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We investigate general probabilistic theories in which every mixed state has a purification, unique
up to reversible channels on the purifying system. We show that the purification principle is equiv-
alent to the existence of a reversible realization of every physical process, that is, to the fact that
every physical process can be regarded as arising from a reversible interaction of the system with
an environment, which is eventually discarded. From the purification principle we also construct
an isomorphism between transformations and bipartite states that possesses all structural proper-
ties of the Choi-Jamio lkowski isomorphism in quantum theory. Such an isomorphism allows one
to prove most of the basic features of quantum theory, like e.g. existence of pure bipartite states
giving perfect correlations in independent experiments, no information without disturbance, no
joint discrimination of all pure states, no cloning, teleportation, no programming, no bit com-
mitment, complementarity between correctable channels and deletion channels, characterization of
entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to
the mathematical framework of Hilbert spaces.

PACS numbers: 03.67.-a, 03.67.Ac, 03.65.Ta

Contents

I. Introduction 2

II. Operational-probabilistic theories 3
A. Systems and tests 3
B. Sequential composition of tests 4
C. Composite systems and parallel composition

of tests 5
D. Operational theories 5
E. Relation with category theory 6
F. Probabilistic structure: states, effects, and

transformations 6
G. Relation with the convex sets framework 8
H. Coarse-graining and refinement 8
I. Discrimination and distance 8
J. Closure 10

III. Causal theories 10
A. Definition and main properties 10
B. Conditioning 12
C. Distance between transformations 13
D. Closure and convexity in causal theories 14
E. No-restriction hypothesis in causal theories 14

IV. Local discriminability 14
A. Definition and main properties 14

∗Electronic address: gchiribella@perimeterinstitute.ca
†URL: http://www.perimeterinstitute.ca
‡Electronic address: dariano@unipv.it
§Electronic address: paolo.perinotti@unipv.it
¶URL: http://www.qubit.it

B. Causal theories with local discriminability 16

V. Beyond local discriminability and
convexity 17
A. Relaxing local discriminability 17
B. Relaxing convexity 18

VI. Summary of the framework 18

VII. Theories with purification 18
A. The purification postulate 18
B. Purification of preparation-tests 20
C. Dynamically faithful pure states 22
D. No information without disturbance 23
E. No-cloning 24

VIII. Probabilistic teleportation 24
A. Entanglement-swapping and teleportation 24
B. Storing and probabilistic retrieving of

transformations 26
C. Systems of purifications and the link

product 27

IX. Dilation of physical processes 27
A. Reversible dilation of channels 27
B. Reversible dilation of tests 29

X. States-transformations isomorphism 30
A. First consequences of the isomorphism 31
B. Entanglement breaking channels 32
C. Completeness of theories with purification 32

XI. Error correction 34
A. Basic definitions 34

http://arxiv.org/abs/0908.1583v5
mailto:gchiribella@perimeterinstitute.ca
http://www.perimeterinstitute.ca
mailto:dariano@unipv.it
mailto:paolo.perinotti@unipv.it
http://www.qubit.it


2

B. Error correction and the complementarity
between correctable and deletion channels 34

C. Error correction with one-way classical
communication from the environment 36

XII. Causally ordered channels and channels
with memory 36
A. Dilation of causally ordered channels 37

B. No bit commitment 38

XIII. Deterministic programming of reversible
transformations 39

XIV. Purification with conjugate systems 40

A. Conjugate purifying systems 40
B. States-transformations isomorphism for

conjugate purifying systems 40
C. Conjugated transformations 41

D. Deterministic teleportation 43

XV. Conclusions and perspectives on future
work 45

Acknowledgments 45

References 45

I. INTRODUCTION

In the past two decades the field of quantum informa-
tion theory has brought to light an enormous amount
of protocols and tasks that originate from the structure
of quantum theory and have dramatic consequences in
the way information can be processed. Non-locality, no-
cloning, teleportation, dense coding, quantum key distri-
bution, quantum algorithms, and quantum error correc-
tion are only the most celebrated examples of a much
longer list. An important lesson from this experience is
that the abstract formalism of quantum mechanics has a
huge number of operational consequences.

At the same time, the question whether quantum the-
ory is the only conceivable theory with such operational
consequences has attracted the attention of an increasing
number of researchers. In a seminal paper [1], Popescu
and Rohrlich showed that non-locality is not an ex-
clusive feature of quantum theory, and that there are
in fact possible theories that exhibit stronger nonlocal-
ity than quantum theory without violating relativistic
no-signaling. An intense work on non-locality in gen-
eral non-signaling theories has followed this observation,
opening a very active line of research (see e.g. [2–5]).
On the other hand, the authors of Refs. [6, 7] have
analyzed tasks like cloning and broadcasting of states,
showing that the impossibility of achieving them is a
highly generic property, while Ref. [8] thoroughly dis-
cussed theories with a local discriminability property that

share other features of quantum mechanics, like the non-
unique convex decomposition of a mixed state or the non-
existence of ideal non-disturbing measurements. Entan-
glement swapping and teleportation protocols have been
considered in Refs [9, 10], where the authors noticed the
remarkable fact that the no-signaling boxes of Popescu
and Rohrlich do not allow for entanglement swapping,
nor for teleportation. Very recently, the authors of Ref.
[11] have introduced the new physical principle of infor-
mation causality, showing that while the principle holds
for quantum theory, it is violated by Popescu-Rohrlich
boxes.

Despite the numerous advancements in the under-
standing of general probabilistic theories, the fundamen-
tal problem of deriving quantum mechanics from basic
physical principles is still completely open. In particular,
no physical principle is known that can single out quan-
tum mechanics in the physically motivated set of causal
theories with local discriminability. With this expression
we mean probabilistic theories where i) the probability
of outcomes of an experiment performed at a given time
does not depend on the choice of experiments that will be
performed at later times, and ii) if two bipartite states
are different, then one can discriminate between them
using only local devices with an error probability that is
smaller than 1/2, the random guess value. In the case of
classical physics, finding a description is relatively simple:
among theories in the above family, classical probability
is the only one where all pure states are perfectly distin-
guishable. On the contrary, every current description of
quantum theory is a description of its mathematical ap-
paratus: e.g. one can say that quantum theory is the the-
ory where pure states are unit vectors in complex Hilbert
spaces and probabilities are given by the Born rule, or,
equivalently, that it is the theory where observables form
a C*-algebra of complex matrices.

In the past there have been many attempts to find a
more basic description of quantum theory, in particular
by discussing it from the point of view of logic [12–15]
(see also Ref. [16] and references therein). More recently,
Hardy [17] has approached the problem from a differ-
ent perspective, providing a characterization of quantum
theory based on principles of mathematical simplicity in
the interplay among dimension of the state space, struc-
ture of subsystems and subspaces, number of distinguish-
able states, and topology of the set of pure states. On
the other hand, in recent years one of the authors has
tackled the problem using physical principles related to
tomography and calibration of physical devices, experi-
mental complexity, and to the composition of elementary
(atomic) transformations (see Ref. [18] for the state of
the art of this project). In particular, Ref. [19] firstly in-
troduced the concept of dynamically and preparationally
faithful state, which will play an important role in this
paper.

In this paper we introduce the purification principle
“Every mixed state has a purification, unique up to re-
versible channels on the purifying system”. The main
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message of our work is simple: most of the characteris-
tic features of quantum theory can be summarized in the
physical statement “quantum theory is a causal theory
with purification and local discriminability”. In particu-
lar, from the purification principle we derive the following
features: no information without disturbance, no joint
discriminability and no cloning of pure states, existence
of pure entangled states with perfect correlations, proba-
bilistic teleportation, one-to-one correspondence between
transformations and bipartite states, dilation of physical
processes to reversible interactions with an environment,
necessary and sufficient conditions for error correction in
terms of the reversible dilation, no bit commitment, no
programming of reversible channels without perfectly dis-
tinguishable program states, and identification of causal
channels with sequences of channels with memory, and
characterization of entanglement breaking channels as
measure-and-prepare channels. Moreover, we also discuss
a stronger version of the purification principle: “For ev-
ery system A there exists a conjugate system Ã such that
every state of A has a purification in AÃ. The conjugate
of Ã is A (symmetry), and the conjugate of a composite

system AB is the composite system ÃB̃ (regularity under
composition)”. With this further property one can prove
deterministic teleportation and show that its structure is
unique: the resource state for deterministic teleportation
must be a purification of the unique mixed state that is
invariant under all reversible channels.

As we will show, the purification principle is equivalent
to the fact that every irreversible process arises from a
reversible interaction with an environment that is eventu-
ally lost. This can be viewed as a law of “conservation of
information”: information cannot be erased, it can only
be discarded. Moreover, we will see that the purifica-
tion principle has other remarkable consequences: From
the structural point of view, a theory with purification is
completely identified by the states of all possible systems
in it. Once the states are given, all possible measure-
ments and evolutions are fixed. Even more strongly, the
purification postulate implies the completeness property
“whatever transformation is mathematically admissible
(in a sense that will be made precise later) must be fea-
sible”. Conversely, we can explicitly say that whatever
limitation to the feasibility of a mathematically admissi-
ble map results in a limitation to the purifiability of some
state. The analogue of this property in quantum infor-
mation is that every trace-preserving completely positive
map must be feasible.

It is important to stress that we are not claiming that
we derived quantum theory. What we can say is that
we “zipped” a large part of it, by reducing a long list of
features to a single physical principle. In the process of
doing this, we found proofs that are often simpler (or at
least more intuitive) than the original quantum proofs.

In order to minimize the notational burden due to the
lack of a commonly established formalism, in presenting
these proofs we opted for a graphical notation, which is
equivalent to formulae and replaces them in most of the

paper. Since this notation is exactly the same notation
used in quantum circuits, a reader with a background in
quantum information can easily read the general equa-
tions without spending too much time in the introduc-
tory part of the paper. On the other hand, an extended
discussion on graphical calculus can be found in the work
by Penrose [20] and in the rigorous formalization by Joyal
and Street within the theory of symmetric monoidal cat-
egories [21] (we also suggest the beautiful introductions
in the topic by Selinger [22] and Coecke [23]). We anyway
stress that in the present paper the choice of graphical
notation is just the choice of a more user-friendly way
of presenting formulae, and that no prerequisite on e.g.
category theory is needed from the reader.

II. OPERATIONAL-PROBABILISTIC

THEORIES

In this Section we introduce some basic notions that
will be used in the paper. In particular, we introduce
the notion of operational-probabilistic theory as a theory
that i) describes a set of possible experiments that can be
done with physical devices and ii) gives predictions about
the probabilities of the outcomes in these experiments.

A. Systems and tests

Systems and tests are the primitive notions of an oper-
ational theory. Each test represents one use of a physical
device, like a Stern-Gerlach magnet, a beamsplitter, or
a photon counter. Systems play the role of labels at-
tached to physical devices: any device has an input and
an output port labeled by an output and an input system,
respectively. These labels establish a rule for connecting
physical devices among themselves: two devices can be
connected in a sequence only if the output of the first
device is a system of the same type as the input of the
second.

All throughout the paper we will denote systems with
capital letters, like A,B,C, and so on. We reserve the
letter I for the trivial system, which simply means “noth-
ing”. A device with input (output) system I is a device
with no input (no output).

Let us now make more precise the notion of test. We
already mentioned that a test represents one use of a
physical device. When the physical device is used, it
produces an outcome i in some set X, e.g. the outcome
could be a sequence of digits appearing on a display, a
light, or a sound emitted by the device. The outcome
produced by the device heralds the fact that some event
has occurred. These intuitive features concur in the def-
inition of test:

Definition 1 (Test) A test with input system A and
output system B is a collection of events {Ci}i∈X labeled
by outcomes in some outcome set X. Diagrammatically,
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the test {Ci}i∈X is represented as follows

A {Ci}i∈X
B (1)

while the specific event Ci is represented by

A Ci
B (2)

We denote by T(A,B) the set of all events appearing in
all tests from A to B. When B ≡ A we will write T(A).

Tests with trivial input will be called preparation-tests,
and the corresponding events will be called preparation-
events. In quantum information, a preparation-test is
what is called a “random source of quantum states”. In
analogy we will adopt for preparation-events the usual
notation as for states in quantum circuits:

 '!&ρi B := I Ci
B (3)

In formulae, we will often use the “Dirac-like” notation
|ρi)B to denote a preparation event of system B. We will
denote by S(A) the set of preparation-events for system
A, namely S(A) := T(I,A).

Similarly, we will call tests with trivial out-
put observation-tests, and the corresponding events
observation-events. In quantum theory, an observation-
test is a quantum measurement, and is represented
by positive operator valued measure (POVM), that is,
by a collection of positive operators {Pi}i∈X satisfying∑

i∈X Pi = IA, where IA is the identity on the Hilbert
space of system A. For observation-tests we will then
adopt the usual notation for measurements in quantum
circuits:

A *-+,aj := A Cj
I (4)

In formulae, we will often denote observation-events with
the notation (aj |A. We will denote by E(A) the set of
observation-events for system A, namely E(A) := T(A, I).

For tests from the trivial system to itself we will omit
the box and the wires, as follows:

pk := I pk I (5)

In Subsect. II F we will interpret events from the trivial
system to itself as probabilities.

Another important case of tests is that of single-
outcome tests, in which the outcome space X consists
of a single element: X = {i0}. Whenever a device repre-
sented by a single-outcome test is used, the experimenter
is sure that only one event can take place. This motivates
the following definition:

Definition 2 (Deterministic tests) A test is deter-
ministic if its outcome set has a single element, namely
|X| = 1.

B. Sequential composition of tests

Physical devices can be used in sequences, as long as
the output of each device coincides with the input of the
next one. When two tests are composed in a sequence
we obtain a new test, as in the following

Definition 3 (Sequential composition of tests) If
{Ci}i∈X is a test from A to B and {Dj}j∈Y is a test
from B to C, then their sequential composition is test
from A to C, with outcomes (i, j) ∈ X × Y, and events
{Dj ◦Ci}(i,j)∈X×Y. Diagrammatically, the events Dj ◦Ci

are represented as follows

A Ci
B Dj

C := A Dj ◦ Ci
C (6)

We will say that test {Dj} “follows” test {Ci}, or,
equivalently, {Ci} “precedes” {Dj}. For the moment, the
order of composition is not necessarily temporal. The in-
terpretation of sequential composition as a sequence of
time-steps will be given in Subsect. III within the frame-
work of causal theories.

The sequential composition of tests brings immediately
the notion of identity test.

Definition 4 (Identity test) The identity test for sys-
tem A is a test with a single event IA such that for every
system B

A
I

A Ci
B = A Ci

B ∀Ci ∈ T(A,B)

B Dj
A

I
A = B Di

A ∀Dj ∈ T(B,A)

(7)

Performing the identity test on a system just means “do-
ing nothing” on it. We can think of the outcome of the
identity test as a blank character, which provides no in-
formation.

In some protocols, such as teleportation, one wants to
emphasize that one is dealing with two different systems
“of the same type”. For examples, in quantum theory one
can have two electrons in different (spatially separated)
regions. Distinguishing two systems of the same type is
essentially a matter of bookkeeping. Moreover, we can
have different physical systems that are “operationally
equivalent”, e. g. the polarization of a single photon and
the spin of an electron in quantum theory are both rep-
resented by a qubit, and can be (at least in principle)
converted one to another in a reversible fashion. For
this reason we introduce a formal notion of operational
equivalence between systems, based on their mutual con-
vertibility:

Definition 5 (Operationally equivalent systems)
Two systems A and A′ are operationally equivalent—
denoted as A′ ≃ A— if there exist a deterministic test
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{IA,A′} from A to A′ and a deterministic test {IA′,A}
from A′ to A, respectively, such that

A
I

A′

I
A = A

I
A

A′

I
A

I
A′

= A′

I
A′

(8)

Accordingly, if {Ci}i∈X is a test for system A, performing
the “same test” on system A′ means performing the test
{C ′

i }i∈X defined by

A′

C ′
i

A′

= A′

I
A Ci

A
I

A′

(9)

Clearly, the above notion of “same test on a differ-
ent system” depends on the choice of the privileged test
{IA,A′} used to set up the operational equivalence be-
tween A and A′. We will often drop the primes and write
Ci instead of C ′

i .

C. Composite systems and parallel composition of

tests

Given two systems A and B, one can consider them
together, thus forming the corresponding composite sys-
tem, here denoted by AB. A test with input (output)
system AB (CD), represents one use of a physical device
with two input (output) ports, labeled by A and B (C
and D), respectively.

Definition 6 (Composite system) If A,B are sys-
tems, the corresponding composite system is AB. Com-
position of systems enjoys the properties i) A = IA = AI,
ii) AB ≃ BA, and iii) A(BC) = (AB)C := ABC.
Diagrammatically, an event from AB to CD is repre-

sented as a box with multiple wires:

A

Ci

C

B D
:= AB Ci

CD (10)

The property i) in Def. 6 expresses the fact that system
A together with “nothing” is still system A, while prop-
erties ii) and iii) express the fact that the specification
of a composite system depends only on the list of com-
ponent systems, and not on how the elements of the list
are ordered (up to operational equivalence, implemented
by a deterministic test that permutes the component sys-
tems), nor on how they are grouped.

In general, we will represent the N -partite composite
system A1 . . .AN with N wires, as follows:

A1

A2

...
AN

:= A1A2...AN (11)

In the case of trivial systems, we will typically omit the
wire. In the sequential composition of two boxes with
multiple wires we will always match the output wires of
the first box with the input wires of the second.

Physical devices can be run in parallel on different sys-
tems, thus performing a test on the composite system, as
in the following

Definition 7 (Parallel composition of tests) If
{Ci}i∈X is a test from A to B and {Dj}j∈Y is a test
from C to D, then their parallel composition is the test
from AC to BD, with outcomes (i, j) ∈ X × Y, and
events {Ci ⊗ Dj}(i,j)∈X×Y. Diagrammatically the events
Ci ⊗ Dj are represented as follows

A Ci
B

C Di
D

:=
A

Ci ⊗ Dj

B

C D
(12)

If Ci,Dj , Ek,Fl are events from A to B, B to C, D
to E, and E to F, respectively, their parallel composition
enjoys the property

A Dj ◦ Ci
C

D Fl ◦ Ek
F

=

A Ci
B Dj

C

D Ek
E Fl

F
(13)

Note that property (13) implies that tests on differ-
ent systems commute, that is, for every couple of events
Ci,Dj

A Ci
B

C Dj
D

=

A Ci
B

I
B

C
I

C Dj
D

=

A
I

A Ci
B

C Dj
D

I
D

(14)

From now on, in diagrams like the above we will typically
omit the box with identity test, leaving just a wire for
the corresponding system. Also in formulae we will often
omit the identity, e.g. for C ∈ T(A,B) and ρ ∈ S(AC)
we will often write C |ρ)AB in place of (C ⊗ IC) |ρ)AC.

Note that the difference between parallel and sequen-
tial composition of two tests is already encoded in their
input and output spaces: if the input of a test is the out-
put of the other the composition is sequential, if all spaces
are distinct the composition is parallel. For this reason,
when the kind of composition is evident we will omit the
symbols ◦ and ⊗. For example, if ρ is a preparation-event
for A and C is an event from A to B we will write C |ρ)A
in place of C ◦ |ρ)A, whereas if ρ and σ are preparation-
events for A and B, respectively, we will write |ρ)A |σ)B
in place of |ρ)A ⊗ |σ)B.

D. Operational theories

We are now in position to make more precise the notion
“operational theory”:
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Definition 8 (Operational theory) An operational
theory is specified by a collection of systems, closed
under composition, and by a collection of tests, closed
under parallel and sequential composition.

In an operational theory one can draw circuits that i)
represent the connections of physical devices in an exper-
iment, like e.g. the circuit

0716{ρi} A {Cj} B 2534{ak} (15)

and ii) can also represent which specific set of events took
place in the experiment, like e.g. the circuit

 '!&ρi A Cj
B "%#$ak (16)

In particular, the latter circuit represents the
preparation-event ρi followed by the event Cj from
system A to system B, which is in turn followed by the
observation-event ak on system B. The whole sequence
can be seen as single event pkji := (ak|B Cj |ρi)A from
the trivial system to itself.

E. Relation with category theory

In the previous Subsections we presented in an infor-
mal way the basic notions pertaining to the use of phys-
ical devices in sequences and in parallel. More formally,
these notions can be summarized with the language of
category theory [24], which provides the suitable mathe-
matical framework capturing the fundamental structure
presented so far. In this language, an operational theory
is a category, where systems and events are respectively
objects and arrows. Every arrow has an input and an
output object, and arrows can be sequentially composed.
A test is then a collection of arrows labeled by outcomes.

The fact that in an operational theory we have a par-
allel composition of systems, and that such a composi-
tion is symmetric (i.e. AB ≃ BA) is expressed in tech-
nical words by saying that we have a strict symmet-
ric monoidal category [24]. In the next Subsection we
will specify more requirements on this category, impos-
ing that the scalars (arrows from the trivial system to
itself) are probabilities.

F. Probabilistic structure: states, effects, and

transformations

An operational theory is a language, whose words are
diagrams representing circuits. With this language one
can give instructions to build up experiments or, alter-
natively, one can graphically represent which particular
outcomes took place in an experiment. However, in a
physical theory one wants more: one wants to give prob-
abilistic predictions about the occurrence of possible out-
comes. To have this, there must be a rule assigning a

probability to every event from the trivial system to it-
self [25]. More directly, we can say that in a probabilistic
theory the events from the trivial system to itself are
probabilities, as in the following

Definition 9 (Operational-probabilistic theory)
An operational theory is probabilistic if for every test
{pi}i∈X from the trivial system I to itself one has
pi ∈ [0, 1] and

∑
i∈X pi = 1, and the composition of two

events from the trivial system to itself is given by the
product of probabilities: pi ⊗ qj = pi ◦ qj = piqj.

For short, we will often refer to operational-
probabilistic theories simply as probabilistic theories.

In a probabilistic theory, a preparation-event ρi for
system A defines a function ρ̂i sending observation-events
of A to probabilities:

ρ̂i : E(A) → [0, 1], (aj | 7→ (aj |ρi). (17)

Likewise, an observation-event aj defines a function âj
from preparation-events to probabilities

âj : S(A) → [0, 1], |ρi) 7→ (aj |ρi). (18)

From a probabilistic point of view, two observation-
events (preparation-events) corresponding to the same
function are indistinguishable. This leads to the notions
of states and effects (see [15, 26]):

Definition 10 (States and effects) Equivalence
classes of indistinguishable preparation-events are
called states. Equivalence classes of indistinguishable
observation-events are called effects.

From now on we will identify preparation-events
with states and observation-events with effects, with-
out keeping the distinction between an event ρi (aj)
and the corresponding function ρ̂i (âj). Accordingly,
a preparation(observation)-test will be a collection of
states (effects), and the sets S(A),E(A) will be the set of
states and and the set of effects of system A, respectively.

Remark (states and effects in quantum theory).
In quantum theory systems are associated with Hilbert
spaces. The deterministic states of a system A are repre-
sented by density matrices on the corresponding Hilbert
space: a deterministic state ρ is a matrix satisfying ρ ≥ 0
and Tr[ρ] = 1. A non-deterministic preparation-test
{ρi}i∈X, sometimes called a quantum information source,
is a collection of positive operators with the property∑

i∈X Tr[ρi] = 1. Accordingly, the set S(A) of all states
of system A is the collection of all unnormalized density
matrices ρ with Tr[ρ] ≤ 1. An effect is represented by
positive operator P with P ≤ IA (IA being the identity
operator), and the probability resulting from the pairing
between a state ρ and and effect P is given by the Born
rule: (P |ρ)A = Tr[Pρ].

Notice that according to the definition of states and
effects as equivalence classes, states are separating for
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effects and effects are separating for states, that is,

|ρ0)A = |ρ1)A ⇐⇒ (a|ρ0)A = (a|ρ1)A ∀a ∈ E(A)

(a0|A = (a1|A ⇐⇒ (a0|ρ)A = (a1|ρ)A ∀ρ ∈ S(A).

(19)

Since states (effects) are functions from effects (states) to
probabilities, one can take linear combinations of them.
This defines two real vector spaces SR(A) and ER(A),
one dual of the other (we recall that the dual of a real
vector space V is the real vector space V ∗ of all linear
functions from V to R). In this paper we will always
restrict our attention to the case of set of states that
span finite dimensional vector spaces. In this case, by
construction one has

dim(SR(A)) = dim(ER(A)). (20)

Notice that a spanning set for SR(A) is a separating set
for ER(A), while a spanning set for ER(A) is a separating
set for SR(A).

Moreover, linear combinations with positive coeffi-
cients define two convex cones S+(A) and E+(A) (we
recall that a set S is a cone if for every x ∈ S and for
every λ ≥ 0 one has λx ∈ S, whereas the set is con-
vex if for every x, y ∈ S and for every p ∈ [0, 1] one has
px+ (1− p)y ∈ S). Since the pairing between states and
effects yields positive numbers, one has the inclusions

E+(A) ⊆ S+(A)∗

S+(A) ⊆ E+(A)∗,
(21)

where S+(A)∗ and E+(A)∗ are the dual cones of S+(A)
and E+(A), respectively. We recall that the dual of a
cone S in some vector space V is the cone S∗ defined by
S∗ := {λ ∈ V ∗, λ(x) ≥ 0 ∀x ∈ S}.

We conclude this Subsection by noting that every event

Ck from A to B induces a linear map Ĉk from SR(A) to
SR(B), uniquely defined by [27]

Ĉk : |ρ)∈ S(A) 7→ Ck |ρ)A ∈ S(B). (22)

Likewise, for every system C the event Ci⊗IC induces
a linear map from SR(AC) to SR(BC). From a statis-
tical point of view, if two events Ci and C ′

i induce the
same maps for every possible system C, then they are
indistinguishable.

Definition 11 (Transformations) Equivalence
classes of indistinguishable events from A to B are
called transformations from A to B.

Again, we will assume that the equivalence classes have
been already done since the start, and, consequently, we
will identify events with transformations, without intro-
ducing new notation. Accordingly, a test will be a col-
lection of transformations.

Remark (transformations and tests in quantum
theory). In quantum theory, a transformation is usu-
ally called quantum operation. Technically speaking, a

quantum operation from A to B is a linear, completely
positive, trace non-increasing map sending density ma-
trices of system A to (unnormalized) density matrices of
system B. A test {Ci}i∈X from A to B is typically re-
ferred to as a quantum instrument [28], and is a collection
of quantum operations with the property that

∑
i∈X Ci

is trace-preserving, namely
∑

i∈X Tr[Ci(ρ)] = Tr[ρ] for
every state ρ.

Remark (different transformations). Note that
two transformations C ,D ∈ T(A,B) can be different
even if C |ρ)A = D |ρ)A for every ρ ∈ S(A): indeed to
make C different from D it is enough that there exists
an ancillary system C and a joint state |ρ)AC such that
(C ⊗IC) |ρ)AC 6= (D ⊗IC) |ρ)AC. We will come back on
this point when discussing local discriminability in Sect.
IV.

The following definitions will be used in the following

Definition 12 (Channel) A deterministic transforma-
tion C ∈ T(A,B) is called channel.

Definition 13 (Reversible channel) A channel U ∈
T(A,B) is called reversible if there is another channel
W ∈ T(B,A) such that

A
U

B
W

A = A
I

A

B
W

A
U

B = B
I

B

(23)

If there exists a reversible channel U from A to B,
then the systems A and B are operationally equivalent,
in the sense of Def. 5. Note that the reversible channels
from A to itself form a group. We will denote this group
by GA.

We can now consider states that are invariant under
the group of reversible transformations GA:

Definition 14 (Invariant states) A state ρ ∈ S(A) is
invariant under the action of the group GA if

 '!&ρ A
U

A =  '!&ρ A ∀U ∈ GA. (24)

Similarly, we can consider channels with invariant out-
put, that we call twirling channels.

Definition 15 (Twirling channels/Twirling tests)
A channel T ∈ T(A) is a twirling-channel if

A
T

A
U

A = A
T

A ∀U ∈ GA.

(25)
If a test {Ci}i∈X is such that

∑
i∈X Ci is a twirling chan-

nel, we call it a twirling test.

We will see that in a theory with purification there is a
unique invariant state and a unique twirling channel for
every system.
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G. Relation with the convex sets framework

The standard assumption in the literature is that, since
the experimenter is free to randomize the choice of de-
vices with arbitrary probabilities, all sets of states, ef-
fects, and transformations are convex. We will call the
theories satisfying this assumption “convex”. The as-
sumption of convexity will be clarified in Subsect. III D
in the context of causal theories. Nevertheless, for many
of our results the assumption of convexity is not essen-
tial, and we will discuss the validity of our results in
non-convex theories, like the toy-theories considered by
Spekkens in Ref. [29]. Bearing this in mind, when-
ever possible we will present our results in a convexity-
independent language. We will add the specification
“convex” to the theory for those particular results in
which convexity is essential.

In addition to the convexity of all sets of states, ef-
fects, and transformations, the usual convex sets frame-
work (see e.g. Refs. [13, 15, 26], and, more recently,
Refs. [8, 17]) includes an assumption of mathematical
simplicity. The assumption is that every binary probabil-
ity rule describes the statistics of a possible two-outcome
experiment. Precisely, with the expression “probability
rule” we mean a collection of positive linear functionals
{ai}i∈X ⊂ S

∗
+(A) such that

∑
i∈X (ai|ρ)A = 1 for every

deterministic state ρ ∈ S(A). We will refer to this as-
sumption as “no-restriction hypothesis”, as it states that
there is no restriction on the set of (binary) probability
rules that can be implemented in actual experiments.

Definition 16 (No-restriction hypothesis) A proba-
bilistic theory satisfies the no-restriction hypothesis if
every binary probability rule {a0, a1} ⊂ S∗

+(A) is an
observation-test.

In this paper we will not make this assumption. How-
ever, we will discuss a few implications of it in subsections
VII D and X C.

H. Coarse-graining and refinement

Here we give some definitions that will be often used
in this paper.

Definition 17 (Coarse-graining) A test {Ci}i∈X is a
coarse-graining of the test {Dj}j∈Y is there is a partition
of Y into disjoint sets Yi such that Ci =

∑
j∈Yi

Dj for
every i ∈ X.

Since we can always decide to join two (or more) out-
comes in a single outcome, the set of all tests must be
closed under coarse-graining.

The inverse of coarse-graining is refinement:

Definition 18 (Refinement of a test) If {Ci}i∈X is a
coarse-graining of {Dj}j∈Y, we say that {Dj}j∈Y is a
refinement of {Ci}i∈X.

Definition 19 (Refinement of an event) A refine-
ment of the event C is given by a test {Dj}j∈Y and a
subset Y0 ⊆ Y such that C =

∑
j∈Y0

Di.

Definition 20 We say that an event D ∈ T(A,B) re-
fines C ∈ T(A,B), and write D ≺ C , if there exist a
refinement of C such that D ∈ {Dj}j∈Y0

.

Definition 21 (Refinement set) The refinement set
DC of an event C ∈ T(A,B) is the set of all events D

that refine C , namely DC := {D ∈ T(A,B) | D ≺ C }.

Definition 22 (Atomic vs refinable events) An
event C is called atomic if it admits only trivial
refinements,—equivalently, if D ≺ C implies D = λC
for some λ ∈ [0, 1]. An event is refinable if it is not
atomic.

In the case of preparation-events the notion of refine-
ment gives rise to the definitions of pure and mixed
states:

Definition 23 (Pure vs mixed states) An atomic
preparation-event ρ ∈ S(A) is called pure state. A
refinable preparation-event is called mixed state.

Clearly, in a convex theory a state ρ is pure if and only if
it is an extreme point of the convex set S(A). Moreover,
in a convex theory the refinement set Dρ is a convex sub-
set of the state space. For example, in quantum theory
the refinement set of a density matrix ρ is the set of all
(unnormalized) density matrices σ such that σ ≤ ρ, and
is clearly convex. Note that the condition σ ≤ ρ implies
that the support of σ is contained in the support of ρ.
In fact, any density matrix σ with Supp(σ) ⊆ Supp(ρ),
is proportional to a matrix in Dρ. In particular, if the
support of ρ is the whole Hilbert space (that is, if ρ is
a full-rank matrix), then any density matrix is propor-
tional to a matrix in Dρ. In this case Dρ is a spanning
set for the set of all hermitian operators. The analogue of
a full rank density matrix in the general context is given
by the notion of internal state:

Definition 24 (Internal state) A state ω ∈ S(A) is
internal if its refinements span the whole state space, i.e.
if Span(Dω) = SR(A).

In the probabilistic theories considered in this paper
every preparation-test {ρi}i∈X for system A admits an
ultimate refinement {ϕj}j∈Y, such that each state ϕj is
pure. Using the states-transformations isomorphism we
will also prove in Sect. X that in a theory with pu-
rification this property is enough to imply that every
test {Ci}i∈X from A to B admits an ultimate refinement
{Dj}j∈Y, such that each event Dj is atomic.

I. Discrimination and distance

By making tests one can try to discriminate between
different devices. For example, imagine that we have a
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black box preparing one of the two deterministic states
ρ0, ρ1 ∈ S(A), and that we want to find out which one.
To discriminate between the two states we can perform
a binary observation-test {a0, a1}. The probabilities of
outcomes are then given by

p(j|i) := (aj |ρi)A i, j = 0, 1. (26)

Assuming prior probabilities π0, π1 for the states ρ0, ρ1,
respectively, we can try to maximize the (average) prob-
ability of correct discrimination, defined as psucc :=
π0 p(0|0) + π1 p(1|1). Substituting the expression for
the probabilities given in Eq. (26) and using the fact
probabilities sum up to unit, we obtain

psucc = π0 + (a1|π1ρ1 − π0ρ0)A

= π1 + (a0|π0ρ0 − π1ρ1)A,
(27)

and, optimizing over all binary tests,

p(opt)succ = π0 + sup
a1∈E(A)

(a1|π1ρ1 − π0ρ0)A

= π1 + sup
a0∈E(A)

(a0|π0ρ0 − π1ρ1)A.
(28)

Summing the two expressions above we finally get

p(opt)succ =
1 + ||π1ρ1 − π0ρ0||A

2
(29)

where ||· ||A is the operational norm defined by

||δ||A = sup
a1∈E(A)

(a1|δ)A − inf
a0∈E(A)

(a0|δ)A δ ∈ SR(A).

(30)
Note that the norm ||π1ρ1 − π0ρ0||A ranges between 0
(when the two states and the prior probabilities are
equal) and 1 (when the two states are perfectly dis-
criminable). For real numbers x ∈ SR(I) ≡ R one has
||x||I = |x|.

Remark (operational norm in quantum theory).
In quantum theory the operational norm is the usual
trace-norm || · ||1: Indeed, if we denote by δ+ and δ−
the positive and negative part of the hermitian oper-
ator δ = π1ρ1 − π0ρ0, respectively, we obtain ||δ||A =
Tr[δ+] − Tr[δ−] = ||δ||1.

In addition to the defining properties of a norm, the
operational norm has a simple monotonicity property:

Lemma 1 (Monotonicity of the operational norm)
If C ∈ T(A,B) is a channel from A to B, then for every
δ ∈ SR(A) one has

||C δ||B ≤ ||δ||A. (31)

If C is reversible one has the equality.

Proof. By definition, ||C δ||B = supb1∈E(B) (b1|B C |δ)A−

infb0∈E(B) (b0|B C |δ)A. Since (b1|B C and (b0|B C

are effects on system A, one has ||C δ||B ≤

supa1∈E(A) (a1|B |δ)A − infa0∈E(A) (a0|A |δ)A = ||δ||A.
Clearly, if C is reversible one has the converse bound
||δ||A = ||C −1C δ||A ≤ ||C δ||B, thus proving the equality
||δ||A = ||C δ||B.�

For a generic state ρ ∈ S(A), Eq. (30) reduces to

||ρ||A = sup
e∈E(A)

′ (e|ρ), (32)

where sup′ denotes the supremum restricted to the set
of deterministic effects. We can now give the notion of
normalized states :

Definition 25 (Normalized states) A state ρ ∈
S(A) is normalized if ||ρ||A = 1. We will denote the
set of normalized states by S1(A).

Clearly, if ρ is deterministic, then Eq. (32) implies that
it is normalized (since ρ corresponds to a single-outcome
preparation-test and e to a single-outcome observation-
test, the probability of the only possible outcome, given
by (e|ρ)A, must be unit). In Sect. III we will consider
causal theories, where the deterministic effect e ∈ E(A)
is unique, and, therefore one has ||ρ||A = (e|ρ)A. In this
context one also has the converse: if a state is normalized,
then it is deterministic.

Definition 26 (Distinguishable states, discrimi-
nating tests) The states {ρi}i∈X are perfectly distin-
guishable if there is a test {ai}i∈X such that

(aj |ρi)= ||ρi||A δij . (33)

The test {ai}i∈X is called discriminating test.

Remark (Distinguishable states and discrimi-
nating test in quantum theory). In quantum theory
a set of distinguishable states {ρi}

n
i=1 is a set of density

matrices with orthogonal support. An example of dis-
criminating test for this set is the collection of orthogonal
projectors {Pi}

n
i=1, where Pi is the projector on the sup-

port of ρi for all i < n, while Pn = I−
∑n−1

i=1 Pi. Clearly,
the maximum number of distinguishable states available
for a certain system is the dimension d of the correspond-
ing Hilbert space. In this case, the distinguishable states
are rank-one projectors on an orthonormal basis, and the
corresponding discriminating test is the projective mea-
surement on the same basis.

If we want a theory that can describe the exchange of
classical messages, we need at least two states ρ0 and ρ1
that are deterministic and perfectly distinguishable. In
this case, a sender can encode a classical bit b = 0, 1 in
these two states and a receiver can decode perfectly the
message by using the binary discriminating test {a0, a1}.
Indeed, one has p(j|i) = δij . Clearly, using this encod-
ing for any bit in a string allows perfect deterministic
decoding of the whole string.

We conclude this Subsection with a simple Lemma that
will be useful in the discussion of the general no-cloning
theorem for probabilistic theories (see Theorem 12):
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Lemma 2 In any convex theory, if two deterministic
states ρ0, ρ1 ∈ S(A) are distinct ( i.e. ρ0 6= ρ1), then
there exists a binary test {a0, a1} such that

p(1|0) = p(0|1) <
1

2
. (34)

Proof. Since the states are distinct there exists at least
an effect a such that (a|ρ0)> (a|ρ1). Moreover, since the
theory is convex we can choose without loss of generality
(a|ρ1) ≥ 1/2 (if a does not meet this condition, we can
replace it with the convex combination a′ = 1/2(a+ e)).
Now define the binary test {a0, a1} by the convex com-
bination

{
a0 = qa+ (1 − q)0
a1 = e− a0

q =
1

(a|ρ0)+ (a|ρ1)
(35)

where 0 is the null effect, defined by (0|ρ)A = 0, ∀ρ ∈
S(A). For this test one has p(1|0) = p(0|1) =
(a|ρ1)/[(a|ρ0)+ (a|ρ1)] < 1/2. �

The above Lemma states that if two states are dif-
ferent, then the worst-case error probability, defined as
pwc := max{p(1|0), p(0|1)}, can be reduced to a value
that is strictly smaller than 1/2. In other words, if two
states are different, then in the worst-case scenario we
can always distinguish between them better than with a
random guess.

J. Closure

The closure of S(A) with respect to the operational
norm contains all the elements of SR(A) that can be
approximated arbitrarily well by physical states: a vector
ρ ∈ SR(A) is in the closure if there is a sequence of states
{ρn} such that limn→∞ ||ρ − ρn||A = 0. Since SR(A) is
finite dimensional, it is natural to assume that all such
vectors correspond to physical states. We will make this
assumption in the paper. In particular, assuming that
the set S(I) of states of the trivial system is closed with
respect to the operational norm means assuming that the
probabilities appearing in the theory form a closed subset
of the interval [0, 1]. In fact, we have the following:

Lemma 3 If an operational-probabilistic theory is not
deterministic, then S(I) is dense in the interval [0, 1].

Proof. If the theory is not deterministic there is a binary
test giving outcomes 0, 1 with probabilities q0, q1 6= 0, re-
spectively. Now, this test provides a biased coin, which
can be tossed many times, thus allowing for the approx-
imation of any coin with bias p ∈ [0, 1] [30]. �

Therefore, if we assume that the set of states S(I) is
closed, then the previous Lemma implies the following:

Corollary 1 If S(I) is closed, then it is the whole inter-
val [0, 1].

In Subsect. III D we will discuss the relation between
closure and convexity in the context of causal theories.

III. CAUSAL THEORIES

In this Section we restrict our attention to causal the-
ories, in which the probability of outcomes of an exper-
iment at a given time does not depend on the choice of
experiments performed at later times.

A. Definition and main properties

Although in the circuits discussed until now we had
sequences of tests, such sequences were not necessarily
causal sequences. The input-output arrow determined
by the connections of physical devices was not necessar-
ily the causal arrow defined a signalling structure. In
fact, one can formulate operational-probabilistic theories
even in the absence of a pre-defined causal arrow, and
this is a crucial point to formulate a quantum theory
of gravity (see e.g. Hardy in Ref. [31]). A concrete
example of non-causal theory is the theory studied in
Refs. [32, 33], where the states are quantum operations,
and the transformations are “supermaps” transforming
quantum operations into quantum operations. In this
case, transforming a “state” means inserting the corre-
sponding quantum operation in a larger circuit, and the
sequence of two such transformations is not a causal se-
quence. However, the analysis of non-causal theories is
not the scope of the present work. We now give the con-
dition that allows us to interpret sequential composition
as a causal cascade:

Definition 27 (Causal theories) A theory is causal if
for every preparation-test {ρi}i∈X and every observation-
test {aj}j∈Y on system A the marginal probability
pi :=

∑
j∈Y (aj |ρi)A is independent of the choice of

the observation-test {aj}j∈Y. Precisely, if {aj}j∈Y and
{bk}k∈Z are two different observation-tests, then one has

∑

j∈Y

(aj|ρi)A =
∑

k∈Z

(bk|ρi)A. (36)

Loosely speaking, we may say that the condition of
Eq. (36) expresses the principle of “no-signaling from
the future”.

Causal theories have a simple characterization:

Lemma 4 (Characterization of causal theories) A
theory is causal if and only if for every system A there
is a unique deterministic effect (e|A.

Proof. Suppose that e and e′ are two deterministic ef-
fects for system A. Since deterministic effects belong to
single-outcome tests, Eq. (36) gives (e|ρi)A = (e′|ρi)A
for every state ρi. Therefore, e = e′. Conversely, sup-
pose that the deterministic effect is unique and take an
observation-test {aj}j∈Y on system A. Then by coarse-
graining one obtains a single-outcome test, with deter-
ministic effect (e′|A =

∑
j∈Y (aj |A, and, by uniqueness
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of the deterministic effect, (e|A = (e′|A =
∑

j∈Y (aj |A.

Therefore, for every state ρi we have
∑

j∈Y (aj |ρi)A =

(e|ρi)A, independently of the choice of the observation-
test {aj}j∈Y. This proves Eq. (36). �

Remark (quantum theory as an example of
causal theory) Ordinary quantum theory is an example
of causal theory. Indeed, there is a unique deterministic
effect, corresponding to the (trace with the) identity op-
erator on the system’s Hilbert space. In other words, the
only operator P satisfying the equation TrA[Pρ] = 1 for
every density matrix is P = IA, the identity on A.

An immediate consequence of causality is that the de-
terministic effect of a composite system AB is the product
of the deterministic effects of A and B, as expressed by
the following

Corollary 2 (Factorization of the deterministic ef-
fect on product systems) Let A and B be two arbitrary
systems. In a causal theory one has

(e|AB = (e|A (e|B . (37)

Proof. Since the parallel composition of two single-
outcome tests is a single-outcome test, the effect (e|A (e|B
is deterministic, according to Def. 2. Since the deter-
ministic effect (e|AB is unique, one must have (e|A (e|B =
(e|AB. �

Note that in a causal theory there is a unique way of
defining marginal states:

Definition 28 (Marginal state) The marginal state
of |σ)AB on system A is the state |ρ)A := (e|B |σ)AB.

In a causal theory the channels (deterministic transfor-
mations corresponding to single-outcome tests) are char-
acterized as follows:

Lemma 5 (Characterization of channels) In a
causal theory a transformation C ∈ T(A,B) is a
channel (Def. 12 ) if and only if (e|B C = (e|A.
Diagrammatically,

A
C

B ����e = A ����e (38)

In particular, a state ρ ∈ S(B) is deterministic if and
only if (e|ρ)B = 1.

Proof. If C is a channel, then (e|B C is a determinis-
tic effect. By uniqueness of the deterministic effect, Eq.
(38) holds. Conversely, suppose that {Ci}i∈X is a test
from A to B and C ≡ Ci0 is a transformation such that
Eq. (38) holds. By coarse-graining, we can define the
channel C ′ :=

∑
i∈X Ci. Since C ′ is a channel, we must

have (e|A = (e|B C ′ = (e|A + (e|B (
∑

i6=i0
Ci), whence

(e|B (
∑

i6=i0
Ci) = 0. But this implies

∑
i6=i0

Ci = 0, and,

therefore, C = C ′. Hence, C is a channel. Finally, a
deterministic state is nothing but a channel with trivial
input system A = I. Since the deterministic effect of the

trivial system I is the number 1, the normalization of Eq.
(38) becomes (e|ρ)B = 1. �

Lemma 5 also leads to the following

Corollary 3 (Normalization of tests) A test
{Ci}i∈X from A to B satisfies the normalization
condition

∑

i∈X

(e|B Ci = (e|A . (39)

In particular, an observation-test {ai}i∈X on system A
must satisfy the normalization condition

∑

i∈X

(ai|A = (e|A . (40)

In quantum theory, the normalization condition of Eq.
(38) means that any quantum channel must be trace-
preserving (identity preserving in the Heisenberg pic-
ture). Indeed, the deterministic effect is the identity
operator, and Eq. (38) implies that, for every quan-
tum state ρ, one has TrB[C (ρ)] = TrA[ρ]. The normal-
ization condition for observation-tests given in Eq. 40
is instead the normalization of quantum measurements:
a quantum measurement is a POVM, that is a collec-
tion of positive operators {Ai}i∈X satisfying the condi-
tion

∑
i∈X Ai = IA, where IA is the identity operator on

the system’s Hilbert space.

Moreover, in a causal theory we have a simple charac-
terization of the normalized states:

Corollary 4 (Characterization of normalized states)
Let ρ be a state of system A. In a causal theory the
following are equivalent

1. ρ is normalized

2. (e|ρ)A = 1

3. ρ is deterministic.

Proof. Since there is a unique deterministic effect,
the expression of the norm given in Eq. (32) yields
||ρ||A = (e|ρ)A. This proves the equivalence 1 ⇔ 2. The
equivalence 2 ⇔ 3 was already proved in Lemma 5. �

For every state |ρ)A we can consider the normalized
state

|ρ̄)A :=
|ρ)A

(e|ρ)A
. (41)

Operationally, this means that we can always make
rescaled preparations : we can perform a preparation-
test {ρi}i∈X, and, if the test gives outcome i0 we can
claim that we prepared the normalized state ρ̄i0 . In other
words, in a causal theory any preparation-event can be
promoted to a single-outcome preparation-test. Follow-
ing this observation, in a causal theory there is no rea-
son to forbid that every normalized state can be actually
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produced in some single-outcome test. This implies that
every state is proportional to a deterministic one. In the
following we will always assume this fact as a property
of causal theories.

Note that also the converse is true:

Lemma 6 (Causality is necessary for rescaled
preparations) A theory where every state is propor-
tional to a deterministic one is causal.

Proof. Let |ρ)A be an arbitrary state and e and e′ be
two deterministic effects. By hypothesis, we have |ρ)A =
k |ρ̄)A, where ρ̄ is deterministic. This implies (e|ρ)A =
k = (e′|ρ), and, since ρ is arbitrary e = e′. By lemma 4,
this implies that the theory is causal. �

Remarkably, the causal principle of “no-signalling from
the future” implies the impossibility of signalling in space
without exchange of physical systems:

Theorem 1 (No-signalling without exchange of
physical systems) In a causal theory it is impossible
to have signalling without exchanging systems.

Proof. Suppose that two distant parties Alice and Bob
share a bipartite state |Ψ)AB, and that Alice (Bob) per-
forms a local test {Ai}i∈X ({Bj}j∈Y) on the system
at her (his) disposal. Let us define the joint proba-
bility pij := (e|AB (Ai ⊗ Bj) |Ψ)AB and its marginal

p
(A)
i :=

∑
j pij (p

(B)
j :=

∑
i pij) on Alice’s (Bob’s) side.

It is immediate to verify that the marginal p
(A)
i on Al-

ice’s side does not depend on the test {Bj} on Bob’s side:
indeed, one has

p
(A)
i =

∑

j

(e|A (e|B (Ai ⊗ Bj) |Ψ)AB

= (e|A


Ai ⊗


∑

j

(e|B Bj




 |Ψ)AB

= (e|A Ai |ρ)A,

(42)

having used the normalization condition
∑

j (e|B Bj =

(e|B (Corollary 3), and having defined the marginal state
|ρ)A := (e|B |Ψ)AB. The same reasoning holds for the
marginal on Bob’s side. �

B. Conditioning

In a causal sequence the choice of a device can depend
on the outcomes of previous devices. This gives rise to the
notion of conditioned test, which generalizes the notion
of sequential composition:

Definition 29 (Conditioned test) If {Ci}i∈X is a test

from A to B and, for every i,
{
D

(i)
ji

}
ji∈Yi

is a test from

B to C, then the conditioned test is a test from A to

C, with outcomes (i, ji) ∈ Z :=
⋃

i∈X{i}×Yi, and events

{D
(i)
ji

◦Ci}(i,ji)∈Z. Diagrammatically, the events D
(i)
ji

◦Ci

are represented as follows

A Ci
B

D
(i)
ji

C := A
D

(i)
ji

◦ Ci
C (43)

The above definition of conditioning makes sense in a
causal theory, where the uniqueness of the deterministic

effect ensures that the test {D
(i)
ji

◦ Ci}i∈X,ji∈Yi
satisfies

the normalization condition required by Corollary 3:

∑

i∈X

∑

ji∈Yi

(e|C D
(i)
ji

◦ Ci =
∑

i∈X

(e|B Ci = (e|A . (44)

Conditioning expresses the possibility of choosing what
to do at a certain step using the classical information
generated in the previous steps. In a causal operational
theory there is no reason to forbid an experimenter to
perform conditioned tests. Accordingly, in the following
we will assume that in a causal theory any conditioned
test is allowed. In fact, the possibility to perform condi-
tioned tests is essentially equivalent to causality. Indeed,
one has also the converse statement:

Lemma 7 (Causality is necessary for conditioned
tests) A theory where every conditioned test is possible
is causal.

Proof. To prove that the theory is causal we show
that for every system A the deterministic effect (e|A
is unique. Suppose that (e|A and (e′|A are two de-
terministic effects, and let ρ ∈ S(A) be an arbitrary
state. By definition, there is a preparation-test {ρi}i∈X

that contains ρ, that is, ρ = ρi0 for some outcome
i0 ∈ X. Moreover, using coarse-graining we obtain the
two-outcome preparation-test {ρ0, ρ1}, where ρ0 = ρ
and ρ1 :=

∑
i6=i0

ρi. Now, consider the conditioned test

{(e|ρ0)A, (e
′|ρ1)A}, defined by the following procedure:

first perform the preparation-test {ρ0, ρ1}, and then, if
the outcome is 0 apply the effect (e|A, otherwise apply
(e′|A. Since {(e|ρ0)A, (e

′|ρ1)A} is a test from the trivial
system to itself one must have

(e|ρ0)A + (e′|ρ1)A = 1 (45)

On the other hand, since the effect e′ is deterministic, one
must have (e′|ρ0)A + (e′|ρ1)A = 1. By comparison, this
implies (e|ρ0)A = (e′|ρ0)A, and, since ρ0 was a generic
state, e = e′. �

Remark (conditioning with different outputs
and “direct sum” systems). In principle, one could
also consider a conditioning where the output system of

each test
{

D
(i)
ji

}
is a system Ci that depends on the

outcome i. In this case the output of the conditioned
test would be a “direct sum” system “C :=

⊕
i∈X Ci”.

In quantum theory, this situation can be described in-
troducing a superselection rule, according to which the
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possible states of the “direct sum” system are the block-
diagonal density matrices of the form ρ =

⊕
i∈X ρi, where

each ρi is a density matrix on the Hilbert space associ-
ated to system Ci. This kind of extension would also
require treating the outcome spaces X as a classical sys-
tems that can be the input or the output of some classical
information-processing device. However, we will not con-
sider here this generalization as it is not needed for the
main purpose of the paper.

A particular case of conditioning is randomization:

Definition 30 (Randomization) If {pi}i∈X is a
preparation-test for the trivial system and, for every

outcome i, {C
(i)
ji

}ji∈Yi
is a test from A to B, the

randomized test {piC
(i)
ji

}i∈X,ji∈Yi
is the test from A to

B with events defined by

pi A
C

(i)
ji

B :=

A
C

(i)
ji

B

I pi I

(46)

(on the left-hand side we used the fact that that the com-
position with trivial systems is trivial, and, therefore, one
has AI = A,BI = B).

If a causal theory is not deterministic (i.e. if the possi-
ble values of probabilities are not only 0 and 1) then ran-
domization and coarse-graining always allows one to con-
struct an internal state (see Def. 24): it is enough to take
a spanning set of states {ρi}i∈X, to randomize them with
some non-zero probabilities {pi}i∈X, and then to coarse-
grain, thus getting the internal state ω =

∑
i∈X piρi.

Finally, conditioning allows one to prove that a causal
theory contains all possible measure-and-prepare chan-
nels, defined as follows

Definition 31 (Measure-and-prepare channels) A
channel C ∈ T(A,B) is measure-and-prepare if there
exists an observation-test {ai}i∈X on A, and a collection
of normalized states {βi}i∈X ⊂ S1(B) such that

C =
∑

i∈X

|βi)B (ai|A . (47)

C. Distance between transformations

Here we introduce a norm for transformations that has
a direct operational interpretation: it quantifies the max-
imum probability of success in the discrimination of two
channels in a causal theory. Suppose that we are given
two channels C0,C1 ∈ T(A,B) with prior probabilities
π0, π1, respectively. In a causal theory, the most gen-
eral way to discriminate is to prepare a bipartite input
state ρ ∈ S1(AC), to apply the unknown channel, and to
perform a binary test that distinguishes between the two
possible output states C0 |ρ)AC and C1 |ρ)AC. Optimiz-
ing over all binary tests and using Eq. (29) we obtain the

success probability psucc = 1/2(1 + ||(π1C1 − π0C0)ρ||BC)
Moreover, optimizing the input state and the extension
we find the maximum probability of success

poptsucc =
1

2
(1 + ||π1C1 − π0C0||A,B) (48)

where the operational norm for transformations is defined
by

||∆||A,B = sup
C

sup
ρ∈S1(AC)

||∆ρ||BC ∆ ∈ TR(A,B). (49)

In quantum theory our expression for the operational
norm reduces to the diamond norm in Schrödinger pic-
ture [34], or equivalently, to the completely bounded
(CB) norm in Heisenberg picture [35].

In the case of trivial input system A = I, Eq. (49)
gives back the norm of states introduced in Eq. (30). In
the case of trivial output system B = I, it provides an
operational norm for effects, given by

||δ||A,I = sup
C

sup
ρ∈S1(AC)

||δρ||C δ ∈ ER(A). (50)

In fact, the extension with the ancillary system C is not
needed in this case:

Lemma 8 The operational norm of an element of the
vector space δ ∈ ER(A) spanned by the effects for system
A is given by the expression

||δ||A,I = sup
ρ∈S1(A)

| (δ|ρ)A|. (51)

Proof. Taking C = I in Eq. (50) yields the lower bound
||δ||A,I ≥ supρ∈S1(A) || (δ|ρ)A||I = supρ∈S1(A) | (δ|ρ)A|,
where we used the fact that the norm of a real num-
ber x ∈ R ≡ SR(I) is given by its modulus: ||x||I = |x|.
To prove the equality of Eq. (51) we now prove converse
bound. By the definition of the operational norm for
states in Eq. (30), for every σ ∈ S1(AC) we have

||δσ||C = sup
c1∈E(A)

(δ|A (c1|C |σ)AC − inf
c0∈E(A)

(δ|A (c0|C |σ)AC

= sup
{c0,c1}

(δ|A (c1 − c0|C |σ)AC,

(52)

where the optimization in the last equation is over all
possible binary tests {c0, c1} for system C. Now, ap-
plying the observation-test {c0, c1} to the bipartite state
|σ)AC we obtain a preparation-test {ρ0, ρ1} for system
A, defined by |ρi)A = (ci|C |σ)AC, i = 0, 1. Defining
the probabilities pi = (e|ρi)A and the normalized states
ρ̄i = ρi/ (e|ρi)A we then have

(δ|A (c1 − c0|C |σ)AC = p1 (δ| ρ̄1)A − p0 (δ| ρ̄0)A

≤ max{(δ| ρ̄1)A,− (δ| ρ̄0)A}

≤ sup
ρ∈S1(A)

| (δ|ρ)A|.
(53)
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�

In quantum theory the norm ||D||A,I of an hermitian
operator on the Hilbert space of system A coincides with
the operator norm ||D||∞ = supρ≥0,Tr[ρ]=1 |Tr[Dρ]| =

maxi{|di|}, where {di} are the eigenvalues of D.

We conclude by mentioning a monotonicity property
of the operational norm of transformations:

Lemma 9 (Monotonicity of the operational norm
for transformations) If C ∈ T(A,B) and E ∈ T(C,D)
are two channels, then for every ∆ ∈ TR(B,C) one has

||E ∆C ||A,D ≤ ||∆||B,C. (54)

If C and E are reversible one has the equality.

Proof. Let R be an ancillary system, and ρ ∈
S1(AR) be a normalized state of AR. Then, since
|σ)BR = C |ρ)AR is a normalized state of BR, we
have ||E ∆C ||A,D = supR supρ∈S1(AR) ||E ∆C ρ||DR ≤

supR supσ∈S1(BR) ||E ∆σ||DR. Now, using Lemma 1 we

obtain ||E ∆σ||DR ≤ ||∆σ||CR. Hence, ||E ∆C ||A,D ≤
supR supσ∈S1(BR) ||∆σ||CR = ||∆||B,C. Clearly, if C and

E are reversible, one has the converse bound ||∆||B,C =
||E −1(E ∆C )C −1||B,C ≤ ||E ∆C ||A,D, thus proving the
equality. �

D. Closure and convexity in causal theories

In Subsect. II J we saw that if a theory is not determin-
istic, then one can construct a circuit that simulates (with
arbitrary precision) a coin with arbitrary bias p ∈ [0, 1].

In causal theories the possibility of conditioning gives
directly the following:

Lemma 10 (Approximation of convex combina-
tions) If a causal theory is not deterministic, then any
convex combination of states, effects, and transforma-
tions can be approximated with arbitrary precision.

Proof. Let p ∈ [0, 1] be an arbitrary probability and
pn ∈ S(I) be such that |p−pn| < 1/n (such a probability
exists because S(I) is dense in the interval [0, 1], as stated
by Lemma 3). Consider two arbitrary tests {Ci}i∈X and
{Dj}j∈Y from A to B. By randomization, we get the test
{pnCi}i∈X ∪ {(1 − pn)Dj}j∈Y. Then, by coarse-graining
we can obtain the convex combination pnCi +(1−pn)Dj .
The distance with the desired convex combination pCi +
(1 − p)Dj is bounded by (||Ci||A,B + ||Dj ||A,B)/n < 2/n.
�

As a simple consequence we have the following

Corollary 5 (Closure implies convexity) If a causal
theory is not deterministic and the set of states of the
trivial system is closed, then all sets of states, effects,
and transformations are convex.

In this paper for simplicity we will always work with
closed sets of states. Our attention will be devoted to
non-deterministic causal theories, and, therefore, by the
previous Corollary 5 closure implies convexity. Note
that, however, most results hold independently of the
assumption of convexity, since in the context of non-
deterministic causal theories any desired combination can
be approximated with arbitrary precision.

E. No-restriction hypothesis in causal theories

In a causal theory the no-restriction hypothesis of Def.
16 implies that for every system A the cone generated by
the effects coincides with the dual of the cone generated
by the states:

Lemma 11 In a causal theory the no-restriction hypoth-
esis of Def. 16 implies the condition E+(A) = S

∗
+(A) for

every system A.

Proof. Suppose that a is an element of S∗
+(A) and let

||a||A,I be the operational norm of a, as defined in Eq.
(51). If ||a||A,I = 0 , then a is the null effect, which is
trivially an element of E+(A). If ||a||A,I 6= 0, then de-
fine the normalized effect a0 = a/||a||A,I. Upon defining
a1 = e−a0, we now have (a1|ρ)≥ 0 for all ρ ∈ S+(A), i.e.
a1 ∈ S

∗
+(A). Moreover, (a0|ρ)A + (a1|ρ)A = (e|ρ)A = 1

for every normalized state ρ ∈ S1(A). Hence, {a0, a1}
is a probability rule. By the no-restriction hypothesis,
we then have that {a0, a1} is an observation-test, and,
therefore, a0 and a1 are effects. This proves that ev-
ery a ∈ S∗

+(A) is proportional to an effect a0, that is,
S∗

+(A) ⊆ E+(A). On the other hand, all effects are
positive functionals on states, and, therefore S∗

+(A) ⊇
E+(A). �

The above condition will be useful when discussing the
implications of the no-restriction hypothesis in subsec-
tions VII D and X C.

IV. LOCAL DISCRIMINABILITY

Here we discuss the property of local discriminability,
which expresses the possibility of distinguishing multi-
partite states using only local devices.

A. Definition and main properties

A common assumption in the literature on probabilis-
tic theories is what we will call here local discriminability
(see e.g. Refs. [7–11, 17, 18]).

Definition 32 (Local discriminability) A theory en-
joys local discriminability if whenever two states ρ, σ ∈
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S(AB) are distinct, there are two local effects a ∈ E(A)
and b ∈ E(B) such that

ρ
?>
89

A ����a
B *-+,b

6= σ
?>
89

A ����a
B *-+,b

(55)

Note that local discriminability on bipartite states im-
plies local discriminability on multipartite states, as can
be seen by simple iteration.

The meaning of the local discriminability condition is
that if two bipartite states are different, then there is a
chance of distinguishing between them by using only local
devices. Of course, the resulting discrimination may not
be optimal, but at least it is strictly better than the ran-
dom guess. Indeed, in the next Lemma we show that in a
convex theory with local discriminability two parties Al-
ice and Bob, holding systems A and B, respectively, can
always find a discrimination protocol that uses only lo-
cal operations and classical communication (LOCC) and
outperforms the random guess.

Lemma 12 (LOCC discrimination) In a con-
vex theory with local discriminability, if two states
ρ0, ρ1 ∈ S1(AB) are distinct, then there exists
a LOCC discrimination protocol, described by a
binary test {A0, A1}, such that the probability
pwc := max{p(0|1), p(1|0)}, p(i|j) = (Ai|ρj)AB is
strictly smaller than 1/2.

Proof. If ρ 6= σ, then by local discriminability there
are always two effects a, b such that (a⊗ b|ρ)AB >
(a⊗ b|σ)AB. The binary test {A, eAB − A} defined by
A := a ⊗ b can be obtained by performing the local
tests {a, eA − a} and {b, eB − b} and taking a coarse-
graining. If the theory is convex, exploiting the construc-
tion of Lemma 2 (which only requires randomization and
coarse-graining) we obtain a binary test {A0, A1} satis-
fying p(0|1) = p(1|0) < 1/2 and, therefore pwc < 1/2.
�

Local discriminability is an enormous advantage in ex-
periments. For example it allows one to perform to-
mography of multipartite states with only local measure-
ments. Indeed, every bipartite effect (E|AB can be writ-
ten as linear combination of product effects, and, there-
fore every probability (E|ρ)AB can be computed as a lin-
ear combination of the probabilities (ai ⊗ bj |ρ)AB arising
from a finite set of product effects:

Lemma 13 (Local tomography) Let {ρi} and {ρ̃j}
be two bases for the vector spaces SR(A) and SR(B),
respectively, and let {ai} and {bj} be two bases for the
vector spaces ER(A) and ER(B), respectively. A theory
enjoys local discriminability if and only if every state
σ ∈ S(AB) (every effect E ∈ E(AB)) can be written

as

|σ)AB =
∑

i,j

Aij |ρi)A |ρ̃j)B


(E|AB =

∑

i,j

Bij (ai|A (bj |B




(56)

for some suitable real matrix Aij (Bij).

Proof. Suppose that local discriminability holds. By
definition, the product effects a ⊗ b are a separating
set for SR(AB), and, therefore, they are a spanning
set for ER(AB). Since states and effects span vector
spaces of equal dimension, this also implies that the
product states are a spanning set for SR(AB). Con-
versely, if Eq. (56) holds, then the product effects are
a spanning set for the vector space ER(AB). Clearly, if
(a⊗ b|ρ)AB = (a⊗ b|σ)AB for all product effects, then
one has ρ = σ, and this proves local discriminability. �

This also implies:

Theorem 2 (Product of internal states is internal)
In a causal theory with local discriminability if the states
ωA and ωB are internal in S(A) and S(B), respectively,
then the product ωA ⊗ ωB is internal in S(AB).

Proof. By definition, one has Span(DωA⊗ωB
) ⊃

Span(DωA
) ⊗ Span(DωB

) = SR(A) ⊗ SR(B). Since lo-
cal discriminability holds, this is also equal to SR(AB).
�

Moreover, local discriminability allows one to distin-
guish two different transformations C ,D ∈ T(A,B) with-
out considering their extension with an arbitrary ancilla
system C:

Lemma 14 If two transformations C ,D ∈ T(A,B) are
different and local discriminability holds, then there exist
a state ρ ∈ S(A) such that

 '!&ρ A
C

B 6=  '!&ρ A
D

B (57)

Proof. By definition, if C and D are different there ex-
ist a system C and a joint state σ ∈ S(AC) such that
C |σ)AC 6= D |σ)AC. Now, since local discriminability
holds, there are two effects b, c on systems B,C, respec-
tively such that

σ
?>
89

A
C

B "%#$b
C ����c

6= σ
?>
89

A
D

B "%#$b
C ����c

(58)

Defining |ρ) := (c|C |σ)AC we then obtain (b|B C |ρ)A 6=
(b|B D |ρ)A. This implies C |ρ)A 6= D |ρ)A. �
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B. Causal theories with local discriminability

The results of this paper can be formulated in the sim-
plest way for causal theories that enjoy local discrim-
inability. In this case one has the following useful prop-
erties:

Lemma 15 Let |σ)AB be a state of AB and |ρ)A :=
(e|B |σ)AB, |ρ̃)B := (e|A |σ)AB be its marginals on sys-
tems A, B, respectively. In a causal theory with local
discriminability one has

σ ∈ Span(Dρ⊗ρ̃), (59)

where Dρ⊗ρ̃ is the refinement set of ρ⊗ ρ̃, as defined in
Def. 21.

Proof. Take a basis {ρi}
n
i=1 ({ρ̃j}

ñ
j=1) of states for the

(span of) the refinement set of ρ (ρ̃), and extend it to a

basis {ρi}
DA

i=1 ({ρ̃j}
DB

j=1) of SR(A) (of SR(B)). By local
discriminability, we can write σ as a linear combination
as in Eq. (56) for some coefficients Aij . Now, for every
effect (a|A the state |ρ̃a)B := (a|A |σ)AB is clearly in Dρ̃.
Therefore, we must have Aij = 0 for all j > ñ. Likewise,
applying an arbitrary effect (b|B on system B we find that
we must have Aij = 0 for all i > n. This implies

|σ)AB =

n∑

i=1

ñ∑

j=1

Aij |ρ)i |ρ̃)j , (60)

that is, σ ∈ Span(Dρ⊗ρ̃). �

Since in a non-deterministic causal theory the set of
states S(A) is convex (Corollary 5 along with the as-
sumption that S(I) is closed), we also have the following:

Theorem 3 Let |σ)AB be a state of AB and |ρ)A :=
(e|B |σ)AB, |ρ̃)B := (e|A |σ)AB be its marginals on sys-
tems A, B, respectively. In a non-determinisitc causal
theory with local discriminability there exists a non-zero
probability k > 0 such that

kσ ∈ Dρ⊗ρ̃. (61)

The proof of the Theorem is immediate using Lemma
15 along with the following

Lemma 16 In a non-deterministic causal theory, for ev-
ery couple of states σ, ρ ∈ S1(A) one has

σ ∈ Span(Dρ) =⇒ kσ ∈ Dρ, (62)

for some non-zero probability k > 0.

Proof. Take a basis {ρi}
n
i=1 of states in Dρ. By hypoth-

esis, we can write σ =
∑

i siρi with suitable real coef-
ficients si. Moreover, since we are in finite dimensions,
there is surely a maximum coefficient smax = maxi si. On
the other hand, since ρi belongs to Dρ, there is surely a
state χi such that ρ = ρi + χi. This implies

ρ =
1

n

∑

i

(ρi + χi). (63)

Let us define τ := ρ−kσ, with k = 1
2nsmax

, and normalize

it as τ̄ := τ/ (e|τ)A. Using Eq. (63) it is easy to verify
that τ̄ is a state, since it is a convex combination of states
(recall that in a non-deterministic causal theory the set
of states is convex). Moreover, we have ρ = kσ+(1−k)τ̄,
which implies the thesis. �

Remark. In the previous Lemma 16 we used the fact
that in a non-deterministic causal theory a set of states is
convex (Corollary 5 along with the assumption that S(I)
is closed). In fact, we can weaken this assumption in
the proofs of Theorem 2 and Lemma 16. Indeed, in any
non-deterministic causal theory we can approximate the
convex combinations needed for the proof of Lemma 16
with arbitrary precision (Lemma 10), thus proving Eqs.
(61) and (62) with a non-zero probability k > 0 that
arises from a test allowed by the theory.

Theorems 2 and 3 state two very natural properties.
Even when discussing the extension of our results beyond
the framework of local discriminability we will assume
these properties to hold.

Finally, causal theories with local discriminability en-
joy a nice characterization of states that are invariant
under the group of reversible transformations:

Theorem 4 In a causal theory with local discriminabil-
ity if systems A and B have unique invariant states
|χ)A ∈ S1(A) and |χ)B ∈ S1(B), respectively, then
|χ)A |χ)B ∈ S1(AB) is the unique locally invariant state
of system AB.

Proof. Suppose that |σ)AB is a locally invariant state,
namely

σ
?>
89

A
U

A

B
V

B
= σ

?>
89

A

B
(64)

for all U ∈ GA and V ∈ GB. If we apply two arbitrary
effects (a|A and (b|B we then get

σ
?>
89

A ����a
B "%#$b

= (/).ρ̃a B "%#$b =  '!&ρb A ����a (65)

having defined |ρ̃a)B := (a|A |σ)AB and |ρb)A :=
(b|B |σ)AB. Now, ρ̃a and ρb are invariant (unnormalized)
states. Since χA is the unique state of B that is invariant
and normalized, one must have

|χ)A =
|ρb)A

(e|ρb)A
=

|ρb)A
(e⊗ b|σ)AB

:=
|ρb)A
(b| ρ̃)B

|χ)B =
|ρ̃a)B

(e| ρ̃a)B
=

|ρ̃a)B
(a⊗ e|σ)AB

:=
|ρ̃a)B

(a|ρ)A
,

(66)

|ρ)A, |ρ̃)B being the marginal states on systems A, B,
respectively. Inserting the above relations in Eq. (65),
we then obtain
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σ
?>
89

A ����a
B "%#$b

=

 '!&χ A ����a
(/).ρ̃ B "%#$b

=
 '!&ρ A ����a
 '!&χ B "%#$b

(67)

for every a, b. By local discriminability, this implies
|σ)AB = |χ)A |ρ̃)B = |ρ)A |χ)B, and, therefore, |σ)AB =
|χ)A |χ)B. �

V. BEYOND LOCAL DISCRIMINABILITY AND

CONVEXITY

Although the results of this paper take their simplest
form for causal theories with local discriminability, most
of them are valid in causal theories under weaker re-
quirements. For example, they hold for quantum theory
on real Hilbert spaces, which is a well known example
of theory without local discriminability. Moreover, al-
though convexity is very well motivated in the context
of causal theories, most results of this paper hold even
in non-convex theories. In this Section we briefly discuss
these generalizations.

A. Relaxing local discriminability

A weaker requirement than local discriminability is lo-
cal discriminability on pure states:

Definition 33 (Local discriminability on pure
states) A theory enjoys local discriminability on pure
states if whenever two states Ψ, σ ∈ S(AB) are differ-
ent, and one of the two states (say Ψ) is pure, there are
two effects a ∈ E(A) and b ∈ E(B) such that

Ψ
?>
89

A ����a
B *-+,b

6= σ
?>
89

A ����a
B *-+,b

(68)

An example of theory with this property is quantum
theory on real Hilbert spaces:

Lemma 17 Quantum theory on real Hilbert spaces en-
joys local discriminability on pure states.

Proof. Let ρ =
∑

i pi|Φi〉〈Φi| be a density matrix on
the real Hilbert space HA ⊗ HB with HA = R

m and
HB = R

n and |Ψ〉 ∈ R
m ⊗ R

n be a unit vector. Sup-
pose that Tr[(ρ − |Ψ〉〈Ψ|)(a ⊗ b)] = 0 for every couple
of real matrices a and b. Taking a = |v〉〈v| for some
v ∈ R

m we then obtain 〈v|A|Φi〉AB = ki,v〈v|A|Ψ〉AB for
some constant ki,v. Likewise, taking b = |w〉〈w| for some

w ∈ R
n we obtain 〈w|B|Φi〉AB = li,w〈w|B|Ψ〉AB for some

constant li,w. Putting the two things together we have

〈v|A〈w|B|Φi〉AB = ki,v〈v|A〈w|B|Ψ〉AB

= li,w〈v|A〈w|B|Ψ〉AB
(69)

hence ki,v ≡ li,w := ci. Finally, 〈v|A〈w|B|Φi〉AB =
ci〈v|A〈w|B|Ψ〉AB for every v, w implies |Φi〉 = ci|Ψ〉, and,
therefore σ = |Ψ〉〈Ψ|. �

When generalizing our results to theories without lo-
cal discriminability we will always assume local discrim-
inability on pure states along with the theses of Theo-
rems 2, 3, and 4. Again, all these requirements are met
by quantum theory on real Hilbert spaces.

An elementary property of causal theories with local
discriminability on pure states is that the product of two
pure states is pure, as stated in the following Lemma.

Lemma 18 (Product of pure states is pure) In a
causal theory with local discriminability on pure states,
if the states |ϕ)A ∈ S1(A) and |ψ)B ∈ S1(B) are pure,
then their product |ϕ)A |ψ)B ∈ S1(AB) is pure.

Proof. Suppose that the product can be written as a
convex combination |ϕ)A |ψ)B =

∑
i∈X pi |Ψi)AB, with

|Ψi)AB ∈ S1(AB). We now show that |Ψi)AB =
|ϕ)A |ψ)B for every i ∈ X. Let (b|B be an arbitrary effect
for system B. We then have

 '!&ϕ A

(/).ψ B "%#$b
=

∑

i∈X

pi Ψi

?>
89

A

B "%#$b
(70)

Since |ϕ)A is pure, this implies

Ψi

?>
89

A

B "%#$b
= λbi  '!&ϕ A (71)

for some coefficient λbi ≥ 0. Clearly, for (b|B = (e|B one
has λei = 1. Similarly, if (a|A is an arbitrary effect for
system A, we obtain

Ψi

?>
89

A ����a
B

= µai
(/).ψ A (72)

for some coefficient µai ≥ 0 satisfying µei = 1. Combin-
ing the above facts, we obtain

λbi = λbi  '!&ϕ A ����e = Ψi

?>
89

A ����e
B "%#$b

= µei
(/).ψ B "%#$b = (/).ψ B "%#$b .

(73)

Finally, this implies

Ψi

?>
89

A ����a
B "%#$b

= λbi  '!&ϕ A ����a =

 '!&ϕ A ����a
(/).ψ B "%#$b

(74)

and, by local discriminability on pure states |Ψi)AB =
|ϕ)A |ψ)B. �

Clearly, iterating the above reasoning one can
also show that the product of N pure states
|ϕ1)A1

|ϕ2)A2
. . . |ϕN )AN

is pure.
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B. Relaxing convexity

If one wants to relax convexity, it is clear from the
proof of Lemma 10 and Corollary 5 that one must have
at least one of the following features: i) the theory is de-
terministic, i.e. all events have either zero or unit proba-
bility, ii) some randomizations or some coarse-grainings
are forbidden, and iii) the set of probabilities S(I) of
the theory is not closed. For the purposes of this pa-
per, deterministic theories are not quite interesting, and
theories with non-closed sets of transformations are just
technically cumbersome, although most of the conclu-
sions of this paper remain unchanged. Therefore, in re-
laxing convexity we will only consider the case in which
some conditioned tests or some coarse-grained tests are
forbidden. Of course, if one wants to drop a basic opera-
tional requirement like the possibility of conditioning, one
has to take care that some minimal properties hold. For
example, the existence of internal states, the fact that
every test has an ultimate refinement, and the validity
of the theses of Theorems 2 and 3 have to be explicitly
postulated. One would also need to assume that is not
forbidden i) to attach a distinguishable state |ϕi)B to
every state in a preparation-test {|ρi)A}i∈X, thus getting
the new test {|ρi)A |ϕi)B}i∈X, and ii) to perform a dis-
criminating test {ai}i∈X for the perfectly discriminable
states {ρi}i∈X, and to re-prepare state ρi when the out-
come is i, thus getting the “measure-and-prepare” test
{|ρi)A (ai|A}i∈X.

Finally, we will show that the existence of twirling
tests is necessary for deterministic teleportation. If one
wants to consider non-convex theories with deterministic
teleportation one has also to require the existence of a
twirling-test and the thesis of Theorem 4.

VI. SUMMARY OF THE FRAMEWORK

This short Section concludes the presentation of the
general framework used in this paper. The standing as-
sumptions of the paper are summarized by the following
table:

In this paper, if not otherwise stated, we will con-
sider operational-probabilistic theories satisfying the
following requirements:

1. the theory is causal (every state is propor-
tional to a normalized one)

2. local discriminability holds

3. the set of all tests is closed under coarse-
graining and conditioning

4. for every system, the set of states is finite-
dimensional and closed in the operational
norm

5. there exist perfectly discriminable states

6. the theory is not deterministic

Note that the existence of perfectly discriminable
states, needed to describe perfect classical communica-
tion, is guaranteed in the usual convex framework, which
contains the no-restriction hypothesis of Def. 16. We
recall that we don’t make this assumption here.

In most proofs the background requirement 2. can be
always weakened to:

2’. local discriminability of pure states and
the theses of Theorems 2, 4 and 3 hold

If a particular results requires local discriminability or
convexity this will be mentioned explicitly in its state-
ment.

VII. THEORIES WITH PURIFICATION

Here we introduce the purification postulate “every
mixed state has a purification, unique up to reversible
transformations on the purifying system”, and we explore
its consequences within the general framework outlined
in the previous Sections.

A. The purification postulate

Definition 34 (Purification) A pure state Ψ ∈
S1(AB) is a purification of ρ ∈ S1(A) if |ρ)A =
(e|B |Ψ)AB. Diagrammatically,

 '!&ρ A = Ψ
?>
89

A

B ����e
(75)

Definition 35 (Purifying system) If system AB con-
tains a purification of ρ ∈ S1(A), we call system B a
purifying system for ρ.

Definition 36 (Complementary state) Let
Ψ ∈ S1(AB) be a purification of ρ ∈ S1(A). The
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complementary state of ρ is the state ρ̃ ∈ S1(B) defined
by

(/).ρ̃ B = Ψ
?>
89

A ����e
B

(76)

An elementary property of purification is the following

Lemma 19 If ψ ∈ S1(A) is pure and Ψ ∈ S1(AB) is a

purification of ψ, then Ψ must be of the form Ψ = ψ⊗ ψ̃,
with ψ̃ ∈ S1(B) pure.

Proof. Take an observation-test {bi}i∈X on B. Since∑
i bi = eB we have

(/).ψ A =
∑

i∈X

Ψ
?>
89

A

B *-+,bi
:=

∑

i∈X

 '!&ρi A

(77)
namely, the states {ρi}i∈X defined by ρi := (bi|B |Ψ)AB

form a refinement of ψ. Since ψ is pure, we necessarily
have ρi = piψ for some probabilities {pi}. Precisely, we

have pi = (e|ρi)A = (eA ⊗ bi|Ψ)AB = (bi| ψ̃
)
B, where ψ̃

is the complementary state of ψ. Therefore, we have

Ψ
?>
89

A

B *-+,bi
=

(/).ψ A

8?9>ψ̃ B *-+,bi

∀i ∈ X. (78)

The above equation implies that Ψ cannot be distin-
guished from ψ ⊗ ψ̃ by any local test. Since Ψ is pure,
this implies Ψ = ψ⊗ ψ̃. Clearly, ψ̃ has to be pure, other-
wise we would have a non-trivial refinement of the pure
state Ψ. �

It is important to stress that purification is not a phys-
ical process: There is no physical transformation that is
able to turn any arbitrary mixed state ρ into some pu-
rification Ψ of it. In quantum mechanics, this has been
noted by Kleinman et al. in Ref. [36]. Along the same
lines, it is easy to prove the following general Theorem:

Theorem 5 (No-purification of collinear states)
Let ρi, i = 1, 2, 3 be three distinct collinear states of
system A—i.e. ρ1 6= ρ3 and ρ2 = pρ1 + (1 − p)ρ3 for
some 0 < p < 1. Suppose that |Ψi)AB, i = 1, 2, 3 is a pu-
rification of |ρi)A. Then for every finite number of copies
N there is no physical transformation C ∈ T(A⊗N ,AB)

such that C |ρi)
⊗N
A = |Ψi)AB for every i = 1, 2, 3.

Proof. The proof is by contradiction. Suppose that
such a transformation C exists for some finite N . Then,
expanding the product ρ⊗N

2 = [pρ1 + (1 − p)ρ3]⊗N , and
applying the transformation C , we obtain

|Ψ2)AB = C |ρ2)⊗N
A

= pNC |ρ1)⊗N
A + (1 − p)NC |ρ3)⊗N

A + |ρrest)AB

= pN |Ψ1)AB + (1 − p)N |Ψ3)AB + |ρrest)AB,

(79)

where ρrest is a suitable non-normalized state. This is
clearly absurd, since we obtained a non-trivial convex
decomposition of the pure state Ψ2. �

If Ψ is a purification of ρ and UB is a reversible trans-
formation on the purifying system, then also |Ψ′)AB =
UB |Ψ)AB is a new purification of ρ. Indeed, UB |Ψ)AB

must be pure, otherwise by inverting UB on UB |Ψ)AB

by linearity one would find that |Ψ)AB is mixed. In the
following Postulate we impose that all purifications are
of this form:

Postulate 1 (Purification) Every state has a purifica-
tion, unique up to reversible transformations on the pu-
rifying system: if Ψ,Ψ′ ∈ S1(AB) are two purifications
of the same state, then they are connected by a reversible
transformation U ∈ T(B), namely

Ψ′?>
89

A

B ����e
= Ψ

?>
89

A

B ����e

=⇒ Ψ′?>
89

A

B
= Ψ

?>
89

A

B
U

B
(80)

Remark (Uniqueness of the complementary
state) Note that uniqueness of the purification assumed
in the purification postulate is equivalent to the unique-
ness (up to reversible transformations) of the complemen-
tary state defined in Def. 36.

We now show some simple consequences of the purifi-
cation postulate. First, it implies that all pure states of
a system are connected by reversible transformations:

Lemma 20 (Transitivity of the group of reversible
transformations on the set of pure states) For any
couple of pure states ψ, ψ′ ∈ S1(A) there is a reversible
transformation U ∈ T(A) such that ψ′ = U ψ.

Proof. Every system is a purifying system for the trivial
system. Then just apply Eq. (80) with A ≡ I. �

An obvious consequence of the purification postulate
is that in a theory with purification there are entangled
states, according to the usual definition:

Definition 37 (Separable states/entangled states)
A bipartite state σ ∈ S1(AB) is separable if it can be
written as a convex combination of product states, that
is, as |σ)AB =

∑
i pi |φi)A |ψi)B with pi ≥ 0,

∑
i pi = 1.

A bipartite state is entangled if it is not separable.

As already anticipated, one has the following (trivial)
Corollary:

Corollary 6 (Existence of entangled states) If
Ψρ ∈ S1(AB) is a purification of ρ ∈ S1(A) and ρ is
mixed, then Ψρ is entangled.

Proof. By contradiction, suppose that Ψρ is separable.
Because it is pure, it must be of the form |Ψρ)AB =
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|ϕ)A |ψ)B with |ϕ)A and |ψ)B pure. Then the marginal
|ρ)A = (e|B |Ψρ)AB = |ϕ)A is pure, in contradiction with
the hypothesis. �

Remark (Purification and classical theories).
Clearly, Corollary 6 shows that the purification postu-
late rules out classical probability theory. In fact, there
is only one possibility for a causal theory to satisfy the
purification postulate without having entangled states:
the theory must not contain mixed states. This neces-
sarily implies that the theory is deterministic, that is,
that the probabilities of outcomes in any test are either
0 or 1 (if the theory were not deterministic one could
construct mixed states by randomization). In particular,
this also implies that in such a theory the pure states of
an arbitrary system A are perfectly distinguishable. In
conclusion, the only causal theories that satisfy the purifi-
cation postulate and have no entanglement are classical
deterministic theories.

Another elementary consequence of the purification
postulate is that “purity implies independence from the
rest of the world”:

Corollary 7 (Purity implies independence) If ψ ∈
S1(A) is pure and ρ ∈ S1(AB) is an extension of ψ,
namely |ψ)A = (e|B |ρ)AB, then ρ = ψ ⊗ σ, for some
state σ ∈ S1(B).

Proof. Let Ψ ∈ S1(ABC) be a purification of ρ.
Since Ψ is also a purification of ψ, by the Lemma 18
we have |Ψ)ABC = |ψ)A |η)BC, for some pure state
η ∈ S1(BC). But since Ψ is a purification of ρ we have
|ρ) = (e|C |Ψ)ABC = |ψ)A |σ)B, with |σ)B := (e|C |η)BC.
�

We conclude this subsection with an important Lemma
that extends the uniqueness of purification to the case of
purifications with different purifying systems:

Lemma 21 (Uniqueness of the purification up to
channels on the purifying systems) Let Ψ ∈ S1(AB)
and Ψ′ ∈ S1(AC) be two purifications of ρ ∈ S1(A).
Then there exists a channel C ∈ T(B,C) such that

Ψ′?>
89

A

C
= Ψ

?>
89

A

B
C

C
(81)

Moreover, channel C has the form

B
C

C =
 '!&ϕ0 C

U

B ����e
B C

(82)

for some pure state ϕ0 ∈ S1(C) and some reversible
channel U ∈ GBC.

Proof. Let |η)B and |ϕ0)C be an arbitrary pure state of
B and C, respectively. Then |Ψ′)AC |η)B and |Ψ)AB |ϕ0)C

are two purifications of ρ with the same purifying system
BC. Due to Eq. (80), we have

Ψ′
?>
89

A

C

 '!&η B

=
Ψ

?>
89

A

B

U

C

 '!&ϕ0 C B

(83)

Applying the deterministic effect e on system B we obtain
Eq. (81), with C := (e|B U |ϕ0). �

B. Purification of preparation-tests

We now show that the purification of normalized states
implies the purification of preparation-tests.

Theorem 6 (Purification of preparation-tests)
Let {ρi}i∈X be a preparation-test for system A, and let
Ψ ∈ S1(AB) be a purification of the coarse-grained state
ρ :=

∑
i∈X ρi. Then there exists an observation-test

{bi}i∈X on system B such that

 '!&ρi A = Ψ
?>
89

A

B *-+,bi
(84)

for any outcome i ∈ X. By suitably choosing the purifying
system B, the observation-test {bi}i∈X can be taken to be
discriminating (Definition 26).

Proof. Take a set of |X| perfectly distinguishable states
{ϕi}i∈X ⊂ S1(C) for some system C. By definition of
perfect distinguishability, there exists a discriminating
test {ci}i∈X such that

 '!&ϕi
C *-+,cj = δij (85)

for all i, j ∈ X. Now consider the state

σ :=
∑

i∈X

(ρi ⊗ ϕi) ∈ S1(AC), (86)

which is clearly an extension of ρ, namely |ρ)A =
(e|C |σ)AC. Let Ψσ ∈ S1(ACD) be a purification of σ.
By definition, Ψ is also a purification of ρ. Using Eq.(85)
we obtain for every outcome i ∈ X

 '!&ρi A = σ
?>
89

A

C "%#$ci
= Ψσ

?>

89

A

C "%#$ci

D ����e
(87)

= Ψσ

?>
89

A

CD *-+,bi
(88)

having defined the discriminating test (bi|CD :=
(ci|C (e|D. This proves that there exists a purification of
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ρ with purifying system B := CD, and a discriminating
test {bi}i∈X on B such that the thesis holds.

Finally, if Ψ ∈ S1(AB′) is any other purification of ρ,
using Lemma 21 we have

 '!&ρi A = Ψσ

?>
89

A

B *-+,bi
= Ψ

?>
89

A

B′

C
B *-+,bi

(89)

= Ψ
?>
89

A

B′ 2534b′i
(90)

where {b′i}i∈X is the observation-test on B′ defined by
(b′i| := (bi|C . �

The property stated by Theorem 6 is sometimes called
steering in quantum theory, with a terminology that
dates back to Schrödinger [37] (see also Ref. [38], for a
very recent discussion in the general probabilistic frame-
work): one says that a bipartite state |σ)AB steers its
marginal |ρ)A = (e|B |σ)AB on system A, if every convex
decomposition |ρ)A =

∑
i∈X pi |ρi)A is induced by a suit-

able observation-test on system B. Using the notion of
steering, we may state the following:

Corollary 8 (Pure bipartite states are steering for
their marginals) In a theory with purification any pure
state |Ψ) ∈ S1(AB) steers its marginal states |ρ)A =
(e|B |Ψ)AB and |ρ̃)A = (e|A |Ψ)AB.

We now present a few other corollaries of the purifica-
tion of preparation-tests stated by Theorem 6.

Corollary 9 Let Ψ ∈ S1(AB) be a purification of ρ.
Then, a state σ is in the refinement set Dρ if and only if
there is an effect bσ ∈ E(B) such that

����σ A = Ψ
?>
89

A

B *-+,bσ
(91)

Proof. The “if” part is trivial. Conversely, if σ is in Dρ,
by definition there exists a preparation-test {ρi}i∈X and
an outcome i0 such that ρi0 = σ. Using Theorem 6 and
taking the effect bσ := bi0 one proves the thesis.�

Corollary 10 (Bound on dimensions) Let
Ψ ∈ S1(AB) be a purification of ρ ∈ S1(A). Then, one
has the bound

dimSR(B) ≥ dim Span(Dρ). (92)

In particular, if ρ is an internal state, one has

dimSR(B)) ≥ dimSR(A). (93)

Proof. Consider the map ω̂ : ER(B) → SR(A) defined
by b 7→ |ω̂b)A := (b| |Ψ)AB. By the previous corollary,

the range of ω̂ contains Dρ. Since ω̂ is linear, this im-
plies dimER(B) ≥ dim Span(Dρ). On the other hand,
since states and effects span dual vector spaces, one has
dimER(B) ≡ dimSR(B), thus proving Eq. (92). �

Theorem 6 implies the existence of pure bipartite states
exhibiting perfect correlations in the statistics of inde-
pendent observations:

Corollary 11 (Pure states with perfect correla-
tions) Let ρ =

∑
i∈X piϕi be a mixture of perfectly dis-

tinguishable states {ϕi} ⊂ S1(A), and let Ψ ∈ S1(AB) be
a purification of ρ. Then there exist two observation-tests
{ai}i∈X and {bj}j∈X on systems A and B, respectively,
such that

Ψ
?>
89

A "%#$ai

B 2534bj
= piδij (94)

Proof. Consider the preparation-test {ρi}i∈X with
ρi = piϕi. Since its coarse-grained state is ρ, by The-
orem 6 there exists an observation-test {bi} such that
|ρi)A = (bi|B |Ψ)AB. On the other hand, the states {ϕi}
are perfectly distinguishable with a test {ai}i∈X. Hence,
we have (ai|A (bj|B |Ψ)AB = (ai|A |ρj)= piδij . �

This directly implies the following property

Corollary 12 Let ρ =
∑

i∈X piϕi ∈ S1(A) be a mixture
of perfectly distinguishable states, Ψ ∈ S1(AB) be a pu-
rification of ρ, and ρ̃ = (e|A |Ψ)AB be the complementary
state of ρ. Then, one has

ρ̃ =
∑

i∈X

piϕ̃i, (95)

where {ϕ̃}i∈X are perfectly distinguishable states of B.

We conclude this subsection with a crucial consequence
of the purification of preparation-test stated by Theorem
6, namely that if two transformations coincide on a purifi-
cation of ρ, they also coincide upon input of ρ, according
to the following definition:

Definition 38 (Equality upon input of ρ) Two
transformations A ,A ′ ∈ T(A,B) are equal upon input
of ρ, denoted by A =ρ A ′, if one has

A |σ)A = A
′ |σ)A ∀ |σ)A ∈ Dρ. (96)

In quantum theory two quantum operations A ,A ′ are
equal upon input of ρ if and only of one has A (σ) =
A ′(σ) for every density matrix σ whose support is con-
tained in the support of ρ.

We then have the following:

Theorem 7 (Equality upon input of ρ vs equality
on purifications) Let Ψ ∈ S1(AC) be a purification of
ρ ∈ S1(A), and let A ,A ′ ∈ T(A,B) be two transforma-
tions. Then one has

A |Ψ)AC = A
′ |Ψ)AC =⇒ A =ρ A

′ . (97)
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If local discriminability holds, one has the equivalence

A |Ψ)AC = A
′ |Ψ)AC ⇐⇒ A =ρ A

′ . (98)

If one of the two transformations is proportional to a re-
versible transformation the equivalence of Eq. (98) holds
under the weaker assumption of local discriminability on
pure states.

Proof. By definition, a state σ is in the refinement set
Dρ iff there exists a preparation-test {ρi}i∈X and an out-
come i0 such that ρi0 = σ. Using Corollary 9, we have
that σ is in Dρ iff there exist an effect c on C such that

����σ A = Ψ
?>
89

A

C ����c
(99)

Therefore, we have that A =ρ A ′ if and only if

Ψ
?>
89

A
A

B

C ����c
= Ψ

?>
89

A
A ′ B

C ����c
(100)

that is, if and only if the states A |Ψ)AC and A ′ |Ψ)AC

cannot be distinguished by local tests, that is, if and only
if

Ψ
?>
89

A
A

B "%#$b
C ����c

= Ψ
?>
89

A
A ′ B "%#$b

C ����c
(101)

for every product effect (b|B (c|C. Clearly, if A |Ψ)AC =
A ′ |Ψ)AC, this condition is verified: this proves Eq. (97).
When local discriminability holds, equality on local tests
implies equality on global tests, hence Eq. (98). Fi-
nally, if A ′ = λU with U reversible, then the state
A ′ |Ψ)AC = λU |Ψ)AC is pure, and, by local discrim-
inability of pure states, equality on local tests implies
equality. �

C. Dynamically faithful pure states

We show now an important feature of theories with
purification: the possibility of imprinting physical trans-
formations into states in an injective way (that is, if
two transformations differ, then the corresponding states
are differ). This feature reduces the tomography of a
physical process to the tomography of the corresponding
state. Technically speaking, we call dynamically faith-
ful any state that allows for the tomography of physical
processes.

Definition 39 (Dynamically faithful state) We say
that a state σ ∈ S(AC) is dynamically faithful for system
A if for any couple of transformations A ,A ′ ∈ T(A,B)
on has

A |σ)AC = A
′ |σ)AC =⇒ A = A

′. (102)

The existence of dynamically faithful mixed states is a
quite generic fact: for example, in any theory with lo-
cal discriminability if one takes a basis {ρi} ⊂ S1(A)
for SR(A) and a set {ϕi} ⊂ S1(C) of perfectly distin-
guishable states of some system C, than any mixture
σ =

∑
i piρi ⊗ ϕi is dynamically faithful. The remark-

able fact in a theory with purification is that there exist
dynamically faithful states, which, in addition, are pure.

Theorem 8 (Existence of dynamically faithful
pure states) Let ω ∈ S1(A) be an internal state, and
let Ψω ∈ S1(AC) be a purification of ω. Then Ψω is
dynamically faithful for system A.

Proof. Suppose that A |Ψω)AC = A ′ |Ψω)AC. Then
take an arbitrary system D, an internal state σ ∈ S1(D),
and a purification of σ, say Ψσ ∈ S1(DE). Clearly, we
have A |Ψω)AC ⊗ |Ψσ)DE = A ′ |Ψω)AC ⊗ |Ψσ)DE. Ac-
cording to Theorem 7, this implies that A and A ′ co-
incide upon input of ω ⊗ σ. Since ω and σ are internal
in S(A) and S(D), respectively, by Theorem 2 ω ⊗ σ is
internal in S(AD), that is, the refinement set Dω⊗σ is a
spanning set for SR(AD). Now, A and A ′ coincide on a
spanning set, and, therefore, they coincide on every state
of S(AD). Since the ancillary system D is arbitrary, this
implies A = A ′. �

The converse of the previous Theorem 8 also holds:

Theorem 9 (Characterization of dynamically
faithful pure states) A pure state Ψ ∈ S1(AC) is
dynamically faithful for system A if and only if the
marginal state |ω)A := (e|C |Ψ)AC is internal.

Proof. The “if” part has been just shown in Theo-
rem 8. To prove the “only if” part, let a, a′ be two dis-
tinct effects for system A. Since Ψ is dynamically faith-
ful one has (a|A |Ψ)AC 6= (a|

′
A |Ψ)AC. This means that

there exists an effect (c|C such that (a|A (c|C |Ψ)AC 6=

(a|′A (c|C |Ψ)AC. Defining the state |ωc)A := (c|C |Ψ)AC,
this implies (a|ωc)A 6= (a′|ωc)A. Since ωc is in the re-
finement set of ω, such a refinement set is separating for
ER(A). But a separating set for ER(A) must be a span-
ning set for the dual vector space SR(A). Hence, ω is
internal. �

Using this characterization it is immediate to show
that the product of dynamically faithful pure states is
dynamically faithful:

Corollary 13 (Product of dynamically faithful
states is dynamically faithful) Let Ψ(A) ∈ S1(AC)
and Ψ(B) ∈ S1(BD) be dynamically faithful for systems
A and B, respectively. Then Ψ(A) ⊗ Ψ(B) is dynamically
faithful for the compound system AB.

Proof. Since the product of two internal states is in-
ternal (Theorem 2), the thesis trivially follows from the
previous Theorem. �
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The existence of dynamically faithful pure states
has remarkable consequences, among which the “no-
information without disturbance” and the “no-cloning”
Theorems, that will be analyzed in the following Subsec-
tions.

D. No information without disturbance

Definition 40 (Non-disturbing tests) We say that a
test {Ai}i∈X on system A is non-disturbing upon input
of ρ ∈ S(A) if

∑

i∈X

Ai |σ)A = |σ)A ∀σ ∈ Dρ, (103)

or, equivalently, if
∑

i∈X Ai =ρ IA. If ρ is an internal
state, we say that the test is non-disturbing, because in
this case one has

∑

i∈X

Ai |σ)A = |σ)A ∀σ ∈ S(A). (104)

Theorem 10 (No information without disturbance)
In a theory with purification, a test {Ai} on system A
is non-disturbing upon input of ρ, if and only if each
transformation Ai is proportional to the identity upon
input of ρ, namely Ai =ρ piIA.

Proof. Let ΨAB be a purification of ρ. By Theorem 7,
the no-disturbance condition

∑
i∈X Ai =ρ IA holds if

and only if

∑
i∈X Ψ

?>
89

A Ai
A

B

= Ψ
?>
89

A

B
(105)

Since Ψ is pure, this implies Ai |Ψ)AB = pi |Ψ)AB =
(piIA) |Ψ)AB. Now, since the identity is trivially a re-
versible transformation, according to Theorem 7 this is
equivalent to Ai =ρ piIA. �

Theorem 11 (No joint discrimination of a span-
ning set of states) In a theory with purification the
states in a spanning set cannot be perfectly discriminated
in a single observation-test.

Proof. By contradiction, suppose that a collection of
states {ρi}i∈X is a spanning set—namely Span{ρi}i∈X =
SR(A)—and there exists an observation-test {ai}i∈X

such that (ai|ρj)A = δij . Then, since perfectly distin-
guishable states are linearly independent, and they must
span a finite dimensional vector space, the number of
perfectly distinguishable states must be finite. Now con-
sider the measure-and-prepare test {Ai}i∈X defined by
Ai = |ρi)A (ai|A. Since the states of the spanning set are
perfectly distinguishable, the test {Ai} is non-disturbing.

Indeed, expanding an arbitrary state ρ on the spanning
set, one has

∑

i

Ai |ρ)A =
∑

i

Ai


∑

j

cj |ρj)A


 =

∑

j

cj |ρj)A = |ρ).

(106)
Since Ai 6= piIA, this is in contradiction with the no-
information without disturbance Theorem 10. �

Corollary 14 (No joint discrimination of pure
states) In a theory with purification for every system the
pure states cannot be perfectly discriminated in a single
observation-test.

Proof. Since pure states are a spanning set, they cannot
be perfectly discriminated in a single test, according to
Theorem (11).�

Corollary 14 provides a simple alternative way to see
that classical probability theory is excluded by the pu-
rification Postulate.

Corollary 15 (Maximum number of perfectly dis-
tinguishable states) For every system A the maximum
cardinality of a set of perfectly distinguishable states is
strictly smaller than dimSR(A).

Proof. Since perfectly distinguishable states are linearly
independent, if one could find dimSR(A) perfectly dis-
tinguishable states, then they would form a spanning set,
in contradiction with Theorem 11. �

Note that the maximum number of distinguishable
states in quantum theory satisfies a much stronger bound:
such a number is given by the dimension dA of the sys-
tem’s Hilbert space, while the dimension of the vector
space spanned by the density matrices is dimSR(A) =
d2A.

Corollary 16 (Non-unique convex decomposition
on pure states) In a theory with purification satisfying
the no-restriction hypothesis of Def. 16, for every system
A there is a mixed state ρ ∈ S1(A) with a non-unique
convex decomposition on pure states. In other words, the
convex set S1(A) cannot be a simplex.

Proof. By contradiction, suppose that S1(A) is a sim-
plex. Then the pure states {ϕi} of A are a finite set,
and for each of them there is a functional ai ∈ ER(A)
such that (ai|ϕj) = δij . Clearly, ai is positive on every
state, namely ai ∈ S+(A)∗. Hence, by the consequence
of the no-restriction hypothesis stated by Lemma 11, we
have ai ∈ E+(A). Moreover, one has

∑
i (ai|A = (e|A. In

Corollary 37 we will show that any such collection {ai} is
an observation-test. But this test discriminates all pure
states, in contradiction with Corollary 14. This proves
that S1(A) cannot be a simplex. �
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E. No-cloning

Definition 41 (Cloning channels) Let A,A′ be two
operationally equivalent systems, and let {ρi}i∈X be a set
of states of A. A channel C from A to AA′ is a cloning
channel for the set {ρi}i∈X if

C |ρi)A = |ρi)A |ρi)A′ . (107)

If there is a cloning channel, we say that the states
{ρi}i∈X are perfectly cloneable.

We now show that a spanning set of states (in particu-
lar, the set of pure states) cannot be perfectly cloned. To
see this we use the equivalence between perfect cloning
and perfect discrimination, which was originally proved
in Refs. [6, 7] for causal theories with local discriminabil-
ity using the tomographic limit. Here we use the stronger
result of Ref. [39], which proves the equivalence in any
convex theory where all “measure-and-prepare” channels
are allowed, without requiring causality and local dis-
criminability, and without resorting to the tomographic
limit. For convenience of the reader, the argument of Ref.
[39] is reproduced here using the notation of the present
paper:

Theorem 12 (Cloning/discrimination equiva-
lence) In a convex theory where all “measure-and-
prepare” channels are allowed, the deterministic states
{ρi}i∈X ⊂ S(A) are perfectly cloneable if and only if
they are perfectly distinguishable.

Proof. Suppose that the states {ρi}i∈X can be perfectly
cloned and consider the binary discrimination between
two states ρi, ρj, i 6= j with a binary observation-test
{ai, aj}. Define the worst-case error probability as

pwc := max{p(i|j), p(j|i)} p(k|l) := (ak|ρl)A, (108)

and take its minimum over all binary tests

p(opt)wc := min
ai,aj

pwc. (109)

Now, if a cloning channel exists, we can apply it twice to
the unknown state, thus getting three identical copies of
it. Performing three times the optimal test, and then us-
ing majority voting we obtain the new error probabilities
given by

p′(i|j) = f(p(opt)(i|j)) f(x) = x2(3 − 2x), (110)

where p(opt)(i|j) :=
(
a
(opt)
i

∣∣∣ρj)A. Since f is a non-

decreasing function for x ∈ [0, 1], we also have p′wc =

f
(
p
(opt)
wc

)
, and, since p

(opt)
wc is the minimum error proba-

bility, by definition p′wc ≥ poptwc . The only solutions of the
inequality f(x) ≥ x are x = 0 and x ∈ [1/2, 1], and, since

p
(opt)
wc must be in the interval [0, 1/2) (see Lemma 2), we

obtain p
(opt)
wc = 0. This proves that any pair of states

from the set {ρi}i∈X can be perfectly distinguished. But
this implies that using |X| − 1 pairwise tests we can per-
fectly discriminate all the states {ρi}i∈X. This proves the
implication “perfect cloning ⇒ perfect discrimination”
in any convex theory. If the theory contains all possi-
ble “measure-and-prepare” channels, the converse is ob-
viously true: If the states can be perfectly discriminated
by an observation-test {ai}i∈X, then the measure-and-
prepare channel C :=

∑
i∈X |ρi)A |ρi)A′ (ai|A is a cloning

channel. �

Since measure-and-prepare channels can be obtained
by conditioning the choice of a preparation-test on the
outcome of an observation-test, any causal theory satis-
fies the hypotheses of the previous Theorem, which be-
comes

Corollary 17 (Cloning/discrimination equiva-
lence in causal theories) In a causal theory the states
{ρi}i∈X ⊂ S1(A) are perfectly cloneable if and only if
they are perfectly distinguishable.

Remark (Non-causal theories with all measure-
and-prepare channels). Note that there are also
non-causal theories that contain all measure-and prepare
channels. An example can be constructed by starting
from a causal theory Θ, and by regarding the set of trans-
formations T(A,B) from A to B as the set of “states”
S

′(A → B) of the system “A → B” in a new second-
order theory Θ′. Performing an observation-test on a
“state” C ∈ S′(A → B) is then interpreted in the un-
derlying causal theory Θ as applying the transformation
C ∈ T(A,B) to an input state σ ∈ S1(AC), and sub-
sequently performing an observation-test {bi}i∈X on the
output state (C ⊗IC) |σ)AC. Of course, since the theory
Θ is causal, one can use conditioning and perform a chan-
nel Ci that depends on the outcome i. This provides the
realization of an arbitrary measure-and-prepare channel
in the non-causal theory Θ′.

Coming back to causal theories with purification, the
results proved so far imply the following no-cloning state-
ment:

Corollary 18 (No-cloning of states in a spanning
set) In a theory with purification, a cloning channel for
a spanning set of states cannot exist. In particular, pure
states cannot be cloned.

Proof. Immediate consequence of Corollary 17 com-
bined with Theorem 11 and Corollary 14.�

VIII. PROBABILISTIC TELEPORTATION

A. Entanglement-swapping and teleportation

As we previously showed, in a theory with purification
there must be entangled states (according to the usual
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definition, see Def. 37). We now show the possibility of
probabilistic entanglement swapping:

Theorem 13 (Probabilistic entanglement-
swapping) Let Ψ ∈ S1(AB) be a pure state, and
let A′ and B′ be operationally equivalent to A and
B, respectively. Then there exist an atomic effect
EΨ ∈ E(BA′) (see Def. 22)and a non-zero probability
pΨ such that

Ψ
?>
89

A

B

EΨ

=<
:;

Ψ
?>
89

A′

B′

= pΨ Ψ
?>
89

A

B′
(111)

Proof. Let us define the marginal states

|ρ)A := (e|B |Ψ)AB

|ρ̃)B := (e|A |Ψ)AB
(112)

By Theorem 3 we have that there exists a non-zero prob-
ability pΨ such that pΨΨ ∈ Dρ⊗ρ̃. Since |Ψ)AB |Ψ)A′B′ is
a purification of |ρ)A |ρ̃)B′ , using corollary 9 we get the
thesis. The effect EΨ can be taken to be atomic: indeed,
if it were refinable, i.e. EΨ =

∑
iEi, since the right hand

side of Eq. (111) is a pure state, each effect Ei would
achieve entanglement swapping. �

Remark (PR boxes are excluded by the purifi-
cation Postulate). The possibility of probabilistic en-
tanglement swapping shows that the purification Postu-
late excludes the theory of Popescu-Rohrlich boxes (see
Ref. [8] for the definition of transformations on boxes
and states of multipartite boxes). Indeed, Refs. [9, 10]
showed that probabilistic entanglement swapping is im-
possible in this theory.

Corollary 19 (Probabilistic teleportation) Let Ψ ∈
S1(AB) be a pure state, and let ρ ∈ S1(A) and ρ̃ ∈
S1(B) be its marginals. Let A′ and B′ be operationally
equivalent to A and B, respectively. Then, there exists
an atomic effect EΨ ∈ E(BA′) and a non-zero probability
pΨ such that

Ψ
?>
89

A

B

EΨ

=<
:;A′

=ρ pΨ A′

I
A (113)

and
B

EΨ

=<
:;

Ψ
?>
89

A′

B′

=ρ̃ pΨ B
I

B′

(114)

In particular, if ρ is an internal state, one has the prob-
abilistic teleportation scheme

Ψ
?>
89

A

B

EΨ

=<
:;A′

= pΨ A′

I
A (115)

Proof. Just combine Theorems 13 and 7. �

The diagram of probabilistic teleportation (115) is one
of the main axioms in the categorial approach by Abram-
sky and Coecke [41]. In the present approach, this prop-
erty is derived from the purification postulate, rather
than being assumed from the start.

For theories with local discriminability the probability
of teleportation is related to the dimension of the state
space as follows:

Lemma 22 (Maximum teleportation probability)
If local discriminability holds, then the probability of
teleportation pΨ in Eq. (115) satisfies the bound

pΨ ≤
1

dimSR(A)
. (116)

Proof. Let us choose two bases {ρi} and {ρ̃j} for

the vector spaces SR(A) and SR(Ã), respectively, and
write Ψ as |Ψ)AÃ =

∑
i,j Aij |ρi)A |ρ̃j)Ã. Now take the

dual bases {ρ∗i } and {ρ̃∗j} for the dual vector spaces

ER(A) and ER(Ã), respectively—so that (ρ∗i |ρj)A = δij
and (ρ̃∗k| ρ̃l)Ã = δkl—, and write EΨ as (EΨ|ÃA′ =∑

k,l Bkl (ρ̃∗k|Ã (ρ∗l |A′
. The teleportation diagram (115)

is then equivalent to the matrix equality

AB = pΨIA, (117)

where IA is the identity matrix of size dim(SR(A)). Fi-
nally, since probabilities are bounded by unit, we obtain

1 ≥ (EΨ|Ψ)AÃ = Tr[AB] = pΨ dim(SR(A)), (118)

which is the desired bound. �

Remark (quantum theory achieves the bound).
Note that in quantum theory the teleportation probabil-
ity achieves the maximum value allowed by the bound
of Eq. (116): For a d-dimensional Hilbert space, the
real vector space spanned by all density matrices has di-
mension d2, which is exactly the maximum probability
of conclusive teleportation.

A simple consequence of probabilistic teleportation is
the possibility of remotely preparing any bipartite state
by acting locally on the purifying system only, according
to the following definition

Definition 42 (Preparationally faithful state) A
state Ψ ∈ S1(AB) is preparationally faithful for system
B if for every bipartite state σ ∈ S1(AC) there are a
transformation Aσ ∈ T(B,C) and a non-zero probability
pσ such that

pσ σ
?>
89

A

C
= Ψ

?>
89

A

B Aσ
C

(119)

Corollary 20 (Existence of preparationally faith-
ful pure states) Let Ψ ∈ S1(AB) be the purification of
an internal state ω ∈ S1(A). Then, Ψ is preparationally
faithful for system B.
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Proof. Let EΨ be the teleportation effect for Ψ, as
defined in Corollary 19. Define the transformation Aσ as

B Aσ
C :=

B

EΨ
=<
:;

σ
?>
89

A

C

(120)

Applying Aσ to Ψ and using Eq. (115) with A′ ≡ A we
then obtain

Ψ
?>
89

A

B Aσ
C

=

Ψ
?>
89

A

B

EΨ
=<
:;

σ
?>
89

A

C

= pΨ σ
?>
89

A

C

(121)

Hence, the thesis holds with pσ ≡ pΨ independently of
σ. �

B. Storing and probabilistic retrieving of

transformations

Here we consider the task of storing an unknown trans-
formation in the state of some system. The output state
of such a storing protocol then becomes a “program”
from which the transformation can be retrieved at later
time. The task is achieved probabilistically by a machine
that retrieves the transformation from the program and
applies it on a new input state.

Corollary 21 (Storing and probabilistic retrieving)

Let Ψ ∈ S1(AÃ) be a pure dynamically faithful state
for system A, according to Def. 39. The storing pro-
tocol, consisting in the application of a transformation
C ∈ T(A,B) to the input state Ψ, as in the following
diagram

RC

?>
89

B

Ã
:= Ψ

?>
89

A
C

B

Ã
(122)

defines an injective map from transformations C ∈
T(A,B) to bipartite states R ∈ S(BÃ) satisfying the
property

(e|B |R)BÃ ∈ Dω̃, (123)

where ω̃ is the marginal state |ω̃)Ã = (e|A |Ψ)AÃ. The
inverse map is given by the probabilistic retrieving pro-
tocol

pΨ A
C

B =
RC

?>
89

B

Ã

EΨ

=<
:;A

(124)

where EΨ is the teleportation effect for state Ψ and pΨ is
the corresponding teleportation probability, as defined in
Eq. (115).

Proof. Since the state Ψ is dynamically faithful, the
map C 7→ RC is injective. Now, any transformation C

is part of a test {Ci}i∈X, namely one has C = Ci0 for
some outcome i0. Defining the coarse-grained channel
CX :=

∑
i∈X Ci we have

∑

i∈X

(e|B |RCi
)BÃ =

∑

i∈X

(e|B Ci |Ψ)AÃ

= (e|B CX |Ψ)AÃ

= (e|A |Ψ)AÃ

= |ω̃)Ã.

(125)

having use the normalization condition (e|B CX = (e|A.
This implies (e|B |RC )BÃ is in the refinement set of ω̃,
thus proving Eq. (123). The identity (124) simply follows
by writing pΨC = C ◦ (pΨIA) and substituting pΨIA as
in Eq. (115). �

In Section IX we will show that the correspondence
C 7→ RC is also surjective on the set of bipartite states
satisfying Eq. (123). This will provide an isomorphism
between transformations and bipartite states that enjoys
all the structural properties of the Choi-Jamio lkowski iso-
morphism of quantum theory [42].

The probabilistic retrieving of Eq. (124) implies a
bound on the operational distance between two trans-
formations A0,A1 in terms the operational distance be-
tween the corresponding states:

Theorem 14 Let A0,A1 ∈ T(A,B) be two transforma-

tions and RA0
, RA1

∈ S(BÃ) be the corresponding states
as in Eq. (122). Then one has the bound

||A1 − A0||A,B ≤
||RA1

−RA0
||BÃ

pΨ
, (126)

where pΨ is the probability of retrieving a transformation
from the corresponding state, as defined in Eq. (124).

Proof. Define ∆ := A1 − A0 and R∆ := RA1
− RA0

.
Take an ancillary system C and a state ρ ∈ S1(AC).
Then Eq. (124) implies

ρ
?>
89

A ∆ B

C
=

1

pΨ

R∆
?>
89

B

Ã

EΨ
=<
:;

ρ
?>
89

A

C

(127)

Applying a bipartite effect (a|BC on both sides we then
obtain

(a|BC ∆ |ρ)AC =
(bρ|R∆)BÃ

pΨ
, (128)

where (bρ|BÃ := [(a|BC ⊗ (EΨ|ÃA] |ρ)AC. Since bρ is an
effect, the above equality implies the bound

infb (b|R∆)BÃ

pΨ
≤ (a|BC ∆ |ρ)AC ≤

supb (b|R∆)BÃ

pΨ
.

(129)
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By the definition of operational norm in Eq. 49, this
implies

||∆ρ||BC ≤ ||R∆||BÃ/pΨ. (130)

Finally, taking the supremum over the ancillary system
C we get the desired bound. �

C. Systems of purifications and the link product

For every system A we now fix a dynamically faithful
pure state

∣∣Ψ(A)
)
AÃ, where Ã is some suitable purifying

system. According to the characterization of dynamically
faithful pure states given in Theorem 9, the marginal
state |ω)A := (e|Ã

∣∣Ψ(A)
)
AÃ must be internal. The role

of the upper index in Ψ(A) is precisely to recall that the
marginal is internal for system A, while it may not be
internal for the purifying system Ã. Moreover, we denote
by

(
E(A)

∣∣
ÃA

and by pA the effect and the probability

appearing in the teleportation scheme (115), respectively.
Note that since the product of dynamically

faithful pure states is dynamically faithful (Corol-
lary 13), for bipartite systems AB we can choose∣∣Ψ(AB)

)
ABÃB :=

∣∣Ψ(A)
)
AÃ

∣∣Ψ(B)
)
BB̃. Likewise, we

can choose
(
E(AB)

∣∣
ÃBAB

=
(
E(A)

∣∣
ÃA

(
E(B)

∣∣
B̃B

, and
pAB = pApB. We call a system of purifications such a
choice of bipartite states and effects:

Definition 43 (System of purifications) A system
of purification is a choice of a dynamically faithful pure
states

∣∣Ψ(A)
)
AÃ and teleportation effects

(
E(A)

∣∣
ÃA

that
satisfies the properties

∣∣∣Ψ(AB)
)
ABÃB

=
∣∣∣Ψ(A)

)
AÃ

∣∣∣Ψ(B)
)
BB̃

(
E(AB)

∣∣∣
ÃBAB

=
(
E(A)

∣∣∣
ÃA

(
E(B)

∣∣∣
B̃B

.
(131)

Once a system of purifications has been fixed, one can
discuss the composition of transformations in terms of
composition of states, generalizing the definitions and the
results introduced by Refs. [33, 40] in the quantum set-
ting.

Definition 44 (Link product) The link product of

two vectors ρ ∈ SR(BÃ) and σ ∈ SR(CB̃) is the vec-

tor ρ ∗ σ ∈ SR(CÃ) given by

ρ ∗ σ
?>
89

C

Ã
:=

1

pB

σ
?>
89

C

B̃

E(B)
=<
:;

ρ
?>
89

B

Ã

(132)

Note that if ρ and σ are proportional to states, then also
ρ ∗ σ is proportional to a state: one has ρ ∗ σ ∈ S+(CÃ)

for any couple ρ ∈ S+(BÃ), σ ∈ S+(CB̃).
The product and composition of transformations are

then given by the following

Corollary 22 (Composition of states) Consider the
correspondence given by the storing protocol in Eq. (122).
For two transformations C ∈ T(A,B) and D ∈ T(C,D)
one has

RC⊗D

?>
89

BC

ÃC̃
=

RD

?>
89

D

C̃

RC

?>
89

B

Ã

(133)

For two transformations C ∈ T(A,B) and D ∈ T(B,C)
one has

RD◦C

?>
89

C

Ã
=

1

pB

RD

?>
89

C

B̃

E(B)
=<
:;

RC

?>
89

B

Ã

= RC ∗RD

?>
89

C

Ã

(134)

Proof. The first equation follows from the fact that∣∣Ψ(AC)
)
ACÃC :=

∣∣Ψ(A)
)
AÃ

∣∣Ψ(C)
)
CC̃, while the second

follows from the probabilistic retrieving of Eq. (124):

1

pB

RD

?>
89

C

B̃

E(B)
=<
:;

RC

?>
89

B

Ã

= RC

?>
89

B
D

C

Ã

= Ψ(A)
?>
89

A
C

B
D

C

Ã

= RD◦C

?>
89

C

Ã

(135)

�

IX. DILATION OF PHYSICAL PROCESSES

In this Section we derive dilation Theorems for chan-
nels, observation-test, and general tests. These Theorems
extend to all theories with purification the validity of the
theorems by Stinespring [43], Naimark [44], and Ozawa
[45], originally obtained in the setting of operator alge-
bras.

A. Reversible dilation of channels

In order to derive the reversible dilation of a channel
we need the following lemma:
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Lemma 23 Let R ∈ S1(BÃ) be a state such that

R
?>
89

B ����e
Ã

= Ψ(A)
?>
89

A ����e
Ã

(136)

where Ψ(A) is a pure dynamically faithful state for sys-
tem A. Then there exist a system C, a pure state
ϕ0 ∈ S1(BC), and a reversible channel U ∈ T(ABC)
such that

R
?>
89

B

Ã
=

 '!&ϕ0 BC

U

AC ����e

Ψ(A)
?>
89

A B

Ã

(137)

Moreover, the channel V ∈ T(A,ABC) defined by V :=
U |ϕ0)BC is unique up to reversible channels on AC.

Proof. Take a purification of R, say ΨR ∈ S1(CBÃ) for
some purifying system C. One has

ΨR

?>

89

C ����e
B ����e
Ã

= R
?>
89

B ����e
Ã

= Ψ(A)
?>
89

A ����e
Ã

(138)
that is, the pure states ΨR and Ψ(A) have the same
marginal on system Ã. Applying the uniqueness of pu-
rification as expressed by Lemma 21 one then obtains

ΨR

?>

89

C

B

Ã

=

 '!&ϕ0 BC

U

A ����e

Ψ(A)
?>
89

A BC

Ã

(139)

Applying the deterministic effect on system C on both
sides, one then proves Eq. (137). Moreover, if V ′ :=
U ′ |ϕ′

0)BC is channel such that Eq. (137) holds, then the
pure states V

∣∣Ψ(A)
)
AÃ and V ′ ∣∣Ψ(A)

)
AÃ have the same

marginal on system BÃ. Uniqueness of purification then
implies

AC

Ψ(A)
?>
89

A V ′
B

Ã

=

AC
W

AC

Ψ(A)
?>
89

A
V

B

Ã

(140)
for some reversible channel W ∈ T(AC). Since Ψ(A) is
dynamically faithful for A, this implies V ′ = W V . �

We now give the definitions of dilation, environment,
and reversible dilation:

Definition 45 (Dilation of a channel) A dilation of
channel C ∈ T(A,B) is a channel V ∈ T(A,BE) such
that

A
C

B =
E ����e

A
V

B
(141)

We refer to system E as to the environment.

Definition 46 (Reversible dilation) A dilation V ∈
T(A,BE) is called reversible if there exists a system E0

such that AE0 ≃ BE and

E

A
V

B
=

 '!&ϕ0
E0

U

E

A B
(142)

for some pure state ϕ0 ∈ S1(E0) and some reversible
channel U ∈ T(AE0,BE).

According to the above definitions, we have the follow-
ing dilation theorem:

Theorem 15 (Reversible dilation of channels)
Every channel C ∈ T(A,B) has a reversible dilation
V ∈ T(A,BE). If V ,V ′ ∈ T(A,BE) are two reversible
dilations of the same channel, then they are connected by
a reversible transformation on the environment, namely

E ����e
A

V ′
B

=
E ����e

A
V

B

=⇒
E

A
V ′

B
=

E
W

E

A
V

B
(143)

for some reversible channel W ∈ GE.

Proof. Let us store the channel C in the faithful state
Ψ(A) ∈ S1(AÃ), thus getting the state RC , as in Eq.
(122). Since C is a channel, it satisfies the normalization
condition

A
C

B ����e = A ����e (144)

which implies

RC

?>
89

B ����e
Ã

= Ψ(A)
?>
89

A
C

B ����e
Ã

= Ψ(A)
?>
89

A ����e
Ã

(145)

Now, applying Lemma 23 we obtain

RC

?>
89

B

Ã
=

 '!&ϕ0 BC

U

AC ����e

Ψ(A)
?>
89

A B

Ã

(146)

Since Ψ(A) is dynamically faithful for system A, this im-
plies

A
C

B =
 '!&ϕ0 BC

U

AC ����e
A B

(147)

Therefore, V := U |ϕ0)BC is a reversible dilation of C ,
with E0 := BC and E := AC. Finally, the uniqueness
clause in Lemma 23 implies uniqueness of the dilation.�

Moreover, two reversible dilations of the same channel
with different environments are related as follows:
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Lemma 24 Let V ∈ T(A,BE) and V ′ ∈ T(A,BE′) be
two reversible dilations of the same channel C , with gen-
erally different environments E and E′. Then there is a
channel Z from E to EE′ such that

E′

A
V ′

B
=

E ����e
E

Z
E′

A
V

B

(148)

The channel Z has the form

E

E
Z

E′
=

 '!&η0 E′

U

E

E E′
(149)

for some pure state η0 ∈ S1(E′) and some reversible
transformation U ∈ T(EE′).

Proof. Apply V and V ′ to the faithful state Φ(A), and
then use the uniqueness of purification stated in Lemma
21. �

The above results represent the general version—
holding in all probabilistic theories with purification—
of the dilation scheme implied by Stinespring’s Theorem
[43] in quantum theory. However, differently from the
proof of Stinespring’s Theorem, the present proof does
not require any C*-algebraic structure, being based just
on the purification postulate. In fact, it is easy to see
that the purification of states and the reversible dilation
of channels are equivalent features, in the following sense:

Corollary 23 (Equivalence between purification
and reversible dilation) Existence and uniqueness (up
to reversible channels on the purifying system) of the pu-
rification of states is equivalent to existence and unique-
ness (up to reversible channels on the environment) of
the reversible dilation of channels.

Proof. The direction “purification ⇒ dilation” has been
just proved by the dilation theorem. The converse is
obvious, since a normalized state ρ ∈ S1(B) is a special
case of channel from the trivial system I to B, and in this
special case purification coincides with dilation. �

Finally, the reversible dilation of a channel allows one
to define the complementary channel as follows

Definition 47 (Complementary channel) Let V ∈
T(A,BE) be a reversible dilation of channel C ∈ T(A,B),
as in Theorem 15. The complementary channel of C is

the channel C̃ ∈ T(A,E) defined by

A
C̃

E =
E

A
V

B ����e
(150)

Note that the complementary channel C̃ is unique up to
reversible transformations on the environment E.

The notion of complementary channel has played a
crucial role in the research about capacity of quantum

information channels (see e.g. [50–52]) and we expect
that having the same definition in general probabilistic
theories will be very fruitful (in fact, a number of conse-
quences is already presented in the Section XI).

B. Reversible dilation of tests

We now generalize the dilation of channels (i.e. single-
outcome tests) to the case of arbitrary tests. For this
purpose, we need the analogue of Lemma 23:

Lemma 25 Let {Ri}i∈X be a preparation-test for system

BÃ with the property

∑

i∈X

Ri

?>
89

B ����e
Ã

= Ψ(A)
?>
89

A ����e
Ã

(151)

where Ψ(A) is the purification of an internal state of sys-
tem A. Then, there exists a system C, a pure state
ϕ0 ∈ S1(BC), a reversible channel U ∈ T(ABC), and
an observation-test {ci}i∈X on C such that

Ri

?>
89

B

Ã
=

ϕ0
?>
89

C

U

C "%#$ci

B A ����e

Ψ(A)
?>
89

A B

Ã

(152)

for any outcome i ∈ X. By suitably choosing system C,
the observation-test {ci}i∈X can be taken to be a discrim-
inating test.

Proof. Take a purification of the coarse-grained state
R =

∑
iRi, say ΨR ∈ S1(CBÃ) for some purifying sys-

tem C. According to Theorem 6, there is an observation-
test {ci}i∈X on C such that

|Ri)BÃ = (ci|C |ΨR)CBÃ ∀i ∈ X, (153)

and, by suitably choosing C, {ci} can be chosen to be a
discriminating test. Following the same line of Lemma
23 we then obtain the thesis. �

Following the proof of the reversible dilation of chan-
nels given in Theorem 15 we have the following

Theorem 16 (Reversible dilation of tests) For ev-
ery test {Ci}i∈X from system A to system B there exist a
system C, a pure state ϕ0 ∈ S1(BC), a reversible chan-
nel U ∈ T(ABC), and an observation-test {ci}i∈X on C
such that for all outcomes i ∈ X

A Ci
B =

ϕ0
?>
89

C

U

C "%#$ci

B A ����e
A B

(154)

By suitably choosing system C, the observation-test
{ci}i∈X can be taken to be a discriminating test.



30

In the case we choose the observation-test {ci}i∈X to
be discriminating, the above Theorem yields a (simpli-
fied) version of Ozawa’s Theorem in quantum theory [45].
Here the simplification comes from the fact that we con-
sider finite dimensional state spaces and tests with finite
outcomes, whereas the challenging part of Ozawa’s The-
orem is the rigorous treatment of infinite dimension and
continuous spectrum.

Moreover, we can apply the dilation theorem to tests
with trivial output B ≡ I, thus obtaining the operational
version of Naimark’s Theorem [44] in the finite-outcome
case:

Corollary 24 (Discriminating dilation of
observation-tests) For every observation-test {ai}i∈X

on A there exists a system C, a pure state ϕ0 ∈ S1(C),
a reversible channel U ∈ T(AC), and a discriminating
test {ci}i∈X on C such that

A "%#$ai =
 '!&ϕ0 C

U

C "%#$ci

A A ����e
(155)

for all outcomes i ∈ X.

Another corollary is the following:

Corollary 25 (Characterization of theories with
purification) In a theory with purification every test can
be realized using only pure states, reversible transforma-
tions, and discriminating tests.

In fact, only one pure state for each system is enough,
since due to Corollary 20 all pure states can be obtained
from a fixed one by acting with reversible channels.

X. STATES-TRANSFORMATIONS

ISOMORPHISM

The results of the previous Section allow a com-
plete identification of transformations with bipartite
states, thus providing the general version of the Choi-
Jamio lkowski isomorphism [46, 47] in quantum theory.
The correspondence is summarized in the following

Theorem 17 (States-transformations isomor-
phism) The storing map C 7→ RC := C

∣∣Ψ(A)
)
AÃ,

where
∣∣Ψ(A)

)
AÃ is a pure dynamically faithful state for

system A, has the following properties:

1. it defines a bijective correspondence between tests
{Ci}i∈X from A to B and preparation-tests {Ri}i∈X

for BÃ satisfying

∑

i∈X

(e|B |Ri)BÃ = (e|A

∣∣∣Ψ(A)
)
AÃ. (156)

2. a transformation C is atomic (according to Defini-
tion 22) if and only if the corresponding state RC

is pure.

3. in convex theory the map C 7→ RC defines a bijec-
tive correspondence between transformations C ∈
T(A,B) and bipartite states R ∈ S(BÃ) satisfying
the property

(e|B |R)BÃ ∈ Dω̃ |ω̃)Ã = (e|A

∣∣∣Ψ(A)
)
AÃ. (157)

Proof. Let us start from the proof of item 1. One di-
rection is obvious: if {Ci}i∈X is a test from A to B, it
must satisfy the normalization condition

∑
i∈X (e|B Ci =

(e|A (see Eq. (39)). The preparation-test {RCi
}i∈X

defined by |RCi
)BÃ = Ci

∣∣Ψ(A)
)
AÃ satisfies the prop-

erty
∑

i∈X (e|B |RCi
)BÃ =

∑
i∈X (e|B Ci

∣∣Φ(A)
)
AÃ =

(e|A
∣∣Ψ(A)

)
AÃ, that is, it satisfies Eq. (156). Moreover, if

two tests {Ci}i∈X and {C ′
i }i∈X satisfy RCi

= RC ′

i
for all

i ∈ X, then by injectivity of the map C 7→ RC (proved in
Corollary 21), one has Ci = C ′

i for all i ∈ X. Conversely,
suppose that {Ri}i∈X is a preparation-test satisfying Eq.
(156). Then, by Lemma 25 there is a a system C, a pure
state ϕ0 ∈ S1(BC), a reversible channel U ∈ T(ABC),
and an observation-test {ci}i∈X on C such that for every
outcome i ∈ X one has

Ri

?>
89

B

Ã
=

ϕ0
?>
89

C

U

C "%#$ci

B A ����e

Ψ(A)
?>
89

A B

Ã

(158)

Defining the test {Ci}i∈X by Ci := (ci|C (e|A U |ϕ0)BC,
we then obtain

Ri

?>
89

B

Ã
= Ψ(A)

?>
89

A Ci
B

Ã

(159)

This completes the proof of item 1. Item 2 is an imme-
diate consequence of the item 1: If C is atomic, then
RC must be pure, otherwise we would have a non-trivial
decomposition of C . Vice-versa, if RC is pure, then C

must be atomic, otherwise we would have a non-trivial
decomposition of RC . Regarding item 3, injectivity was
already established in Corollary 21. To prove surjectiv-
ity, suppose that R ∈ S(BÃ) is such that (e|B |R)BÃ is
in the refinement set of |ω̃)Ã. This means that there is
a preparation-test {ω̃i}i∈X such that ω̃ =

∑
i∈X ω̃i and

(e|B |R)BÃ = |ω̃i0)Ã for some outcome i0. Now choose
an arbitrary set of normalized states {ρi}i∈X ⊂ S1(B)
and consider the collection of states {Ri}i∈X defined as
follows: Ri0 = R, Ri = ρi ⊗ ω̃i for i 6= i0. Because
the theory is convex the collection of states {Ri}i∈X is
a preparation-test (it can be obtained by randomization
of the normalized states R̄i = Ri/ (e|Ri)BÃ with proba-
bilities pi = (e|Ri)BÃ). Moreover, it clearly satisfies Eq.
(156). Therefore, using item 1 we see that there exists
a test {Ci}i∈X from A to B such that Ri = RCi

. In
particular, R = Ri0 = RCi0

, thus proving surjectivity. �
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Clearly, the correspondence C 7→ RC can be extended
via linear combinations to an injective linear map be-
tween the vector spaces TR(A,B) and SR(BÃ).

An immediate consequence of the states-
transformations isomorphism is the following

Corollary 26 (Existence of an ultimate refinement)
In a convex theory with purification, every test {Ci}i∈X

from A to B admits an ultimate refinement {Dj}j∈Y

where every transformation Dj is atomic.

Proof. Consider the preparation-test {RCi
}i∈X and take

the normalized states RCi
= RCi

/ (e|RCi
)BÃ. Since the

states form a finite-dimensional compact convex set, each
state RCi

has a convex decomposition on a finite num-
ber of pure states. Collecting together all these decom-
positions yields a preparation-test {Rj}j∈Y, containing
only pure states, that refines {RCi

}i∈X. By the states-
transformations isomorphism, one has Rj = RDj

, for
a test {Dj}j∈Y that refines {Ci}i∈X and contains only
atomic transformations.�

A. First consequences of the isomorphism

Two simple consequences of the states-transformations
isomorphism are the following:

Corollary 27 A channel V from A to AB is atomic if
and only if it is of the form

B

A
V

A
=

 '!&ϕ0 B

U

B

A A
(160)

for some pure state ϕ0 ∈ S1(B) and some reversible
channel U ∈ GAB.

Proof. Clearly a channel of the form V =
U |ϕ0)B is atomic, since the corresponding state RC =
U

∣∣Ψ(A)
)
AÃ |ϕ0)B is pure. Conversely, if V is atomic,

then RV is a purification of the state |ω̃)Ã :=

(e|A
∣∣Ψ(A)

)
AÃ. Since RV and Ψ(A) are both purifica-

tions of the same state, by the uniqueness of purification
stated by Lemma 21 we haveRV = U

∣∣Ψ(A)
)
AÃ |ϕ0)B for

some pure state ϕ0 ∈ S1(B) and some reversible channel
U ∈ GAB. Since Ψ(A) is dynamically faithful for system
A, this implies V = U |ϕ0)B. �

When system B is trivial, we have the more specific
result:

Corollary 28 A channel from A to A is atomic if and
only if it is reversible.

Proof. Special case of Corollary 27 with B ≡ I. �

The states-transformations isomorphism also allows
one to prove that the sets of transformations, channels,
reversible channels, and pure states are compact with
respect to the operational norm induced by optimal dis-
crimination:

Corollary 29 The set of physical transformations
T(A,B) is compact in the operational norm.

Proof. By Theorem 17, we have dim(TR(A,B)) ≤

dim(SR(BÃ)), namely transformations span a finite-
dimensional vector space. Since we are in finite dimen-
sions, to prove compactness it is enough to prove that the
set of transformations is closed. To see this, suppose that
{Cn} is a Cauchy sequence of transformations. By defi-
nition, each transformation Cn arises in some test, which
can be taken to be binary without loss of generality. Let
{Cn,Dn} be such a binary test, and let {RCn

, RDn
} be

the corresponding preparation-test. Since the set of all
states S(BÃ) is compact (by hypothesis it is finite dimen-
sional and closed), there is a subsequence {RCnk

, RDnk
}

converging to a binary preparation-test {R0, R1}. Now,
since each test {RCnk

, RDnk
} satisfies Eq. (156), also

{R0, R1} satisfies it. By the states-transformations iso-
morphism, this implies that there is a binary test {C ,D}
such that R0 = RC and R1 = RD . Finally, using the
bound of Eq. (126) we see that Cnk

(and hence Cn) con-
verges to C in the operational norm. �

Corollary 30 The set of channels from A to B is com-
pact in the operational norm.

Proof. Again, since we are in finite dimension, it is
enough to prove that the set of channels is closed. Let
{Cn} be a Cauchy sequence of channels. Since the set of
transformations is closed, the sequence converges to some
transformation C . Moreover, C is a channel. Indeed,
since Cn is a channel we have (e|B Cn = (e|A, and, for ev-
ery state ρ, (e|B C |ρ)A = limn→∞ (e|B Cn |ρ)A = (e|ρ)A,
which implies (e|B C = (e|A. �

Corollary 31 The group GA of all reversible transfor-
mations of system A is a compact Lie group.

Proof. Let {Un} be a sequence of reversible channels
converging to some channel C . We now show that C is
reversible. Indeed, consider the sequence {U −1

n }. Since
the set of channels is compact, it is possible to choose
a subsequence {U −1

nk
} that converges to some channel

D . But now we have CD = limk→∞ Unk
U −1

nk
= IA,

and, DC = limk→∞ U −1
nk

Unk
= IA [48], that is, C is

reversible and D = C −1. This proves that GA is closed,
and, therefore, compact. Finally, since GA is compact
and has a faithful finite-dimensional matrix representa-
tion, it is a Lie group (see e.g. Theorem 5.13 of Ref.
[49]). �

Corollary 32 The set of pure states of system A is com-
pact.

Proof. Let {ϕn} be a sequence of pure states converging
to some state ρ. We now prove that ρ is pure. To see this,
let us fix a pure state ϕ0. By Lemma 20 for every n there
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is a reversible channel Un such that ϕn = Unϕ0. Since
the group GA is compact, we can take a subsequence
{Unk

} that converges to a reversible channel U . There-
fore we have ρ = limn→∞ ϕn = limk→∞ Unk

ϕ0 = U ϕ0.
Since ρ is connected to a pure state by a reversible chan-
nel it must be pure. �

We conclude this Subsection with two results that will
be useful in the construction of deterministic teleporta-
tion:

Corollary 33 (Existence of a twirling test) In a
(convex) theory with purification there always exists a
twirling test {piUi}i∈X (according to Def. 15), where
{pi} are probabilities and {Ui} are reversible channels.
In particular, one of the channels {Ui} can be always
chosen to be the identity.

Proof. Let dW be the normalized Haar measure over
the compact group GA, and define the channel T :=∫

dW W , which is clearly a twirling channel, since by
invariance of the Haar measure one has U T = T for
every U ∈ GA. Since the reversible channels span a
finite-dimensional space, their convex hull is a finite-
dimensional convex set. Then by Caratheodory’s the-
orem the integral can be written as a finite convex
combination of reversible transformations, i.e. T =∑

i∈X piUi. Since U T = T , we can pick an outcome

i0, and apply U
−1
i0

, thus obtaining a new twirling test
where one channel is the identity. �

Corollary 34 (Uniqueness of the invariant state)
For every system A, there is a unique state χA invariant
under all reversible transformations in GA. Moreover,
χA is internal.

Proof. Let T be the twirling channel defined in the
previous Corollary. Since for two arbitrary pure states
ψ, ψ′ there is a reversible channel U such that ψ′ = U ψ
(Lemma 20), this implies

T (ψ′) =

∫
dW W U ψ =

∫
dW

′
W

′ψ = T (ψ) := χ,

(161)
having used the invariance of the Haar measure. Now,
since the twirling channel is constant on pure states, it
is constant on every state, namely T (ρ) = χ for every
ρ. In particular, if ρ is an invariant state, then we have
ρ = T (ρ) = χ. This proves that the invariant state is
unique. Finally, Corollary 33 implies that the integral
T (ρ) can be written as the sum of the transformations
of a twirling test containing the identity, namely

χ = T (ρ) =
∑

j

pjUjρ = pi0ρ+
∑

j 6=i0

U
−1
0 Ujρ (162)

whence pi0ρ belongs to the refinement set Dχ of χ for
every state ρ. This proves that χ is internal. �

B. Entanglement breaking channels

An interesting consequence of the states-
transformations isomorphism regards the identification
of measure-and-prepare channels and entanglement
breaking channels , the latter defined as follows

Definition 48 (Entanglement-breaking channel)
A channel C ∈ T(A,B) is entanglement breaking if
the output state C |σ)AC is separable for every state
σ ∈ S1(AC), namely

C |σ)AC =
∑

i∈X

pi |βi)B |ρ̃i)C, (163)

for some separable preparation-test {piρi ⊗ ρ̃i}i∈X, βi ∈

S1(B), ρ̃i ∈ S1(Ã).

The following Theorem extends to arbitrary theo-
ries with purification the characterization of entangle-
ment breaking channels presented in quantum theory by
Horodecki, Shor, and Ruskai in Ref. [53]:

Corollary 35 (Structure of entanglement-
breaking channels) In a theory with purification,
the following are equivalent

1. C is entanglement-breaking

2. RC is separable

3. C is measure-and-prepare

Proof. (1) ⇒ (2) If C is entanglement-breaking,
then in particular |RC )BÃ = C

∣∣Ψ(A)
)
AÃ is separa-

ble. (2) ⇒ (3) Suppose that RC is separable, namely
RC =

∑
i∈X piβi ⊗ ρ̃i for some separable preparation-

test {piβi ⊗ ρ̃i}i∈X (with βi ∈ S1(B) and ρ̃i ∈ S1(Ã)).
Now, the preparation-test {piρ̃i}i∈X has the property

∑

i

piρ̃i = (e|B |RC )BÃ = (e|A

∣∣∣Ψ(A)
)

:= |χ̃)Ã, (164)

having used that |RC )BÃ := C
∣∣Ψ(A)

)
AÃ, and the fact

that C is a channel. Applying the first item of Theo-
rem 17 with B ≡ I, we then deduce that piρ̃i = Rai

for
some suitable observation-test {ai} on A. Considering
the measure-and-prepare channel D :=

∑
i∈X |βi)B (ai|A

we then obtain RD = RC , which implies C = D . Hence,
C is measure-and-prepare. (3) ⇒ (1) If C is measure-
and-prepare, it is easily seen that it is entanglement-
breaking. �

C. Completeness of theories with purification

As a consequence of the states-transformations isomor-
phism, in a theory with purification we cannot enlarge the
set of transformations without enlarging the set of states.
Indeed, we can compare different theories that have the
same set of systems in the following way:
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Definition 49 (Inclusion of theories) The theory Θ′

is larger than the theory Θ if for every couple of systems
A,B one has T(A,B) ⊆ T′(A,B), where T′(A,B) denotes
the set of all transformations from A to B allowed by Θ′.

Then we have the following

Lemma 26 (Maximality of theories with purifica-
tion) Let Θ be a convex theory with purification, and Θ′

be a convex theory with the same sets of normalized states
of Θ, i.e. S1(A) = S′

1(A) for every A. If Θ′ is larger
than Θ, then Θ′ = Θ.

Proof. First of all, note that the deterministic ef-
fect, uniquely defined by the condition (e|ρ)A = 1, ∀ρ ∈
S1(A) is the same in both theories. Now suppose that
{C ′

i }i∈X is one of the tests from A to B allowed by theory
Θ′. Let {RC ′

i
}i∈X be the corresponding preparation-test

for system BÃ, as defined by the state-transformations
isomorphism of Theorem 17. Since the theories Θ′ and
Θ have the same states, each RC ′

i
is also a state in Θ.

Now, convexity of the set of states implies that {RC ′

i
}i∈X

is a legitimate preparation-test in Θ. Moreover, we have∑
i∈X (e|B

∣∣RC ′

i

)
BÃ = (e|B

∣∣Φ(A)
)
BÃ := |ω̃)Ã. Then, by

Theorem 17 there must be a test {Ci}i∈X from A to B, al-
lowed by theory Θ, such that RC ′

i
= RCi

:= Ci

∣∣Ψ(A)
)
AÃ.

Since
∣∣Ψ(A)

)
AÃ is dynamically faithful for system A, this

implies C ′
i = Ci for every i ∈ X. Therefore, Θ′ and Θ

have exactly the same tests. �

The states-transformations isomorphism has also the
very strong consequence that any transformation that is
“mathematically admissible” can be actually realized as
a test. To make this statement precise, let us give the
following definitions:

Definition 50 (Positive transformation) A transfor-
mation C ∈ TR(A,B) is positive if for every ρ ∈ S+(A)
one has C |ρ)A ∈ S+(B).

Definition 51 (S-positive transformation) Given a
system S, a transformation C ∈ TR(A,B) is S-positive if
C ⊗ IS is positive.

Definition 52 (Completely positive transforma-
tion) A transformation C ∈ TR(A,B) is completely pos-
itive (CP) if it is S-positive for every system S.

Definition 53 (Admissible instrument) An admis-
sible instrument with input A and output B is a collection
of CP transformations {Ci}i∈X such that

∑

i∈X

(e|B Ci = (e|A . (165)

The following Theorem establishes that every admissi-
ble instrument must be feasible in a convex theory with
purification:

Theorem 18 (Completeness of theories with pu-
rification) In a convex theory with purification every
admissible instrument from A to B is a test. In par-
ticular, every admissible instrument from A to I is an
observation-test.

Proof. Call Θ the theory under consideration, and con-
sider the set of all admissible instruments that are con-
ceivable in Θ. This set is closed under parallel/sequential
composition and under coarse-graining and conditioning.
Therefore this set defines a new theory Θ′ that is larger
than Θ. Moreover, by construction Θ′ and Θ have the
same states. By Lemma 26, this implies Θ′ = Θ. �

Corollary 36 (Characterization of physical trans-
formations) In a convex theory with purification the fol-
lowing are equivalent

1. C is a physical transformation from A to B

2. C is a CP transformation from A to B and (e|A −
(e|B C is CP .

Proof. The direction 1 ⇒ 2 is obvious. Conversely,
suppose that condition 2 is satisfied, and define the CP
transformations (a|A := (e|A−(e|

B
C and D := |β)B (a|A

where |β)B is some normalized state of system B. Then
the collection of CP transformations {C ,D} is an admis-
sible instrument. By the completeness of Theorem 18
this implies that {C ,D} is a test allowed by the theory.
Hence, C is a physical transformation. �

We are now in position to prove a stronger result than
Lemma 26, namely the fact that a theory with purifi-
cation is completely specified once we have declared the
states for every system:

Theorem 19 (States specify the theory) Let Θ,Θ′

be two convex theories with purification. If Θ and Θ′ have
the same sets of normalized states, then Θ′ = Θ.

Proof. Given two theories Θ,Θ′ with the same set of
states we can take the new theory Θ∪Θ′ that is generated
by Θ and Θ′ by taking sequential and parallel composi-
tion of the corresponding CP transformations. Since by
construction Θ∪Θ′ contains Θ and Θ′ and has the same
sets of states by Lemma 26 we have Θ = Θ∪Θ′ = Θ′. �

We conclude this Subsection by discussing the impli-
cation of the no-restriction hypothesis of Def. 16 and of
Lemma 11, which states that every element in the dual
cone of states is proportional to a possible effect. In this
case, we have the following characterization:

Lemma 27 In theory satisfying the no-restriction hy-
pothesis of Def. 16 the following are equivalent:

1. a ∈ TR(A, I) is CP

2. a is an element of the dual cone S+(A)∗
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3. a is an element of the cone E+(A)

Proof. 1 ⇒ 2. Any CP transformation C from A to I de-
fines a unique element a of the dual cone S+(A)∗, via the
relation a(ρ) := C |ρ)A. In fact, C and a are identified: if
two CP transformations C and C ′ define the same effect,
then we also have (C ⊗IC) |σ)AC = (C ′⊗IC) |σ)AC for
every system C and for every state ρ ∈ S(AC). There-
fore C ≡ C ′, and we can identify C with a. 2 ⇒ 3. By
the consequence of the no-restriction hypothesis stated
by Lemma 11, if a is in the dual S+(A)∗ then a is in
E+(A). 3 ⇒ 1 By definition, an element of E+(A) is
proportional to an effect (with a positive proportionality
constant). Now every effect is a physical transformation
from A to I , and physical transformations are by defi-
nition CP. �

Definition 54 (Effect-valued measures) An admis-
sible instrument from A to I is an effect-valued measure
(EVM), that is, a collection of effects {ai}i∈X such that∑

i∈X (ai|A = (e|A.

The completeness Theorem 18 now implies:

Corollary 37 (Characterization of observation-tests)
In a convex theory with purification every effect-valued
measure is an observation-test. If the no-restriction
hypothesis of Def. 16 holds, every probability rule (collec-
tion of positive functionals that sum to the deterministic
effect) is an observation-test.

Finally, the characterization of Corollary 36 becomes:

Corollary 38 In a convex theory with purification satis-
fying the no-restriction hypothesis of Def. 16 the follow-
ing are equivalent

1. C is a physical transformation from A to B

2. C is a CP transformation from A to B and is
normalization non-increasing, i.e., (e|B C |ρ)A ≤
(e|ρ)A for every ρ ∈ S(A).

XI. ERROR CORRECTION

A. Basic definitions

Here we give some basic definitions that will be used
in the next Subsections.

Definition 55 (Correctable channels) A channel
C ∈ T(A,B) is correctable upon input of ρ ∈ S1(A)
if there is a recovery channel R ∈ T(B,A) such that
R ◦ C =ρ IA. If ρ is an internal state, we simply say
that C is correctable.

Definition 56 (Deletion channels) A channel C ∈
T(A,B) is a deletion channel upon input of ρ ∈ S1(A) if
there is a fixed state σ ∈ S1(B) such that C =ρ |σ)B (e|A.

Definition 57 (Purification-preserving channels)
A channel C ∈ T(A,B) is purification-preserving for
ρ ∈ S(A) if there is a recovery channel R ∈ T(B,A)
such that RC |Ψρ)AR = |Ψρ)AR, with Ψρ ∈ S1(AR)
arbitrary purification of ρ.

In the context of error correction, the purifying system
R will be referred to as the reference.

Definition 58 (Correlation-erasing channels)
A channel C ∈ T(A,B) is correlation-erasing for
ρ ∈ S(A) if there is a state σ ∈ S(B) such that
C |Ψρ)AR = |σ)B |ρ̃)R, where Ψρ ∈ S1(AR) is an
arbitrary purification of ρ, and ρ̃ is the complementary
state |ρ̃)R := (e|A |Ψρ)AR.

In a theory with purification, the interplay between
these four definitions is the basic underlying structure
of error correction. The simplest relations can be im-
mediately recovered from Theorem 7, which related the
equality upon input of ρ to the equality on a purification
of ρ.

Corollary 39 A channel is correctable upon input of ρ
if and only if it is purification-preserving for ρ.

Corollary 40 If a channel is correlation-erasing for ρ,
then it is a deletion channel upon input of ρ. If local
discriminability holds, the converse is also true.

Another simple fact about error correction, which
holds in all theories with purification, is the following

Lemma 28 If a channel C ∈ T(A,B) is correctable upon
input of ρ ∈ S1(A) with recovery channel R, and D ∈
DC is a transformation in the refinement set of C (Def.
21), then D is correctable upon input of ρ, with recovery
channel R, i.e. RD =ρ pIA for some probability p > 0.

Proof. By definition, since D is in the refinement set of
C , there is a test {Di}i∈X such that D ≡ Di0 and C =∑

i∈X Di. Since C is correctable with recovery channel
R, one has IA =ρ RC =

∑
i∈X RDi. This means that

the test {RDi}i∈X is non-disturbing upon input of ρ. By
the “no-information without disturbance” Theorem 10
one then has RDi =ρ piIA for every i ∈ X. �

B. Error correction and the complementarity

between correctable and deletion channels

We now discuss some necessary and sufficient condi-
tions for the correctability of channels. The simplest case
is that of channels from a system to itself:

Theorem 20 A channel C from A to A is correctable if
and only if it is reversible.
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Proof. Clearly, if C = U ∈ GA one can correct C by
applying U −1. Conversely, suppose that C is correctable
with some recovery channel R. Let C =

∑
i∈X Ci be

a refinement of C where each Ci is an atomic trans-
formation. Then, the composition {RCi}i∈X is a non-
disturbing test, and Theorem 10 implies RCi = piIA.
Since R is a channel, applying the deterministic effect
we obtain (e|A RCi = (e|A Ci = pi (e|A, that is, Ci is
proportional to an atomic channel Ui. By Corollary 28,
an atomic channel from A to A is reversible. Therefore,
we have RUi = IA, which implies R = U

−1
i for every

i. Hence, all channels Ui must be equal, and one has
C = U for some reversible channel U ∈ GA. �

We now give necessary and sufficient conditions for er-
ror correction in the general case of channels from A to
B. The following condition was presented in the quantum
case in Refs. [54–56].

Theorem 21 (Factorization of reference and envi-
ronment) A channel C ∈ T(A,B) is correctable upon
input of ρ if and only if there are a reversible dilation
V ∈ T(A,BE) of C and a purification |Ψρ)AR of ρ such
that systems E and R remain uncorrelated. Diagrammat-
ically,

E

Ψρ

?>
89

A
V

B ����e
R

=

����σ E

(/).ρ̃ R
(166)

where σ is some state of E and ρ̃ is the complementary
state of ρ on system R.

Proof. Suppose that C is correctable upon input of ρ
with some recovery channel R. Then, by Theorem 7 we
have

Ψρ

?>
89

A
C

B
R

A

R
= Ψρ

?>
89

A

R
(167)

and, inserting two reversible dilations for C and R, re-
spectively,

E ����e
F ����e

Ψρ

?>
89

A

V

B
W

A

R

= Ψρ
?>
89

A

R
(168)

This means that W V |Ψρ)AR is a purification of |Ψρ)AR.
Then, Lemma 19 ensures that W V |Ψρ)AR is of the form

E

F

Ψρ
?>
89

A

V

B
W

A

R

=

Ψ̃
?>
89

E

F

Ψρ
?>
89

A

R

(169)

where Ψ̃ is some pure state on EF. Applying the de-
terministic effect on FA and using the fact that W is

a channel, we then obtain Eq. (166). Conversely, sup-
pose that Eq. (166) holds for some dilation V and some
purification |Ψρ)AR. Then take a purification of σ, say
Ψσ ∈ S1(EF). Since V |Ψρ)AR and |Ψρ)AR |Ψσ)EF are
both purifications of |σ)E |ρ̃)R, by Lemma 21 we have

E

F

Ψρ
?>
89

A

V

B
D

A

R

=

Ψσ

?>
89

E

F

Ψρ
?>
89

A

R

(170)

for some channel D ∈ T(B,FA). Applying the determin-
istic effect on E and F and defining R := (e|F D we then
obtain

Ψρ

?>
89

A
C

B
R

A

R
= Ψρ

?>
89

A

R
(171)

By Theorem 7, this implies R ◦ C =ρ IA, namely C is
correctable upon input of ρ. �

An immediate consequence of the factorization Theo-
rem 21 is:

Corollary 41 (Complementarity of purification-
preserving and correlation-erasing channels) A
channel C ∈ T(A,B) is purification-preserving for ρ ∈
S1(A) (according to Def. 57) if and only if its comple-

mentary channel C̃ ∈ T(A,E) is correlation-erasing for
ρ (according to Def. 58).

Proof. By corollary 39, C is purification-preserving for ρ
iff it is correctable upon input of ρ and, by the previous
Theorem, iff Eq. (166) holds. But Eq. (166) is the

definition of C̃ being a correlation-erasing channel for ρ.
�

In a theory with purification, since the global evolu-
tion of system and environment is reversible, it would be
natural to expect that if no information goes to the en-
vironment, then the whole information about the input
state is contained in the system. While this intuition is
correct in theories with local discriminability (see Ref.
[57] for the quantum case), in general theories this situa-
tion is trickier. Indeed, as we will see in the following, in
a theory without local discriminability some information
can remain “locked” in the global state, in a way that
makes it inaccessible both from the system and from the
environment separately.

Corollary 42 (Complementarity of correctable
and deletion channels) If a channel C ∈ T(A,B) is
correctable upon input of ρ ∈ S1(A) (according to Defi-

nition 55), then its complementary channel C̃ ∈ T(A,E)
is a deletion channel upon input of ρ (according to Defi-
nition 56). If local discriminability holds, the converse is
also true.
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Proof. Direct consequence of corollaries 39, 41, and 40.
�

Counterexample. We show that in a theory without
local discriminability the complementarity between cor-
rectable and deletion channels does not hold. Consider
the case of quantum mechanics on real Hilbert spaces,
and consider the isometry V from a real qubit to two
real qubits defined by

V = |Φ+〉〈0| + |Ψ−〉〈1| (172)

with |Φ+〉 := |0〉|0〉+|1〉|1〉√
2

, and |Ψ−〉 := |0〉|1〉−|1〉|0〉√
2

.

In this case the complementary channels C (ρ) :=

Tr1[V ρV τ ] and C̃ (ρ) := Tr2[V ρV τ ] are both deletion
channels: indeed, one has

C (ρ) =
I1
2

C̃ (ρ) =
I2
2
, (173)

for any real density matrix ρ.

C. Error correction with one-way classical

communication from the environment

Here we briefly discuss a more general kind of correc-
tion, in which the environment is not completely inac-
cessible, but rather some operations on it are allowed.
Particularly interesting is the case of LOCC operations,
which do not require the exchange of systems from the
environment, but only communication of outcomes and
conditioned operations. In particular, we will focus here
on the case of a single round of forward classical com-
munication from the environment to the output system.
With the term “classical” we mean that only outcomes
are communicated.

Definition 59 (One-way correctable channels)
A channel C ∈ T(A,B) is one-way correctable upon
input of ρ if for every dilation V ∈ T(A,BE) there is
an observation-test {ai}i∈X on E and a collection of
recovery channels {Ri}i∈X ⊂ T(B,A) such that

∑

i∈X

E "%#$ai

A
V

B Ri
A

=ρ
A

I
A (174)

If ρ is an internal state, we simply say that C is one-way
correctable.

The following theorem states that one-way correctable
channels are nothing but randomizations of correctable
channels. The quantum version of it was given by Gre-
goratti and Werner in Ref. [64].

Theorem 22 (Characterization of one-way cor-
rectable channels) A channel C ∈ T(A,B) is one-way
correctable upon input of ρ ∈ S1(A) if and only if C is a
the coarse-graining of a test {Ci}i∈X where each transfor-
mation Ci is correctable upon input of ρ. In particular,
if ρ is internal, then C is a randomization of correctable
channels.

Proof. Suppose that C is one-way correctable upon
input of ρ. Defining the test {Ci}i∈X by Ci := (ai|E V ,
and using Theorem 10, we then obtain RiCi =ρ piIA.
Therefore, C is the coarse-graining of a test where each
transformation is correctable upon input of ρ. Moreover,
if ρ is internal, using the fact that each Ri is a channel,
we obtain

(e|A RiCi = (e|B Ci = pi (e|A , (175)

namely each Ci must be proportional to a channel, say
Ci = piDi, with channel Di correctable upon input of
ρ. Conversely, suppose that C =

∑
i∈X Ci for some test

{Ci} where each transformation Ci is correctable upon
input of ρ. Dilating such a test, we then obtain a channel
V ∈ T(A,BE) and an observation-test {ai}i∈X on E such
that

E "%#$ai

A
V

B
= A Ci

B (176)

for every outcome i ∈ X. Since each Ci is correctable
upon input of ρ, knowing the outcome i ∈ X, we can per-
form the recovery channel for Ci, thus correcting channel
C . �

In the case of channels from A to itself, the above the-
orem takes the simple form

Corollary 43 A channel C ∈ T(A) is one-way cor-
rectable if and only if it is a randomization of reversible
channels.

Proof. Just combine Theorem 22 with the characteriza-
tion of correctable channels from A to A (Theorem 20).
�

XII. CAUSALLY ORDERED CHANNELS AND

CHANNELS WITH MEMORY

In Ref. [58] Beckman, Gottesmann, Nielsen, and
Preskill introduced the notions of semicausal and semilo-
calizable quantum channel for the purpose of studying the
constraints on quantum dynamics of bipartite systems
imposed by relativistic causality. Subsequently, Eggeling,
Schlingemann, and Werner [59] proved the equivalence
between semicausality and semilocalizability (see also
Ref. [60] for an extensive discussion on the topic). The
same notions were generalized to the case of multipartite
channels by Kretschmann and Werner in Ref. [61]. From
different points of view Refs. [33, 61, 62] studied the
structure of multipartite causal channels, showing that
they can always be realized as sequences of channels with
memory. In this Section we show that all these results,
originally obtained in quantum mechanics, actually hold
in any causal theory with purification.

Unfortunately, the nomenclature used in the literature
is not fully consistent if we go from bipartite to mul-
tipartite channels [63]. In order to have a consistent
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nomenclature, instead of “semicausal” and “semilocaliz-
able channel” we use here the plain expressions causally
ordered bipartite channel and sequence of two channels
with memory, respectively.

Definition 60 (Causally ordered bipartite chan-
nel) A bipartite channel C from A1A2 to B1B2 is
causally ordered if there is a channel D from A1 to B1

such that

(e|B2
C = D ⊗ (e|A2

. (177)

Diagrammatically,

A1

C

B1

A2 B2 ����e
=

A1
D

B1

A2 ����e
(178)

Eq. (178) means that the channel C does not allow for
signaling from the input system A2 to the output system
B1. In a relativistic context, this can be interpreted as
B1 being outside the causal future of A2.

Definition 61 (Sequence of two channels with
memory) A bipartite channel C from A1A2 to B1B2

can be realized as a sequence of two channels with mem-
ory if there exist two systems E1,E2, called memory sys-
tems, and two channels C1 ∈ T(A1,B1E1) and C2 ∈
T(A2E1,B2E2) such that

C = (e|E2
(C2 ⊗ IB1

)(IA2
⊗ C1). (179)

Diagrammatically,

A1

C

B1

A2 B2
=

A1

C1

B1 A2

C2

B2

E1 E2 ����e
(180)

A. Dilation of causally ordered channels

For causally ordered bipartite channels the dilation
theorem implies the following result:

Theorem 23 (Causal ordering is memory) A bipar-
tite channel C from A1A2 to B1B2 is causally ordered if
and only if it can be realized as a sequence of two chan-
nels with memory. Moreover, the channels C1,C2 in Eq.
(180) can be always chosen such that C2C1 is a reversible
dilation of C .

Proof. If Eq. (180) holds, the channel C is clearly
causally ordered, with the channel D given by D :=
(e|E1

C1. Conversely, suppose that C is causally or-
dered. Take a reversible dilation of C , say V ∈
T(A1A2,B1B2E), and a reversible dilation of D , say
V1 ∈ T(A1,B1E1). Now, by definition of causally ordered
channel (Eq. (178) )we have

A1

V

B1

A2 B2 ����e
E ����e

=

A1

V1

B1

E1 ����e
A2 ����e

(181)

This means that V and V1 ⊗ IA2
are two reversible di-

lations of the same channel. By the uniqueness of the
reversible dilation expressed by Lemma 24 we then ob-
tain

A1

V

B1

A2 B2

E

=

A1

V1

B1

E1

Z

B2

A2 E

E1A2 ����e

(182)

Once we have defined E2 := EE1A2 it only remains to
observe that the above diagram is nothing but the thesis,
with C1 = V1 and C2 = Z . By construction, C2C1 is a
reversible dilation of C . �

The definition of causally ordered bipartite channel is
easily extended to the multipartite case as follows:

Definition 62 (Causally ordered channel) An N -
partite channel C (N) from A1 . . .AN to B1 . . .BN is
causally ordered if for every k ≤ N there is a channel
C (k) from A1 . . .Ak to B1 . . .Bk such that

A1

C (N)

B1

...
...

Ak Bk

Ak+1 Bk+1 ����e
...

...

AN BN ����e

=

A1

C (k)

B1

...
...

Ak Bk

Ak+1 ����e
...

...

AN ����e

(183)

The definition means that the output systems B1 . . .Bk

are outside the causal future of any input system Al with
l > k.

Causally ordered channels can be characterized as fol-
lows:

Theorem 24 (Causal ordering is memory for gen-
eral N) An N -partite channel C (N) from A1 . . .AN to
B1 . . .BN is causally ordered if and only if there ex-
ists a sequence of memory systems {Ek}

N
k=0 with E0 =

I and a sequence of channels {Vk}
N
k=1, with Vk ∈

T(AkEk−1,BkEk) such that

A1

C (N)

B1

...
...

AN BN

= (184)

=
A1

V1

B1 A2

V2

B2 . . . AN

VN

BN

E1 E2 . . . EN−1 EN ����e

Moreover, VN . . .V1 is a reversible dilation of C .

Proof. It is trivial to see that if C (N) is a sequence of
channels with memory, it is a causally ordered channel.
Here we prove the converse. For N = 1 the thesis is just
the dilation theorem for channels. We now show that if
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the thesis holds for N , then it has to hold also for N + 1.
Since C (N+1) is a causal channel, we have in particular

(e|BN+1
C

(N+1) = C
(N) ⊗ (e|AN+1

. (185)

This means that C (N+1) can be viewed as a bipartite
causally ordered channel from C1C2 to D1D2, where
C1 := A1 . . .AN , C2 := AN+1, D1 := B1 . . .BN , and
D2 := BN+1. Then Theorem 23 yields two channels
W1 ∈ T(C1,D1F1) and W2 ∈ T(C2F1,D2F2) such that

C1

C

D1

C2 D2
=

C1

W1

D1 C2

W2

D2

F1 F2 ����e
(186)

Now, applying the deterministic effect on D2, and using
Eq. (185) the above diagram implies also that W1 is a
dilation of C (N). On the other hand, by the induction
hypothesis C (N) has a reversible dilation V (N) of the
form of Eq. (184), namely

V
(N) = TN . . .T1, (187)

for some sequence of channels (Tk)Nk=1 ∈
T(AkGk−1,BkGk) and some sequence of memory
systems (Gk)Nk=0, with G0 = I. Since W1 and V (N) are
reversible dilations of the same channel, the unique-
ness of the reversible dilation of Lemma 24 implies
W1 = (e|GN

Z V (N), with Z ∈ T(GN ,GNF1) of the

form of Eq. (149). Then, the thesis follows by defining
the memory systems as

Ek :=





Gk k < N
GNF1 k = N
GNF2 k = N + 1.

(188)

and by defining the channels as

Vk :=





Tk k < N
Z TN k = N
IGN

⊗ W2 k = N + 1.
(189)

By construction, the channel VN+1VN . . .V1 is a re-
versible dilation of the channel C (N+1). �

Moreover, since the realization of the previous Theo-
rem is just the reversible dilation of C (N), we have the
uniqueness result:

Corollary 44 (Uniqueness of the reversible dila-
tion) Let {Vk}

N
k=1, Vk ∈ T(AkEk−1,BkEk) be a re-

versible realization of the causally ordered channel C (N)

as a sequence of channels with memory, as in Theorem
24. Suppose that {V ′

k}
N
k=1, V ′

k ∈ T(AkE′
k−1,BkE′

k) is

another reversible realization of C (N) as a sequence of
channels with memory. Then there exists a channel R

from EN to E′
N such that

A1

V ′
1

B1 A2

V ′
2

B2 . . . AN

V ′
N

BN

E′

1 E′

2 . . . E′

N−1 E′

N
=

A1

V1

B1 A2

V2

B2 . . . AN

VN

BN

E1 E2 . . . EN−1 EN
R

E′

N

(190)

Proof. The channels V := VN . . .V1 ∈
T(A1 . . .AN ,B1 . . .BNEN ) and V ′ := V ′

N . . .V ′
1 ∈

T(A1 . . .AN ,B1 . . .BNE′
N ) are two reversible dilations of

the channel C (N). The statement is the direct applica-
tion of the uniqueness of the dilation stated by Lemma
24. �

B. No bit commitment

Sequences of channels with memory can be used to
describe sequences of moves of a given party in a crypto-
graphic protocol or in a multiparty game (see Ref. [62] for
the case of quantum games). In this scenario, the mem-
ory systems are the private systems available to a party,
while the other input-output systems are the systems ex-
changed in the communication with other parties. In
this context, the uniqueness of the realization of a causal
channel directly implies the impossibility of tasks like un-
conditionally secure bit commitment (see Refs. [65, 66]

and references therein for the definition of the problem).
A proof in the general case is given by the following:

Corollary 45 (No perfectly secure bit commit-
ment) In a theory with purification, if an N -round pro-
tocol is perfectly concealing, then there is a perfect cheat-
ing.

Proof. We first prove the impossibility for protocols
that do not involve the exchange of classical informa-
tion. Let A0,A1 ∈ T(A1 . . . ,AN ,B1 . . .BN−1BNFN ) be
two causally ordered N -partite channels (here the last
output system of the causally-ordered channels is the
bipartite system BNFN ), representing Alice’s moves to
encode the bit value b = 0, 1, respectively. The sys-
tem FN is the system sent from Alice to Bob at the
final phase of the protocol (called the opening) in or-
der to unveil the value of the bit. If the protocol is
perfectly concealing, then the reduced channels before
the opening phase must be indistinguishable, namely
(e|FN

A0 = (e|FN
A1 := C . Now, take two reversible
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dilations V0 ∈ T(A1 . . . ,AN ,B1 . . .BNFNG0) and V1 ∈
T(A1 . . . ,AN ,B1 . . .BNFNG1) for A0 and A1, respec-
tively. Since V0 and V1 are also two dilations of the chan-
nel C , there is a channel R from FNG0 to FNG1 such
that V1 = RV0. Applying this channel to her private
systems, Alice can switch from V0 to V1 just before the
opening. Discarding the auxiliary system G1, this yields
channel A1. The cheating is perfect, since Alice can play
the strategy V0 until the end of the commitment, and
decide the bit value before the opening without being de-
tected by Bob. The above reasoning can be extended to
N -round protocols involving the exchange of classical in-
formation. Indeed, classical messages can be modelled by
perfectly distinguishable states, while classical channels
can be modelled by measure-and-prepare channels where
the observation-test is discriminating, and the prepared
states are perfectly distinguishable. The fact that some
systems can only be prepared in perfectly distinguishable
states will be referred to as the “communication inter-
face” of the protocol [65, 66]. In this case, to construct
Alice’s cheating strategy we can first take the reversible
dilations V0,V1 and the channel R such that V1 = RV0.
In order to comply with the communication interface of
the protocol, one can compose V0 and V1 with classical
channels on all systems that must be “classical” before
the opening, thus obtaining two channels D0 and D1 that
are no longer reversible, but still satisfy D1 = RD0. Dis-
carding the auxiliary system G1 and, if required by the
communication interface, applying a classical channel on
FN , Alice then obtains channel A1. Again, this strategy
allows Alice to decide the value of the bit just before the
opening without being detected. �

XIII. DETERMINISTIC PROGRAMMING OF

REVERSIBLE TRANSFORMATIONS

In Section VIII we saw that transformations can be
stored into states, in such a way that they can be re-
trieved at later time with non-zero probability of suc-
cess. This provides an instance of probabilistic program-
ming, in which a state plays the role of program for a
transformation, and a suitable machine is able to read
out the program and to reproduce (with some probabil-
ity) the correct transformation. Of course, one would
like also to have deterministic programmable machines,
which correctly retrieve the transformations with unit
probability. We now show that such machines are much

more demanding in terms of resources: indeed to pro-
gram a certain number of reversible transformations one
needs to have an equal number of perfectly distinguish-
able program states. This theorem is the general version
of the quantum no-programming theorem by Nielsen and
Chuang [67].

Theorem 25 (No perfect deterministic program-
ming of reversible channels without distinguish-
able program states) Let {Ui}i∈X be a set of reversible
channels on A, and {ηi}i∈X be a set of pure states of B.
If there exists a channel R ∈ T(AB,A) such that

A

R

A

 '!&ηi B
= A Ui

A (191)

then the states {ηi}i∈X are perfectly distinguishable.

Proof. Take a dilation of R, with pure state ϕ0 ∈ S1(C)
and reversible channel U ∈ T(ABC). Upon defining the
pure states ϕi := ηi ⊗ ϕ0 we have

A

U

A

 '!&ϕi
BC BC ����e

= A Ui
A (192)

Since this is a dilation of the reversible transformation
Ui, by the uniqueness of the reversible dilation stated by
Theorem 15 there must be a pure state ψi ∈ S1(BC)
such that

A

U

A

 '!&ϕi
BC BC

=

A Ui
A

(/).ψi
BC

(193)

By applying U
−1
i on both sides of Eq. (193), one has

A
U

−1
i

A

U

A

 '!&ϕi
BC BC

=

A

(/).ψi
BC

(194)

and, applying U −1,

A U
−1
i

A

 '!&ϕi
BC

=

A

U −1

A

(/).ψi
BC BC

(195)

Composing Eqs. (193) and (195) we then obtain

A

U

A A

U −1

A

 '!&ϕi
BC BC BC

=

A Ui
A A

U
−1
i

A

 '!&ϕi
BC

(196)

This means that we can obtain an unbounded number of
copies of Ui and U

−1
i by iterating the application of U

and U −1. Now, if Ui and Uj are different, the proba-
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bility of error in discriminating between them using N
copies should go to zero as N goes to infinity (this can
be seen by repeating N times the optimal test and using
majority voting, as in the proof of Theorem 12). Since
programming the transformations {(Ui ⊗U

−1
i )⊗N} and

discriminating among them is a particular way of dis-
criminating between the program states {ϕi}, the lat-
ter must be perfectly distinguishable. Finally, since the
states ϕi = ηi⊗ϕ0 are perfectly distinguishable, also the
program states ηi must be so. �

Note that trying to use mixed program states {ρi} can-
not help in reducing the number of perfectly distinguish-
able states needed in the program system B. Indeed,

suppose that ρi is the following mixture ρi =
∑

j p
(i)
j ψ

(i)
j .

Since reversible transformations are atomic, this means

that each pure state ψ
(i)
j must work as a program for Ui.

But the above theorem implies that, whichever choice we

make, the pure states {ϕ
(i)
ji
}i∈X must be perfectly distin-

guishable.

XIV. PURIFICATION WITH CONJUGATE

SYSTEMS

A. Conjugate purifying systems

All the results derived so far were consequence of the
sole fact that every state has a purification, unique up to
reversible transformations of the purifying system. We
now add more structure, by introducing the notion of
conjugate purifying systems:

Postulate 2 (Conjugate purifying systems) For
every system A there exists a conjugate purifying system
Ã such that

1. for every state ρ ∈ S1(A) there is a purification Ψρ

in S1(AÃ) (completeness for purification)

2. ˜̃A = A (symmetry)

3. ÃB = ÃB̃ (regularity under composition)

The above postulate could be derived from more basic
assumptions. However, we will not discuss this issue here,
and, for the moment, the existence of conjugate systems
will be taken as a Postulate.

Conjugate purifying systems have particularly nice
properties, some of which are given in the following:

Lemma 29 Let Ã be the conjugate system of A. Then,
dimSR(Ã) = dimSR(A).

Proof. Trivial consequence of the bound on dimensions

given in Eq. (93) and of the symmetry condition ˜̃A =
A.�

In a theory with conjugate purifying systems, the dy-
namically faithful pure states considered in Subsection
VII C enjoy the following symmetry property:

Lemma 30 If the pure state Ψ ∈ S1(AÃ) is dynamically
faithful for system A, then it is dynamically faithful for
system Ã.

Proof. Let ω̃ be the marginal of Ψ on system Ã, namely
|ω̃)Ã = (e|A |Ψ)AÃ. Since Ψ is dynamically faithful for
system A, the map τ : ER(A) → Span(Dω̃) defined by
(a|A 7→ |τa)Ã = (a|A |Ψ)AÃ is injective (and surjective,
by definition). This implies dim Span(Dω̃) = dimER(A).
On the other hand, using the previous Lemma one has
dimER(A) ≡ dimSR(A) = dimSR(Ã). This proves that

ω̃ is internal in S(Ã). Since Ψ is the purification of an

internal state, by Theorem 8 it is faithful for system Ã.
�

Using the previous Lemma it is quite simple to show
that conjugate systems are unique up to operational
equivalence:

Lemma 31 (Uniqueness of the conjugate system)

For any system A the conjugate system Ã is unique up
to operational equivalence (see Def. 5).

Proof. Suppose that Ã′ is another conjugate system of
A. Then take an internal state ω ∈ S1(A) and consider

its purifications Ψ ∈ S1(AÃ) and Ψ′ ∈ S1(AÃ′). By the
uniqueness of purification expressed by Lemma 21, since
Ψ and Ψ′ are purifications of the same state, there are
two channels C ∈ T(Ã, Ã′) and D ∈ T(Ã′, Ã) such that

|Ψ′)AÃ′ = C |Ψ)AÃ (197)

|Ψ)AÃ = D |Ψ′)AÃ′ . (198)

Clearly, this implies that

|Ψ)AÃ = DC |Ψ)AÃ (199)

|Ψ′)AÃ′ = CD |Ψ′)AÃ′ . (200)

On the other hand, by the previous Lemma the states
Ψ and Ψ′ are dynamically faithful for systems Ã and
Ã′, respectively. Hence, one has DC = IÃ and C D =
IÃ′ , namely the channels C and D are reversible. By
Definition 5, this means that A and A′ are operationally
equivalent. �

B. States-transformations isomorphism for

conjugate purifying systems

If we use conjugate purifying systems to build up dy-
namically faithful states some of the results derived so
far become simpler and more elegant. First of all, ac-
cording to Lemma 30, if a pure state ΨAÃ is dynamically
faithful for system A, then it is also dynamically faith-
ful for system Ã. This means that we can simply use the
expression “dynamically faithful pure state |Ψ)AÃ” with-
out further specifications. Accordingly, we will drop the
superscript A in the state

∣∣Ψ(A)
)
. We now show that we

can also drop the condition Eq. (157) in the isomorphism
between transformations and bipartite states:
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Theorem 26 (Strong version of the states-
transformations isomorphism) The storing map
C 7→ |RC )BÃ := C |Ψ)AÃ, with Ψ dynamically faithful
pure state, has the following properties:

1. it defines a bijective correspondence between tests
{Ci}i∈X from A to B and preparation-tests {Ri}i∈X

for BÃ satisfying

∑

i∈X

(e|B |Ri)BÃ = (e|A |Ψ)AÃ. (201)

2. a transformation C is atomic (according to Defini-
tion 22) if and only if the corresponding state RC

is pure.

3. in convex theory the map C 7→ RC defines a bi-
jective correspondence between the cones T+(A,B)

and S+(BÃ).

We now have the following remarkable fact:

Theorem 27 For every effect a ∈ E(A) there is an
atomic transformation Ca ∈ T(A) such that

A ����a = A Ca
A ����e . (202)

Moreover, the transformation Ca is unique up to re-
versible channels on the output.

Proof. Let p0 and p1 be the probabilities defined by
p0 := (a|A (e|Ã |Ψ)AÃ and p1 := (e− a|A (e|Ã |Ψ)AÃ.
Let |Ψ0)AÃ and |Ψ1)AÃ be purifications of the nor-
malized states |ρ0)Ã := (a|A |Ψ)AÃ/p0 and |ρ1)Ã :=
(e− a|A |Ψ)AÃ/p1, respectively. Now, the collection of
states {p0Ψ0, p1Ψ1} is a preparation-test (it can be pre-
pared via randomization). Moreover, such a preparation-
test has the property

p0 (e|A |Ψ0)AÃ + p1 (e|A |Ψ1)AÃ = (e|A |Ψ)AÃ, (203)

namely it satisfies Eq. (201). By the states-
transformations isomorphism, it must correspond to a
test {C0,C1} from A to A: in particular we must have

p0 Ψ0
?>
89

A

Ã
= Ψ

?>
89

A C0
A

Ã

(204)

Applying the deterministic effect on A we then obtain

Ψ
?>
89

A ����a
Ã

= p0  '!&ρ0 Ã = p0 Ψ0

?>
89

A ����e
Ã

= Ψ
?>
89

A C0
A ����e

Ã

(205)

Since Ψ is dynamically faithful, this implies Eq. (202)
with Ca := C0. Moreover, the states-transformation iso-
morphism states that C0 is atomic since p0 |Ψ0)AÃ =
C0 |Ψ)AÃ is pure. Finally, suppose that C ′

0 ∈ T(A) is an-
other atomic transformation such that Eq. (202) holds,
and define the pure state |Ψ′

0) := C ′
0 |Ψ)AÃ/p0. Since Ψ0

and Ψ′
0 are purifications of the same state |ρ0)Ã, then

they are connected by a reversible channel U on A. Us-
ing the fact that Ψ is dynamically faithful, this implies
C ′
0 = U C0. �

Moreover, having conjugate purifying systems allows
for a more elegant description of the composition of trans-
formations in terms of composition of states. We recall
that to treat the composition of states we need a system
of purifications, as defined in Subsect. VIII C. The nice
thing now is that we can take the system of purifications
to be symmetric:

Definition 63 (Symmetric system of purifications)
A symmetric system of purification is a choice of dy-
namically faithful pure states |Ψ)AÃ and teleportation
effects (E|ÃA that satisfies the properties

|Ψ)ABÃB̃ = |Ψ)AÃ |Ψ)BB̃

(E|ÃB̃AB = (E|ÃA (E|B̃B .
(206)

Regarding the probabilities of conclusive teleportation,
we now have pA = pÃ (compare Eqs. (113) and (114) in
the teleportation protocol of Corollary 19).

In the next Subsection we will see that there is a canon-
ical choice of internal states, namely choosing |ω)A =
|χ)A, where |χ)A is the unique invariant state of system
A (for the uniqueness, see Lemma 34). We will choose a
fixed purification of |χ)A and refer to it as to the canon-
ical faithful state, denoted by |Φ)AÃ. In Corollary 46 we
will show that this notation is consistent, since |Φ)AÃ is

also a purification of the unique invariant state of Ã.

C. Conjugated transformations

The most important consequence of the existence of
conjugate purifying systems is the possibility of defin-
ing a one-to-one correspondence between the reversible
transformations of one system A and the reversible trans-
formations of its conjugate system Ã. As we will see, this
implies in particular the possibility of deterministic tele-
portation. The correspondence is set by the following
Lemma:

Lemma 32 (Transposition of reversible channels)

Let Φ ∈ S1(AÃ) be a purification of the unique invariant
state χ ∈ S1(A). Then, for every reversible channel
U ∈ GA there exists a unique reversible channel
U τ ∈ GÃ, here called the transpose of U with respect
to Φ, such that

Φ
?>
89

A
U

A

Ã
= Φ

?>
89

A

Ã
U τ Ã

(207)



42

Transposition is an injective map satisfying the properties

I
τ
A = IÃ (208)

(U1U2)
τ

= U
τ
2 U

τ
1 . (209)

Proof. Since |χ)A is invariant, the states |Φ)AÃ and
U |Φ)AÃ are both purifications of it. Then, there must
be a reversible transformation U τ ∈ GÃ such that Eq.
(207) holds. Moreover, since the invariant state |χ)A is
internal, its purification Φ is dynamically faithful, both
for system A and for system Ã. Dynamical faithful-
ness on system Ã implies that the transformation U τ

is uniquely defined, while dynamical faithfulness on sys-
tem A implies that transposition is injective. Finally,
Eq. (208) is obvious, while Eq. (209) is easily proved by
repeated application of Eq. (207):

(IA ⊗ (U1U2)
τ
) |Φ)AÃ = (U1U2 ⊗ IÃ) |Φ)AÃ

= (U1 ⊗ U
τ
2 ) |Φ)AÃ

= (IA ⊗ U
τ
2 U

τ
1 ) |Φ)AÃ,

(210)

using the fact that Φ is dynamically faithful for system
Ã. �

Lemma 33 (Continuity of transposition)
Transposition is continuous with respect to the op-
erational norm. Moreover, if C ⊆ GA is closed, then
τ(C) ⊆ GÃ is closed.

Proof. Let pA be the probability of teleportation for
the canonical faithful state |Φ)AÃ. Define |RU )AÃ :=
(U ⊗ IÃ) |Φ)AÃ. For every ǫ > 0, if U ,V ∈ GA are
such that ||U −V ||A,A < ǫ, then using Eq. (126) one has
||U τ −V τ ||Ã,Ã ≤ ||RU −RV ||AÃ/pA < ǫ/pA. This proves
continuity. Now, suppose that C ⊆ GA is a closed set,
and suppose that {U τ

n } is a sequence in τ(C) converging
to some reversible transformation V ∈ GÃ. It is easy
to see that V must be in τ(C). Indeed, consider the
sequence {Un} ⊂ GA. Since GA is compact, there must
be a subsequence Unk

such that Unk
→ U for some U ∈

GA. Moreover, since C is closed, one has U ∈ C. Now,
using continuity we obtain U τ

nk
→ U τ . This implies

that V = limn→∞ U τ
n = U τ , that is, the limit point is

in τ(C). Hence, τ(C) is closed. �

Lemma 34 The transposition map τ : U 7→ U τ defined
in Eq. (207) is surjective on GÃ.

Proof. Take the invariant state |χ)Ã, a purification of it,

say
∣∣∣Φ(Ã)

)
AÃ, and define the transpose τ̃ with respect to

Φ(Ã). Since τ and τ̃ are both injective transformations,
their composition ι := τ τ̃ : GÃ → GÃ is injective too.
Moreover, ι is a homomorphism, since ι(IÃ) = IÃ and
ι(V W ) = ι(V )ι(W ) for every V ,W in GÃ. We now
claim that ι is surjective. Of course, since ι := τ τ̃ , this
will also prove that τ is surjective. Consider the sequence

{Hn} defined by Hn := ιn(GÃ). By the previous Lemma
33, each Hn is a closed subgroup of GÃ, and one has

GA := H0 ⊇ H1 ⊇ · · · ⊇ Hn ⊇ Hn+1, (211)

namely {Hn} is a descending chain of subgroups of GÃ.
Since GÃ is a compact Lie group, every descending chain
of closed subgroups must be eventually constant (see e.g.
p. 136 of [68]), i.e. there exists a finite n̄ such that

Hn = Hn+1 n ≥ n̄. (212)

Applying ι−n on both sides, this implies H0 = H1,
namely GÃ = ι(GÃ). Therefore, ι is surjective. �

The first consequences of the properties of transposi-
tion are given by the following corollary

Corollary 46 Let Φ ∈ S1(AÃ) be a purification of the
unique invariant state χA ∈ S1(A). Then the comple-
mentary state |χ̃)Ã := (e|A |Φ)AÃ is the unique invariant

state of Ã.

Proof. For every U ∈ GA we have

(/).χ̃ Ã = Φ
?>
89

A
U

Ã ����e
Ã

= Φ
?>
89

A ����e
Ã

U τ A

= (/).χ̃ Ã
U τ Ã

(213)

Since τ is surjective, U τ is an arbitrary element of GÃ,
hence χ̃ is invariant. �

Definition 64 (Conjugate of a reversible channel)
The conjugate of the reversible channel U ∈ T(A) with

respect to the state Φ ∈ S(AÃ) is the reversible channel

U ∗ ∈ T(Ã) defined by U ∗ := (U τ )−1, where the
transpose is defined with respect to Φ.

Note that with this definition the canonical faithful
state |Φ)AÃ is isotropic, i.e. it is invariant under com-
bined reversible channels on the conjugate systems A and
Ã:

Φ
?>
89

A

Ã
= Φ

?>
89

A
U

A

Ã
U ∗ Ã

∀U ∈ GA. (214)

Moreover, we have also the converse:

Corollary 47 (Isotropic states) A pure state Ψ ∈

S1(AÃ) is isotropic if and only if |Ψ)AÃ = (V ⊗
IÃ) |Φ)AÃ for some reversible V ∈ GA such that

U V = V U ∀U ∈ GA. (215)
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Proof. Clearly, a state of the above form is isotropic.
Conversely, if Ψ is isotropic, it satisfies Eq. (214), and,

therefore, its marginal state on system Ã is the invari-
ant state |χ)Ã. Since Ψ and Φ are purifications of the
same state, there must exist a reversible channel V ∈ GA

such that |Ψ)AÃ = V |Φ)AÃ. The isotropy condition then
gives

(V ⊗ IÃ) |Φ)AÃ = |Ψ)AÃ

= (U ⊗ U
∗) |Ψ)AÃ

= (U V ⊗ U
∗) |Φ)AÃ

= (U V U
−1 ⊗ IÃ) |Φ)AÃ

(216)

Dynamical faithfulness of Φ then implies V = U V U −1,
namely Eq. (215). �

Recalling that the center of the group GA is the set
of all elements V ∈ GA such that U V = V U for every
U ∈ GA, it is immediate to state the following

Corollary 48 The canonical faithful state |Φ)AÃ is the

unique isotropic state of system AÃ if and only if the
compact Lie group GA has trivial center.

The conclusion of this Subsection is summarized by the
following theorem:

Theorem 28 (Isomorphism of groups) The re-

versible channels on A and Ã form two isomorphic Lie
groups, with the isomorphism given by the conjugation
map ∗ : GA → GÃ,U 7→ U ∗.

Proof. Clearly, ∗ is a homomorphism, namely I ∗
A = IÃ

and (U1U2)∗ = ((U1U2)τ )
−1

= U ∗
1 U ∗

2 . Moreover, ∗ is
injective and surjective, since it is the composition of two
injective and surjective maps, namely transposition and
inversion. �

D. Deterministic teleportation

Lemma 35 Let TA and TÃ be the twirling channels on

A and Ã, respectively, and let Φ ∈ S1(AÃ) be the canon-
ical faithful state. Then, one has

Φ
?>
89

A
T

A

Ã
= Φ

?>
89

A

Ã
T

Ã
(217)

and

Φ
?>
89

A
T

A

Ã
=

 '!&χ A

 '!&χ Ã
(218)

Proof. We have

TA |Φ)AÃ =

∫

GA

dU U |Φ)AÃ

=

∫

GA

dU (U ∗)−1 |Φ)AÃ

= TÃ |Φ)AÃ,

(219)

having used the fact that GA and GÃ are isomorphic,
and, therefore, have the same Haar measure. Moreover,
since the output of the twirling channel is an invariant
state, we have that |σ)AÃ := TA |Φ)AÃ is invariant under
local reversible transformations, i.e.

|σ)AÃ = (U ⊗ V ) |σ)AÃ ∀U ∈ GA, ∀V ∈ GÃ.
(220)

Finally, we invoke Theorem 4, which states that the
unique state invariant under local reversible transforma-
tions is χA ⊗ χÃ. �

Theorem 29 (Deterministic teleportation) Let A
and A′ be two operationally equivalent systems, and let
{piUi}i∈X be a twirling test, where each Ui is a reversible
channel on A. Then there exists an observation-test
{Bi}i∈X on ÃA′ such that for every outcome i one has

Φ

?>
89

A U
−1
i

A

Ã

Bi

=<
:;A′

= pi A′

I
A (221)

Moreover, each effect Bi must be atomic.

Proof. Define the preparation-test {piΦi}i∈X with
|Φi)AÃ := Ui |Φ)AÃ. By the previous Lemma, we have∑

i piΦi = χA ⊗ χÃ, namely coarse-graining of the

preparation-test {piΦi} yields the invariant state of AÃ.
By the states-transformations isomorphism of Theorem
26, there exists an observation-test on Ã′A′, say {Bi}i∈X,
such that

Φ
?>
89

A

Ã′

Bi

=<
:;

Φ
?>
89

A′

Ã

= pi Φi

?>
89

A

Ã
(222)

Clearly, the states-transformations isomorphism implies
that each effect Bi must be atomic (indeed, the corre-
sponding state is pure). Applying U

−1
i on system A we

obtain

Φ
?>
89

A U
−1
i

A

Ã′

Bi

=<
:;

Φ
?>
89

A′

Ã

= pi Φ
?>
89

A

Ã
(223)

The thesis follows from the fact that Φ is dynamically
faithful. �

In theories with local discriminability we have the ad-
ditional result:
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Corollary 49 Let {piUi}i∈X be a twirling test where
each Ui is a reversible channel. In a theory with local
discriminability the number of outcomes |X| cannot be
smaller than dimSR(A).

Proof. By Eq. (221) the state Ψi := (U −1
i ⊗ IA)Φ

and the effect Bi achieve teleportation with probability
pi. In a theory with local discriminability the bound
of Eq. (116) gives pi ≤ 1/ dimSR(A). We then have
1 =

∑
i∈X pi ≤ |X|/ dimSR(A). �

If two parties share the pure state |Φ)AÃ, then by the
teleportation protocol they can convert it in an arbitrary
state Ψ ∈ S1(AÃ) using only local operations and one
round of classical communication (one-way LOCC). We
now show that the state |Φ)AÃ is the maximally entangled

state of S1(AÃ), that is, if we can convert another state
Ψ to Φ by one-way LOCC, then Ψ = (U ⊗ IA)Φ for
some local reversible channel U ∈ T(A). To see that,
we show that if Ψ allows for deterministic teleportation,
then Ψ = (U ⊗ IA)Φ.

Theorem 30 (Unique structure of deterministic

teleportation) Let Ψ ∈ S1(AÃ) be a pure state,
{Ri}i∈X be a collection of channels on A, {pi}i∈X a set
of probabilities, and {Mi}i∈X be an observation-test on

ÃA′, with A′ and A operationally equivalent systems. If
for every outcome i one has

Ψ
?>
89

A Ri
A

Ã

Mi

=<
:;A′

= pi A′

I
A (224)

then

1. each channel Ri is reversible, namely Ri = U
−1
i

for some Ui ∈ GA

2. there is a reversible channel U ∈ GA such that
Ψ = U Φ

3. each effect Mi has the property (Mi|ÃA′ |χ)Ã =
pi (e|A′

4.
∑

i∈X piUi = T , where T is the twirling channel

Proof. Define the transformation Ai as

A Ai
A :=

Ψ
?>
89

A

Ã

Mi

=<
:;A

(225)

With this definition we have RiAi = piIA for every out-
come i. Moreover, applying the deterministic effect on
both sides of the equality we obtain

(e|A Ai = (e|A RiAi = pi (e|A , (226)

that is, each Ai is proportional to a channel Ci, i.e. Ai =
piCi. We now have Ri ◦ Ci = IA, that means that the
channel Ci is invertible. By corollary 27, this implies
that Ci is reversible, namely Ci = Ui for some Ui ∈
GA. Clearly, this requires Ri = U

−1
i . Now consider the

marginal of Ψ on system A: one has

Ψ
?>
89

A

Ã ����e
=

Ψ
?>
89

A

Ã ����e
 '!&χ A ����e

=
∑

i∈X

Ψ
?>
89

A

Ã

Mi

=<
:; '!&χ A

=
∑

i∈X

 '!&χ A Ai
A

=
∑

i∈X

pi  '!&χ A Ui
A

=  '!&χ A

(227)

having used the invariance of χ. But this means that
Ψ and Φ have the same marginal on system A, and,
therefore, |Ψ)AÃ = (IA ⊗ U ) |Φ)AÃ for some suitable
U ∈ GÃ. Using Lemma 32, we can also transfer U on
system A, getting |Ψ)AÃ = (U τ ⊗ IÃ) |Φ)AÃ. Using
Ai = piUi we then get

pi Φ
?>
89

A Ui
A

Ã

= Φ
?>
89

A Ai
A

Ã

=

Φ
?>
89

A
U τ A

Ã

Mi

=<
:;

Φ
?>
89

A

Ã

(228)

By the states-transformations isomorphism, this means
that each Mi is atomic (indeed, the corresponding state
is pure). Applying the deterministic effect on system A,
the above equation also implies

pi Φ
?>
89

A ����e
Ã

=

 '!&χ Ã

Mi

=<
:;

Φ
?>
89

A

Ã

(229)

which amounts to saying (Mi|ÃA |χ)Ã = pi (e|A, because
Φ is dynamically faithful. Moreover, summing over the
outcomes in Eq. (228) we obtain (

∑
i piUi) |Φ)AÃ =

|χ)A |χ)Ã = T |Φ)AÃ. Again, since Φ is dynamically
faithful, this implies

∑
i piUi = T . �

In a theory with local discriminability one has also the
following result:

Corollary 50 Let |Ψ)AÃ, {Ri}i∈X, {pi}i∈X, and
{Mi}i∈X be the state, the recovery channels, the prob-
abilities, and the observation-test in a deterministic tele-
portation protocol, as in Theorem 30. In a theory with
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local discriminability the number of outcomes satisfies the
bound |X| ≥ dimSR(A). The bound is achieved if and
only if pi = 1/ dimSR(A) for every i, and the states
|Ψi)AÃ := (Ri ⊗IÃ) |Ψ)AÃ, i ∈ X are perfectly distin-
guishable with the observation-test {Mi}, i.e.

(Mi|Ψj)AÃ = δij (230)

Proof. From Eq. (115) we have pi ≤ 1/ dimSR(A) for
every i, and, therefore 1 ≤ |X|/ dimSR(A). Clearly, the
bound is achieved if and only if pi = 1/ dimSR(A) for
every i. In this case, it can be seen from the proof of Eq.
(115) that one has (Mi|Ψi)AÃ = 1. Since {Mi}i∈X is
an observation-test, and the probabilities of all outcomes
must sum up to unit, this implies (Mj |Ψi)AÃ = δji. �

The above Corollary shows that if teleportation has the
minimum possible number of outcomes |X| = dimSR(A),
then dense coding is possible: By acting locally on one
side of the state Ψ one can produce dimSR(A) perfectly
distinguishable states. This number exceeds the max-
imum number of perfectly distinguishable states avail-
able in system A, which must be strictly smaller than
dimSR(A) due to Corollary 15. However, we didn’t
prove here the existence of such a teleportation scheme
with |X| = dimSR(A). This issue, which is closely re-
lated to the topic of discrimination in theories with pu-
rification, will be addressed in a future work.

XV. CONCLUSIONS AND PERSPECTIVES ON

FUTURE WORK

In this paper we investigated causal probabilistic theo-
ries with purification, and derived a surprising wealth
of features that are characteristic of quantum theory
without resorting to the framework of Hilbert spaces or
C*-algebras. Among theories with local discriminability,
quantum theory appears as the only known one that sat-
isfies the purification principle. The absence of a coun-
terexample and the amount of quantum features derived
suggest that quantum theory could be the only causal
theory with purification and local discriminability. How-
ever, at the moment we do not have a derivation of quan-
tum theory from the purification principle, and the ques-
tion whether there are other theories satisfying the above
postulates remains open.

Any answer to this question would lead to an interest-
ing scenario: If quantum theory is the only causal the-
ory with purification and local discriminability, then the

machinery of Hilbert spaces is a quite redundant way
to prove theorems that in fact can be derived directly
from basic physical notions. What is more, the general
proofs of most theorems are simpler and more intuitive
than the original quantum proofs. On the other hand, if
quantum theory is not the only theory satisfying our pos-
tulates, the existence of more general theories, that share
with quantum mechanics the basic structure highlighted
in this paper, is also a very fascinating perspective. More-
over, abandoning the standard quantum formalism would
be interesting especially in view of a possible reconcilia-
tion with general relativity. In this direction, particularly
appealing is the possibility of dropping causality from
our requirements, and of working with non-unique deter-
ministic effects. The study of non-causal theories with
purification is expected to provide new insights toward a
formulation of quantum gravity. Such an approach would
be related to the informational approaches of Hardy [31]
and Lloyd [69]. The study of theories with purification in
the non-causal setting will be addressed in a forthcoming
paper.

Another direction of further research is the general-
ization of the notion of subsystem. On the one hand,
introducing classical systems in the theory and clarify-
ing how they can be viewed as subsystems of the non-
classical ones is expected to provide an additional struc-
ture that will eventually contribute to the full derivation
of quantum mecanics. On the other hand, under suit-
able assumptions, a face of the convex set of states of a
system can be considered as the set of states of some sub-
system. Following this observation, we plan to consider
information-theoretic tasks like state compression in the-
ories with purification, by analyzing the mechanism that
leads the state ρ⊗N to approach a face corresponding to
the state space of M < N systems.
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