effect of the estimation for every
document. For a given term and a fixed term frequency, the query-likelihood
probability, p(qi|D, r) is penalized for longer documents (considering smooth-
ing, it is a softened maximum-likelihood). When the p(r|D)/(1 − p(r|D))
component is combined with the query likelihood, this value is softened
for longer documents, so it is easier for the term to score below a certain
threshold.

Term-dependent probabilities, p(qi|D, r) and p(qi|r), are the most influential
elements for deciding whether or not the pruning algorithm is going to rule out
a term-document entry from the index.

We are assuming that the estimations for the query likelihood and document
prior are suitable for pruning purposes. This is supported by the fact that the
smoothing method (linear interpolation) chosen for p(qi|D, r) is a well-known
technique for LM-based retrieval, and the document prior is beneficial for
retrieval.

The PRP-based pruning algorithm, as detailed in Section 4 involves a num-
ber of parameters: λ for the query likehood component (Equation (8)), average
X d and typical deviation Sd over the document lengths for the document prior
(Equation (13)), and the result of the fit, Equation 16, (which uses term fre-
quencies) and the number of documents N for the probability of a term given
nonrelevance. Something remarkable is that, except for the parameter λ, all
these parameters are derived from collection statistics. After some preliminary
tests, we decided to empirically set λ to 0.6, for every experiment and every
collection. Employing these settings implies that for all the runs there were no
collection-dependent tuned parameters.

We performed an additional experiment in order to assess the robustness
of the method with respect to the tunable parameters of scoring functions. We
selected the WT10G collection and ran the PRP-based pruning algorithm with
BM25, and for every pruned index we measured the performance using MAP for
10 different values of the b parameter. Then, we selected the median value for
every pruning level and plotted both the median and best values in Figure 12.
From the results obtained, it is clear that the median performance is close to
the optimum, and therefore, we can conclude that the resulting indexes are
robust for retrieval and not obtained just by performing collection-dependent
parameter tuning. This statement is true for both the parameters involved in
the pruning method and scoring function.

In Section 5 we compared our pruning method against a baseline of Carmel’s
pruning and also with respect to a full index (0% pruning). Our pruning method
removed terms with df > N/2, however those stopwords were not removed from
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Fig. 12. BM25 retrieval median and optimal performance for all the b values employed in Sec-

tion 5.5, short (left) and long (right) queries), WT10G collection.
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Fig. 13. PRP vs Carmel, short(left) and long (right) queries, Disks 4&5 BM25 with b = 0.75 (top)

and with the best b (bottom).

the full index nor from Carmel’s pruned index. Because PRP-based pruning is
effectively automatically removing stopwords, it can be argued that its retrieval
superiority over Carmel’s method could be at least partially due to this fact. To
investigate this point further, we performed an additional experiment with
Disks 4 and 5 (Figure 13) and WT10G (Figure 14) collections. We comment
next on the results for the TREC Disks 4 and 5 collection because it has the
largest number of topics (250) and also the retrieval performance gains at early
pruning levels (<40%) are very noticeable.

We compared both pruning methods by removing exactly the same terms
(those with df > N/2) at an initial pruning level and ran both algorithms
under those conditions. The first point on Carmel’s method line in Figure 13
(≈ 9%) is due just to the removal of those terms; the effect of pruning with ε = 1
in PRP-based pruning (see Section 5.7) includes other posting entries removed
in the index.

Removing those high-frequency terms improves Carmel’s method perfor-
mance and makes differences among both pruning techniques less noticeable.
In any case PRP pruning still behaves better, specially with short queries.
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Fig. 14. PRP vs Carmel, short(left) and long (right) queries, WT10G BM25 with b = 0.75 (top) and

with the best b (bottom).

We focus now on the number of removed query terms. We checked the number
of pruned stopwords at every pruning level from the total number of query
terms and total number of different query terms. Pruning and retrieving short
queries using BM25 causes a noticeable improvement in retrieval precision at
low pruning levels (see Figure 13). However, the proportion of the query terms’
inverted lists pruned under the different methods is a very low percentage of all
the query terms and it is constant through all the pruning levels. For pruning
levels up to 80%, PRP-based pruning rules out 7 unique query terms out of 538
unique terms appearing in the 250 queries (less than 1.5%). If we consider all
nonunique query terms, the number of removed terms is 24 out of 691 (less
than 1.5%).

Any method that discards whole terms entries from the index has the risk
of not being able to find any documents for a given query (the query “the who”
for instance). If this is an issue, an elegant solution for keeping information
on pruned terms could be using a two-tiered index [Ntoulas and Cho 2007]: a
first layer normally pruned index and a secondary layer index that contains the
pruned terms’ information. The first index can be used for normal access and
answering most of the queries whereas the secondary index would be accessed
only if necessary.

Finally, we conducted an experiment in order to measure the similarity be-
tween the top 10 results with respect to the original index, varying the pruning
levels. We employed a variation of Kendall’s τ statistic [Kendall 1938] to com-
pare the correlation of two ranked lists. This variation was presented by Fagin
et al. [2003] and addresses the case of ranked lists that may contain differ-
ent elements. This variation was also employed in the original evaluation of
Carmel’s method ([Carmel et al. 2001b]). Figure 15 shows the performance of
both pruning methods in the WT10G collection, using short and long queries
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Fig. 15. Kendall’s τ correlation on the top 10 results. PRP vs Carmel, short(left) and long (right)

queries, WT10G , BM25.

and BM25 for retrieval. A τ measure of 1 implies a perfect one-to-one correla-
tion between the top-k results, whereas 0 implies a total disagreement between
the ranked lists.

The high similarity between the top 10 lists for moderate pruning levels
supports the claim that for moderate pruning levels, the top 10 results of the
pruned indices are very similar to the top 10 results of the original index.
This holds both for PRP-based pruning and Carmel’s method. It is remarkable
that although the original design of PRP-based pruning was not guided by the
principle of maintaining the top-k results, the final outcome of the method is
even better than Carmel’s.

7. CONCLUSIONS AND FUTURE WORK

The probability ranking principle is the foundation of the probabilistic model
of IR, which retrieves documents relevant to a query (see Section 3.2). The fun-
damental idea behind this work is to introduce this principle for static pruning
and not for the estimation of relevance. In this work we presented a novel in-
dex pruning algorithm based on the same assumptions as probabilistic retrieval
models. Contrary to other pruning approaches, the technique presented here
does not aim at maintaining the top results returned by an IR system. Instead,
it defines a pruning criterion that relies on the goodness of the estimation of
three probabilities.

In order to assess the performance of PRP-based pruning algorithm, we com-
pared it to an enhanced version of Carmel et al.’s algorithm, using standard
TREC datasets with queries of different lengths, and three different retrieval
models with both default and optimized settings. The experiments showed that
our technique outperforms the baseline in terms of MAP and performs at least
as well in terms of P@10. Results are consistent across five different collec-
tions, 450 ad hoc queries of two different lengths, 225 topic distillation, and
named page finding queries, and three retrieval models. Furthermore, a set
of experiments allowed us to conclude that the outcome of the pruning al-
gorithm does not depend on a particular parameter tuning of the retrieval
model.

The fact that static pruning may improve retrieval precision up to cer-
tain pruning levels, may indicate a weakness of the scoring function. It is
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possible to consider that a perfect matching function could leave the index
as it is and prune it dynamically, but with high online query processing costs
(this may be more critical for pruning regimes that operate in a document
by document fashion). This can be critical in high-demand environments, or
in systems deployed on low-memory devices. Furthermore, this could open a
future line of work for retrieval modeling inspired by the results in pruning
performance.

One of the weaknesses of the pruning method presented in this article is
that it does not guarantee preserving the top-k results when using the original
unpruned index. This is also the case for the original implementation of Carmel
et al’s pruning algorithm, which shifts the scores of posting entries and that
was presented in Section 2, and also for the improved baseline presented in
Section 5.2. However, if the estimation of the probabilities presented in Sec-
tion 4 were ideal, then PRP-based pruning would bring the optimum amount
of pruning for a given index. Therefore, as has also been stated experimentally,
the precision values can be improved at moderate pruning levels. We further
showed experimentally that PRP-based pruning behaves better than Carmel’s
method at maintaing the top-k results.

The approach proposed in this work follows a term-by-term mechanism, and
it needs collection statistics that can only be obtained after indexing. For that
reason, the pruning algorithm would operate in two different phases. This is a
drawback with respect to the approach described in Büttcher and Clarke [2006]
where this problem is solved by inspecting a subcollection and extrapolating
the statistics found to the whole collection, and hence pruning can be done
while indexing. This could be a future line of research. Forthcoming work could
try to dig deeper into the nature and estimation of the probabilities or try to
incorporate term cooccurrence into the pruning process in a formal way and
also to assign different nonconstant costs per document in Equation (2). For
instance, pruning reputably home-pages would imply higher costs than other
kinds of documents.

An immediate future line of research is to design and perform suitable sta-
tistical tests for comparing different pruning methods. Note that traditional
significance tests employed in retrieval pose a number of problems in this sce-
nario. First of all, pruning algorithms do not produce a specific pruning level:
both operate with a threshold, and the exact amount of pruning cannot be de-
termined in advance. This makes difficult the comparison at the same pruning
level between different methods or collections; it would be necessary to perform
a trial-and-error procedure until both methods produce an index with exactly
the same amount of pruning. This would allow for comparing single pruning
levels. For obtaining a single value over all the pruning levels, a first step could
be to interpolate the pruning level and compare the curves produced by the
pruning methods on the basis of any variable. This could open the way for
standard significance tests.

Finally, as stated in Section 6 it could be possible to alter the p(qi|r) estima-
tion in such a way that it incorporates more refined stopword detection variants
that could lead to even higher benefits from pruning.
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APPENDIX A
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Fig. 16. PRP vs Carmel, short(left) and long (right) queries, Disks 4&5 , TF-IDF.
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Fig. 17. PRP vs Carmel. BM25 retrieval with b = 0.75, short(left) and long (right) queries,

Disks 4&5.
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Fig. 18. PRP vs Carmel. BM25 retrieval with the best b, short(left) and long (right) queries,

LATimes.
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Fig. 19. PRP vs Carmel. BM25 retrieval with the best b, short(left) and long (right) queries, WT2G.
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Fig. 20. PRP vs Carmel. BM25 retrieval with the best b, short(left) and long (right) queries,

Disks4&5.
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Fig. 21. PRP vs Carmel. DLHH retrieval, short(left) and long (right) queries, Disks4&5.
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