
Probabilistic Top-Down Parsing and
Language Modeling

Brian Roark
Brown University

This paper describes the functioning of a broad-coverage probabilistic top-down parser, and its

application to the problem of language modeling for speech recognition. The paper �rst introduces

key notions in language modeling and probabilistic parsing, and brie�y reviews some previous

approaches to using syntactic structure for language modeling. A lexicalized probabilistic top-

down parser is then presented, which performs very well, in terms of both the accuracy of returned

parses and the ef�ciency with which they are found, relative to the best broad-coverage statistical

parsers. A new language model that utilizes probabilistic top-down parsing is then outlined, and

empirical results show that it improves upon previous work in test corpus perplexity. Interpolation

with a trigram model yields an exceptional improvement relative to the improvement observed

by other models, demonstrating the degree to which the information captured by our parsing

model is orthogonal to that captured by a trigram model. A small recognition experiment also

demonstrates the utility of the model.

1. Introduction

With certain exceptions, computational linguists have in the past generally formed
a separate research community from speech recognition researchers, despite some
obvious overlap of interest. Perhaps one reason for this is that, until relatively re-
cently, few methods have come out of the natural language processing community
that were shown to improve upon the very simple language models still standardly
in use in speech recognition systems. In the past few years, however, some improve-
ments have been made over these language models through the use of statistical meth-
ods of natural language processing, and the development of innovative, linguistically
well-motivated techniques for improving language models for speech recognition is
generating more interest among computational linguists. While language models built
around shallow local dependencies are still the standard in state-of-the-art speech
recognition systems, there is reason to hope that better language models can and will
be developed by computational linguists for this task.

This paper will examine language modeling for speech recognition from a nat-
ural language processing point of view. Some of the recent literature investigating
approaches that use syntactic structure in an attempt to capture long-distance depen-
dencies for language modeling will be reviewed. A new language model, based on
probabilistic top-down parsing, will be outlined and compared with the previous liter-
ature, and extensive empirical results will be presented which demonstrate its utility.

Two features of our top-down parsing approach will emerge as key to its success.
First, the top-down parsing algorithm builds a set of rooted candidate parse trees from
left to right over the string, which allows it to calculate a generative probability for

Department of Cognitive and Linguistic Sciences, Box 1978, Brown University, Providence, RI 02912

c 2001 Association for Computational Linguistics

Computational Linguistics Volume 27, Number 2

each pre�x string from the probabilistic grammar, and hence a conditional probability
for each word given the previous words and the probabilistic grammar. A left-to-
right parser whose derivations are not rooted, i.e., with derivations that can consist of
disconnected tree fragments, such as an LR or shift-reduce parser, cannot incrementally
calculate the probability of each pre�x string being generated by the probabilistic
grammar, because their derivations include probability mass from unrooted structures.
Only at the point when their derivations become rooted (at the end of the string) can
generative string probabilities be calculated from the grammar. These parsers can
calculate word probabilities based upon the parser state—as in Chelba and Jelinek
(1998a)—but such a distribution is not generative from the probabilistic grammar.

A parser that is not left to right, but which has rooted derivations, e.g., a head-
�rst parser, will be able to calculate generative joint probabilities for entire strings;
however, it will not be able to calculate probabilities for each word conditioned on
previously generated words, unless each derivation generates the words in the string
in exactly the same order. For example, suppose that there are two possible verbs that
could be the head of a sentence. For a head-�rst parser, some derivations will have the
�rst verb as the head of the sentence, and the second verb will be generated after the
�rst; hence the second verb’s probability will be conditioned on the �rst verb. Other
derivations will have the second verb as the head of the sentence, and the �rst verb’s
probability will be conditioned on the second verb. In such a scenario, there is no
way to decompose the joint probability calculated from the set of derivations into the
product of conditional probabilities using the chain rule. Of course, the joint probability
can be used as a language model, but it cannot be interpolated on a word-by-word
basis with, say, a trigram model, which we will demonstrate is a useful thing to do.

Thus, our top-down parser allows for the incremental calculation of generative
conditional word probabilities, a property it shares with other left-to-right parsers
with rooted derivations such as Earley parsers (Earley 1970) or left-corner parsers
(Rosenkrantz and Lewis II 1970).

A second key feature of our approach is that top-down guidance improves the
ef�ciency of the search as more and more conditioning events are extracted from the
derivation for use in the probabilistic model. Because the rooted partial derivation is
fully connected, all of the conditioning information that might be extracted from the
top-down left context has already been speci�ed, and a conditional probability model
built on this information will not impose any additional burden on the search. In
contrast, an Earley or left-corner parser will underspecify certain connections between
constituents in the left context, and if some of the underspeci�ed information is used
in the conditional probability model, it will have to become speci�ed. Of course, this
can be done, but at the expense of search ef�ciency; the more that this is done, the
less bene�t there is from the underspeci�cation. A top-down parser will, in contrast,
derive an ef�ciency bene�t from precisely the information that is underspeci�ed in
these other approaches.

Thus, our top-down parser makes it very easy to condition the probabilistic gram-
mar on an arbitrary number of values extracted from the rooted, fully speci�ed deriva-
tion. This has lead us to a formulation of the conditional probability model in terms
of values returned from tree-walking functions that themselves are contextually sen-
sitive. The top-down guidance that is provided makes this approach quite ef�cient in
practice.

The following section will provide some background in probabilistic context-free
grammars and language modeling for speech recognition. There will also be a brief
review of previous work using syntactic information for language modeling, before
we introduce our model in Section 4.

250

Roark Top-Down Parsing

Figure 1
Three parse trees: (a) a complete parse tree; (b) a complete parse tree with an explicit stop
symbol; and (c) a partial parse tree.

2. Background

2.1 Grammars and Trees
This section will introduce probabilistic (or stochastic) context-free grammars (PCFGs),
as well as such notions as complete and partial parse trees, which will be important
in de�ning our language model later in the paper.1 In addition, we will explain some
simple grammar transformations that will be used. Finally, we will explain the notion
of c-command, which will be used extensively later as well.

PCFGs model the syntactic combinatorics of a language by extending conventional

context-free grammars (CFGs). A CFG G V, T, P, S , consists of a set of nonterminal

symbols V, a set of terminal symbols T, a start symbol S V, and a set of rule
productions P of the form: A , where V T . These context-free rules
can be interpreted as saying that a nonterminal symbol A expands into one or more
either nonterminal or terminal symbols, X0 Xk.

2 A sequence of context-free rule
expansions can be represented in a tree, with parents expanding into one or more
children below them in the tree. Each of the individual local expansions in the tree
is a rule in the CFG. Nodes in the tree with no children are called leaves. A tree
whose leaves consist entirely of terminal symbols is complete. Consider, for example,

the parse tree shown in (a) in Figure 1: the start symbol is S , which expands into an
S. The S node expands into an NP followed by a VP. These nonterminal nodes each
in turn expand, and this process of expansion continues until the tree generates the
terminal string, “ ”, as leaves.

A CFG G de�nes a language LG, which is a subset of the set of strings of terminal

symbols, including only those that are leaves of complete trees rooted at S , built
with rules from the grammar G. We will denote strings either as w or as w0w1 wn,
where wn is understood to be the last terminal symbol in the string. For simplicity in

displaying equations, from this point forward let w
j
i be the substring wi wj. Let Twn

0

1 For a detailed introduction to PCFGs, see Manning and Schütze (1999), for example.
2 For ease of exposition, we will ignore epsilon productions for now. An epsilon production has the

empty string () on the right-hand side, and can be written A . Everything that is said here can be
straightforwardly extended to include such productions.

251

Computational Linguistics Volume 27, Number 2

be the set of all complete trees rooted at the start symbol, with the string of terminals
wn

0 as leaves. We call Twn
0

the set of complete parses of wn
0.

A PCFG is a CFG with a probability assigned to each rule; speci�cally, each right-
hand side has a probability given the left-hand side of the rule. The probability of a
parse tree is the product of the probabilities of each rule in the tree. Provided a PCFG
is consistent (or tight), which it always will be in the approach we will be advocating,
this de�nes a proper probability distribution over completed trees.3

A PCFG also de�nes a probability distribution over strings of words (terminals)
in the following way:

P wn
0

t Twn
0

P t 1

The intuition behind Equation 1 is that, if a string is generated by the PCFG, then it
will be produced if and only if one of the trees in the set Twn

0
generated it. Thus the

probability of the string is the probability of the set Twn
0
, i.e., the sum of its members’

probabilities.
Up to this point, we have been discussing strings of words without specifying

whether they are “complete” strings or not. We will adopt the convention that an
explicit beginning of string symbol, , and an explicit end symbol, , are part of
the vocabulary, and a string wn

0 is a complete string if and only if and wn

is . Since the beginning of string symbol is not predicted by language models,

but rather is axiomatic in the same way that S is for a parser, we can safely omit it
from the current discussion, and simply assume that it is there. See Figure 1(b) for the
explicit representation.

While a complete string of words must contain the end symbol as its �nal word,
a string pre�x does not have this restriction. For example, “

s ” is a complete string, and the following is the set of pre�x strings of this com-
plete string: “ ”; “ ”; “ ”; “ ”;

and “ s ”. A PCFG also de�nes a probability distribution
over string pre�xes, and we will present this in terms of partial derivations. A partial

derivation (or parse) d is de�ned with respect to a pre�x string w
j
0 as follows: it is the

leftmost derivation of the string, with wj on the right-hand side of the last expansion

in the derivation.4 Let D
w

j

0

be the set of all partial derivations for a pre�x string w
j
0.

Then

P w
j
0

d D
w

j

0

P d 2

We left-factor the PCFG, so that all productions are binary, except those with a
single terminal on the right-hand side and epsilon productions.5 We do this because
it delays predictions about what nonterminals we expect later in the string until we
have seen more of the string. In effect, this is an underspeci�cation of some of the
predictions that our top-down parser is making about the rest of the string. The left-
factorization transform that we use is identical to what is called right binarization
in Roark and Johnson (1999). See that paper for more discussion of the bene�ts of

3 A PCFG is consistent or tight if there is no probability mass reserved for in�nite trees. Chi and Geman
(1998) proved that any PCFG estimated from a treebank with the relative frequency estimator is tight.
All of the PCFGs that are used in this paper are estimated using the relative frequency estimator.

4 A leftmost derivation is a derivation in which the leftmost nonterminal is always expanded.
5 The only -productions that we will use in this paper are those introduced by left-factorization .

252

Roark Top-Down Parsing

Figure 2
Two parse trees: (a) a complete left-factored parse tree with epsilon productions and an
explicit stop symbol; and (b) a partial left-factored parse tree.

factorization for top-down and left-corner parsing. For a grammar G, we de�ne a
factored grammar Gf as follows:

i. (A B A-B) Gf iff (A B) G, s.t. B V and V
ii. (A- B A- B) Gf iff (A B) G, s.t. B V, V , and V

iii. (A- B) Gf iff (A B) G, s.t. B V and V
iv. (A a) Gf iff (A a) G, s.t. a T

We can see the effect of this transform on our example parse trees in Figure 2. This
underspeci�cation of the nonterminal predictions (e.g., VP-VBD in the example in
Figure 2, as opposed to NP), allows lexical items to become part of the left context,
and so be used to condition production probabilities, even the production probabil-
ities of constituents that dominate them in the unfactored tree. It also brings words
further downstream into the look-ahead at the point of speci�cation. Note that partial
trees are de�ned in exactly the same way (Figure 2b), but that the nonterminal yields
are made up exclusively of the composite nonterminals introduced by the grammar
transform.

This transform has a couple of very nice properties. First, it is easily reversible,
i.e., every parse tree built with Gf corresponds to a unique parse tree built with G.
Second, if we use the relative frequency estimator for our production probabilities, the
probability of a tree built with Gf is identical to the probability of the corresponding
tree built with G.

Finally, let us introduce the term c-command. We will use this notion in our condi-
tional probability model, and it is also useful for understanding some of the previous
work in this area. The simple de�nition of c-command that we will be using in this
paper is the following: a node A c-commands a node B if and only if (i) A does not
dominate B; and (ii) the lowest branching node (i.e., non-unary node) that dominates

253

Computational Linguistics Volume 27, Number 2

A also dominates B.6 Thus in Figure 1(a), the subject NP and the VP each c-command
the other, because neither dominates the other and the lowest branching node above
both (the S) dominates the other. Notice that the subject NP c-commands the object
NP, but not vice versa, since the lowest branching node that dominates the object NP
is the VP, which does not dominate the subject NP.

2.2 Language Modeling for Speech Recognition

This section will brie�y introduce language modeling for statistical speech recognition.7

In language modeling, we assign probabilities to strings of words. To assign a
probability, the chain rule is generally invoked. The chain rule states, for a string of
k+1 words:

P wk
0 P w0

k

i 1

P wi wi 1
0 3

A Markov language model of order n truncates the conditioning information in the
chain rule to include only the previous n words.

P wk
0 P w0 P w1 w0 P wn 1 wn 2

0

k

i n

P wi wi 1
i n 4

These models are commonly called n-gram models.8 The standard language model
used in many speech recognition systems is the trigram model, i.e., a Markov model
of order 2, which can be characterized by the following equation:

P wn 1
0 P w0 P w1 w0

n 1

i 2

P wi wi 1
i 2 5

To smooth the trigram models that are used in this paper, we interpolate the
probability estimates of higher-order Markov models with lower-order Markov models
(Jelinek and Mercer 1980). The idea behind interpolation is simple, and it has been
shown to be very effective. For an interpolated (n 1)-gram:

P wi wi 1
i n n wi 1

i n P wi wi 1
i n 1 n wi 1

i n P wi wi 1
i n 1 6

Here P is the empirically observed relative frequency, and n is a function from Vn to
0, 1 . This interpolation is recursively applied to the smaller-order n-grams until the

bigram is �nally interpolated with the unigram, i.e., 0 1.

3. Previous Work

There have been attempts to jump over adjacent words to words farther back in the
left context, without the use of dependency links or syntactic structure, for example
Saul and Pereira (1997) and Rosenfeld (1996, 1997). We will focus our very brief review,
however, on those that use grammars or parsing for their language models. These can
be divided into two rough groups: those that use the grammar as a language model,

6 A node A dominates a node B in a tree if and only if either (i) A is the parent of B; or (ii) A is the
parent of a node C that dominates B.

7 For a detailed introduction to statistical speech recognition, see Jelinek (1997).
8 The n in n-gram is one more than the order of the Markov model, since the n-gram includes the word

being conditioned.

254

Roark Top-Down Parsing

and those that use a parser to uncover phrasal heads standing in an important relation
(c-command) to the current word. The approach that we will subsequently present uses
the probabilistic grammar as its language model, but only includes probability mass
from those parses that are found, that is, it uses the parser to �nd a subset of the total
set of parses (hopefully most of the high-probability parses) and uses the sum of their
probabilities as an estimate of the true probability given the grammar.

3.1 Grammar Models

As mentioned in Section 2.1, a PCFG de�nes a probability distribution over strings
of words. One approach to syntactic language modeling is to use this distribution
directly as a language model. There are ef�cient algorithms in the literature (Jelinek
and Lafferty 1991; Stolcke 1995) for calculating exact string pre�x probabilities given
a PCFG. The algorithms both utilize a left-corner matrix, which can be calculated in
closed form through matrix inversion. They are limited, therefore, to grammars where
the nonterminal set is small enough to permit inversion. String pre�x probabilities can
be straightforwardly used to compute conditional word probabilities by de�nition:

P wj 1 w
j
0

P w
j 1
0

P w
j
0

7

Stolcke and Segal (1994) and Jurafsky et al. (1995) used these basic ideas to es-
timate bigram probabilities from hand-written PCFGs, which were then used in lan-
guage models. Interpolating the observed bigram probabilities with these calculated
bigrams led, in both cases, to improvements in word error rate over using the observed
bigrams alone, demonstrating that there is some bene�t to using these syntactic lan-
guage models to generalize beyond observed n-grams.

3.2 Finding Phrasal Heads

Another approach that uses syntactic structure for language modeling has been to use
a shift-reduce parser to “surface” c-commanding phrasal headwords or part-of-speech
(POS) tags from arbitrarily far back in the pre�x string, for use in a trigram-like model.

A shift-reduce parser operates from left to right using a stack and a pointer to the
next word in the input string.9 Each stack entry consists minimally of a nonterminal
label. The parser performs two basic operations: (i) shifting, which involves pushing
the POS label of the next word onto the stack and moving the pointer to the following
word in the input string; and (ii) reducing, which takes the top k stack entries and
replaces them with a single new entry, the nonterminal label of which is the left-hand
side of a rule in the grammar that has the k top stack entry labels on the right-hand
side. For example, if there is a rule NP DT NN, and the top two stack entries are
NN and DT, then those two entries can be popped off of the stack and an entry with
the label NP pushed onto the stack.

Goddeau (1992) used a robust deterministic shift-reduce parser to condition word
probabilities by extracting a speci�ed number of stack entries from the top of the cur-
rent state, and conditioning on those entries in a way similar to an n-gram. In empirical
trials, Goddeau used the top two stack entries to condition the word probability. He
was able to reduce both sentence and word error rates on the ATIS corpus using this
method.

9 For details, see Hopcroft and Ullman (1979), for example.

255

Computational Linguistics Volume 27, Number 2

Figure 3
Tree representation of a derivation state.

The structured language model (SLM) used in Chelba and Jelinek (1998a, 1998b,
1999), Jelinek and Chelba (1999), and Chelba (2000) is similar to that of Goddeau,
except that (i) their shift-reduce parser follows a nondeterministic beam search, and
(ii) each stack entry contains, in addition to the nonterminal node label, the headword
of the constituent. The SLM is like a trigram, except that the conditioning words are
taken from the tops of the stacks of candidate parses in the beam, rather than from
the linear order of the string.

Their parser functions in three stages. The �rst stage assigns a probability to the
word given the left context (represented by the stack state). The second stage predicts
the POS given the word and the left context. The last stage performs all possible parser
operations (reducing stack entries and shifting the new word). When there is no more
parser work to be done (or, in their case, when the beam is full), the following word
is predicted. And so on until the end of the string.

Each different POS assignment or parser operation is a step in a derivation. Each
distinct derivation path within the beam has a probability and a stack state associated
with it. Every stack entry has a nonterminal node label and a designated headword of
the constituent. When all of the parser operations have �nished at a particular point in
the string, the next word is predicted as follows: For each derivation in the beam, the
headwords of the two topmost stack entries form a trigram with the conditioned word.
This interpolated trigram probability is then multiplied by the normalized probability
of the derivation, to provide that derivation’s contribution to the probability of the
word. More precisely, for a beam of derivations Di

P wi 1 wi
0

d Di
P wi 1 h0d, h1d P d

d Di
P d

8

where h0d and h1d are the lexical heads of the top two entries on the stack of d.
Figure 3 gives a partial tree representation of a potential derivation state for the

string “ ”, at the point when the word “ ” is
to be predicted. The shift-reduce parser will have, perhaps, built the structure shown,
and the stack state will have an NP entry with the head “ ” at the top of the stack,
and a VBD entry with the head “ ” second on the stack. In the Chelba and
Jelinek model, the probability of “ ” is conditioned on these two headwords, for
this derivation.

Since the speci�c results of the SLM will be compared in detail with our model
when the empirical results are presented, at this point we will simply state that they
have achieved a reduction in both perplexity and word error rate over a standard
trigram using this model.

The rest of this paper will present our parsing model, its application to language
modeling for speech recognition, and empirical results.

256

Roark Top-Down Parsing

4. Top-Down Parsing and Language Modeling

Statistically based heuristic best-�rst or beam-search strategies (Caraballo and Char-
niak 1998; Charniak, Goldwater, and Johnson 1998; Goodman 1997) have yielded an
enormous improvement in the quality and speed of parsers, even without any guaran-
tee that the parse returned is, in fact, that with the maximum likelihood for the proba-
bility model. The parsers with the highest published broad-coverage parsing accuracy,
which include Charniak (1997, 2000), Collins (1997, 1999), and Ratnaparkhi (1997),
all utilize simple and straightforward statistically based search heuristics, pruning the
search-space quite dramatically.10 Such methods are nearly always used in conjunction
with some form of dynamic programming (henceforth DP). That is, search ef�ciency
for these parsers is improved by both statistical search heuristics and DP. Here we
will present a parser that uses simple search heuristics of this sort without DP. Our
approach is found to yield very accurate parses ef�ciently, and, in addition, to lend
itself straightforwardly to estimating word probabilities on-line, that is, in a single
pass from left to right. This on-line characteristic allows our language model to be in-
terpolated on a word-by-word basis with other models, such as the trigram, yielding
further improvements.

Next we will outline our conditional probability model over rules in the PCFG,
followed by a presentation of the top-down parsing algorithm. We will then present
empirical results in two domains: one to compare with previous work in the parsing
literature, and the other to compare with previous work using parsing for language
modeling for speech recognition, in particular with the Chelba and Jelinek results
mentioned above.

4.1 Conditional Probability Model

A simple PCFG conditions rule probabilities on the left-hand side of the rule. It
has been shown repeatedly—e.g., Briscoe and Carroll (1993), Charniak (1997), Collins
(1997), Inui et al. (1997), Johnson (1998)—that conditioning the probabilities of struc-
tures on the context within which they appear, for example on the lexical head of a
constituent (Charniak 1997; Collins 1997), on the label of its parent nonterminal (John-
son 1998), or, ideally, on both and many other things besides, leads to a much better
parsing model and results in higher parsing accuracies.

One way of thinking about conditioning the probabilities of productions on con-
textual information (e.g., the label of the parent of a constituent or the lexical heads of
constituents), is as annotating the extra conditioning information onto the labels in the
context-free rules. Examples of this are bilexical grammars—such as Eisner and Satta
(1999), Charniak (1997), Collins (1997)—where the lexical heads of each constituent
are annotated on both the right- and left-hand sides of the context-free rules, under
the constraint that every constituent inherits the lexical head from exactly one of its
children, and the lexical head of a POS is its terminal item. Thus the rule S NP VP
becomes, for instance, S barks NP dog VP barks . One way to estimate the probabil-
ities of these rules is to annotate the heads onto the constituent labels in the training
corpus and simply count the number of times particular productions occur (relative
frequency estimation). This procedure yields conditional probability distributions of

10 Johnson et al. (1999), Henderson and Brill (1999), and Collins (2000) demonstrate methods for choosing
the best complete parse tree from among a set of complete parse trees, and the latter two show
accuracy improvements over some of the parsers cited above, from which they generated their
candidate sets. Here we will be comparing our work with parsing algorithms, i.e., algorithms that
build parses for strings of words.

257

Computational Linguistics Volume 27, Number 2

constituents on the right-hand side with their lexical heads, given the left-hand side
constituent and its lexical head. The same procedure works if we annotate parent infor-
mation onto constituents. This is how Johnson (1998) conditioned the probabilities of
productions: the left-hand side is no longer, for example, S, but rather S SBAR, i.e., an
S with SBAR as parent. Notice, however, that in this case the annotations on the right-
hand side are predictable from the annotation on the left-hand side (unlike, for ex-
ample, bilexical grammars), so that the relative frequency estimator yields conditional
probability distributions of the original rules, given the parent of the left-hand side.

All of the conditioning information that we will be considering will be of this
latter sort: the only novel predictions being made by rule expansions are the node
labels of the constituents on the right-hand side. Everything else is already speci�ed
by the left context. We use the relative frequency estimator, and smooth our production
probabilities by interpolating the relative frequency estimates with those obtained by
“annotating” less contextual information.

This perspective on conditioning production probabilities makes it easy to see that,
in essence, by conditioning these probabilities, we are growing the state space. That
is, the number of distinct nonterminals grows to include the composite labels; so does
the number of distinct productions in the grammar. In a top-down parser, each rule
expansion is made for a particular candidate parse, which carries with it the entire
rooted derivation to that point; in a sense, the left-hand side of the rule is annotated
with the entire left context, and the rule probabilities can be conditioned on any aspect
of this derivation.

We do not use the entire left context to condition the rule probabilities, but rather
“pick-and-choose” which events in the left context we would like to condition on.
One can think of the conditioning events as functions, which take the partial tree
structure as an argument and return a value, upon which the rule probability can be
conditioned. Each of these functions is an algorithm for walking the provided tree and
returning a value. For example, suppose that we want to condition the probability of
the rule A . We might write a function that takes the partial tree, �nds the parent
of the left-hand side of the rule and returns its node label. If the left-hand side has no
parent (i.e., it is at the root of the tree), the function returns the null value (NULL). We
might write another function that returns the nonterminal label of the closest sibling to
the left of A, and NULL if no such node exists. We can then condition the probability
of the production on the values that were returned by the set of functions.

Recall that we are working with a factored grammar, so some of the nodes in the
factored tree have nonterminal labels that were created by the factorization, and may
not be precisely what we want for conditioning purposes. In order to avoid any con-
fusions in identifying the nonterminal label of a particular rule production in either its
factored or nonfactored version, we introduce the function A for every
nonterminal in the factored grammar Gf , which is simply the label of the constituent
whose factorization results in A. For example, in Figure 2, NP-DT-NN
is simply NP.

Note that a function can return different values depending upon the location in
the tree of the nonterminal that is being expanded. For example, suppose that we have
a function that returns the label of the closest sibling to the left of A
or NULL if no such node exists. Then a subsequent function could be de�ned as
follows: return the parent of the parent (the grandparent) of A only if

A has no sibling to the left—in other words, if the previous function
returns NULL; otherwise return the second closest sibling to the left of A ,
or, as always, NULL if no such node exists. If the function returns, for example, NP,
this could either mean that the grandparent is NP or the second closest sibling is

258

Roark Top-Down Parsing

Figure 4
Conditional probability model represented as a decision tree, identifying the location in the
partial parse tree of the conditioning information.

NP; yet there is no ambiguity in the meaning of the function, since the result of the
previous function disambiguates between the two possibilities.

The functions that were used for the present study to condition the probability
of the rule, A , are presented in Figure 4, in a tree structure. This is a sort of
decision tree for a tree-walking algorithm to decide what value to return, for a given
partial tree and a given depth. For example, if the algorithm is asked for the value
at level 0, it will return A, the left-hand side of the rule being expanded.11 Suppose
the algorithm is asked for the value at level 4. After level 2 there is a branch in the
decision tree. If the left-hand side of the rule is a POS, and there is no sibling to the left
of A in the derivation, then the algorithm takes the right branch of the
decision tree to decide what value to return; otherwise the left branch. Suppose it takes
the left branch. Then after level 3, there is another branch in the decision tree. If the
left-hand side of the production is a POS, then the algorithm takes the right branch of
the decision tree, and returns (at level 4) the POS of the closest c-commanding lexical
head to A, which it �nds by walking the parse tree; if the left-hand side of the rule is
not a POS, then the algorithm returns (at level 4) the closest sibling to the left of the
parent of A .

The functions that we have chosen for this paper follow from the intuition (and
experience) that what helps parsing is different depending on the constituent that is
being expanded. POS nodes have lexical items on the right-hand side, and hence can
bring into the model some of the head-head dependencies that have been shown to
be so effective. If the POS is leftmost within its constituent, then very often the lexical

11 Recall that A can be a composite nonterminal introduced by grammar factorization. When the function
is de�ned in terms of A , the values returned are obtained by moving through the
nonfactored tree.

259

Computational Linguistics Volume 27, Number 2

Table 1
Levels of conditioning information, mnemonic labels, and a brief description of the
information level for empirical results.

Conditioning Mnemonic Label Information Level
0,0,0 none Simple PCFG
2,2,2 par+sib Small amount of structural context
5,2,2 NT struct All structural (non-lexical) context for non-POS
6,2,2 NT head Everything for non-POS expansions
6,3,2 POS struct More structural info for leftmost POS expansions
6,5,2 attach All attachment info for leftmost POS expansions
6,6,4 all Everything

item is sensitive to the governing category to which it is attaching. For example, if the
POS is a preposition, then its probability of expanding to a particular word is very
different if it is attaching to a noun phrase than if it is attaching to a verb phrase,
and perhaps quite different depending on the head of the constituent to which it is
attaching. Subsequent POSs within a constituent are likely to be open-class words, and
less dependent on these sorts of attachment preferences.

Conditioning on parents and siblings of the left-hand side has proven to be very
useful. To understand why this is the case, one need merely to think of VP expansions.
If the parent of a VP is another VP (i.e., if an auxiliary or modal verb is used), then the
distribution over productions is different than if the parent is an S. Conditioning on
head information, both POS of the head and the lexical item itself, has proven useful
as well, although given our parser’s left-to-right orientation, in many cases the head
has not been encountered within the particular constituent. In such a case, the head
of the last child within the constituent is used as a proxy for the constituent head. All
of our conditioning functions, with one exception, return either parent or sibling node
labels at some speci�c distance from the left-hand side, or head information from c-
commanding constituents. The exception is the function at level 5 along the left branch
of the tree in Figure 4. Suppose that the node being expanded is being conjoined with
another node, which we can tell by the presence or absence of a CC node. In that case,
we want to condition the expansion on how the conjoining constituent expanded. In
other words, this attempts to capture a certain amount of parallelism between the
expansions of conjoined categories.

In presenting the parsing results, we will systematically vary the amount of con-
ditioning information, so as to get an idea of the behavior of the parser. We will refer
to the amount of conditioning by specifying the deepest level from which a value
is returned for each branching path in the decision tree, from left to right in Fig-
ure 4: the �rst number is for left contexts where the left branch of the decision tree
is always followed (non-POS nonterminals on the left-hand side); the second number
is for a left branch followed by a right branch (POS nodes that are leftmost within
their constituent); and the third number is for the contexts where the right branch is
always followed (POS nodes that are not leftmost within their constituent). For exam-
ple, (4,3,2) would represent a conditional probability model that (i) returns NULL for
all functions below level 4 in all contexts; (ii) returns NULL for all functions below
level 3 if the left-hand side is a POS; and (iii) returns NULL for all functions below
level 2 for nonleftmost POS expansions.

Table 1 gives a breakdown of the different levels of conditioning information used
in the empirical trials, with a mnemonic label that will be used when presenting results.
These different levels were chosen as somewhat natural points at which to observe

260

Roark Top-Down Parsing

how much of an effect increasing the conditioning information has. We �rst include
structural information from the context, namely, node labels from constituents in the
left context. Then we add lexical information, �rst for non-POS expansions, then for
leftmost POS expansions, then for all expansions.

All of the conditional probabilities are linearly interpolated. For example, the prob-
ability of a rule conditioned on six events is the linear interpolation of two probabilities:
(i) the empirically observed relative frequency of the rule when the six events co-occur;
and (ii) the probability of the rule conditioned on the �rst �ve events (which is in turn
interpolated). The interpolation coef�cients are a function of the frequency of the set
of conditioning events, and are estimated by iteratively adjusting the coef�cients so
as to maximize the likelihood of a held-out corpus.

This was an outline of the conditional probability model that we used for the
PCFG. The model allows us to assign probabilities to derivations, which can be used
by the parsing algorithm to decide heuristically which candidates are promising and
should be expanded, and which are less promising and should be pruned. We now
outline the top-down parsing algorithm.

4.2 Top-Down Probabilistic Parsing

This parser is essentially a stochastic version of the top-down parser described in Aho,
Sethi, and Ullman (1986). It uses a PCFG with a conditional probability model of the
sort de�ned in the previous section. We will �rst de�ne candidate analysis (i.e., a
partial parse), and then a derives relation between candidate analyses. We will then
present the algorithm in terms of this relation.

The parser takes an input string wn
0 , a PCFG G, and a priority queue of candi-

date analyses. A candidate analysis C D, , PD, F, wn
i consists of a derivation D, a

stack , a derivation probability PD, a �gure of merit F, and a string wn
i remaining

to be parsed. The �rst word in the string remaining to be parsed, wi, we will call the
look-ahead word. The derivation D consists of a sequence of rules used from G. The
stack contains a sequence of nonterminal symbols, and an end-of-stack marker $ at
the bottom. The probability PD is the product of the probabilities of all rules in the
derivation D. F is the product of PD and a look-ahead probability, LAP(,wi), which
is a measure of the likelihood of the stack rewriting with wi at its left corner.

We can de�ne a derives relation, denoted , between two candidate analyses as
follows. D, , PD, F, wn

i D , , PD , F , wn
j if and only if12

i. D D A X0 Xk

ii. A $;

iii. either X0 Xk $ and j i
or k 0, X0 wi, j i 1, and $;

iv. PD PDP A X0 Xk ; and
v. F PD LAP , wj

The parse begins with a single candidate analysis on the priority queue: (, S $,
1, 1, wn

0). Next, the top ranked candidate analysis, C D, , PD, F, wn
i , is popped from

the priority queue. If $ and wi /s , then the analysis is complete. Otherwise,
all C such that C C are pushed onto the priority queue.

12 Again, for ease of exposition, we will ignore -productions. Everything presented here can be
straightforwardly extended to include them. The in (i) denotes concatenation. To avoid confusion
between sets and sequences, will not be used for empty strings or sequences, rather the symbol

will be used. Note that the script is used to denote stacks, while S is the start symbol.

261

Computational Linguistics Volume 27, Number 2

We implement this as a beam search. For each word position i, we have a separate
priority queue Hi of analyses with look-ahead wi. When there are “enough” analyses
by some criteria (which we will discuss below) on priority queue Hi 1, all candidate
analyses remaining on Hi are discarded. Since wn /s , all parses that are pushed
onto Hn 1 are complete. The parse on Hn 1 with the highest probability is returned
for evaluation. In the case that no complete parse is found, a partial parse is returned
and evaluated.

The LAP is the probability of a particular terminal being the next left-corner of a
particular analysis. The terminal may be the left corner of the topmost nonterminal
on the stack of the analysis or it might be the left corner of the nth nonterminal, after
the top n 1 nonterminals have rewritten to . Of course, we cannot expect to have
adequate statistics for each nonterminal/word pair that we encounter, so we smooth
to the POS. Since we do not know the POS for the word, we must sum the LAP for
all POS labels.13

For a PCFG G, a stack A0 An$ (which we will write An
0$) and a look-ahead

terminal item wi, we de�ne the look-ahead probability as follows:

LAP , wi

V T

PG An
0 wi 9

We recursively estimate this with two empirically observed conditional probabilities

for every nonterminal Ai: P Ai wi and P Ai . The same empirical probability,

P Ai X , is collected for every preterminal X as well. The LAP approximation for
a given stack state and look-ahead terminal is:

PG An
j wi PG Aj wi P Aj PG An

j 1 wi 10

where

PG Aj wi Aj
P Aj wi 1 Aj

X V

P Aj X P X wi 11

The lambdas are a function of the frequency of the nonterminal Aj, in the standard
way (Jelinek and Mercer 1980).

The beam threshold at word wi is a function of the probability of the top-ranked
candidate analysis on priority queue Hi 1 and the number of candidates on Hi 1. The
basic idea is that we want the beam to be very wide if there are few analyses that have
been advanced, but relatively narrow if many analyses have been advanced. If p is the
probability of the highest-ranked analysis on Hi 1, then another analysis is discarded
if its probability falls below pf , Hi 1 , where is an initial parameter, which we
call the base beam factor. For the current study, was 10 11 , unless otherwise noted,
and f , Hi 1 Hi 1

3. Thus, if 100 analyses have already been pushed onto Hi 1,
then a candidate analysis must have a probability above 10 5p to avoid being pruned.
After 1,000 candidates, the beam has narrowed to 10 2p. There is also a maximum
number of allowed analyses on Hi, in case the parse fails to advance an analysis to
Hi 1. This was typically 10,000.

As mentioned in Section 2.1, we left-factor the grammar, so that all productions are
binary, except those with a single terminal on the right-hand side and epsilon produc-
tions. The only -productions are those introduced by left-factorization. Our factored

13 Equivalently, we can split the analyses at this point, so that there is one POS per analysis.

262

Roark Top-Down Parsing

grammar was produced by factoring the trees in the training corpus before grammar
induction, which proceeded in the standard way, by counting rule frequencies.

5. Empirical Results

The empirical results will be presented in three stages: (i) trials to examine the accuracy
and ef�ciency of the parser; (ii) trials to examine its effect on test corpus perplexity
and recognition performance; and (iii) trials to examine the effect of beam variation
on these performance measures. Before presenting the results, we will introduce the
methods of evaluation.

5.1 Evaluation

Perplexity is a standard measure within the speech recognition community for com-
paring language models. In principle, if two models are tested on the same test corpus,
the model that assigns the lower perplexity to the test corpus is the model closest to
the true distribution of the language, and thus better as a prior model for speech
recognition. Perplexity is the exponential of the cross entropy, which we will de�ne
next.

Given a random variable X with distribution p and a probability model q, the cross
entropy, H p, q is de�ned as follows:

H p, q
x X

p x log q x 12

Let p be the true distribution of the language. Then, under certain assumptions, given
a large enough sample, the sample mean of the negative log probability of a model
will converge to its cross entropy with the true model.14 That is

H p, q lim
n

1

n
log q wn

0 13

where wn
0 is a string of the language L. In practice, one takes a large sample of the

language, and calculates the negative log probability of the sample, normalized by its
size.15 The lower the cross entropy (i.e., the higher the probability the model assigns
to the sample), the better the model. Usually this is reported in terms of perplexity,
which we will do as well.16

Some of the trials discussed below will report results in terms of word and/or
sentence error rate, which are obtained when the language model is embedded in a
speech recognition system. Word error rate is the number of deletion, insertion, or
substitution errors per 100 words. Sentence error rate is the number of sentences with
one or more errors per 100 sentences.

Statistical parsers are typically evaluated for accuracy at the constituent level,
rather than simply whether or not the parse that the parser found is completely correct
or not. A constituent for evaluation purposes consists of a label (e.g., NP) and a span
(beginning and ending word positions). For example, in Figure 1(a), there is a VP that
spans the words “ ”. Evaluation is carried out on a hand-parsed test
corpus, and the manual parses are treated as correct. We will call the manual parse

14 See Cover and Thomas (1991) for a discussion of the Shannon-McMillan-Breiman theorem, under the
assumptions of which this convergence holds.

15 It is important to remember to include the end marker in the strings of the sample.
16 When assessing the magnitude of a perplexity improvement, it is often better to look at the reduction

in cross entropy, by taking the log of the perplexity. It will be left to the reader to do so.

263

Computational Linguistics Volume 27, Number 2

GOLD and the parse that the parser returns TEST. Precision is the number of common
constituents in GOLD and TEST divided by the number of constituents in TEST. Recall
is the number of common constituents in GOLD and TEST divided by the number of
constituents in GOLD. Following standard practice, we will be reporting scores only
for non-part-of-speech constituents, which are called labeled recall (LR) and labeled
precision (LP). Sometimes in �gures we will plot their average, and also what can be
termed the parse error, which is one minus their average.

LR and LP are part of the standard set of PARSEVAL measures of parser qual-
ity (Black et al. 1991). From this set of measures, we will also include the crossing
bracket scores: average crossing brackets (CB), percentage of sentences with no cross-
ing brackets (0 CB), and the percentage of sentences with two crossing brackets or
fewer (2 CB). In addition, we show the average number of rule expansions con-
sidered per word, that is, the number of rule expansions for which a probability was
calculated (see Roark and Charniak [2000]), and the average number of analyses ad-
vanced to the next priority queue per word.

This is an incremental parser with a pruning strategy and no backtracking. In such
a model, it is possible to commit to a set of partial analyses at a particular point that
cannot be completed given the rest of the input string (i.e., the parser can “garden
path”). In such a case, the parser fails to return a complete parse. In the event that
no complete parse is found, the highest initially ranked parse on the last nonempty
priority queue is returned. All unattached words are then attached at the highest
level in the tree. In such a way we predict no new constituents and all incomplete
constituents are closed. This structure is evaluated for precision and recall, which is
entirely appropriate for these incomplete as well as complete parses. If we fail to
identify nodes later in the parse, recall will suffer, and if our early predictions were
bad, both precision and recall will suffer. Of course, the percentage of these failures
are reported as well.

5.2 Parser Accuracy and Ef�ciency

The �rst set of results looks at the performance of the parser on the standard corpora
for statistical parsing trials: Sections 2–21 (989,860 words, 39,832 sentences) of the
Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993) served as the training
data, Section 24 (34,199 words, 1,346 sentences) as the held-out data for parameter
estimation, and Section 23 (59,100 words, 2,416 sentences) as the test data. Section
22 (41,817 words, 1,700 sentences) served as the development corpus, on which the
parser was tested until stable versions were ready to run on the test data, to avoid
developing the parser to �t the speci�c test data.

Table 2 shows trials with increasing amounts of conditioning information from the
left context. There are a couple of things to notice from these results. First, and least
surprising, is that the accuracy of the parses improved as we conditioned on more
and more information. Like the nonlexicalized parser in Roark and Johnson (1999),
we found that the search ef�ciency, in terms of number of rule expansions consid-
ered or number of analyses advanced, also improved as we increased the amount of
conditioning. Unlike the Roark and Johnson parser, however, our coverage did not
substantially drop as the amount of conditioning information increased, and in some
cases, coverage improved slightly. They did not smooth their conditional probability
estimates, and blamed sparse data for their decrease in coverage as they increased the
conditioning information. These results appear to support this, since our smoothed
model showed no such tendency.

Figure 5 shows the reduction in parser error, 1 LR LP
2

, and the reduction in
rule expansions considered as the conditioning information increased. The bulk of

264

Roark Top-Down Parsing

Table 2
Results conditioning on various contextual events, standard training and testing corpora.

Conditioning LR LP CB 0 CB 2 CB Percent Average Rule Average
Failed Expansions Analyses

Considered Advanced
Section 23: 2245 sentences of length 40

none 71.1 75.3 2.48 37.3 62.9 0.9 14,369 516.5
par+sib 82.8 83.6 1.55 54.3 76.2 1.1 9,615 324.4
NT struct 84.3 84.9 1.38 56.7 79.5 1.0 8,617 284.9
NT head 85.6 85.7 1.27 59.2 81.3 0.9 7,600 251.6
POS struct 86.1 86.2 1.23 60.9 82.0 1.0 7,327 237.9
attach 86.7 86.6 1.17 61.7 83.2 1.2 6,834 216.8
all 86.6 86.5 1.19 62.0 82.7 1.3 6,379 198.4

Section 23: 2416 sentences of length 100
attach 85.8 85.8 1.40 58.9 80.3 1.5 7,210 227.9
all 85.7 85.7 1.41 59.0 79.9 1.7 6,709 207.6

per word

(0,0,0) (2,2,2) (5,2,2) (6,2,2) (6,3,2) (6,5,2) (6,6,4)

60

50

40

30

20

10

0

Conditioning information

P
er

ce
n
ta

g
e

R
e
d
u
ct

io
n

Parse error
Rule expansions

Figure 5
Reduction in average precision/recall error and in number of rule expansions per word as
conditioning increases, for sentences of length 40.

the improvement comes from simply conditioning on the labels of the parent and
the closest sibling to the node being expanded. Interestingly, conditioning all POS
expansions on two c-commanding heads made no difference in accuracy compared to
conditioning only leftmost POS expansions on a single c-commanding head; but it did
improve the ef�ciency.

These results, achieved using very straightforward conditioning events and con-
sidering only the left context, are within one to four points of the best published

265

Computational Linguistics Volume 27, Number 2

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

Sentence Length

S
e
co

n
d
s

Individual parses

Ratnaparkhi observed time

Figure 6
Observed running time on Section 23 of the Penn Treebank, with the full conditional

probability model and beam of 10 11, using one 300 MHz UltraSPARC processor and 256MB
of RAM of a Sun Enterprise 450.

accuracies cited above.17 Of the 2,416 sentences in the section, 728 had the totally cor-
rect parse, 30.1 percent tree accuracy. Also, the parser returns a set of candidate parses,
from which we have been choosing the top ranked; if we use an oracle to choose the
parse with the highest accuracy from among the candidates (which averaged 70.0 in
number per sentence), we �nd an average labeled precision/recall of 94.1, for sentences
of length 100. The parser, thus, could be used as a front end to some other model,
with the hopes of selecting a more accurate parse from among the �nal candidates.

While we have shown that the conditioning information improves the ef�ciency in
terms of rule expansions considered and analyses advanced, what does the ef�ciency
of such a parser look like in practice? Figure 6 shows the observed time at our standard
base beam of 10 11 with the full conditioning regimen, alongside an approximation
of the reported observed (linear) time in Ratnaparkhi (1997). Our observed times look
polynomial, which is to be expected given our pruning strategy: the denser the com-
petitors within a narrow probability range of the best analysis, the more time will be
spent working on these competitors; and the farther along in the sentence, the more
chance for ambiguities that can lead to such a situation. While our observed times are
not linear, and are clearly slower than his times (even with a faster machine), they are
quite respectably fast. The differences between a k-best and a beam-search parser (not
to mention the use of dynamic programming) make a running time difference unsur-

17 Our score of 85.8 average labeled precision and recall for sentences less than or equal to 100 on
Section 23 compares to: 86.7 in Charniak (1997), 86.9 in Ratnaparkhi (1997), 88.2 in Collins (1999), 89.6
in Charniak (2000), and 89.75 in Collins (2000).

266

Roark Top-Down Parsing

prising. What is perhaps surprising is that the difference is not greater. Furthermore,
this is quite a large beam (see discussion below), so that very large improvements in
ef�ciency can be had at the expense of the number of analyses that are retained.

5.3 Perplexity Results

The next set of results will highlight what recommends this approach most: the ease
with which one can estimate string probabilities in a single pass from left to right across
the string. By de�nition, a PCFG’s estimate of a string’s probability is the sum of the
probabilities of all trees that produce the string as terminal leaves (see Equation 1).
In the beam search approach outlined above, we can estimate the string’s probability
in the same manner, by summing the probabilities of the parses that the algorithm
�nds. Since this is not an exhaustive search, the parses that are returned will be a
subset of the total set of trees that would be used in the exact PCFG estimate; hence
the estimate thus arrived at will be bounded above by the probability that would be
generated from an exhaustive search. The hope is that a large amount of the probability
mass will be accounted for by the parses in the beam. The method cannot overestimate
the probability of the string.

Recall the discussion of the grammar models above, and our de�nition of the set

of partial derivations D
w

j

0

with respect to a pre�x string w
j
0 (see Equations 2 and 7).

By de�nition,

P wj 1 w
j
0

P w
j 1
0

P w
j
0

d D
w

j 1

0

P d

d D
w

j

0

P d
14

Note that the numerator at word wj is the denominator at word wj 1, so that the
product of all of the word probabilities is the numerator at the �nal word, namely, the
string pre�x probability.

We can make a consistent estimate of the string probability by similarly summing
over all of the trees within our beam. Let Hi be the priority queue Hi before any
processing has begun with word wi in the look-ahead. This is a subset of the possi-

ble leftmost partial derivations with respect to the pre�x string wi 1
0 . Since Hi 1 is

produced by expanding only analyses on priority queue Hi , the set of complete
trees consistent with the partial derivations on priority queue Hi 1 is a subset of the

set of complete trees consistent with the partial derivations on priority queue Hi ,
that is, the total probability mass represented by the priority queues is monotoni-
cally decreasing. Thus conditional word probabilities de�ned in a way consistent with
Equation 14 will always be between zero and one. Our conditional word probabilities
are calculated as follows:

P wi wi 1
0

d H
i 1

P d

d H
i

P d
15

As mentioned above, the model cannot overestimate the probability of a string,
because the string probability is simply the sum over the beam, which is a subset of
the possible derivations. By utilizing a �gure of merit to identify promising analyses,
we are simply focusing our attention on those parses that are likely to have a high
probability, and thus we are increasing the amount of probability mass that we do
capture, of the total possible. It is not part of the probability model itself.

Since each word is (almost certainly, because of our pruning strategy) losing some
probability mass, the probability model is not “proper”—the sum of the probabilities
over the vocabulary is less than one. In order to have a proper probability distribution,

267

Computational Linguistics Volume 27, Number 2

we would need to renormalize by dividing by some factor. Note, however, that this
renormalization factor is necessarily less than one, and thus would uniformly increase
each word’s probability under the model, that is, any perplexity results reported below
will be higher than the “true” perplexity that would be assigned with a properly
normalized distribution. In other words, renormalizing would make our perplexity
measure lower still. The hope, however, is that the improved parsing model provided
by our conditional probability model will cause the distribution over structures to
be more peaked, thus enabling us to capture more of the total probability mass, and
making this a fairly snug upper bound on the perplexity.

One �nal note on assigning probabilities to strings: because this parser does gar-
den path on a small percentage of sentences, this must be interpolated with another
estimate, to ensure that every word receives a probability estimate. In our trials, we
used the unigram, with a very small mixing coef�cient:

P wi wi 1
0 wi 1

0

d H
i 1

P d

d H
i

P d
1 wi 1

0 P wi 16

If
d H

i

P d 0 in our model, then our model provides no distribution over

following words since the denominator is zero. Thus,

wi 1
0

0 if
d H

i

P d 0

999 otherwise
17

Chelba and Jelinek (1998a, 1998b) also used a parser to help assign word probabili-
ties, via the structured language model outlined in Section 3.2. They trained and tested
the SLM on a modi�ed, more “speech-like” version of the Penn Treebank. Their mod-
i�cations included: (i) removing orthographic cues to structure (e.g., punctuation);
(ii) replacing all numbers with the single token N; and (iii) closing the vocabulary
at 10,000, replacing all other words with the UNK token. They used Sections 00–20
(929,564 words) as the development set, Sections 21–22 (73,760 words) as the check set
(for interpolation coef�cient estimation), and tested on Sections 23–24 (82,430 words).
We obtained the training and testing corpora from them (which we will denote C&J

corpus), and also created intermediate corpora, upon which only the �rst two modi�-
cations were carried out (which we will denote no punct). Differences in performance
will give an indication of the impact on parser performance of the different modi�ca-
tions to the corpora. All trials in this section used Sections 00–20 for counts, held out
21–22, and tested on 23–24.

Table 3 shows several things. First, it shows relative performance for unmodi�ed,
no punct, and C&J corpora with the full set of conditioning information. We can see
that removing the punctuation causes (unsurprisingly) a dramatic drop in the accuracy
and ef�ciency of the parser. Interestingly, it also causes coverage to become nearly total,
with failure on just two sentences per thousand on average.

We see the familiar pattern, in the C&J corpus results, of improving performance
as the amount of conditioning information grows. In this case we have perplexity
results as well, and Figure 7 shows the reduction in parser error, rule expansions, and
perplexity as the amount of conditioning information grows. While all three seem to be
similarly improved by the addition of structural context (e.g., parents and siblings), the
addition of c-commanding heads has only a moderate effect on the parser accuracy,
but a very large effect on the perplexity. The fact that the ef�ciency was improved
more than the accuracy in this case (as was also seen in Figure 5), seems to indicate
that this additional information is causing the distribution to become more peaked, so
that fewer analyses are making it into the beam.

268

Roark Top-Down Parsing

Table 3
Results conditioning on various contextual events, Sections 23–24, modi�cations following
Chelba and Jelinek.

Corpora Conditioning LR LP Percent Perplexity Average Rule Average
Failed Expansions Analyses

Considered Advanced
Sections 23–24: 3761 sentences 120

unmodi�ed all 85.2 85.1 1.7 7,206 213.5
no punct all 82.4 82.9 0.2 9,717 251.8
C&J corpus par+sib 75.2 77.4 0.1 310.04 17,418 457.2
C&J corpus NT struct 77.3 79.2 0.1 290.29 15,948 408.8
C&J corpus NT head 79.2 80.4 0.1 255.85 14,239 363.2
C&J corpus POS struct 80.5 81.6 0.1 240.37 13,591 341.3
C&J corpus all 81.7 82.1 0.2 152.26 11,667 279.7

per word

(2,2,2) (5,2,2) (6,2,2) (6,3,2) (6,6,4)

60

50

40

30

20

10

0

Conditioning information

P
er

ce
n
ta

g
e

R
e
d
u
ct

io
n

Parse error
Rule expansions
Perplexity

Figure 7
Reduction in average precision/recall error, number of rule expansions, and perplexity as
conditioning increases.

Table 4 compares the perplexity of our model with Chelba and Jelinek (1998a,
1998b) on the same training and testing corpora. We built an interpolated trigram
model to serve as a baseline (as they did), and also interpolated our model’s perplexity
with the trigram, using the same mixing coef�cient as they did in their trials (taking
36 percent of the estimate from the trigram).18 The trigram model was also trained
on Sections 00–20 of the C&J corpus. Trigrams and bigrams were binned by the total

18 Our optimal mixture level was closer to 40 percent, but the difference was negligible.

269

Computational Linguistics Volume 27, Number 2

Table 4
Comparison with previous perplexity results.

Perplexity
Paper Trigram Baseline Model Interpolation, 36
Chelba and Jelinek (1998a) 167.14 158.28 148.90
Chelba and Jelinek (1998b) 167.14 153.76 147.70
Current results 167.02 152.26 137.26

count of the conditioning words in the training corpus, and maximum likelihood
mixing coef�cients were calculated for each bin, to mix the trigram with bigram and
unigram estimates. Our trigram model performs at almost exactly the same level as
theirs does, which is what we would expect. Our parsing model’s perplexity improves
upon their �rst result fairly substantially, but is only slightly better than their second
result.19 However, when we interpolate with the trigram, we see that the additional
improvement is greater than the one they experienced. This is not surprising, since our
conditioning information is in many ways orthogonal to that of the trigram, insofar
as it includes the probability mass of the derivations; in contrast, their model in some
instances is very close to the trigram, by conditioning on two words in the pre�x
string, which may happen to be the two adjacent words.

These results are particularly remarkable, given that we did not build our model as
a language model per se, but rather as a parsing model. The perplexity improvement
was achieved by simply taking the existing parsing model and applying it, with no
extra training beyond that done for parsing.

The hope was expressed above that our reported perplexity would be fairly close
to the “true” perplexity that we would achieve if the model were properly normal-
ized, i.e., that the amount of probability mass that we lose by pruning is small. One
way to test this is the following: at each point in the sentence, calculate the condi-
tional probability of each word in the vocabulary given the previous words, and sum
them.20 If there is little loss of probability mass, the sum should be close to one. We
did this for the �rst 10 sentences in the test corpus, a total of 213 words (including
the end-of-sentence markers). One of the sentences was a failure, so that 12 of the
word probabilities (all of the words after the point of the failure) were not estimated
by our model. Of the remaining 201 words, the average sum of the probabilities over
the 10,000-word vocabulary was 0.9821, with a minimum of 0.7960 and a maximum
of 0.9997. Interestingly, at the word where the failure occurred, the sum of the proba-
bilities was 0.9301.

5.4 Word Error Rate
In order to get a sense of whether these perplexity reduction results can translate to
improvement in a speech recognition task, we performed a very small preliminary
experiment on n-best lists. The DARPA ’93 HUB1 test setup consists of 213 utter-
ances read from the Wall Street Journal, a total of 3,446 words. The corpus comes with
a baseline trigram model, using a 20,000-word open vocabulary, and trained on ap-
proximately 40 million words. We used Ciprian Chelba’s A decoder to �nd the 50
best hypotheses from each lattice, along with the acoustic and trigram scores.21 Given

19 Recall that our perplexity measure should, ideally, be even lower still.
20 Thanks to Ciprian Chelba for this suggestion.
21 See Chelba (2000) for details on the decoder.

270

Roark Top-Down Parsing

Table 5
Word and sentence error rate results for various models, with differing training and
vocabulary sizes, for the best language model factor for that particular model.

Percentage Percentage
Training Vocabulary LM Word Error Sentence

Model Size Size Weight Rate Error Rate
Lattice trigram 40M 20K 16 13.7 69.0
Chelba (2000) (4) 20M 20K 16 13.0
Current model 1M 10K 15 15.1 73.2
Treebank trigram 1M 10K 5 16.5 79.8
No language model 0 16.8 84.0

the idealized circumstances of the production (text read in a lab), the lattices are rel-
atively sparse, and in many cases 50 distinct string hypotheses were not found in
a lattice. We reranked an average of 22.9 hypotheses with our language model per
utterance.

One complicating issue has to do with the tokenization in the Penn Treebank
versus that in the HUB1 lattices. In particular, contractions (e.g.,) are split in the
Penn Treebank () but not in the HUB1 lattices. Splitting of the contractions is
critical for parsing, since the two parts oftentimes (as in the previous example) fall
in different constituents. We follow Chelba (2000) in dealing with this problem: for
parsing purposes, we use the Penn Treebank tokenization; for interpolation with the
provided trigram model, and for evaluation, the lattice tokenization is used. If we are to
interpolate our model with the lattice trigram, we must wait until we have our model’s
estimate for the probability of both parts of the contraction; their product can then be
interpolated with the trigram estimate. In fact, interpolation in these trials made no
improvement over the better of the uninterpolated models, but simply resulted in
performance somewhere between the better and the worse of the two models, so we
will not present interpolated trials here.

Table 5 reports the word and sentence error rates for �ve different models: (i) the
trigram model that comes with the lattices, trained on approximately 40M words, with
a vocabulary of 20,000; (ii) the best-performing model from Chelba (2000), which was
interpolated with the lattice trigram at 0 4; (iii) our parsing model, with the same
training and vocabulary as the perplexity trials above; (iv) a trigram model with the
same training and vocabulary as the parsing model; and (v) no language model at all.
This last model shows the performance from the acoustic model alone, without the
in�uence of the language model. The log of the language model score is multiplied
by the language model (LM) weight when summing the logs of the language and
acoustic scores, as a way of increasing the relative contribution of the language model
to the composite score. We followed Chelba (2000) in using an LM weight of 16 for
the lattice trigram. For our model and the Treebank trigram model, the LM weight
that resulted in the lowest error rates is given.

The small size of our training data, as well as the fact that we are rescoring n-best
lists, rather than working directly on lattices, makes comparison with the other models
not particularly informative. What is more informative is the difference between our
model and the trigram trained on the same amount of data. We achieved an 8.5 percent
relative improvement in word error rate, and an 8.3 percent relative improvement
in sentence error rate over the Treebank trigram. Interestingly, as mentioned above,
interpolating two models together gave no improvement over the better of the two,
whether our model was interpolated with the lattice or the Treebank trigram. This

271

Computational Linguistics Volume 27, Number 2

Table 6
Results with full conditioning on the C&J corpus at various base beam factors.

Base LR LP Percentage Perplexity Perplexity Average Rule Words Per
Beam Failed 0 36 Expansions Second
Factor Considered

Sections 23–24: 3761 sentences 120

10 11 81.7 82.1 0.2 152.26 137.26 11,667 3.1
10 10 81.5 81.9 0.3 154.25 137.88 6,982 5.2
10 9 80.9 81.3 0.4 156.83 138.69 4,154 8.9
10 8 80.2 80.6 0.6 160.63 139.80 2,372 15.3
10 7 78.8 79.2 1.2 166.91 141.30 1,468 25.5
10 6 77.4 77.9 1.5 174.44 143.05 871 43.8
10 5 75.8 76.3 2.6 187.11 145.76 517 71.6
10 4 72.9 73.9 4.5 210.28 148.41 306 115.5
10 3 68.4 70.6 8.0 253.77 152.33 182 179.6

per word

contrasts with our perplexity results reported above, as well as with the recognition
experiments in Chelba (2000), where the best results resulted from interpolated models.

The point of this small experiment was to see if our parsing model could provide
useful information even in the case that recognition errors occur, as opposed to the
(generally) fully grammatical strings upon which the perplexity results were obtained.
As one reviewer pointed out, given that our model relies so heavily on context, it may
have dif�culty recovering from even one recognition error, perhaps more dif�culty
than a more locally oriented trigram. While the improvements over the trigram model
in these trials are modest, they do indicate that our model is robust enough to provide
good information even in the face of noisy input. Future work will include more
substantial word recognition experiments.

5.5 Beam Variation

The last set of results that we will present addresses the question of how wide the beam
must be for adequate results. The base beam factor that we have used to this point
is 10 11, which is quite wide. It was selected with the goal of high parser accuracy;

but in this new domain, parser accuracy is a secondary measure of performance. To
determine the effect on perplexity, we varied the base beam factor in trials on the
Chelba and Jelinek corpora, keeping the level of conditioning information constant,
and Table 6 shows the results across a variety of factors.

The parser error, parser coverage, and the uninterpolated model perplexity (1)
all suffered substantially from a narrower search, but the interpolated perplexity re-
mained quite good even at the extremes. Figure 8 plots the percentage increase in
parser error, model perplexity, interpolated perplexity, and ef�ciency (i.e., decrease in
rule expansions per word) as the base beam factor decreased. Note that the model per-
plexity and parser accuracy are quite similarly affected, but that the interpolated per-
plexity remained far below the trigram baseline, even with extremely narrow beams.

6. Conclusion and Future Directions

The empirical results presented above are quite encouraging, and the potential of this
kind of approach both for parsing and language modeling seems very promising.

272

Roark Top-Down Parsing

11 10 9 8 7 6 5 4 3
0

10

20

30

40

50

60

70

80

90

100

log
10

 of base beam factor

P
er

ce
n
ta

g
e

In
cr

e
as

e

Parse error
Model Perplexity
Interpolated Perplexity

Efficiency (decrease in
 rule expansions)

Figure 8
Increase in average precision/recall error, model perplexity, interpolated perplexity, and
ef�ciency (i.e., decrease in rule expansions per word) as base beam factor decreases.

With a simple conditional probability model, and simple statistical search heuristics,
we were able to �nd very accurate parses ef�ciently, and, as a side effect, were able to
assign word probabilities that yield a perplexity improvement over previous results.
These perplexity improvements are particularly promising, because the parser is pro-
viding information that is, in some sense, orthogonal to the information provided by
a trigram model, as evidenced by the robust improvements to the baseline trigram
when the two models are interpolated.

There are several important future directions that will be taken in this area. First,
there is reason to believe that some of the conditioning information is not uniformly
useful, and we would bene�t from �ner distinctions. For example, the probability
of a preposition is presumably more dependent on a c-commanding head than the
probability of a determiner is. Yet in the current model they are both conditioned
on that head, as leftmost constituents of their respective phrases. Second, there are
advantages to top-down parsing that have not been examined to date, e.g., empty
categories. A top-down parser, in contrast to a standard bottom-up chart parser, has
enough information to predict empty categories only where they are likely to occur.
By including these nodes (which are in the original annotation of the Penn Treebank),
we may be able to bring certain long-distance dependencies into a local focus. In
addition, as mentioned above, we would like to further test our language model in
speech recognition tasks, to see if the perplexity improvement that we have seen can
lead to signi�cant reductions in word error rate.

Other parsing approaches might also be used in the way that we have used a top-
down parser. Earley and left-corner parsers, as mentioned in the introduction, also
have rooted derivations that can be used to calculated generative string pre�x proba-

273

Computational Linguistics Volume 27, Number 2

bilities incrementally. In fact, left-corner parsing can be simulated by a top-down parser
by transforming the grammar, as was done in Roark and Johnson (1999), and so an
approach very similar to the one outlined here could be used in that case. Perhaps
some compromise between the fully connected structures and extreme underspeci�ca-
tion will yield an ef�ciency improvement. Also, the advantages of head-driven parsers
may outweigh their inability to interpolate with a trigram, and lead to better off-line
language models than those that we have presented here.

Does a parsing model capture exactly what we need for informed language mod-
eling? The answer to that is no. Some information is simply not structural in nature
(e.g., topic), and we might expect other kinds of models to be able to better handle
nonstructural dependencies. The improvement that we derived from interpolating the
different models above indicates that using multiple models may be the most fruitful
path in the future. In any case, a parsing model of the sort that we have presented
here should be viewed as an important potential source of key information for speech
recognition. Future research will show if this early promise can be fully realized.

Acknowledgments

The author wishes to thank Mark Johnson
for invaluable discussion, guidance, and
moral support over the course of this
project. Many thanks also to Eugene
Charniak for the use of certain grammar
training routines, and for an enthusiastic
interest in the project. Thanks also to four
anonymous reviewers for valuable and
insightful comments, and to Ciprian Chelba,
Sanjeev Khudanpur, and Frederick Jelinek
for comments and suggestions. Finally, the
author would like to express his
appreciation to the participants of
discussions during meetings of the Brown
Laboratory for Linguistic Information
Processing (BLLIP); in addition to Mark and
Eugene: Yasemin Altun, Don Blaheta,
Sharon Caraballo, Massimiliano Ciaramita,
Heidi Fox, Niyu Ge, and Keith Hall. This
research was supported in part by NSF
IGERT Grant #DGE-9870676.

References

Aho, Alfred V., Ravi Sethi, and Jeffrey D.
Ullman. 1986. Compilers, Principles,
Techniques, and Tools. Addison-Wesley,
Reading, MA.

Black, Ezra, Steven Abney, Dan Flickenger,
Claudia Gdaniec, Ralph Grishman, Philip
Harrison, Donald Hindle, Robert Ingria,
Frederick Jelinek, Judith Klavans, Mark
Liberman, Mitchell P. Marcus, Salim
Roukos, Beatrice Santorini, and Tomek
Strzalkowski. 1991. A procedure for
quantitatively comparing the syntactic
coverage of english grammars. In DARPA
Speech and Natural Language Workshop,
pages 306–311.

Briscoe, Ted and John Carroll. 1993.
Generalized probabilistic parsing of
natural language (corpora) with
uni�cation-based grammars.
Computational Linguistics, 19(1):25–60.

Caraballo, Sharon and Eugene Charniak.
1998. New �gures of merit for best-�rst
probabilistic chart parsing. Computational
Linguistics, 24(2):275–298.

Charniak, Eugene. 1997. Statistical parsing
with a context-free grammar and word
statistics. In Proceedings of the Fourteenth
National Conference on Arti�cial Intelligence,
pages 598–603, Menlo Park. AAAI
Press/MIT Press.

Charniak, Eugene. 2000. A
maximum-entropy-inspired parser. In
Proceedings of the 1st Conference of the North
American Chapter of the Association for
Computational Linguistics, pages 132–139.

Charniak, Eugene, Sharon Goldwater, and
Mark Johnson. 1998. Edge-based best-�rst
chart parsing. In Proceedings of the Sixth
Workshop on Very Large Corpora,
pages 127–133.

Chelba, Ciprian. 2000. Exploiting Syntactic
Structure for Natural Language Modeling.
Ph.D. thesis, The Johns Hopkins
University.

Chelba, Ciprian and Frederick Jelinek.
1998a. Exploiting syntactic structure for
language modeling. In Proceedings of the
36th Annual Meeting of the Association for
Computational Linguistics and 17th
International Conference on Computational
Linguistics, pages 225–231.

Chelba, Ciprian and Frederick Jelinek.
1998b. Re�nement of a structured
language model. In International
Conference on Advances in Pattern

274

http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2919:1L.25[aid=732303]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2924:2L.275[aid=1304065]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2924:2L.275[aid=1304065]

Roark Top-Down Parsing

Recognition, pages 275–284.
Chelba, Ciprian and Frederick Jelinek. 1999.

Recognition performance of a structured
language model. In Proceedings of the 6th
European Conference on Speech
Communication and Technology (Eurospeech),
pages 1,567–1,570.

Chi, Zhiyi and Stuart Geman. 1998.
Estimation of probabilistic context-free
grammars. Computational Linguistics,
24(2):299–305.

Collins, Michael J. 1997. Three generative,
lexicalised models for statistical parsing.
In Proceedings of the 35th Annual Meeting,
pages 16–23. Association for
Computational Linguistics.

Collins, Michael J. 1999. Head-Driven
Statistical Models for Natural Language
Parsing. Ph.D. thesis, University of
Pennsylvania.

Collins, Michael J. 2000. Discriminative
reranking for natural language parsing. In
The Proceedings of the 17th International
Conference on Machine Learning,
pages 175–182.

Cover, Thomas M. and Joy A. Thomas.
1991. Elements of Information Theory. John
Wiley and Sons, Inc., New York.

Earley, Jay. 1970. An ef�cient context-free
parsing algorithm. Communications of the
ACM, 6(8):451–455.

Eisner, J. and G. Satta. 1999. Ef�cient
parsing for bilexical context-free
grammars and head automaton
grammars. In Proceedings of the 37th Annual
Meeting, pages 457–464. Association for
Computational Linguistics.

Goddeau, David. 1992. Using probabilistic
shift-reduce parsing in speech recognition
systems. In Proceedings of the 2nd
International Conference on Spoken Language
Processing, pages 321–324.

Goodman, Joshua. 1997. Global
thresholding and multiple-pass parsing.
In Proceedings of the Second Conference on
Empirical Methods in Natural Language
Processing (EMNLP-97), pages 11–25.

Henderson, John C. and Eric Brill. 1999.
Exploiting diversity in natural language
processing: Combining parsers. In
Proceedings of the Fourth Conference on
Empirical Methods in Natural Language
Processing (EMNLP-99), pages 187–194.

Hopcroft, John E. and Jeffrey D. Ullman.
1979. Introduction to Automata Theory,
Languages and Computation.
Addison-Wesley.

Inui, Kentaro, Virach Sornlertlamvanich,
Hozummi Tanaka, and Takenobu
Tokunaga. 1997. A new formalization of
probabilistic parsing. In Proceedings of

the 5th International Workshop on Parsing
Technologies, pages 123–134.

Jelinek, Frederick. 1997. Statistical Methods
for Speech Recognition. MIT Press,
Cambridge, MA.

Jelinek, Frederick and Ciprian Chelba. 1999.
Putting language into language modeling.
In Proceedings of the 6th European Conference
on Speech Communication and Technology
(Eurospeech), pages KN1–6.

Jelinek, Frederick and John D. Lafferty. 1991.
Computation of the probability of initial
substring generation by stochastic
context-free grammars. Computational
Linguistics, 17(3):315–323.

Jelinek, Frederick and Robert L. Mercer.
1980. Interpolated estimation of Markov
source parameters from sparse data. In
Proceedings of the Workshop on Pattern
Recognition in Practice, pages 381–397.

Johnson, Mark. 1998. models of
linguistic tree representations.
Computational Linguistics, 24(4):617–636.

Johnson, Mark, Stuart Geman, Stephen
Canon, Zhiyi Chi, and Stefan Riezler.
1999. Estimators for stochastic
“uni�cation-based” grammars. In
Proceedings of the 37th Annual Meeting,
pages 535–541. Association for
Computational Linguistics.

Jurafsky, Daniel, Chuck Wooters, Jonathan
Segal, Andreas Stolcke, Eric Fosler, Gary
Tajchman, and Nelson Morgan. 1995.
Using a stochastic context-free grammar
as a language model for speech
recognition. In Proceedings of the IEEE
Conference on Acoustics, Speech, and Signal
Processing, pages 189–192.

Manning, Christopher D. and Hinrich
Schütze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press,
Cambridge, MA.

Marcus, Mitchell P., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

Ratnaparkhi, Adwait. 1997. A linear
observed time statistical parser based on
maximum entropy models. In Proceedings
of the Second Conference on Empirical
Methods in Natural Language Processing
(EMNLP-97), pages 1–10.

Roark, Brian and Eugene Charniak. 2000.
Measuring ef�ciency in high-accuracy,
broad-coverage statistical parsing. In
Proceedings of the COLING-2000 Workshop
on Ef�ciency in Large-scale Parsing Systems,
pages 29–36.

Roark, Brian and Mark Johnson. 1999.
Ef�cient probabilistic top-down and

275

http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2924:2L.299[aid=1304066]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2917:3L.315[aid=1304068]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2919:2L.313[aid=712287]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2924:2L.299[aid=1304066]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2917:3L.315[aid=1304068]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2919:2L.313[aid=712287]

Computational Linguistics Volume 27, Number 2

left-corner parsing. In Proceedings of the
37th Annual Meeting, pages 421–428.
Association for Computational
Linguistics.

Rosenfeld, Ronald. 1996. A maximum
entropy approach to adaptive statistical
language modeling. Computer, Speech and
Language, 10:187–228.

Rosenfeld, Ronald. 1997. A whole sentence
maximum entropy language model. In
Proceedings of IEEE Workshop on Speech
Recognition and Understanding,
pages 230–237.

Rosenkrantz, Daniel J. and Philip M.
Lewis II. 1970. Deterministic left corner
parsing. In IEEE Conference Record of the
11th Annual Symposium on Switching and
Automata, pages 139–152.

Saul, Lawrence and Fernando C. N. Pereira.
1997. Aggregate and mixed-order Markov
models for statistical language processing.
In Proceedings of the Second Conference on
Empirical Methods in Natural Language
Processing (EMNLP-97), pages 81–89.

Stolcke, Andreas. 1995. An ef�cient
probabilistic context-free parsing
algorithm that computes pre�x
probabilities. Computational Linguistics,
21(2):165–202.

Stolcke, Andreas and Jonathan Segal. 1994.
Precise n-gram probabilities from
stochastic context-free grammars. In
Proceedings of the 32nd Annual Meeting,
pages 74–79. Association for
Computational Linguistics.

276

http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-2308^28^2910L.187[aid=539862]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2921:2L.165[aid=1304070]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-2308^28^2910L.187[aid=539862]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0891-2017^28^2921:2L.165[aid=1304070]

