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ABSTRACT
The availability of indoor positioning renders it possible to deploy
location-based services in indoor spaces. Many such services will
benefit from the efficient support for k nearest neighbor (kNN)
queries over large populations of indoor moving objects. However,
existing kNN techniques fall short in indoor spaces because these
differ from Euclidean and spatial network spaces and because of
the limited capabilities of indoor positioning technologies.

To contend with indoor settings, we propose the new concept of
minimal indoor walking distance (MIWD) along with algorithms
and data structures for distance computing and storage; and we
differentiate the states of indoor moving objects based on a posi-
tioning device deployment graph, utilize these states in effective
object indexing structures, and capture the uncertainty of object lo-
cations. On these foundations, we study the probabilistic threshold
kNN (PTkNN) query. Given a query location q and a probability
threshold T , this query returns all subsets of k objects that have
probability larger than T of containing the kNN query result of q.
We propose a combination of three techniques for processing this
query. The first uses the MIWD metric to prune objects that are
too far away. The second uses fast probability estimates to prune
unqualified objects and candidate result subsets. The third uses ef-
ficient probability evaluation for computing the final result on the
remaining candidate subsets. An empirical study using both syn-
thetic and real data shows that the techniques are efficient.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design—access meth-
ods; H.2.8 [Database Management]: Database Applications—
spatial databases and GIS

General Terms
Algorithms, Experimentation, Performance

Keywords
Indoor Moving Objects, Probabilistic Threshold k Nearest Neigh-
bor Queries, Symbolic Indoor Space, Uncertainty
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1. INTRODUCTION
The availability of indoor positioning renders it possible to sup-

port interesting queries over large populations of moving objects
in indoor spaces such as shopping malls, airports, subway stations,
and office buildings. For example, support for k nearest neighbor
(kNN) queries over indoor moving objects enables the detection
of approaching potential threats at sensitive locations in a subway
system; and it is possible for shops in an airport to target nearby
individuals in promotions.

Two factors render existing kNN techniques in spatial and spa-
tiotemporal databases [10, 17, 18, 20–22] inapplicable to moving
objects in indoor spaces. First, the existing Euclidean and network
distances do not fit indoor spaces that usually feature complex enti-
ties and topologies. Refer to the example in Figure 1. If we ignore
the indoor topology, location p1’s 1st NN is p3 since the Euclidean
distance between them is the smallest. However, p3 is not reach-
able from p1 along the straight line segment between them, so p1’s
true 1st NN is p2. Also, the conventional notion of network dis-
tance does not capture the (merely) constrained movements and the
obstructed distances indicated by complex indoor entities such as
rooms, doors, and hallways.

23
21

31

20

30

50

40

0

32
d1

d0

d2

d3

d21

d22

d23

d33

d32

14

10

p6

p7

d14

p1

d11

d12

d15

d13

Door

22

d11

Room

50 Staircase

10 Hallway

d31

d5

13

12

11

22

33

p3

p2

p4

p5

c

Figure 1: Example of Indoor Space, Locations, and Distances

Second, indoor positioning technologies such as RFID and Blue-
tooth differ fundamentally from those typically assumed in outdoor
settings. Unlike GPS and cellular positioning technologies that are
capable of continually reporting the position of an object quite ac-
curately, indoor positioning technologies rely on proximity analy-
sis [9] and are unable to report accurate or continuous locations.
In particular, an indoor object is detected only when it enters the
activation range of a positioning device, e.g., an RFID reader or a



Bluetooth base station, which may occur infrequently. As a result,
the limitations of indoor positioning create inherent uncertainty in
the positioning data of indoor moving objects.

To accommodate the indoor setting, we propose the notion of
minimal indoor walking distance (MIWD) as the distance metric
for indoor spaces. The MIWD between two indoor locations is the
shortest distance a person has to walk to reach the one from the
other. In Figure 1, the MIWD between p1 and p2 is the length of
the polyline from p1 to p2 via the door d32.

Notably, for an indoor space, we capture all doors in a graph in
which each vertex corresponds to a door and edges indicate which
pairs of doors can be reached from one another without using a third
door. This structure and additional mappings enable us to compute
all door-to-door MIWDs efficiently. We then propose an algorithm
that computes the MIWD for two arbitrary indoor locations by ex-
ploiting the pre-computed door-to-door MIWDs.

We also propose a complete set of techniques for indoor moving
object management. A deployment of positioning devices parti-
tions the indoor space into cells in the sense that all movements
between cells are detected by some positioning device. We accord-
ingly present a positioning device deployment graph in which each
vertex corresponds to a cell and each edge corresponds to relevant
devices. We then assign the indoor moving objects to states accord-
ing to the device activation ranges and cells. The resulting states are
utilized to design effective hash based indexing structures for in-
door objects. The above also enable us to formalize the uncertainty
of object locations.

On top of these foundations, we provide a solution for probabilis-
tic threshold kNN (PTkNN) queries over moving objects. Given an
indoor moving object set O, an indoor query location q, and a prob-
ability threshold T , a PTkNN query returns all k sized subsets of
O with probability larger than T of being the kNNs of q.

We propose a combination of three techniques for the efficient
processing of PTkNN queries. First, MIWDs between the query
location q and indoor moving objects are used to prune objects too
far away from q, which reduces the object set O to a smaller can-
didate set. Second, efficient probability estimation is used to prune
unqualified candidate k-subsets from the candidate set. Third, the
final query result is determined by efficient probability evaluation
for the remaining candidate objects and k-subsets.

A comprehensive empirical study is conducted using both syn-
thetic and real data. The results show that the provided data man-
agement foundation is effective and that the proposed PTkNN query
processing is efficient and scalable.

We summarize our contributions as follows. First, we propose
the minimum indoor walking distance for indoor spaces (Section
3.1). Second, we formalize the uncertainty of indoor moving ob-
ject locations (Section 4.2), based on a symbolic indoor position-
ing and hash based object indexing scheme. Third, we provide
efficient means of computing PTkNN queries over indoor moving
objects (Section 5). Fourth, we conduct a comprehensive empiri-
cal study on our proposals using both synthetic and real data (Sec-
tion 6). To the best of our knowledge, this paper is the first work
to model indoor position uncertainty, and the first to study efficient
kNN queries in indoor space.

The remainder of the paper is organized as follows. Section 2
briefly reviews related work. Section 3 presents the foundations.
Section 4 elaborates on the management of indoor moving objects
and the deriving of their uncertain regions. Section 5 details the
techniques for efficient processing of probabilistic threshold k near-
est neighbor queries over indoor moving objects. Section 6 con-
ducts the empirical study. Finally, section 7 offers conclusions and
discusses directions for future work.

2. RELATED WORK
Symbolic space models are often preferred over geometric mod-

els in the modeling of indoor space because they are better able
to capture the movement-related semantics associated with indoor
entities [2]. A graph-based model for indoor space is proposed
to support efficient indoor tracking [12], which serves as the basis
for the object management in this paper. The state definition and
hash indexing method for indoor moving objects, proposed in [24]
for continuous range monitoring over indoor moving objects, still
form the data management foundations for snapshot kNN queries
queries in this paper. Li and Lee [14] define the indoor nearest
neighbors by the minimal number of doors to go through, whereas
we employ a more refined general metric of minimum indoor walk-
ing distance.

kNN queries constitute fundamental functionality in spatial and
spatiotemporal databases. In Euclidean spaces, spatial data are
usually indexed by some spatial access method, typically an R-
tree [8]. The Euclidean distances between a query point and index
entry MBRs are used to facilitate pruning in R-tree based query
processing, which can be conducted in either a depth-first [17] or
a best-first [10] manner. kNN queries over free-moving objects
come in several variants. In one variant, a query involves a moving
query point and static data points indexed by an R-tree. Song and
Roussopoulos [20] propose a sampling-based method to periodi-
cally reevaluate kNN queries via the R-tree. Tao et al. [22] propose
an algorithm that searches the R-tree only once to find k NNs for
all query positions along a line segment. Other variants support
both static and moving query points over moving objects. Typi-
cally, such proposals [18, 21] search a TPR-tree [19] that indexes
the moving objects. In the context of spatial networks, network
distance is the metric used [11]. Different techniques are proposed
for static query points [13, 16] and moving query points [4]. All
these kNN proposals fall short in our setting, which requires spe-
cific modeling, indexing, and query processing.

NN and kNN queries over uncertain data have also been stud-
ied. Cheng et al. [5] propose a query that returns all objects along
with their non-zero probability of being the NN of a query point.
An R-tree-like index is employed to process such queries. Beskales
et al. [3] propose the top-k probable nearest neighbor (Topk-PNN)
query that returns objects with the highest probability of being the
NN of a query point. The probability in a Topk-PNN query differs
from that in our PTkNN queries. Therefore, a Topk-PNN query
may return k objects that do not form a qualified k-subset as k
NNs. Cheng et al. propose a framework [6] for evaluating prob-
ability threshold kNN over uncertain moving objects in Euclidean
space, which consists of filtering, probabilistic candidate selection
and verification.

Our PTkNN query definition is similar to that in [6], as both re-
turn the k-subsets with the highest probabilities of being the kNNs.
The query processing framework in [6] is also adopted in this paper.
However, this paper distinguishes itself with several unique charac-
teristics. First, it uses the novel minimum indoor walking distance
(MIWD) as the underlying distance metric instead of the Euclidean
distance. Second, the indoor distance based pruning in this pa-
per is able to prune not only individual objects, but also groups of
objects based on the cells defined in the positioning device deploy-
ment graph. Third, this paper presents a unique formalization of the
uncertainty of indoor moving object locations. Last but not least,
partially due to the previous point, the probability estimation and
evaluation for indoor objects in this paper are different from those
for outdoor moving objects in [6].



3. INDOOR SPACE MODELING AND PO-
SITIONING

A simplified plan of the first floor of the computer science de-
partment at Aalborg university is shown in Figure 1. The numbers
are labels for rooms, hallways, and staircases. The building is di-
vided into three clusters, each with its own hallway and rooms, that
are connected by a common hallway, labeled 40. Objects can reach
other floors via a staircase, labeled 50, or leave the building through
the main entrance, labeled 0. For simplicity, we regard the hallways
and staircases as rooms. For example, we use “room 10” for “hall-
way 10.” Each room may have several doors, which are labeled as
di. The connections between different clusters are also treated as a
virtual door, e.g. d1, d2 and d3.

Section 3.1 details our proposal of the minimal indoor walking
distance. Sections 3.2 and 3.3 offers background information on
indoor positioning, details of which can be found elsewhere [12].
Important notation is listed in Table 1.

Symbol Meaning
p, q Indoor positions

Σrooms The set of rooms
Σdoors The set of doors

dMIW (p, q) Minimal indoor walking distance between p and q
O The set of indoor moving objects

o, oi Indoor moving objects
o.Vmax o’s maximum speed

UR(o, t) o’s uncertain region at time t
CMSC (o, dev, t) o’s maximum-speed constrained circle at time t

Table 1: Notation

3.1 Minimal Indoor Walking Distance
As pointed in Section 1, the predominant Euclidean and network

distances do not work well in indoor spaces. We therefore propose
a new notion of Minimal Indoor Walking Distance (MIWD) for use
as the distance metric in indoor spaces. For two positions p and
q, this distance is given as dMIW (p, q). To facilitate computing
minimal indoor walking distances, we need two mappings.

The set Σrooms contains all the rooms in the floor plan; and the
set Σdoors contains all the doors in the indoor space. The mapping
Rooms determines the room of an indoor position.

Rooms : positions → Σrooms

Each door connects two adjacent rooms in the sense that one can
move from one room to the other through the door. The mapping
Doors maps a room to the doors that connect the room to an adja-
cent room.

Doors : Σrooms → 2Σdoors .

In Figure 1, Rooms(p1) returns room 32, and Doors(room 12)
returns the set {d12, d15}.

If p and q are in the same room, the intra-room obstructed dis-
tance [25] between the two, termed as do(p, q), is first calculated.
If no obstacles are present between p and q, do(p, q) is equal to the
Euclidean distance between the two. In Figure 1, positions p2 and
p3 are both in room 30, and the line segment between them is fully
in room 30. Therefore, the obstructed distance do(p2, p3) between
them is exactly |p2p3|1.

1|pipj | denotes the Euclidean distance between positions pi and
pj .
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Next, consider the indoor posi-
tions p4 and p5 in Figure 1. The
line segment from p4 to p5 intersects
room 23, which means that no object
can move from p4 to p5 according to
a straight line segment. In such cases,
the obstructed distance accounts for
the obstacles. In particular, the object
needs to go from p4 to the corner c of
room 23 and then to p5. Thus, do(p4,
p5) equals |p4c| + |cp5|. It is note-
worthy that do(p, q) for p and q in the
same room may not be the true dMIW (p, q), as passing through
other room(s) may result in shorter distance(s). For example, in
Figure 2, the obstructed distance do(p8, q9) = |p8c1| + |c1c2| +
|c2p9| is longer than the true MIWD |p8d16|+ |d16d17|+ |d17p9|.
Such a MIWD distance is obtained by regarding p and q as loca-
tions in different rooms, as to be deliberated next.

If two indoor positions are in different rooms, the minimal in-
door walking distance should take into account the doors connect-
ing the rooms. In Figure 1, point p1 and point p2 is in room 32 and
room 30, respectively. The only connection between the two rooms
is the door d32. Therefore, dMIW (p1, p2) = |p1d32|+ |d32p2|.

In a more complicated situation, there may exist several paths
(that go through different rooms and doors) from p to q. The correct
dMIW (p, q) is then the distance of the shortest such paths. For
example, point p6 and point p7 are located in room 12 and room 10,
respectively, and more than one path between them exists. To reach
p7 from p6, one can go either directly through door d12, resulting
in a distance |p6d12| + |d12p7|, or through door d15 followed by
d13, resulting in a distance |p6d15| + |d15d13| + |d13p7|. In this
example, dMIW (p6, p7) = |p6d12|+ |d12p7|.

In order to compute dMIW (p, q) for any location of p and q,
we need the ability to retrieve the connecting doors between two
rooms. For that purpose, we define the Doors Graph, in which
each vertex corresponds to a specific door in the indoor space.
Based on the Doors mapping, if two doors belong to the same
room, the two corresponding vertices are connected as an edge.
Formally, the Doors Graph is defined as a weighted graph Gd =
〈D, E, `weight〉, where:

(1) D = Σdoors is the set of vertices.

(2) E is the set of edges. An edge {di, dj} exists if a room rm
exists in Σrooms such that {di, dj} ⊆ Doors(rm).

(3) `weight: E → R assigns to an edge the obstructed distance
between the two doors represented by the edge: `weight

({di, dj}) = do(di, dj).

Due to complex indoor topology, a pair of doors together may
belong to different rooms. Consequently, to get from one door
to the other without leaving a single room, one may have differ-
ent rooms to choose from. In such cases, the shortest intra-room
distance is assigned to the corresponding edge as the weight. For
example, in Figure 2, the weight of edge {d16, d17} is assigned as
the obstructed distance in room 14, i.e. do(d16, d17) = |d16d17|;
but not the obstructed distance in room 10 which is do(d16, d17) =
|d16c1|+ |c1c2|+ |c2d17|.

The doors graph corresponding to Figure 1 are shown in Fig-
ure 3. Based on this graph, all door-to-door shortest path distances
can be computed and recorded in a hash table D2D :

D2D : {(dp, dq)} → R , dp, dq ∈ Σdoors.
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Consequently, for two positions p and q located in different rooms,
dMIW (dp, dq) is the minimum sum do(p, dp) + D2D(dp, dq) +
do(dq, q) where dp ranges over all doors of room p and dq ranges
over all doors of room q.

To summarize, dMIW (p, q) is computed by Algorithm 1.

Algorithm 1 dMIW (Position p, Position q)
1: if Rooms(p)=Rooms(q) then
2: minDist← do(p, q);
3: else
4: minDist← +∞
5: for each door dp in Doors(Rooms(p)) do
6: for each door dq 6= dp in Doors(Rooms(q)) do
7: l← do(p, dp) + do(dq , q)+ D2D(dp, dq)
8: if l < minDist then
9: minDist← l;

10: return minDist;

We note that, it is possible to adapt this notion of distance to
accommodate other semantics. For example, a person might prefer
a longer indoor path that, however, passes as few doors as possible.
To support this, we only need to assign a uniform edge weight of 1
to each edge in the doors graph.

3.2 Symbolic Indoor Positioning
We assume the use of presence, or proximity-based, sensing tech-

nologies such as RFID or Bluetooth. We do not consider signal
strength [1], as the activation ranges of RFID readers in our setting
are relatively small (tens of centimeters to a few meters [23]).

These technologies employ proximity analysis [9], which deter-
mines when an object is within the activation range of a device.
Each device detects and reports the observed objects at a relatively
high sampling rate. A reading (deviceID , objectID , t) states that
object objectID is detected by device deviceID at time t.

A positioning device deployment is shown in Figure 1, where the
numbered red circles indicate the locations and activation ranges of
devices. For positioning devices with overlapping ranges, we treat
the intersection as the activation range of a new, virtual positioning
device. For example, the intersection of device1 and device1′ is
assigned to a virtual device device1′1. An object seen by device1,
but not device1′ , is then in the non-intersecting part of the range of
device1. Different from overlapping devices here, so-called paired
devices (covered in Section 3.3) are used to detect movement di-
rection, e.g., the entry/exit a room.

For each object, only its first and last appearances in a device’s
range are of interest. We thus introduce a pre-processing mod-
ule in-between the sensing devices and our object management
module that continuously (according to the sampling unit Ts) re-
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Figure 4: Positioning Device Deployment

ceives readings from all positioning devices and outputs records in
of form (deviceID , objectID , t, flag), where flag = ENTER
indicates that the object is entering the device’s activation range,
and flag = LEAVE indicates the object is leaving the range. The
deviceID can be a virtual device. Unless explicitly stated other-
wise, this applies to all deviceIDs in the rest of the paper. Due to
space limitations, we omit the details of the pre-processing module.

3.3 Positioning Device Deployment Graph
In a deployment of a set of positioning devices, we differentiate

between two types of devices.
Partitioning devices partition the indoor space into cells in the

sense that an object cannot move from one cell to another without
being observed. An example is a device deployed by the single door
of a room. There are two options for partitioning devices. First,
undirected partitioning devices (UP) cannot detect movement di-
rections between cells. For example, device21 cannot tell whether
an observed object enters or leaves cell c21. Note that device1,
device1′ , and device1′1 are also undirected. Second, directed par-
titioning devices (DP) consist of entry/exit pairs of sensor that en-
ables the movement direction of an object to be inferred by the
reading sequence, e.g., device11 and device11′ in Figure 4.

Next, presence devices (PR) simply sense the presences of ob-
jects in their range, but do not contribute to the space partitioning.
These are exemplified by device10 in Figure 4.

To facilitate query processing, three mappings are defined. A
Devices mapping structure maintains the activation range, inter-
secting room, and type of each positioning device:

Devices : Σdevices → {(AR, Σrooms ,TYPE)}.
Here, Σdevices is the set of all devices; AR is the set of activation
ranges (usually a range is a circular region); Σrooms captures the set
of rooms that intersect with AR; and TYPE = {UP ,DP ,PR}
is the set of device types.

In the PA2D mapping, each device dev is mapped to the door
that is covered by its activation range:

PA2D : Σdevices → Σdoors.

For example, device12 in Figure 4 is mapped to door d12.
For each presence device dev, the distances from its location to

all the doors of the room in which it is deployed are recorded into
the PR2D hash table:

PR2D : {(dev, d)} → R , dev ∈ Σdevices , d ∈ Σdoors .



For example, presence device device10 is deployed in room 10 in
Figure 4, and the distance from its location of device10 to doors
d1, d11, d12, d13, and d14 (see Figure 1) are recorded in PR2D .

Finally, to facilitate the tracking and querying of moving objects,
a deployment graph is created based on the topological relationship
of the floor plan and the positioning device deployment. Formally,
a deployment graph is a labeled graph G = 〈C, E, Σdevices, `E〉,
where:

(1) C is the vertex set. Each vertex corresponds to a cell.

(2) E is the edge set consisting of unordered pairs of vertices.
An edge indicates that its two cells are connected.

(3) `E : E → 2Σdevices assigns a set of positioning devices to an
edge. Specifically, a non-loop edge is labeled by the parti-
tioning device(s) partitioning the two cells, and a loop edge
captures the presence devices in a cell.

Using an existing deployment graph construction algorithm [12],
the deployment graph corresponding to Figure 4 is shown in Fig-
ure 5, where label Di indicates a positioning device devicei.

20

D5,D5',D5'5

10 3040

50

D3,D3',D3'D1,D1',D1'1

D2,D2',D2'',D2'2,D2''2'

12

13

D12

D13

D15

21

22 23

D21 31

33

D31

0

D4

D22 D23

D33

11

D11', D11

D16

D20

D10, D14

D30,D32

Figure 5: Positioning Device Deployment Graph

Each cell created by a device deployment corresponds to one or
more rooms in the floor plan. For example, cell c10 corresponds to
rooms 14 and 10 because an object can go from room 14 to room 10
without being observed by a positioning device. Similarly, cell c30

corresponds to rooms 32 and 30. The following Cells mapping
maintains the corresponding relationship.

Cells : C → 2Σrooms .

Also, a room or a long hallway may be divided into cells by a de-
ployment of partitioning devices. The resulting divisions can be re-
garded as virtual doors, which should then be reflected in the Doors
graph and the D2D mapping.

The rooms in a floor plan partition the floor plan in a way in-
dependent of a particular deployment of positioning devices. In
contrast, a cell partitioning is caused by a deployment of posi-
tioning devices. The extent of a cell is the union of the extents
of the rooms that make up the cell, excluding the ranges of in-
tersecting devices. In the running example, cell c10 is the union
of rooms 10 and 14 excluding the activation ranges of device1 ,
device1 ′ , device1 ′1 device10 , device11 ′ , device12 , and device13 .
Thus an indoor space is partitioned into activation ranges and cells.

4. UNCERTAINTY OF INDOOR MOVING
OBJECTS

Section 4.1 categorizes indoor moving objects according to their
positions, and it indexes them using hashing structures. A prelim-
inary version of this can be found elsewhere [24]. We include it

here to render the presentation self-contained. Section 4.2 derives
the uncertain region that an indoor moving object can belong to at
a given time.

4.1 Management of Indoor Moving Objects
Given a deployment of indoor positioning devices, an indoor

space is partitioned into an active subspace and an inactive sub-
space. The active subspace is the union of the activation ranges
of all positioning devices, and it usually consists of disconnected
sub-regions. The inactive subspace is the part of space that is not
covered by any positioning device.

If an object is in the active space, it must be in some device’s
activation range. With the Devices mapping (see Section 3.3), we
are able to directly determine the object’s whereabouts. If an object
is in the inactive space, additional processing and information is
needed to infer its possible locations.

Thus, an object is active or inactive, depending on its subspace
membership. Inactive objects may be in a deterministic state and
a nondeterministic state. The deterministic state indicates that an
object’s current location is guaranteed to be in only one specific cell
(as defined in Section 3.3), and the nondeterministic state indicates
that the object’s current location may be in one of several cells.

More specifically, if a moving object leaves (the activation range
of) a presence device d, it must be still in the cell G.`−1

E (d) before
it is again detected 2. Therefore, its state changes from active to
deterministic. In Figures 4 and 5, if an object leaves device10 , it
must enter c10. If an object leaves a directed partitioning device,
the cell the object is entering can be determined from the reading
sequence. Therefore, its state also changes from active to determin-
istic. In the running example, if an object is seen at device11 ′ and
then device11 , it must enter c11.

In contrast, if an object leaves a undirected partitioning device,
the object can be in any of the cell in G.`−1

E (d). Therefore, its state
changes from active to nondeterministic. In the running example,
if a moving object leaves device12 , it can be in either c10 or c12.

On the other hand, if a moving object enters (the activation range
of) any positioning device, its state changes from inactive (deter-
ministic or nondeterministic) to active.

The resulting state transition diagram is shown in Figure 6. Based
on it, we employ an indexing scheme that utilizes several hash ta-
bles. Let O be the set of all the moving objects in the indoor space.
For positioning devices, a Device Hash Table (DHT) is created that
maps a given positioning device to the set of active objects in the
device’s activation range: DHT : Σdevices → 2O .

Active

Deterministic Nondeterministic

Leave PR or DP devices

Enter any 

positioning device

Leave UP devices

Inactive

Figure 6: Moving Object State Transition Diagram

2G.`−1
E is the reverse function of G.`E introduced in Section 3.3.

For simplicity, we use G.`−1
E (d) to denote G.`−1

E (D), where D ⊆
Σdevices. Specifically, D = {d} if d is a non-overlapping UP
device or the only PR in a cell; D is the set of overlapping UP
devices if d is one of them; D is the set of two DP devices if d is
one of them; otherwise, D is the set of all PR devices in the same
cell as d. Note that for an arbitrary device d, the corresponding set
D is unique.



Two hash tables are maintained for the cells. A Cell Determinis-
tic Hash Table (CDHT) maps a cell to the set of deterministic ob-
jects in it: CDHT : C → 2O. Next, a Cell Nondeterministic Hash
Table (CNHT) maps a cell to the set of nondeterministic objects in
it: CNHT : C → 2O.

In addition, the Object Hash Table (OHT) and Object Leave
Hash Table (OLHT) are maintained for all objects. OHT maps
an object identifier to the corresponding object state tuple: OHT :
O → {(STATE , t, IDSet)}. Here STATE denotes the object’s
current state; t is the start timestamp of the state; IDSet is a set
of cell identifiers or a set of device identifiers, indicating where the
object can currently be. If the object’s state is active, IDSet is a
singleton set of the corresponding device identifier. If the state is
deterministic, IDSet is a singleton set of the corresponding cell
identifier. If the state is nondeterministic, IDSet is a set of identi-
fiers of all the cells in which the object can currently be.

OLHT maps an object identifier to its last LEAVE observa-
tion, which is designed to facilitate the uncertainty region determi-
nation (to be discussed in detail in Section 4.2): OLHT : O →
{(deviceID , t)}.

These hash tables need updating whenever there is a new output
from the pre-processing module. The update algorithm, described
in Algorithm 2, handles a record received from the pre-processing
module according to its flag value.

Algorithm 2 UpdateHashTables(Pre-processing output S, De-
ploymentGraph G)
1: IDSet sSet ← ∅;
2: if S.flag = ENTER then
3: sSet ← OHT [S.objectID].IDSet ;
4: if OHT [S.objectID ].STATE = Active then
5: for the single element c in sSet do
6: Delete S.objectID from DHT [c];
7: else if OHT [S.objectID].STATE = Deterministic then
8: for the single element c in sSet do
9: Delete S.objectID from CDHT [c];

10: else
11: for each element c in sSet do
12: Delete S.objectID from CNHT [c];
13: Add S.objectID to DHT [S.deviceID];
14: OHT [S.objectID] ← (Active, S.t, {S.deviceID});
15: else
16: Delete S.objectID from DHT [S.deviceID];
17: sSet ← G.`−1

E (S.deviceID);
18: if Devices(S.deviceID).TYPE = UP then
19: OHT [S.objectID] ← (Nondeterministic,S.t,sSet);
20: for each element c in sSet do
21: Add S.objectID to CNHT [c];
22: else
23: OHT [S.objectID] ← (Deterministic,S.t,sSet);
24: for the single element c in sSet do
25: Add S.objectID to CDHT [c];
26: OLHT [S.objectID] ← (S .deviceID ,S.t);

For an ENTER record, if the object’s previous state is active, it
is deleted from the corresponding device’s DHT (lines 4–6). If its
previous state is deterministic, it is deleted from the corresponding
cell’s CDHT (lines 7–9). Otherwise, its previous state is nonde-
terministic, and it is deleted from all corresponding cells’ CNHT s
(lines 10–12). After the deletion, the object is added into the DHT
of the current device, and its state is updated accordingly (lines 13–
14).

For a LEAVE record, the object is deleted from the correspond-
ing device’s DHT (lines 15–16). The possible cells are determined
by the function G.`−1

E (lines 17). If the object leaves an UP de-
vice, its state is set to nondeterministic, and the object is added into

all the corresponding cells’ CNHT s (lines 18–21). If the object
leaves a DP or PR device, its state is set to deterministic, and the
object is added into the corresponding cell’s CDHT (lines 22–25).
At last, the corresponding entry in OLHT is updated (line 26).

4.2 Deriving Uncertain Regions for Indoor
Moving Objects

We capture the Uncertainty Region (UR) of an indoor object at
the time a query is issued. As for outdoor moving objects [5],
the uncertainty region of an indoor object o at time t, denoted by
UR(o, t), is a region such that o must be in this region at time t.

In general terms, the location of an object oi can be modeled as
a random variable with a probability density function foi(x, y, t)
that has non-zero values only in oi’s uncertainty region UR(oi, t)
and for which

∫
UR(oi,t)

foi(x, y, t)dxdy = 1.
Indoor objects have more constraints on their movements than

have free-moving outdoor objects. For example, if an object’s des-
tination is not in its current room, the object must pass through one
or more doors to reach its destination. Because they do not capture
the indoor topologies and the associated constraints and obstacles,
uncertainty models [15] for outdoor objects do not apply well in
our indoor setting.

We thus proceed to present an uncertainty model designed for
indoor moving objects. In the following discussion, we assume that
an object has the same probability to be located anywhere inside its
uncertainty region. That is, the probability is distributed uniformly
in the object’s uncertainty region:

foi(x, y, t) =
1

Area(UR(oi, t))
, (x, y) ∈ UR(oi, t).

According to the analysis on the states of indoor moving objects
in Section 4.1, the uncertainty regions of indoor moving objects
can be characterized as follows. The uncertainty region of an active
object is the activation range of the corresponding device, and the
uncertainty region of an inactive object is the cell or cells that the
object can belong to.

If the object’s maximum speed Vmax is given, its uncertainty re-
gion can be captured at a finer granularity. The uncertainty region
of a deterministic object is refined as the intersection between the
object’s cell and its maximum-speed constrained circle. For a non-
deterministic object, the region is the union of the intersection be-
tween each cell and the circle.

Let the last LEAVE observation of object o be from device dev
at time t and let the time duration from t to the current time be
∆t = tnow−t. Assuming that the object o moves in a straight line,
the longest possible distance o can move away from the boundary
of dev’s activation range is o.Vmax ·∆t. Formally, the maximum-
speed constrained circle CMSC (o, dev, t) of o is defined as the cir-
cle centered at dev’s deployment location and with radius o.Vmax ·
∆t plus the radius of dev’s activation range. We also exclude the
activation range of dev from the circle.

Consider Figure 7 and assume that object o left device16 at time
t. Its maximum-speed constrained circle CMSC (o, device16, t) is
then indicated by R1 in the figure. Since device16 is a presence de-
vice, after leaving device16 the inactive object o must be in the cell
c11 (according to G.`−1

E (device16)). Due to the two constraints,
object o’s uncertainty region is the intersection of cell c11 and cir-
cle R1, i.e., the shaded region in the top-left part of Figure 7.

If the cell where the deterministic object resides has more than
one room, e.g., the cell c10 contains room 10 and room 14, the
determination of uncertainty region is more complicated. Suppose
object o left device10 at timestamp t. According to G.`−1

E (device10),
o should be in cell c10 after leaving device10. From the Devices
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and PR2D mappings, we can figure out that the device10 resides
in room 10, and the distance from device10 to the door d14 is l. If
the maximum speed constraint does not guarantee that o can have
gone through the door d14, i.e. o.Vmax · (tnow − t) < l, the ob-
ject o must be in the room 10. Thus, the uncertainty region is the
intersection between room 10 and CMSC (o, device10, t), which is
indicated by R2 to the left of Figure 7.

On the other hand, referring to the right part of Figure 7, if
o.Vmax · (tnow − t) ≥ l, the object o may have entered room 14.
Its uncertainty region therefore contains two parts: the intersection
between room 10 and CMSC (o, device10, t) (indicated by R3); the
intersection between room 14 and the circle with door d14 as the
center and R4 = o.Vmax · (tnow − t− l/o.Vmax) as the radius.

The uncertainty region of an active object can be also refined as
the intersection of the activation range of the corresponding device
and the object’s maximum-speed constrained circle. Using the run-
ning example, suppose object o left device10 at time t and that o is
then observed by device12. The uncertainty region of o is the inter-
section of the activation range of device12 and CMSC (o, device10,
t), which is shown within the activation range of device12 in Fig-
ure 7.

Algorithm 3 computes the uncertainty region of an object o at
the current time tnow. Note that o’s last LEAVE observation can
be obtained from hash table OLHT , from which the corresponding
device dev and timestamp t are also found (lines 4–5). If object o is
an active object, the activation range re of the corresponding device
is obtained from the Devices mapping. Then o’s uncertainty region
is the intersection of re and the maximum-speed constrained circle
CMSC (o, dev, t) (lines 6–8).

Otherwise, the possible cells in which the object may reside are
determined from the deployment graph (line 10). For each possi-
ble cell, all its corresponding rooms are determined from the Cells
mapping (line 11). For each possible room rm, if the device dev
is deployed in it, o’s uncertainty region is the intersection of the
room and CMSC (o, dev, t) (lines 12–13). If not, the door d be-
tween room rm and the room in which the device dev is deployed
is determined. The distance f from the device dev to the door d
is computed from PR2D or D2D according to device dev’s type.
The uncertainty region is the intersection of room rm and the circle
with d as center and radius as radius (lines 14–22).

5. PT KNN QUERY PROCESSING

5.1 Definition and Overview
The query under consideration is defined as follows.

DEFINITION 1. (Indoor Probabilistic Threshold kNN Query)
Given a set of indoor moving objects O ={o1, o2, ..., on} and a

Algorithm 3 UR(Object o, DeploymentGraph G)
1: Region UR← ∅;
2: Door d← ∅;
3: Integer radius← 0;
4: Device dev←OLHT [o].deviceID ;
5: TimeStamp t←OLHT [o].t;
6: if OHT [o].STATE=Active then
7: Region re←Devices(OHT [o].IDSet).AR;
8: UR← re ∩ CMSC (o, dev, t);
9: else

10: for each cell c in G.`−1
E (dev) do

11: for each room rm in Cells(c) do
12: if rm in Devices(dev).RoomSet then
13: UR← UR ∪ (rm ∩ CMSC (o, dev, t));
14: else
15: Room rm2←Cells(c)∩Devices(dev).RoomSet;
16: d← Doors(rm2) ∩ Doors(rm);
17: if Devices(dev).TYPE = PR then
18: radius← o.Vmax·(tnow − t)− PR2D(dev, d);
19: else
20: Door d′← PA2D(dev);
21: radius ← o.Vmax·(tnow − t)−D2D(d, d′);
22: UR← UR ∪ (rm ∩ Circle(d, radius));
23: return UR;

threshold value T ∈ (0, 1], a PTkNN query issued at time t with
query location q returns a result set R = {A | A ⊆ O∧|A| = k∧
prob(A) > T}, where prob(A) is the probability that A contains
the k nearest neighbors of the query location q at time t.

The definition of prob(A) will be formalized in Section 5.3.
Consider the four moving objects in Figure 8. Object o1 is be-
ing observed by device21, and its uncertainty region is the acti-
vation range of that device. Object o2, o3, and o4 recently left
device20, device2′ , and device33, respectively. According to the
discussion in Section 4.2, their uncertainty regions are captured by
three maximum-speed constrained circles: CMSC (o2, device20, t),
CMSC (o3,device2′ , t), and CMSC (o4, device33, t), shown as solid
circles excluding any activation ranges in Figure 8.

Assuming a 2NN query issued at time t with location q,

(
4

2

)
=

6 2-subsets can be in the result set. When the number of moving
objects in the indoor space increases, the number of k-subsets (A in
Definition 1) in the result set R will increase exponentially. Specif-

ically, there are

(
n

k

)
possible k-subsets for a PTkNN query over n

objects. Accordingly, computing the probability prob(A) for each
k-subset A will incur considerable computation cost and thus result
in very slow query response.

We propose three techniques that speed up PTkNN query pro-
cessing. First, minimum indoor walking distances between the
query location and the (uncertainty regions of) objects are used to
prune the objects too far away to be in any possible k-subset A
(Section 5.2), which usually results in a much reduced object subset
O′ ⊆ O. Second, for all k-subsets of O′, cost-efficient probability
estimates are used to prune the k-subsets whose probabilities defi-
nitely are lower than the specified threshold T (Section 5.3). Third,
for each remaining k-subset A, prob(A) is evaluated efficiently,
and A is added to R only if prob(A) > T (Section 5.4).

5.2 Indoor Distance Based Pruning
The exact MIWD from a query location q to an object oi, i.e.,

dMIW (q, oi), is not known because the location of oi is described
by an uncertainty region UR(oi, t) at time t. Instead, we define the



13

11

12

23
21

22

31

33

10

20

30

50

40

0

30

1'

1

2 2'
3'

3
5 5'4

Positioning Device

d32

d1410

10 Cell

s3

l2=f

l1

l3

s4

l4

o3

o4

s2
s1

R1
o2

q

o1
21

23

20

22

21

31

30

32

33

2''

14

12

13

15

10

16
11

11'

Figure 8: Indoor kNN Query Processing

minimum and maximum MIWD between q and oi. Let si (li) be
the minimum (maximum) MIWD from q to the uncertainty region
of oi:

si = min
p∈UR(oi,t)

dMIW (q, p), li = max
p∈UR(oi,t)

dMIW (q, p).

If the uncertainty region UR(oi, t) is in the same room as the
query location q, si and li can be obtained based on the obstructed
distance. If UR(oi, t) is a circle, si and li can be determined by
using the line passing the circle’s center and the query location q
(or the obstacle nearest to the center). For example, the minimum
(maximum) distance from q to o2 is shown as s2 (l2) in Figure 8. If
UR(oi, t) is a polygon, all its sides and vertices need to be checked.
As a special case, if the query location q is inside the uncertainty
region, si is 0.

If the uncertainty region UR(oi, t) is not in the same room as
query location q, the doors connecting the different rooms need to
be considered when computing the MIWD. For object o4 in Fig-
ure 8, doors d2 and d3 are considered. The si and li for the four
objects are shown in Figure 8.

Let f be the k’th minimal one of all objects’ lis. If si of object
oi is greater than f , object oi has no chance to be in any k-subset
of the result set R because k objects exist that are definitely closer
to q than oi. This f value is called the k-bound [6].

Using the k-bound, some objects can be pruned early. Consider
the 2NN query in Figure 8. The order among all lis is l1 < l2 <
l3 < l4, so f = l2. As s4 > f , object o4 can be pruned safely.
This pruning yields a potentially much reduced candidate object set
O′ (⊆ O) to be considered for the given PTkNN query.

Two important observations can be used to conduct distance based
pruning even more efficiently. First, the k-bound can be calculated
and updated dynamically during the distance based pruning. The
initial k-bound f can be obtained as soon as k objects have been
seen from O. When new objects from O are being processed, f
helps prune unqualified objects, and whenever possible, f is up-
dated to a smaller value for better subsequent pruning.

Second, we do not have to determine the exact uncertainty region
and calculate the exact si (ii) for each object during distance based
pruning. By taking advantage of the indoor space distance defini-
tion and object positioning (detailed in Section 3), we can reduce
the computation cost.

This also allows us to prune objects together, based on the cells
that result from the deployment of indoor positioning devices. The
basic idea is this: Given a cell cell, if minp∈cell{dMIW (q, p)} is
greater than the current k-bound f , all the objects currently in the
cell can be safely pruned. In Figure 8, after processing objects o1

and o2, the current k-bound f is l2, and minp∈c30{dMIW (q, p)} =
dMIW (q, d3) as door d3 is the only door to c30. Since dMIW (q, d3)
> f , for any object oi in c30 we have dMIW (q, oi) > f . Any such
object oi can be safely pruned without further processing. In this
example, there is no need to compute the uncertainty region of o4

(or any other object in c30).
The distance-based pruning is described in Algorithm 4. First,

the candidate object set O′ and the k-bound f are initialized as
empty and infinity, respectively (lines 1–2). A cell set seeds records
the cells we have examined, which is initialized as empty (line 3).
Also, a min-heap H〈〈d, v〉〉 (line 4) gives priority to doors closer
to the query location q, thus controlling the access order of rele-
vant doors during the distance-based pruning. Note H enqueues
the 〈d, dMIW (d, q)〉 pair for each involved door d (line 4 in Algo-
rithm 5).

If the query location q is in a device dev’s activation range, the
active objects in dev are added to the candidate set O′, and the
corresponding cells obtained through G.`−1

E (dev) are added to the
cell set seeds (lines 5–7). For each cell c obtained, both determin-
istic and nondeterministic objects in c are added to O′, and function
EnheapDoors (see Algorithm 5) is called to push all the doors in
c onto the min-heap H (lines 7–8).

Algorithm 4 DistancePruning(Position q, int k)
1: ObjectSet O′←∅;
2: Double f←+∞;
3: CellSet seeds←∅;
4: Initialize a min-heap H〈〈d, v〉〉;
5: if q is in the activation range of a device dev then
6: O′← DHT [dev]; seeds← G.`−1

E (dev);
7: for each cell c in seeds do
8: O′← O′∪CDHT [c]∪CNHT [c]; EnheapDoors(H , c);
9: else

10: Room r ← Rooms(q);
11: Cell c← Cells−1 (r);
12: O′← CDHT [c] ∪CNHT [c];
13: Add c into seeds; EnheapDoors(H , c);
14: if |O′| ≥ k then
15: f ← Bound(O′);
16: while H is not empty do
17: e ← deheap(H);
18: if e.v > f then
19: break;
20: Set e.d as visited;
21: dev←PA2D−1(e.d); O′← O′ ∪ DHT [dev];
22: for each cell c in G.`−1

E (dev) do
23: if c 6∈ seeds then
24: O′← O′∪CDHT [c] ∪CNHT [c];
25: for each dev in G.`E ({c, c}) do
26: if (PR2D(dev, d)+e.v)≤ f then
27: O′← O′∪DHT [dev];
28: Add c into seeds; EnheapDoors(H , c);
29: if |O′| ≥ k then
30: f ← Bound(O′);

Otherwise, q is not in any activation range, and it must be in
some cell c. Both the deterministic and nondeterministic objects
in c are added to the candidate set O′. The cell c is added to
the cell set seeds, and all its doors are pushed onto H by call-
ing EnheapDoors (lines 10–13). Note that Cells−1 (line 11) is
the reverse function of Cells , defined in Section 3.3, which maps a
room r to the cell covering r.



If the current candidate set O′ has at least k objects, function
Bound (see Algorithm 6) is called (lines 14–15). It determines
the current k-bound f using all candidate objects, and it prunes
unqualified ones according to f .

In the sequel, we need to expand to further away cells or activa-
tion ranges via doors, as an object must go through a door to reach
another cell. Following the philosophy of Dijkstra’s algorithm [7],
the expansion is controlled by the min-heap H that stores the dis-
tances from query location q to all relevant doors.

At the beginning of each expansion step, the first entry e from
H is deheaped (line 17). The expansion stops if the current door
e.d being processed is too far away (lines 18–19); otherwise, e.d
is set as visited to avoid duplicate visits (line 20). If the door e.d
is covered by a device dev’s activation range, its active objects are
added to O′ (line 21).

For each cell c of the corresponding cells in G.`−1
E (dev), if c is

not in seeds, both the deterministic and nondeterministic objects
in c are added to O′ (lines 22–24). For each presence device in cell
c, if its indoor distance to q is smaller than f , all active objects in
c are also added to O′ (lines 25–27). After cell c is processed, it
is added to seeds, and its doors are enheaped by calling function
EnheapDoors (line 28). At the end of each expansion step, if the
current candidate set O′ has at least k objects, function Bound is
called again to dynamically update f and reduce the candidate set
O′ (lines 29–30).

Algorithm 5 EnheapDoors(Heap H , Cell c)
1: for each room r in Cells(c) do
2: for each door d in Doors(r) do
3: if d is not visited then
4: enqueue(H, 〈d, dMIW (d, q)〉);

Algorithm 6 Bound(ObjectSet O′)
1: f ← the k’th smallest element in {li | oi ∈ O′};
2: for each object oi in O′ do
3: if si < f then
4: Delete oi from O′;
5: return f ;

We regard heap insertions and deletions as characteristic opera-
tions. The worst-case time complexity of Algorithm 4 is 2 · |Σdoors |
because each door is inserted once and deleted once.

5.3 Probability Threshold Based Pruning
After the distance based pruning, a possibly smaller candidate

object set O′ of k or more objects is obtained. There can still be(
|O′|
k

)
possible k-subsets in the result set R. We proceed to prune

both unqualified objects in O′ and unqualified k-subsets in R, by
making use of fast probability estimates and the given probability
threshold T . We assume that the distributions of all indoor moving
objects are independent on each other. While, objects may move
inter-dependently in some scenarios. However, determining such
dependencies is a hard task that may involve large amounts of his-
torical data. How to exploit dependencies for better performance
is beyond the scope of this paper and it is an interesting future re-
search direction.

Given an object oi, let Poi (r) be the cumulative distribution
function (cdf) that oi’s MIWD to the query location q is r. In other
words, Poi(r) = Pr(dMIW (q, oi) ≤ r). Let A be a k-subset of
O′. The probability prob(A) that A contains the k nearest neigh-

bors of q satisfies:

prob(A) ≤
∏

oi∈A

Poi(f).

This is because only those objects within the k-bound f can be
among the k nearest neighbors of q.

If Poi(f) is less than the threshold T , any k-subset A that con-
tains oi satisfies:

prob(A) ≤
∏

oj∈A

Poj (f) ≤ Poi(f) < T.

This means that A cannot satisfy the probability threshold T . There-
fore, if Poi(f) < T , oi can be safely pruned from the candidate
object set O′.

All those locations with MIWD to query location q no greater
than r are constrained by a bounding region BRq(r), which is
usually composed of several intersections of rooms and circular re-
gions. Formally, BRq(r) is defined as Rooms(q)∩Circle(q, r)

⋃
∪rmi∈Rr rmi ∩ Circle(q, r′i), where Rr is a set of rooms. Any
room rmi in Rr satisfies the condition that the MIWD li from its
door to the query location q is smaller than r, and the correspond-
ing r′i equals r-li. For example, the bounding region BRq(f) in
Figure 8 is indicated by two dashed circular regions: BRq(f) =
(room20∩Circle(q, f)) ∪ (room21∩Circle(d21, f −|qd21|)).

Based on the bounding region BRq(r), the Poi(r) can be eval-
uated using the following equation:

Poi(r) =
Area(UR(oi, t) ∩ BRq(r))

Area(UR(oi, t))
(1)

In Figure 8, Po3(f) = 0.5. If the specified threshold T > 0.5, o3

can be safely eliminated from O′.
The pseudo code of the probability threshold based pruning is

given in Algorithm 7. For each object oi in O′, if its probability
Poi(f) is less than the threshold T , the object is removed from O′

(lines 1–3). Next, we generate all possible i-subsets step by step
(lines 4–15). Each i-subset A is the union of an (i − 1)-subset B
in R and a singleton set {c}. In particular, {c} is not in B but is in
another (i − 1)-subset in R. All i-subsets in SubSet are obtained
from all such combinations of B and {c} based on R. The i-subset
is included in the temporary result set R only if the product of all
its members’ probabilities is greater than the threshold T (lines 16–
18). This way, some unqualified i-subsets are eliminated without
probability estimates. For example, if a 2-subset {o1, o2} cannot
satisfy the probability threshold, any i-subset (where i > 2) which
contains {o1, o2} cannot satisfy the probability threshold either.

We regard the calculation of Poi(f) as the characteristic op-
eration. If the calculated probabilities cannot be kept in mem-
ory and every probability has to be recalculated on-the-fly each
time it is needed, the worst-case time complexity of Algorithm 7

is |O′|+ ∑k
i=2

(
|O′|
i

)
· i = O(k · 2|O′|). With enough memory

for holding at least |O′| double values, the worst-case time com-
plexity is |O′| because every calculated probability can be reused.

5.4 Probability Evaluation
After the probability threshold based pruning, each k-subset A

in R may have a probability prob(A) greater than the threshold
T . We next present a technique to evaluate those probabilities effi-
ciently.

Formally, the probability prob(A) that k-subset A (A ∈ R) con-
tains the k nearest neighbors of the query location q is defined as



Algorithm 7 ProbTPruning(ObjectSet O′, double T )
1: for each object oi ∈ O′ do
2: if Poi (f) < T then
3: Remove oi from O′;
4: ResultSet R ← ∅;
5: for each object oi ∈ O′ do
6: R ← R ∪ {{oi}};
7: for i ← 2 to k do
8: SubSet ← ∅;
9: ObjectSet RR ← ∅;

10: for each (i− 1)-subset B in R do
11: RR ← RR ∪B;
12: for each (i− 1)-subset B in R do
13: for each object c in RR \B do
14: Add {B ∪ c} into SubSet;
15: R← ∅;
16: for each i-subset A in SubSet do
17: if

∏
oi∈A Poi (f) ≥ T then

18: R←R ∪ {A};
19: return R;

follows:

prob(A) =
∑

oz∈A

∫ +∞

0

poz (r)
∏

oi∈A\{oz}
Poi(r)

∏

oj∈O′\A

(1− Poj (r))dr

Here, poz (r) is the pdf that the distance from oz to query point q is
r;

∏
oi∈A\{oz} Poi(r) indicates the probability that all objects in A

excluding oz are within r of q;
∏

oj∈O′\A(1−Poj (r)) indicates the
probability that all objects not in A are further away from q than r.
For each object oz ∈ A, the integral calculates the probability that
oz is the k-th nearest neighbor of q and that all the remaining ones
in A are the first to the (k − 1)-th nearest neighbors. As a result,
the summation over all objects in A is the desired probability.

To evaluate the probabilities efficiently, we use a partition based
approximate evaluation method. Let an array sl record all the min-
imum distances si in O′ and the maximum distances li that satisfy
li≤f . This array should have g (g=|O′|+ k) elements. We sort sl
in ascending order.

Using the array sl, the bounding region BRq(f) can be parti-
tioned into g − 1 partitions. In particular, partition PAx is the
contour between BRq(sl[x − 1]) and BRq(sl[x]). For Figure 8,
we have O′ = {o1, o2, o4} after distance based pruning and prob-
ability threshold based pruning, and therefore g = 3+2 = 5. Four
partitions are created: PA1[BRq(s1), BRq(s2)], PA2[BRq(s2),
BRq(l1)], PA3[BRq(l1), BRq(s3)] and PA4[BRq(s3), BRq

(l2)].
In the evaluation, we use the following formula to compute the

approximate probability for a given k-subset A:

prob(A) ≈
∑

oz∈A

g−1∑
x=1

poz (PAx)
∏

oi∈A\{oz}
0.5 · (Poi(PAx)+

Poi(PAx−1))
∏

oj∈O′\A

0.5·(1−Poj (PAx)+1−Poj (PAx−1))dr

Here, poz (PAx) is the pdf of oz in this partition; Poi(PAx)
(Poi(PAx−1)) is the upper (lower) bound cdf of the object oi

whose distance to the query location is in partition PAx. Aver-
age values are used to calculate approximations. Similarly, 1 −
(Poj (PAx) (1 − Poj (PAx−1)) is the upper (lower) bound cdf of
the object oj that is farther than partition PAx.

For an object in O′, its cdf value in each partition can be com-
puted once and recorded in a two-dimensional array of size |O′| ×

(g−1). The cdf value of object oi in partition PAx, i.e., Poi(PAx),
is evaluated as Poi(sl[x]) using Equation 1.

Poi(PAx) = Poi(sl[x])

If sl[x] < si, Poi(PAx) equals 0 because there is no chance for
oi appearing in the partition. On the other hand, if sl[x]≥ li,
Poi(PAx) equals 1 because the object oi must appear nearer than
the partition. The pdf value of object oi in partition PAx can be
evaluated as the difference between the cdf value in the current par-
tition and the cdf in the previous partition.

poi(PAx) = Poi(PAx)− Poi(PAx−1), x > 1

For the special case where x = 1, poi(PA1)=Poi(PA1). The cdfs
of the running example are shown in Figure 9.

sl[0]=s1

0.2 1 1 1o1

0 0.3 0.7 1o2

0 0 0 0.5o3

PA1 PA2 PA3 PA4

sl[1]=s2 sl[2]=l1 sl[3]=s3 sl[4]=l2

Figure 9: Partition Based CDF Values

6. EMPIRICAL STUDY

6.1 Experimental Settings
Synthetic Data Set We generate moving objects using a 3-floor

building plan with 30 rooms and 3 staircases on each floor. All
rooms and staircases are connected by doors to a hallway in a star-
like manner. An RFID reader is deployed by the door of each
room. In addition, readers are deployed along the hallways and
in the staircases. A total of 143 RFID readers are deployed: the
readers deployed by doors are undirected partitioning devices; and
those deployed along the hallways and in the staircases are pres-
ence devices.

Three rules are used to generate movements: 1) an object in a
room can move to the hallway or move inside the room; 2) an object
in a staircase can move to the hallway or move in the staircase; 3)
an object in the hallway can move in the hallway, move to one of
the staircases, or move to one of the rooms. At each step, an object
randomly chooses a room as the destination. If the destination room
chosen is on the same floor as the object, it will move according
to MIWD. Otherwise, it will use the nearest staircase. When the
object enters the destination room, it will move inside the room for
a random time duration and then start a new movement.

Real Data Set Over 1,000,000 tracking records are collected
each day from 25 Bluetooth hotspots in Copenhagen Airport. We
extract the tracking data on the most active day between April 2008
and October 2008. As a result, over 1.1M tracking observations are
recorded in about 110K sampling units for a total of 9,638 moving
objects, i.e., individuals with Bluetooth enabled devices.

We run all experiments on a Windows XP Pro enabled PC with
a 2.66GHz Core2 Duo CPU and 3.25GB main memory.



6.2 Costs of Indoor Moving Object Indexing
We first evaluate the performance of the proposed hashed based

indexing structures with respect to the synthetic data.
We implement the object sets in these hash tables as bitmaps,

which require less memory space and are update-efficient. We use
a 4-byte int value for each table key (object, device, cell identifier).
A 6,250 byte bitmap is enough for representing the largest 50K
objects in our setting. As a result, each entry in DHT , CDHT ,
CNHT is 6,254 bytes. Therefore, 143 RFID readers and 97 cells
need (143+97·2)·6254=2.1M bytes memory. The device identifier
and timestamps in OLHT are represented as int values. Thus, each
entry in OLHT needs 12 bytes, and 50K objects need 50K·12 =
600K bytes of memory, a modest memory consumption.

At each sampling unit, the costs of updating these memory resi-
dent hash tables are insignificant, as reported in Figure 10. As the
number of objects increases, the update cost increases slowly ac-
cording to Figure 10(a). Note the cost for 50K objects is still very
low. Figure 10(b) shows that varying the activation range does not
affect the update cost significantly.
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Figure 10: Update Efficiency of Indexes

6.3 Pruning Effectiveness and Query Efficiency
Using the synthetic data set, we fix the device activation range

at 100 cm, and 20K objects and threshold T = 0.9 are used unless
stated otherwise. We choose 20 random indoor positions as kNN
query locations. We vary k from 1 to 9. For each query location, 50
kNN queries are issued with different timestamps. We report the
average results over all these queries.

To measure the effectiveness of the MIWD-based pruning, we
record the ratio of object reduction, i.e., |O′|/|O|. The results are
reported in Figure 11(a). For |O| = 100, only about 20% of the
objects are left in the candidate set O′ after pruning. For larger
|O|s, the pruning ratio is still as high as around 50%. This indicates
that the distance based pruning is very effective. For larger |O|s,
the ratio stays constant as k varies because indoor objects overlap
much more than do outdoor objects. For example, after some time,
the uncertain regions of all objects that left device20 are in cell c20

(in Figure 8).
We measure the effectiveness of probability threshold based prun-

ing using two metrics. First, we measure |O′| as the pruning is able
to eliminate unqualified objects (lines 1–3 in Algorithm 7). Ac-
cording to the results shown in Figure 11(b), for higher threshold
T , only very few objects remain in O′ after the pruning. Second,
we compare the number of qualified k-subsets of O′ before and af-
ter the pruning. According to the results reported in Figure 11(c), a
significant portion of k-subsets is eliminated by the pruning. These
results indicate that probability threshold based pruning is very ef-
fective.

The results on overall query response time are reported in Fig-
ure 11(d). Probability threshold based pruning is efficient because
fast estimates are calculated. For larger k values, the time spent on
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Figure 11: Pruning Effectiveness and Query Efficiency on Syn-
thetic Data

the probability evaluation is much higher than the other two, which
is due to: (1) Our partition based estimation (can be regarded as
coarse-grained numerical integration) is more time consuming than
“Prob Pruning” and “MIWD Pruning”. (2) For large k, fewer can-
didate k-subsets are filtered out in pruning step 2, so more k-subsets
need prob evaluation.

We also test our PTkNN query processing techniques on the real
data. We choose 5 Bluetooth hotspot locations as query locations
and issue kNN query with different k value at 100 separate times-
tamps. The results on the effectiveness of the probability threshold
based pruning are shown in Figure 12(a). Larger k values render
the pruning more effective. The results on overall query response
time are reported in Figure 12(b). Larger k values result in more
k-subsets, which call for more probability evaluations.
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Figure 12: Results on Real Data

6.4 Query Processing Scalability
In this part, we evaluate the scalability of query processing us-

ing the synthetic data set. First, we fix the activation range radius
at 100 cm, and then vary the object numbers from 10K to 50K.
As shown in Figure 13(a), the total query response time increases
steadily for k = 3. The increase for k = 9 at 30K objects is at-
tributed to the high probability evaluation cost (See Figure 11(d)).

Second, we fix the number of objects at 10K and vary the radius
of the activation range from 100 cm to 250 cm. The resulting total
query response times are reported in Figure 13(b). Larger ranges
have two effects: larger imprecise uncertain regions for the moving
objects and more active objects being detected by positioning de-
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Figure 13: Query Processing Scalability

vices. The former tends to prolong the query processing time due to
the uncertain region based probability calculations. The latter tends
to have the opposite effect because active objects’ uncertain regions
become much simpler. Therefore, Figure 13(b) exhibits increases
from 100 cm to 200 cm followed by slight decreases at 250 cm.

7. CONCLUSION AND FUTURE WORK
Given an indoor location q and a probability threshold T , a prob-

abilistic threshold kNN (PTkNN) query returns all subsets of k
indoor moving objects that have probability larger than T of con-
taining the kNN query result of q. The paper proposes a complete
set of techniques for computing PTkNN queries. We propose the
minimum indoor walking distance (MIWD) as the distance metric
for indoor spaces. Assuming symbolic indoor positioning, we de-
sign a hash-based indexing scheme for indoor moving objects. We
then formalize the uncertainty of indoor moving object locations.
On these foundations, we propose MIWD based pruning, probabil-
ity threshold based pruning, and efficient probability evaluation for
processing PTkNN queries. Finally, we conduct a comprehensive
empirical study using both synthetic and real data. The results show
that the proposed techniques are effective, efficient, and scalable.

Some interesting research directions exist. As discussed in Sec-
tion 5.3, analyzing historical trajectory data may discover associa-
tions among object movements, which can be used to design more
efficient group pruning in processing a PTkNN query. Regarding
the uncertainty model of indoor moving objects, it is also interest-
ing to conduct probabilistic analysis on other kinds of object distri-
butions, e.g., Gaussian distribution.
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