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Abstract—The ability to perceive and analyze terrain is a key
problem in mobile robot navigation. Terrain perception problems
arise in planetary robotics, agriculture, mining, and, of course,
self-driving cars. Here, we introduce the PTA (probabilistic
terrain analysis) algorithm for terrain classification with a fast-
moving robot platform. The PTA algorithm uses probabilistic
techniques to integrate range measurements over time, and relies
on efficient statistical tests for distinguishing drivable from non-
drivable terrain. By using probabilistic techniques, PTA is able
to accommodate severe errors in sensing, and identify obstacles
with nearly 100% accuracy at speeds of up to 35mph. The PTA
algorithm was an essential component in the DARPA Grand
Challenge, where it enabled our robot Stanley to traverse the
entire course in record time.

I. INTRODUCTION

The DARPA Grand Challenge required an autonomous

robot to traverse unrehearsed desert terrain at speeds in excess

of 30mph, and without any human intervention. Stanley, our

robotic vehicle described in this article, successfully tra-

versed 131.6 miles of unpaved desert terrain in just below

7 hours [14].

The focus of this article is the central software component

that enabled this vehicle to navigate and ultimately win this

historical race. Robotic autonomy has been available in air-

borne and submersed systems for multiple decades; however,

until recently no comparable auto-pilots existed for ground

vehicles. The reason why ground navigation is harder than

aerial or underwater navigation arises from the obstacles on

the ground. In the desert, obstacles include rocks, vegetation,

berms, ruts, cliffs, overhangs, man-made artifacts like aban-

doned vehicles, and so on. Perceiving and navigating in the

presence of obstacles is a key prerequisite for autonomous

ground navigation.

This article focuses on an algorithm for terrain perception

that has been the core enabling factor of our autonomous robot

shown in Fig. 1. This algorithm, called the probabilistic terrain

analysis (PTA) algorithm, processes range data acquired by a

single-axis laser scanner mounted horizontally on a moving

robotic platform. It constructs a 2D environment map suitable

for robotic driving. The map is generated online with less

than 300ms latency, making it suitable for autonomous ground

vehicle navigation.

The key difficulty addressed by the PTA algorithm arises

from the noise in pose estimation that naturally occurs in

a fast-moving ground rover. Even though our system uses

state-of-the-art inertial guidance (multiple GPS and inertial

sensors integrated using a nonlinear filter), the residual errors

are still large enough to render the point cloud unusable for

driving. PTA bases its terrain assessment on a probabilistic

model of the uncertainty in the data acquisition process. In

doing so, PTA can distinguish between actual obstacles and

“phantom” obstacles resulting from the uncertainty in the

inertial guidance system. The PTA algorithm also uses a

discriminative machine learning algorithm for acquiring the

parameters of this probabilistic model. This learning algorithm

makes it possible to optimally tune the algorithm using data

acquired within a few minutes of human driving.

Empirically, the PTA algorithm has been shown to be

accurate. In fact, we claim it was an essential innovation

in the design of the winning vehicle of the DARPA Grand

Challenge. Stanley traveled at speeds of up to 38mph over

extremely rugged, unpaved desert terrain. In this article, we

provide empirical evidence that the core element of PTA, its

probabilistic noise analysis and associated learning procedure,

reduce the error rate significantly when compared to a non-

probabilistic algorithm. In one dataset, it reduces false-positive

error rate from 12.6% to 0.002% without significantly affecting

the false-negative rate. Such numbers mattered greatly for

the DARPA Grand Challenge: false-positives correspond to

“phantom obstacles” that (as we show) easily mislead the robot

into hazardous terrain.

II. RELATED WORK

There exists a huge body of related work on terrain percep-

tion for autonomous driving. Early work in the field includes

that by Dickmanns and Pomerleau [10], [2]. This seminal

research focused on vision-based onroad driving, and led to a

huge body of follow-up research. A more recent overview of

research in this area is given in [4].

The idea of using lasers for outdoor terrain perception is

not new; in fact, lasers have played essential roles in a series

of Government-funded off-road driving projects [13] and in

both DARPA Grand Challenges [15]. Grid representation like

the one used in this paper have become popular in a number

of systems using lidar or stereo for depth perception [5], [9],

[16]; in fact, the work in [16] attaches confidence factors to

grid cells that reflect the information content in the sensor

measurements.



Figure 1. At approximately 1:40pm on Oct 8, 2005, a mobile robot wins
the DARPA Grand Challenge. The algorithm discussed in this paper played
an essential role in the robot’s ability to navigate the 2005 Grand Challenge
course.

The topic of pose error in 3D point cloud acquisition has

received considerable attention in the literature. For example,

in [7], Levoy et al. describe a method for mapping historical

objects using a robot arm and a range scanner. The “classical”

method for aligning such point clouds is the iterative closest

point algorithm (ICP) [1]; see [11] for a real-time implementa-

tion, and [8] for a variant known as scan matching. However,

the fundamental assumption behind these methods is that the

robot scans the same object more than once. Multiple scans

are aligned by detecting the area of overlap, and using the

mismatch for scan alignment.

In our driving domain, such a method is inapplicable. This

is because most scans cover new territory, hence correspond

to no previous scan. The general lack of overlap “breaks” the

correspondence step in ICP or scan matching, rendering these

method inapplicable for pose error compensation. In fact, we

remark that the authors indeed implemented ICP and found

the performance to be intolerably poor.

From a probabilistic viewpoint, ICP uses a probabilistic

error model (a Gaussian) to recover an accurate world model

from inaccurate data; the method here uses a probabilistic error

model to define suitable tests over an inaccurate world model.

This subtle difference is important, as the available data is

insufficient to recover an accurate 3D terrain model.

III. POINT CLOUD ACQUISITION

The PTA algorithm operates on a 3-D point cloud acquired

by the robot while in motion. Because the specifics of the

data acquisition matter, we briefly describe the robot and

the various sensors involved in the acquisition process. All

methods described in this section are commonly used in the

field of vehicle guidance [3], [12].

The robotic vehicle is shown in Fig. 1. To determine its

location relative to an external coordinate frame, the robot is

equipped with an inertial guidance system. The task of this

Figure 2. The vehicle uses a single line scanner to acquire surface data
from the terrain to make driving decisions.

system is to determine the pose of the robot, by which we

mean the georeferenced 3-D coordinates (denoted xk) and the

3-D orientation of the vehicle in Euler angles (pitch-roll-yaw,

denoted Ψk):

xk =





xk
yk
zk



 Ψk =





φk
θk
ψk



 (1)

Here k is the time index. As usual, the orientation vector Ψk

induces a rotation matrix, which we will denote by Rk.
The inertial guidance system computes the pose estimate

based on measurements from two differential GPS systems and

a six-degree-of-freedom inertial measurement unit (IMU). The

GPS systems measure the absolute coordinates and velocities

of the vehicle and its pitch and yaw angle (but not roll).

The IMU measures angular velocities and linear accelerations.

As is common in the field of vehicle guidance, the data is

integrated using a Kalman filter. Our implementation relies on

an unscented Kalman filter (UKF) [6] chosen over classical

methods for its improved accuracy. The spatial accuracy in xk

of the guidance system is dependent on the satellite reception,

and varies from 20cm to 2m. The maximum error in the

vehicle’s orientation Ψk is on the order of one degree. Such

values are within the norm for moderate-cost guidance systems

such as the one deployed.

To acquire the 3-D point cloud, the robot is equipped with

single-scan lasers (multiple lasers are used for redundancy

but processed separately). Each laser is mounted horizontally

on the robot’s roof, slightly tilted downward to scan the

ground ahead. Fig. 2 illustrates the scanning process. Each

laser scan generates a vector of 180 range measurements

spaced 0.5 degrees apart. If we denote the angle of the i-
th element in this vector by αik, and the measured range
value by rik, the corresponding measurement is projected
into the external GPS-reference frame via the straightforward

projective equation:




Xi
k

Y ik
Zik



 = rik Rk Rsens





cosαik
sinαik

0





+ xk +Rk xsens (2)

Here Rk is the rotation matrix that corresponds to the vehicle
orientation Ψk; xsens and Rsens are the displacement and



Figure 3. 3D point cloud acquired by the moving vehicle. The scan data is
integrated into point clouds using an inertially guided system for determining
the location and orientation of the sensor.

pointing angle of the scanner relative to the vehicle’s local

coordinate frame. Fig. 3 illustrates such a point cloud.

Obviously, the 3-D point cloud is only of intermediary

interest as we seek to enable the robot to make the right driving

decisions. To this end, we define a terrain labeling function

that assigns to each 2-D location Xq, Yq one of three values:

• Obstacle if we can find two points, (X i
k Y ik Zik)

T

and (Xj
m Y jm Zjm)T whose x-y distance to the query

point Xq, Yq is smaller or equal to ε, and for which
|Zik − Zjm| exceeds a critical vertical distance δ. In our
implementation, ε = 30cm and δ is between 15cm and
20cm (see section on parameter tuning below).

• Drivable if not an obstacle, but we can find at least one

point (Xi
k Y ik Zik)

T within an ε-range of the query
coordinates Xq, Yq.

• Unknown if no point (X i
k Y ik Zik)

T exists within an

ε-range of the query coordinates Xq, Yq.

The search for nearby points is conveniently organized in a 2-

D grid, and the same grid is used as the final 2-D drivability

map that is provided to the vehicle’s navigation engine. Fig. 4

shows an example map. Here red=obstacle, white=drivable,

and grey=unknown.

IV. PROBABILISTIC TERRAIN ANALYSIS (PTA)

A. Temporal Noise Model

Unfortunately, the algorithm just described yields results

inappropriate for robot navigation. Fig. 5 shows such an

instance, in which a small error in the vehicle’s role/pitch

estimation leads to a massive terrain classification error—

forcing the vehicle off the road. Such situations occur even

for roll/pitch errors below 0.5 degrees. The sensitivity to roll
and pitch for the vehicle is the result of the fact that the

scanner is pointed forward, detecting objects at up to 30 meters

range. Unfortunately, such a range is necessary for safe vehicle

operation at Grand Challenge driving speeds. In our reference

dataset of labeled terrain, we found that 12.6% of known

drivable area is classified as obstacle, for a height threshold

parameter δ = 15cm.

Figure 4. Snapshot of the path planner as it processes the drivability map.
This snapshot is taken from the most difficult part of the 2005 DARPA Grand
Challenge, a mountainous area called Beer Bottle Pass.

To accommodate such errors, one might be tempted to adjust

the 3-D point cloud through an ICP-type algorithm. However,

ICP is prone to fail for the reasons discussed in the related

work section above.

In contract, the PTA algorithm does not attempt to recon-

struct a 3-D model. Instead, it runs statistical tests over the

data, to probe for obstacles. To do so, PTA models the error in

the data acquisition process using a first order Markov model,

and uses this model when determining whether a location

Xq, Yq is drivable.

The first order Markov model is given by a stochastic

process with noise variables βk and γk:
(

x
∗

k

Ψ
∗

k

)

=

(
xk

Ψk

)

+ βk + γk (3)

Here the asterisks denote the estimated vehicle state, which is

of course corrupted by noise. The variable β models the noise
over time, and the variable γ the momentary noise in the pose
estimates. Assuming Gaussian noise, we have

βk ∼ N (βk−1, B) (4)

γk ∼ N (0, C) (5)

where B and C are the time-invariant noise covariances. As
a result of Eq. 4, the error increases over time1. This models

the fact that the state estimate is generally noisy, but noise

evolves slowly over time.

We further define B and C to be of the following form:

B = diag(σ2
xyz, σ

2
xyz, σ

2
xyz, σ

2
φθψ, σ

2
φθψ, σ

2
φθψ) (6)

C = diag(τ2
xyz, τ

2
xyz, τ

2
xyz, τ

2
φθψ, τ

2
φθψ, τ

2
φθψ) (7)

1We shall not be concerned with the observation that the absolute error may
diverge under this model, as we only use it to determine the relative error
when comparing to measurements acquired in short temporal succession.



(a) Mapper failure

(b) Fatal vehicle reaction

Figure 5. Small errors in pose estimation (smaller than 0.5 degrees) induce
massive terrain classification errors, which frequently force the robot off the
road.

for the noise covariances σ2
xyz, σ

2
φθψ , τ

2
xyz, and τ

2
φθψ . Those

shall be defined later, when we focus on our attention on a

learning method for parameter tuning.

B. The Probabilistic Obstacle Test

The first order Markov chain enables us to reformulate the

obstacle test as a statistical test. While in its general form,

this test is difficult to compute, we shall soon see that for the

specific laser configuration there is a simple approximation

that works well in practice.

Specifically, given two points (X i
k Y ik Zik)

T and

(Xj
m Y jm Zjm)T (without loss of generality assume m > k),

the height difference is distributed according to

Zi∗k − Zj∗m (8)

∼ N (Zik − Zjm
︸ ︷︷ ︸

mean

,∇iT
k [Z] (2C + |m− k| B) ∇j

m[Z]
︸ ︷︷ ︸

covariance

)

Here we approximated the non-linear projection defined in

Eq. 2 with a first order Taylor expansion. The term ∇i
k[Z] is

the Jacobian of the value of Zik with respect to the state vector.

In general, these Jacobians are difficult to calculate. How-

ever, for a forward-pointed laser, a vehicle that is approxi-

mately level, a laser for which αik ≈ αjm, and if we ignore the
laser offset xsens, this Jacobian resolves to a distribution that

is relatively easily computed

∇i
k[Z] ≈











0
0
1

rik cosαik
rik sinαik

0











(9)

This expression depends linearly on the error in the estimate

of zk, and also on the error in pitch and roll, which are both
amplified through the actual measured range rik.
Plugging this back into 8, and observing that our model

assumes equal covariance for roll and pitch error, we obtain

the relatively simple distribution

Zi∗k − Zj∗m ∼ N (Zik − Zjm
︸ ︷︷ ︸

mean

, (10)

|m− k|(σ2
xyz + rikσ

2
φθψ) + 2τ2

xyz + rikτ
2
φθψ + rjmτ

2
φθψ)

︸ ︷︷ ︸

covariance

This expression grows linearly with the time difference |m−k|.
The key unknowns are the noise covariances σ2

xyz, σ
2
φθψ , τ

2
xyz,

and τ2
φθψ , which we generally do not know.

We will return to the problem of finding those noise

covariance in the next section, when we address the issue of

learning the Markov model. Assuming knowledge of those

parameters, we can not use a statistical test for determining if

the Z-value of a pair of ε-nearby points is indeed larger than
the height threshold δ. The test uses the Z-value of the normal
distribution just defined, to calculate

p(|Zi∗k − Zj∗m | > δ) > π (11)

for the error probability threshold π.
For π = 0.05, this resolves to

|Zi∗k − Zj∗m | − δ > 1.64
√

|m− k|(σ2
xyz + rikσ

2
φθψ) + 2τ2

xyz + rikτ
2
φθψ + rjmτ2

φθψ

or

(|Zi∗k − Zj∗m | − δ)2

> (1.64)2|m− k|(σ2
xyz + rikσ

2
φθψ) + 2 · (1.64)2τ2

xyz

+(1.64)2rikτ
2
φθψ + (1.64)2rjmτ

2
φθψ (12)

According to our Markov model, this test is an obstacle

acceptance test for the presence of an obstacle at the 95%

confidence level.

We note that the quantity on the right-hand side of the

test increases monotonically with the time difference |m− k|.
This observation is important: the acceptance probability for

an obstacle decreases with time because of the noise. That is,

two nearby points in the 3-D point cloud are more likely to be

witness of an obstacle if they were recorded in short temporal

succession.

Put differently, the minimum height difference between

two measurements required to mark those measurements as

witnesses of an obstacle, is a function of the time difference



at which those measurements were acquired. The more time

went by, the larger this minimum height difference.

C. Efficient Implementation of the PTA Test

A key provision in the PTA analysis pertains to the efficient

search of possible pairs of points that are a witness of an

obstacle. As in the non-probabilistic algorithm above, PTA

caches all information over a 2-D grid of the environment.

The resolution of the grid is ε/2. Thus, when analyzing a new
range measurement, PTA only queries the corresponding 2-D

grid cell and its immediate neighbors.

Even though many points in the 3-D point cloud might fall

within a grid cell, it suffices to store two Z values per cell. One
of these values defines the tightest upper value for future tests,

and one defines the tightest lower value. Along with these two

values, we have to store the times at which the corresponding

measurements were recorded, so that the test can correctly fold

in the increase of uncertainty over time.

The fact that those two measurements suffice is a direct

result of the monotonic growth of the uncertainty over time.

Suppose we observe a new measurement for a cell which was

previously observed. The one or more of three cases will be

true:

1) The new measurement might be a witness of an obstacle,

according to the probabilistic test in PTA. In this case,

PTA simply marks the cell as obstacle and no further

testing takes place.

2) The new measurement does not trigger as a witness of an

obstacle, but in future tests it establishes a tighter lower

bound on the minimum Z-value than the previously

stored measurement. In this case, we simply replace the

previous measurement with this new one. The rationale

behind this is simple: If the new measurement is more

restrictive than the previous one, there will not be a

situation where a test against this point would fail while

a test against the older one would succeed. Hence, the

old point can safely be discarded.

3) The third car is equivalent to the second, but with a

refinement of the upper value.

Notice that a new measurement may refine simultaneously the

lower and the upper bounds.

The fact that we only have to memorize two measurements

per grid call renders PTA highly efficient in space and time—

which is important for real-time robotic driving.

D. Learning the Parameters

The probabilistic Markov model possesses a number of

unknown parameters. The final component of the PTA is

concerned with fitting the various parameters:

• The height threshold δ.
• The statistical acceptance probability threshold π.
• The Markov chain error parameters, which are the noise

covariances σ2
xyz, σ

2
φθψ , τ

2
xyz, and τ

2
φθψ .

Each of Stanley’s five lasers possesses its own parameter set.

Terrain labeling for parameter tuning

no labels (white/grey)

❄

❄

obstacles (red)

❄

drivable (blue)

✻

Figure 6. Terrain labeling for parameter tuning: The area traversed by the
vehicle is labeled as “drivable” (blue) and two stripes at a fixed distance to
the left and the right are labeled as “obstacles” (red). While these labels are
only approximate, they are extremely easy to obtain and significantly improve
the accuracy of the resulting map when used for parameter tuning.

Instead of determining such parameters by hand, which is

difficult2, PTA uses a discriminative learning algorithm for

(locally) optimizing these parameters. More specifically, the

parameters are tuned in a way that maximizes the discrim-

inative accuracy of the resulting terrain analysis on labeled

training data.

A tedious way of labeling data would be to label each grid

cell manually as to whether it corresponds to an obstacle or

not. Such a method would require extreme effort, since a

person would have to manually inspect each area near the

robot.

To get around this issue, we developed an approximate

labeling technique, in which a human diver simply labels

terrain by driving. Fig 6 illustrates the idea: Terrain that a

person chooses to drive over is assumed to be obstacle-free,

hence labeled as “0”. This area corresponds to the blue stripe

in Figure 6. A stripe left and right of this corridor is assumed

to be all obstacles, as indicated by the red stripes in Figure 6.

Clearly, not all of those cells are occupied; however, the

learning technique is still pushed to label as many of those

as possible as occupied.

The learning algorithm is now implemented through co-

ordinate ascent. In the outer loop, the algorithm performs

coordinate ascent relative to a data-driven scoring function.

Given an initial guess, the coordinate ascent algorithm mod-

ifies each parameter one-after-another by a fixed amount. It

then determines if the new value constitutes an improvement

over the previous value when evaluated over a logged data

set, and retains it accordingly. If for a given interval size no

improvement can be found, the search interval is cut in half

and the search is continued, until the search interval becomes

smaller than a pre-set minimum search interval (at which point

the tuning is terminated).

Empirically, we find that the learning algorithm converges

quickly to a robust solution when trained with about 2 minutes

of driving data. In developing the DARPA Grand Challenge

entry, we often included in the training set data from extreme

2GPS manufacturers do not report temporal drift; and drift is often escalated
by the fact that high-accuracy receivers switch between multiple internal filters
turned for different signal strengths.



(a) Robot and laser scan plotted over time

(b) 3-D point cloud (c) non-probabilistic method

error
✲✲✲

(d) PTA result

Figure 7. Comparison of non-probabilistic algorithm and PTA: (a) shows
a scan over time, (b) the 3-D point cloud, (c) the erroneous map and (d) the
result of PTA.

terrain, with large errors in the vehicle state estimation (and

hence errors in the map). In this way, the data focused on the

hardest instances available.

V. RESULTS

The probabilistic analysis paired with the discriminative

algorithm for parameter tuning has a significant effect on

the accuracy of the method. Using an independent data set

acquired in the Sonoran Desert, we found that the false positive

rate (the area labeled as drivable in Fig. 6) drops from 12.6% to

0.002% when measured over 50,000 grid cells when measured

on an independent test set. At the same time the rate at

which the area off the road is labeled as obstacle remains

approximately constant (from 22.6% to 22.0%). This rate is

not 100% simply because most of the terrain there is still

flat and drivable. Our approach for data acquisition mislabels

the flat terrain as non-drivable. Such mislabeling however, do

not impede with the parameter tuning algorithm, and hence

is preferable to labeling pixels manually (which would be

extremely tedious).

Fig 7 shows an example: a snapshot of the vehicle from the

side illustrates that part of the surface is scanned multiple times

due to a change of pitch. As a result, the non-PTA method

hallucinates a large occupied are in the center of the road,

as shown in Panel c of Fig 7. PTA overcomes this error and

generates a map that is good enough for driving. A second

example is shown in Fig 8.

Based on post-screening of the sensor data logged during

the race, we find that the PTA algorithm was essential for

the robot’s success. Figure 9 displays the situation along the

most difficult part of he course, known as “Beer Bottle Pass.”

The two blue contours in the bottom image mark the GPS

corridor provided by DARPA, which aligns poorly with the

map data, indicating an approximate localization error of 2

meters. This analysis suggests that a robot that followed the

GPS via points blindly would likely have failed to traverse

this narrow mountain pass.

We also used the algorithm in the National Qualification

Event, which was DARPA’s selection event for the race

(a) Robot and laser scan plotted over time

(b) 3-D point cloud (c) non-probabilistic method

error

(d) PTA result

Figure 8. A second comparison. See text.

contestants. In this event, our robot emerged as the only

robot that never collided with an obstacle or missed a gate

marked by traffic cones. All other robots were unable to escape

collisions. This performance was echoed in the actual race,

where several other vehicles collided with obstacles along the

way, whereas our robot emerged free of any scratches or dents.

While collision-free motion requires more than just accurate

terrain analysis, the terrain analysis is a clear prerequisite of

collision-free motion.

The suitability of the PTA error model can also be seen in

surface data. Figure 10 shows a scatter plot generated from

measurements taken on a flat road, free of obstacles. The hor-

izontal axis is the time difference between two measurements

within a grid cell, and the vertical axis is |Z i∗k − Zj∗m |, which
on flat terrain is the estimation error (ideally, the value should

always be zero). As this plot indicates, the vertical estimation

error is indeed a function of time: the more time elapses, to

larger the relative Z-error. This dependence is captured by our
Markov model, which also models an increase of uncertainty

over time.

(a) Beer Bottle Pass (b) Map and GPS corridor

Figure 9. Snapshot of the map acquired by the robot on the “Beer Bottle
Pass,” the most difficult passage of the DARPA Grand Challenge. The two blue
contours mark the GPS corridor provided by DARPA, which aligns poorly
with the map data. This analysis suggests that a robot that followed the GPS
via points blindly would likely have failed to traverse this narrow mountain
pass.
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Figure 10. For terrain known to be flat, this diagram shows the estimated
vertical height difference.

VI. CONCLUSION

We have presented a new algorithm, called PTA (short for

probabilistic terrain analysis). This algorithm enables offroad

vehicles, equipped with a single-scan laser, to analyze data

from this laser so as to discriminate between drivable and

non-drivable terrain.

Th heart of this algorithm is a statistical error model of the

pose estimation error, and a statistical test for the presence

of obstacles based on this error model. The PTA algorithm

also features a learning component in which labeled training

data is used to tune the parameters of the probabilistic error

model. In empirical testing, the approach was found to provide

excellent results. In fact, we believe PTA was essential in our

successful bid for the DARPA Grand Challenge.
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