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Ranking and aggregation queries are widely used in data exploration, data analysis, and
decision-making scenarios. While most of the currently proposed ranking and aggregation tech-
niques focus on deterministic data, several emerging applications involve data that is unclean
or uncertain. Ranking and aggregating uncertain (probabilistic) data raises new challenges in
query semantics and processing, making conventional methods inapplicable. Furthermore, un-
certainty imposes probability as a new ranking dimension that does not exist in the traditional
settings.

In this article we introduce new probabilistic formulations for top-k and ranking-aggregate
queries in probabilistic databases. Our formulations are based on marriage of traditional top-k se-
mantics with possible worlds semantics. In the light of these formulations, we construct a generic
processing framework supporting both query types, and leveraging existing query processing and
indexing capabilities in current RDBMSs. The framework encapsulates a state space model and
efficient search algorithms to compute query answers. Our proposed techniques minimize the num-
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experimental study shows the efficiency of our techniques under different data distributions with
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1. INTRODUCTION

Efficient processing of ranking and aggregation queries is a crucial requirement
in many domains such as Web search and OLAP. Several techniques have been
proposed to compute top-k [Hristidis et al. 2001; Natsev et al. 2001; Ilyas et al.
2004; Li et al. 2005], and ranking-aggregate queries [Li et al. 2006] in relational
databases. A top-k query reports the k tuples with the highest scores based on
some scoring function, while a ranking-aggregate query (also referred to as
“top-k aggregate query”) ranks groups of records by their aggregate values and
returns the k groups with the highest aggregates. Most proposed techniques
in this area focus on minimizing the number of accessed tuples (or groups) to
conclude the top-k answers, while avoiding sorting the complete query results.

In many current applications, data involves uncertainty and imprecision.
The imprecision of real world data entails different semantics for top-k and
top-k aggregate queries, and motivates the need for new query formulations
and efficient processing techniques to address ranking and aggregation from a
probabilistic perspective.

1.1 Motivation and Challenges

In several applications, efficient support for ranking and aggregation of proba-
bilistic data is required. In the context of the Web, information extraction tech-
niques are used to extract instances of entities, for example, organization and
person names. The imperfection of extraction tools and the inherent ambiguity
of unstructured text introduce significant uncertainty in the extracted informa-
tion. Ranking such probabilistic information based on some scoring measure
is important to a wide range of applications. For example, a popularity sur-
vey may require ranking movies based on the extracted ratings from online
reviews. In the context of sensor networks, sensor readings are usually rep-
resented using probabilistic models, derived from readings history and sensor
correlations. Many applications can benefit from aggregating sensor data. For
example, grouping sensor readings by location to find the top-k locations based
on average temperature. Similar application examples exist in the contexts
of schema matching, for example: He and Chang [2006], and data integration
for example, Bhattacharya et al. [2006], Andritsos et al. [2006]. We use the
following simple example to illustrate the challenges involved in ranking and
aggregating probabilistic data.

Example 1. In a traffic-monitoring system, radars detect cars’ speeds au-
tomatically, while car identification, for example, by plate number, is performed
by a human operator, or OCR of plate number images. In this system, multi-
ple sources contribute to data uncertainty (e.g., high voltage lines that interfere
with radars affecting their precision, close by cars that cannot be distinguished,
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Fig. 1. (a) A relation with tuple uncertainty; (b) example ranking and aggregation queries.

or plate number images that are not clear enough to identify the car precisely).
Figure 1(a) is a snapshot of speed Readings relation in the last hour. The spe-
cial attribute “Prob” in each tuple indicates the probability that the whole tuple
gives correct information. This probability can be obtained from various sources.
For example, history of previous readings might indicate that 70% of the read-
ings obtained from radars close to high voltage lines are actually correct. Hence,
the readings of a radar unit that is close to high voltage lines can be assumed
to be correct with probability 0.7. Other sources (e.g., clearness of plate number
images) can be additionally incorporated to better quantify tuple’s uncertainty.

Figure 1(b) shows two queries to be evaluated on the Readings relation in
Example 1. Query 1 requests the top-k speeding cars in one hour interval, which
can be used, for example, in an accident investigation scenario, while Query 2
requests the top-k locations based on average speed, which can be used, to
recommend the most suitable locations of speed traps, for example. While both
queries are clear in deterministic databases, we show that their interpretation
and processing is challenging for probabilistic databases.

In Query 1, although tuple score (the Speed attribute) is deterministic, the
tuples are probabilistic. Both tuples’ probabilities and scores need to be factored
in our interpretation of this query. This effectively introduces two interacting
ranking dimensions that interplay to decide meaningful query answers. For ex-
ample, it is not meaningful to report a top-scored tuple with insignificant prob-
ability. Moreover, combining scores and probabilities into one measure, using
some aggregation function, eliminates uncertainty completely, and loses valu-
able information that can be used to get more meaningful answers conforming
with probabilistic query models (we elaborate on this point in Section 2).

In the case of aggregation, additional challenges arise. In Query 2, each loca-
tion (group) involves a number of probabilistic tuples. For example, for location
L1, there is a chance that a Honda and a Toyota tuples are correctly recorded,
only one of them is correctly recorded, or none of them is correctly recorded. To
compute Average(Speed), the aggregate value of each group, we need to take all
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possibilities into account. This means that we have, for each group, a probability
distribution over its aggregate value. Computing such probability distribution
is shown to be in NP [Ross et al. 2005]. This is a clear departure from the con-
ventional semantics of aggregate queries, where the aggregate function gives
a single deterministic value for each group.

We thus identify two main challenges related to formulating and processing
probabilistic ranking and aggregation queries:

—Meaningful query semantics. The proper query semantics of probabilistic
ranking and aggregation queries need to integrate the semantics of prob-
abilistic queries with the semantics of conventional (score-based) top-k
queries. Different possible query semantics arise from this integration.

—Efficient query processing. While minimizing the number of accessed tu-
ples/groups is central to most score-based top-k techniques, uncertainty
adds further processing complexity, making existing score-based methods
inapplicable. Specifically, uncertainty generates a huge space of possible
query answers that have to be explored and ranked to find the high-
quality ones. In such settings, integrating tuple retrieval, ranking, and
uncertainty management, within the same framework, is essential for ef-
ficient processing.

We tackle the aforementioned challenges under a general uncertainty model
allowing for different forms of uncertainty and probabilistic correlations. Our
techniques are based on two basic ideas: (1) identifying the necessary tuple
order that can be exploited for efficient query evaluation; and (2) applying
probability-guided search mechanisms to evaluate our queries, while avoiding
the materialization of every possible answer.

1.2 Contributions and Outline

Our general approach is to process scores and manage uncertainty in one
framework leveraging current DBMS storage, query processing capabilities,
and probabilistic inference models. Our main contributions towards this goal
are summarized as follows:

—New query definitions. We are the first to propose probabilistic formula-
tions of top-k and top-k aggregate queries that integrate both score and
probability.

—Search space model. We model probabilistic top-k and top-k aggregate queries
as a space search problem. We introduce several principled space navigation
algorithms, with performance guarantees, to lazily and partially materialize
the answer space while searching for top-ranked query answers.

—Processing framework. We construct a pipelined processing framework that
allows for early query termination. Our proposed framework is the first
integrated solution that treats tuple retrieval, grouping, aggregation, uncer-
tainty management, and ranking in a pipelined fashion, allowing for feasible
query evaluation.
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Fig. 2. Frequently used notations.

—Experimental study. We conduct an extensive experimental study to evaluate
our techniques based on a prototype implementation on top of PostgreSQL.
The experiments evaluate our techniques in different configurations, show-
ing the efficiency and robustness of our techniques in different practical
settings.

Our earlier work [Soliman et al. 2007a] (described in Sections 5 and 6.1) stud-
ies top-k queries for probabilistic tuples with deterministic scores. The work
in Soliman et al. [2007a] does not address ranking-aggregate queries, or top-k
queries with probabilistic scores. In this article, we significantly extend Soliman
et al. [2007a]. In addition, we study formulating and computing probabilistic
ranking-aggregate queries and the applicability of our techniques to several
other extensions and special cases.

Figure 2 gives the frequently used notations in this article. The remainder
of this article is organized as follows. Section 2 gives necessary background
on uncertain databases. Section 3 describes the uncertainty model we adopt
in this article, and gives the problem definition. Section 4 gives the high-level
view of our processing framework and assumptions. Section 5 describes the
processing techniques for probabilistic top-k queries. Section 6 describes spe-
cial cases resulting from relaxing our framework assumptions. Section 7 de-
scribes the formulation and processing of ranking-aggregate queries. Section 8
discusses other related query types. Section 9 discusses handling expensive
probability computation. Section 10 is our experimental study. Section 11
describes related works. Finally, Section 12 concludes the article with final
remarks.

2. BACKGROUND: MODELING AND QUERYING UNCERTAIN DATA

Several probabilistic data and query models have been proposed [Madden et al.
2003; Fuxman et al. 2005; Cheng et al. 2007; Sarma et al. 2006]. Most of these
models assume two basic uncertainty types. The first type, usually referred
to as “membership uncertainty” [Lakshmanan et al. 1997; Dalvi and Suciu
2007; Sarma et al. 2006] treats tuples as uncertain events capturing the be-
lief that they belong to the database. The probabilities of such events origi-
nate from different sources, for example, reliability of data source in data inte-
gration environments [Hernandez and Stolfo 1998], or similarity measures in
approximate-matching [Dalvi and Suciu 2007]. The second uncertainty type,
referred to as “value uncertainty” [Cheng et al. 2007; Sarma et al. 2006] repre-
sents attributes as probability distributions on continuous or discrete domains
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of possible values (e.g., modeling the readings of sensing devices). In the fol-
lowing, we mean by a “probabilistic database” a database with uncertain tuple
membership.

Many proposed models [Imieliński and Witold Lipski 1984; Abiteboul et al.
1987; Sarma et al. 2006], adopt possible worlds semantics, where a probabilistic
databaseD is viewed as a set of possible worlds {PW 1, . . . , PW n} that represent
an enumeration of all possible instances of the database. Each world is a subset
of database tuples. The principles of probability theory are used to support
this view by modeling tuples as probabilistic events. Specifically, a tuple t is
associated with an event t.e such that t exists in the database with probability
Pr(t.e), and does not exist in the database with probability Pr(¬t.e) = 1−Pr(t.e).
Possible worlds are thus viewed as conjunctions of tuple events.

Let Q be a query to be executed over D, where Q(D) is the output of Q , and
Q(PW i) is the output of Q restricted to PW i. In possible worlds semantics, the
probability of an output tuple tq ∈ Q(D) is computed as the summation of the
probabilities of the possible worlds where tq is reported as a query answer, as
given in the following equation:

Pr(tq .e) =
∑

PW i :tq∈Q(PW i )

Pr(PW i). (1)

A possible world is effectively a deterministic database, and hence query pro-
cessing in individual worlds follows the operational semantics of conventional
query operators. The huge number of possible worlds hinders instantiating and
processing worlds explicitly. However, thinking in terms of possible worlds al-
lows defining proper query semantics.

Possible worlds probabilities are determined based on the probabilistic
correlations among tuples (e.g., mutual exclusion of tuples that map to the
same real world entity [Sarma et al. 2006]). We call such correlations gen-

eration rules, since they control how the possible worlds space is generated.
Such rules could naturally arise with unclean data [Andritsos et al. 2006],
or could be enforced to satisfy application requirements or reflect domain
semantics [Widom 2005; Sarma et al. 2006; Benjelloun et al. 2006]. More-
over, the relational processing of probabilistic tuples induces correlations
among intermediate query results, even when base tuples are uncorrelated
[Dalvi and Suciu 2007].

To illustrate, Figure 3(a) shows the Readings relation, from Example 1, aug-
mented with generation rules that enforce the following requirement: “based
on radar locations, the same car cannot be detected at two different locations
within 1 hour interval.” Figure 3(b) shows the possible worlds and their prob-
abilities. Each world can be seen as a joint event of the existence of a world’s
tuples and the absence of all other database tuples. The probability of this
joint event is determined by tuple probabilities and the generation rules that
correlate them. The given xor rules in Figure 3(a) mean that in any possible
world the existence of t2 implies the absence of t3, and, similarly, the existence
of t4 implies the absence of t5. All other tuples are uncorrelated (indepen-

dent). Consequently, Pr(PW 1) = Pr(t1.e ∧ t2.e ∧ t6.e ∧ t4.e ∧ ¬t3.e ∧ ¬t5.e) =

0.4 × 0.7 × 1.0 × 0.4 = 0.112. The probabilities of other worlds are computed
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Fig. 3. Probabilistic database: (a) probabilistic relation and generation rules; (b) possible worlds
space.

similarly. Any possible world, other than PW 1 . . . PW 8, has zero probability
based on tuple probabilities and generation rules.

We now discuss computing SPJ queries over probabilistic relations. The se-
mantics of SPJ operators are overloaded to handle probability computation.
Let R and S be two probabilistic relations containing the tuples r and s, re-
spectively. Let σ p, π p, and ✶

p be the probabilistic selection, projection, and join
operators, respectively. The tuples produced by these operators are associated
with the following events:

(σ p
c (r)).e =

{

r.e if c(r) = true

undefined if c(r) = false
; where c(r) is the selection condition. (2)

(

π
p
{A1 ...An}(r)

)

.e =
∨

ŕ∈R:π{A1 ...An}(ŕ)=π{A1 ...An}(r)

ŕ.e (3)

(

r✶
p

c(r,s)s
)

.e =

{

r.e ∧ s.e if c(r, s) = true

undefined if c(r, s) = false
; where c(r,s) is the join condition (4)

The probability of each query output tuple tq is computed as Pr(tq .e), which
is equivalent to the probability computed under possible worlds semantics, as
given in Eq. (1) [Dalvi and Suciu 2007]. Such computation is done using the
formulation of tq .e (as given in Eqs. (2), (3), and (4)), and the correlations (rules)
that bind the involved events in tq .e.

Computing the probabilities of output tuples in SPJ queries is generally fea-
sible under bag semantics. However, under set semantics, probability computa-
tion is hard in some cases even if the base tuple events are independent [Dalvi
and Suciu 2007]. In particular, computing the probabilities of the output tuples
of the π p operator is as hard as computing the satisfiability ratio of a DNF
formula, which is #P-Complete [Valiant 1979]. Other proposals [Sen and Desh-
pande 2007], use factored representation of tuples dependencies to compute the
probabilities of output tuples using probabilistic inference. The computational
cost is reduced using variable elimination and factor decomposability, however
the problem remains generally intractable.
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3. UNCERTAINTY MODEL AND PROBLEM DEfiNITION

In this section we describe the uncertainty model we assume in this article,
followed by our formal problem definition.

3.1 Uncertainty Model

We assume a general uncertainty model that allows for computing the joint
probability of an arbitrary combination of tuple events. Computing this proba-
bility is the only interface between the uncertainty model, and our processing
framework (we elaborate on this point in Section 4). This separation of model
details and query processing allows for great flexibility in adopting different
models that describe the uncertainty in the underlying data in different forms.
In the following, we describe example models, conforming to our requirements,
with different specifications and implementations:

—Independent tuples. When all tuples events are independent, as in Figure 1,
the model is simply the membership probabilities of base tuples. Using such
a simple model, the joint probability of any combination of tuple events is
computed by multiplying the probabilities of the corresponding tuple events.

—Correlated tuples with simple rules. When tuple events are correlated with
simple rules (e.g., implication or exclusiveness) the model maintains these
rules, in addition to tuples’ probabilities. The joint probability of any combi-
nation of tuple events is computed based on tuples’ probabilities and rules
semantics. For example, for a rule (t1 ⊕ t2) that states that t1 is mutu-
ally exclusive with t2 (e.g., Figure 3), we have Pr(t1.e ∧ t2.e) = 0, while
Pr(t1.e ∧ ¬t2.e) = Pr(t1.e). Similarly, for a rule (t1 → t2) that states
that t1 implies t2 (e.g., RFID data where a tuple representing an inven-
tory item implies the tuple representing the item’s packing cell), we have
Pr(t1.e ∧ t2.e) = Pr(t1.e), while Pr(t1.e ∧ ¬t2.e) = 0. Similar types of rules
have been used in different uncertainty models [Sarma et al. 2006; Sen and
Deshpande 2007], to represent tuples’ correlations. Note that tuples’ prob-
abilities have to be consistent with rules semantics, otherwise the possible
worlds semantics would be violated. For example, if the rule (t1 ⊕ t2) holds,
then Pr(t1.e) + Pr(t2.e) must be ≤ 1. Similarly, if the rule (t1 → t2) holds,
then Pr(t1.e) must be ≤ Pr(t2.e). Studying such consistency issues is out
of the scope of our study. We thus assume that tuples’ probabilities are al-
ways consistent with tuples’ correlations. Note also that tuples’ marginal
probabilities and rules semantics may not be sufficient to compute the joint
probability of combinations of tuple events in all cases. For example, for a
rule ( t1 ∨ t2) that states that at least one of t1 and t2 must appear in each
possible world, we cannot derive the joint probability distribution of t1 and
t2 based on their marginal probabilities.

—General inference model. The two models above are limited in their scope to
special cases. Hence, such models may be insufficient to represent and rea-
son about probabilistic data in more general scenarios. A more general model,
subsuming the above simple models, is to maintain the explicit joint proba-

bility distribution of all database tuples. One compact representation of such
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huge distribution is factor graphs, proposed in Sen and Deshpande [2007],
where arbitrary tuple correlations are maintained in the form of conditional
probability tables.

We discuss the implementation details of our adopted uncertainty model in
Section 4. However, we emphasize that model specifications, expressiveness,
and implementation are not the main focus of our study.

3.2 Problem Definition

We assume the query model given in Eq. (1), which is applicable to arbitrary
uncertainty models that treat tuples as probabilistic events (e.g., the models
described in Section 3.1). Our goal is to compute query answers by conceptually
computing query answers in each world and aggregating the probabilities of
identical answers. In the following, we assume thatD is a probabilistic database
conforming to our uncertainty model, Q is a query to be processed on D, and F

is a scoring (ranking) function that ranks output tuples in Q(D) (the convention
adopted throughout this article is that we rank in the descending order of F
values). A concrete example of Q is the probabilistic SPJ query described in
Section 2. We assume PW = {PW 1, . . . , PW n} is the set of possible worlds of
Q(D).

Definition 1. Uncertain Top-k Query (U-Topk). Let T = {T 1, . . . , T m} be
the set of all k-length tuple vectors in Q(D) such that each T i ∈ T is the top-k
answer in a nonempty set of possible worlds W (T i) ⊆ PW based onF . We define
the probability of a top-k vector T j ∈ T as Pr(T j ) =

∑

PW i∈W (T j ) Pr(PW i). A
U-Topk query based on F , returns a k-length tuple vector T ∗ ∈ T , with the
highest probability among all tuple vectors in T .

U-Topk query returns the tuple vector with the highest probability of being
top-k across all worlds. For example, consider Query 1 in Figure 1. Figure 3(b)
shows the possible worlds of the Readings relation ordered on Speed. A U-Top2
query answer is the tuple vector 〈t1, t2〉 with probability 0.28, since 〈t1, t2〉 is
the top-2 vector in PW 1 and PW 2 whose probability summation is 0.28, which
is the maximum probability among all possible top-2 vectors. Tuple vectors
reported by U-Topk query are valid tuple combinations that conform to tuple
dependencies (e.g., reported vectors cannot contain mutually-exclusive tuples).

Definition 2. Uncertain k Ranks Query (U-kRanks). For i = 1 . . . k, let
X i = {t1

i , . . . , tm
i } be a set of tuples in Q(D), where each tuple t

j
i appears at

rank i in a nonempty set of possible worlds W (t
j

i ) ⊆ PW based on F . We define

the probability of a tuple t
j

i ∈ X i to be at rank i as Pr(t
j

i ) =
∑

PW l ∈W (t
j

i ) Pr(PW l ).

A U-kRanks query based on F , returns a set X ∗ = {t∗
1 , . . . , t∗

k }, where each tuple
t∗
i has the highest probability among all tuples in X i.

U-kRanks query answer is a set of tuples that together might not form the
most probable top-k vector. However, each tuple is a clear winner at its rank
over all worlds. Consider Figure 3. A U-2Ranks query answer is {t2 : 0.42, t6 :
0.324}, since t2 is at rank 1 in PW 5 and PW 6 with probability summation
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0.42, while t6 is at rank 2 in PW 3, PW 5, and PW 8 with probability summation
0.324. Note that the set of worlds contributing to the probability of t2 being at
rank 1 are considered independently from the set of worlds contributing to t6
being at rank 2. Hence, in contrast to U-Topk query, a U-kRanks query relaxes
the restriction of having dependency-compliant tuple combinations in a query
answer.

Definition 2 does not restrict query answers at different ranks to be distinct.
That is, a tuple can be the most probable tuple to appear at different ranks si-
multaneously. Since U-kRanks query concentrates on each rank independently
of the others (e.g., finding the most probable athlete to win the silver medal),
the query definition needs to be extended to address distinct query answers.
We discuss such extensions in Section 8

U-Topk and U-kRanks queries can be useful in a wide range of practical
applications. For example, in Figure 3, U-Topk may be useful in discovering
groups of over-speeding cars in an accident investigation (e.g., the k cars that
are consistently over-speeding in different possible worlds). On the other hand,
U-kRanks may be useful in assessing insurance policies based on the makes of
the most speeding cars over a time period, considered independently from each
other. Other possible semantics of probabilistic top-k queries include finding
the most probable top-k set, that is, the k tuples with the highest probabilities
of appearing in the top-k of different worlds. We show in Section 8 that our
query definitions can also cover these semantics.

We extend the above definitions to handle probabilistic top-k aggregate
queries. In the following, let Q be a group-by query, A be a set of grouping
attributes, and F be a group aggregate function, for example, sum, that ranks
groups in Q(D). The distinct combinations of the attributes’ values in A act as
group identifiers.

Definition 3. Uncertain Top-k Aggregate Query (U-Topk-Agg). Let Gi =

〈g1, . . . , gk〉 be the top-k-group vector in a nonempty set of possible worlds
W (Gi) ⊆ PW, based on A and F . We define the probability of a top-k-group
vector Gi as Pr(Gi) =

∑

PW l ∈W (Gi )
Pr(PW l ). A U-Topk-Agg query, based on A and

F , returns a k-length vector G∗ with the highest probability.

Definition 4. Uncertain k Ranks Aggregate Query (U-kRanks-Agg). For
i = 1 . . . k, let X i = {g1

i , . . . , gm
i } be a set of group identifiers in Q(D), where

each group identifier g
j
i appears at rank i in a nonempty set of possible worlds

W (g
j
i ) ⊆ PW based on A and F . We define the probability of group g

j
i ∈ X i to

be at rank i as Pr(g
j
i ) =

∑

PW l ∈W (g
j
i ) Pr(PW l ). A U-kRanks-Agg query, based

on A and F , returns a set X ∗ = {g∗
1, . . . , g∗

k}, where each group identifier g∗
i

has the highest probability among all group identifiers in X i.

A straightforward procedure to compute U-Topk-Agg, and U-kRanks-Agg
queries is to materializePW, group each world based on the grouping attributes
A, apply aggregation function F to each group in each world, sort the results
obtained from each world based on F , and finally add up the probabilities of the
worlds with the same top-k group vectors/group identifiers at different ranks,
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Fig. 4. (a) Probabilistic relation and generation rules; (b) possible worlds space grouped on “Loca-
tion”; (c) groups ranked on “Average(Speed).”

and report the answers with the maximum probability. This procedure is clearly
impractical because of the huge space of possible worlds, and the potential
complexity of probability computation.

We illustrate the semantics of our ranking-aggregates queries based on
Query 2, described in Figure 1, where A = {Location} and F = Average(Speed).
In Figure 4(b), tuples belonging to the same group in each world are en-
closed in the same dotted box. Figure 4(c) shows the grouped and ranked
possible worlds. A U-Top2-Agg query answer is the group vector 〈L1, L4〉

with probability 0.82, while a U-3Ranks-Agg query answer is the group set
{L1 : 0.82, L4 : 0.82, L3 : 0.329}.

In each of the previous queries, we report the most probable answer only.
However, the query definitions can be generalized to formulate query answers
as the l most probable answers for some input parameter l . We discuss this
generalization in Section 8.

4. PROCESSING FRAMEWORK

In this section we describe our query processing framework to support top-k
and top-k aggregate queries in probabilistic databases. The framework is based
on two underlying design principles:

—DP1: To build on top of an RDBMS as our tuple access layer. We use an
underlying RDBMS to store and process probabilistic data and uncertainty
information. Our processing framework leverages RDBMS storage, index-
ing and query processing capabilities to compute probabilistic top-k (aggre-
gate) queries. Similar arguments are made in the design of the TRIO system
[Widom 2005; Benjelloun et al. 2006].

—DP2: To leverage current top-k and top-k aggregates query processing
techniques in deterministic databases. In particular, our framework takes
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Fig. 5. Processing framework.

advantage of rank-aware/group-aware query processing (if supported by
the underlying DBMS) to minimize the number of needed-to-access tu-
ples/groups. The framework also adopts the upper-bounding principle used
in several proposals [Ilyas et al. 2003; Li et al. 2006] to limit the size of the
materialized space.

4.1 Framework Details

In this section we give a detailed description of our processing framework.
Figure 5 shows the framework architecture.

Tuple access layer. Tuple retrieval, indexing, and query processing (includ-
ing score-based ranking) are the main functionalities of this layer. Addition-
ally, to support top-k aggregate queries, the tuple access layer provides an in-
terface to allow the upper layer to retrieve tuples incrementally from specific
groups. Different proposed techniques(e.g., index striding [Hellerstein et al.
1997]), can satisfy such requirement. We elaborate on these techniques in
Section 11. The tuple access layer executes an incoming query, which acts as
the tuple source of the upper layer. We show in Section 5.1 that sorted score
access for output tuples from the tuple access layer is necessary for efficient
processing.

While our techniques can benefit largely from efficient support of rank-
ing and grouping in the tuple access layer, our framework is still valid if
such support is limited or lacking. However in this case, extra tuples/groups
need to be accessed to realize query answers. For example, a complete sort-
ing of Boolean query results may be required if rank-aware processing is not
supported.
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Rule engine. This module is responsible for computing the probabilities of
arbitrary combinations of tuple events. We assume an interface to the rule en-

gine receiving as input an arbitrary combination of tuple events, and producing
as output the probability of such combination. The details of the rule engine are
not the focus of our study, since they vary according to how sophisticated the
underlying uncertainty model is, as discussed in Section 3.1. To illustrate, Dalvi
and Suciu [2007] show how to generate safe plans for some class of SPJ queries,
where the independence of tuple events is exploited to efficiently compute the
probability of query output tuples. A simple rule engine that maintains the
membership probabilities of base tuples can be sufficient in this case. Alterna-
tively, Sen and Deshpande [2007] use factored representation of the conditional
probability distribution of dependant tuples, allowing for encoding arbitrary de-
pendencies. A much more sophisticated rule engine needs to be built in this case
to compute the probabilities of arbitrary combinations of tuple events. Hence,
treating the rule engine as a black box adds versatility to our framework, and
does not restrict our techniques to a specific implementation of the underlying
uncertainty model.

In our prototype [Soliman et al. 2007b], we experimented with three dif-
ferent implementations of the rule engine module: (1) a simple engine that
supports probability computation over independent tuple events; (2) an engine
compliant with the x-tuple model [Sarma et al. 2006; Benjelloun et al. 2006],
where tuples are correlated with exclusiveness rules only; and (3) a more com-
plex engine that implements and indexes a Bayesian network that is used
during query processing to load relevant dependency information on demand
and compute the probabilities of tuple combinations through Bayesian infer-
ence techniques. We do not discuss the details of these implementations in this
article, rather, we abstract such details using our interface to the rule engine
module.

Probabilistic ranking layer. This layer retrieves tuples from the tuple ac-

cess layer, and efficiently navigates the space of possible worlds to compute
query answers. The components of this layer are the state formulation module,
which formulates search states as combinations of tuple events, and the space

navigation module, which uses search algorithms to partially materialize the
possible worlds space while searching for query answers. We give the formal
definitions of the problem space for probabilistic top-k queries, and probabilistic
top-k aggregate queries in Sections 5.1, and 7.1, respectively.

4.2 Assumptions

We make the following assumptions in our framework design. We relax some
of these assumptions in Sections 6 and 9 .

Tuple access: We assume tuples are consumed incrementally, that is, one by
one, from the output of a query executed by the relational engine in the tuple
access layer. That is, the probabilistic ranking layer does not have random ac-
cess to some tuple t unless produced by the tuple access layer. This assumption
is generally reasonable since random access to arbitrary query output tuples is
usually not available, unless query output is fully computed. Full evaluation of
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top-k queries should be avoided if possible, since only a small fraction of query
output tuples suffices to get the query answer if tuples are consumed in the
right order. In our framework, the relational engine incrementally computes
the tuples of query answer and pipelines these tuples to the probabilistic rank-
ing layer upon request through an iterator interface, which is widely used in
RDBMSs. We relax the tuple access assumption in Section 6.2 by considering
special cases that allow random access to the underlying database.

Group access: For top-k aggregate queries, we assume an interface that
allows accessing tuples from specific groups incrementally. Group-by opera-
tors are usually blocking operators that see most of the data before produc-
ing tuple groups. The per-group tuple access can be enabled using the tech-
niques described in Hellerstein et al. [1997]. For example, if the grouping
operator hashes the input tuples on the grouping attributes, it can provide
tuples from the requested groups incrementally to the probabilistic ranking
layer. The index striding method, described in Section 11, realizes per-group
tuple access efficiently. We use this method in the implementation of our
framework.

Available dependency information: We assume the dependencies among
query output tuples are only known when these tuples are consumed by the
probabilistic ranking layer. That is, we do not know if the currently consumed
tuples are correlated with other future tuples until these future tuples are
actually consumed by the probabilistic ranking layer. This assumption is justi-
fied by the incremental tuple computation in the relational engine of the tuple
access layer. Similarly, dependency information is built incrementally as tu-
ples are produced and pipelined to the probabilistic ranking layer. Hence, no
dependency information relating tuples currently consumed with other future
tuples is available. We note, however, that in some cases complete dependency
information can be directly available. For example, a query that involves a
single relation with independent tuples is known to generate no dependen-
cies among query output tuples. We address this case in Section 6.1, where
we relax our assumption by exploiting more available information on tuple
dependencies.

Group cardinality information: For ranking-aggregate queries, we assume
the tuple access layer provides (bounds on) the size of each group. This infor-
mation can be available from multiple sources including database catalog, pre-
materialized datacubes in OLAP environments, or by simply running a count
query on each group. Previous studies [Li et al. 2006], have shown that limited
optimization chances of top-k aggregate queries in deterministic databases are
available if no group cardinality information is known. We discuss related works
that can be adapted to obtain cardinality bounds in Section 11. Obtaining tight
group cardinality bounds allows our framework to tightly bound possible group
aggregates, leading to early query termination. If only loose cardinality bounds
are available, our framework can still compute query answers—however, a
larger number of tuples may be consumed, and hence a larger answer space
needs to be explored. We elaborate on these points in Section 7.2.1.

Event probability computation: We assume that the rule engine responds
with exact probabilities to the submitted questions (joint probabilities of tuple
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combinations). However, since exact probability computation can be expensive
for some query types/plans, particularly projections under set semantics [Dalvi
and Suciu 2007], we discuss in Section 9 relaxing this assumption by dealing
with approximate output from the rule engine in the form intervals enclosing
the exact probability value.

5. PROBABILISTIC TOP-k QUERIES

We now discuss computing probabilistic top-k queries. The main idea of our
approach is to model top-k query as a search problem over the space of all
possible query answers (Sections 5.1 and 5.2). In order to navigate such space
efficiently, we identify the tuple retrieval order that can be used to construct
the space incrementally (Section 5.1). Based on the identified order, we design
A∗-like search mechanisms to compute query answers from partial space ma-
terialization by correctly bounding the probability of different search paths in
the space. The search terminates early by finding an answer whose probability
is not below the probability upper-bound of all other unexplored search paths
(Section 5.3). We show that our algorithms minimize the number of consumed
tuples and the size of the materialized space to evaluate probabilistic top-k
queries (Section 5.4).

5.1 Problem Space

We start our space formulation by defining the search state:

Definition 5. Top-l State. A top-l state sl is a prefix of length l of some
possible world(s) of D that are ordered on a scoring function F .

A top-l state sl is complete if and only if l = k. Based on possible worlds
semantics, the probability of state sl is equal to the summation of the probabil-
ities of all worlds having sl as a prefix, that is, a top-l answer. Our search for
query answers starts from an empty state (with length 0) and ends at a goal
complete state with the maximum probability.

We next formulate state probability. We use the notation ¬X , where X is a
tuple set/vector, to refer to the conjunction of the negation of tuple events in X .
LetF(sl ) be the minimum tuple score in sl . Let Isl

be the set of tuples not in sl but
have higher scores than F(sl ), i.e., Isl

= {t|t ∈ D, t /∈ sl , F(t) > F(sl )}. The prob-
ability of state sl , denoted P(sl ), is equal to the joint probability of the existence
of tuples in sl and the absence of tuples in Isl

, that is, P(sl ) = Pr(sl ∧ ¬Isl
),

which is the probability that sl is the top-l query answer. For example in
Figure 3, for a state s2 = 〈t1, t5〉, we have P(s2) = Pr((t1.e ∧ t5.e) ∧ (¬t2.e)) =

0.072. This result can be verified from PW 4. In general, state probability is
computed by the rule engine module in our framework based on tuples’ proba-
bilities and their dependencies (Section 4).

Due to the overwhelming number of possible states, an efficient search mech-
anism needs to avoid visiting the states that do not lead to query answers, as
we discuss next.

Tuple retrieval order. Based on our tuple access, and available dependency
information assumptions (Section 4.2), we show that retrieving tuples in sorted
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score order is necessary and sufficient to get nontrivial bounds on the probabili-
ties of possible complete states. Such bounding is crucial for early query termi-
nation, that is, termination without checking every possible query answer. The
next examples illustrate why tuple orders, different from sorted score order, fail
in bounding state probabilities under our assumptions.

Example 2. Arbitrary Order. Consider Figure 3. Assume that we retrieved
t1 and t6 from the tuple access layer, based on a random tuple retrieval or-
der. Let s2 = 〈t1, t6〉 be a state in our search space (recall that a state is a
score-ordered prefix of one or more worlds). At this point, P(s2) cannot be com-
puted precisely, since we are unaware of Is2

(all other tuples with scores higher
than the minimum score in s2). Moreover, we cannot lower-bound P(s2) by a
value greater than 0, since Is2

might contain a tuple t independent with s2

tuples, and has a probability of 1, which would make P(s2) = 0. Clearly, we
cannot conclude the search goal early, that is, without fully inspecting all space
states, if we cannot compute nontrivial (greater than 0) lower-bounds on states’
probabilities.

Example 3. Probability Order. Consider Figure 3. Assume that we re-
trieved t6 and t2 from the tuple access layer, based on tuple probability order.
Let s2 = 〈t2, t6〉 be a state in our search space. Here, we have more infor-
mation than Example 2, since we know that no tuple in Is2

has a probability
greater than 0.7 (the probability of t2). However, we still cannot compute a
nontrivial lower-bound for P(s2). The reason is that the set Is2

, which is not
completely known at this point, may contain a tuple t correlated with s2 such
that Pr(t2.e ∧ t6.e ∧ ¬t.e) = 0, and hence P(s2) = 0. Based on our available

dependency information assumption, we do not know whether such correlation
exists or not, since t is not yet retrieved from the tuple access layer.

Example 4. Score Order. Consider Figure 3. Assume that we retrieved t1
and t2 from the tuple access layer, based on tuple score order (the speed at-
tribute). Let s2 = 〈t1, t2〉 be a state in our search space. Since all nonretrieved
tuples have scores less than t2, the set Is2

is known to be empty, and we can
precisely compute P(s2) = 0.4 × 0.7 = 0.28. Hence, retrieving tuples in score
order gives perfect information on each state sl and its corresponding Isl

set,
allowing for computing precise state probabilities.

Based on the above examples, we conclude that under the assumptions dis-
cussed in Section 4.2, retrieval orders different from score order do not ef-
fectively bound state probabilities, necessitating fully materializing the state
space to locate query answer. Hence, we adopt score order in retrieving tuples
from the tuple access layer. Rank-aware query processing techniques can be
used in the tuple access layer to incrementally produce tuples in score order
using score indexes and rank-aware query operators [Ilyas et al. 2003; Li et al.
2005]. Theorem 1 formally proves the superiority of sorted score retrieval.

THEOREM 1. Under the tuple access, and available dependency information
assumptions, retrieving query output tuples in score order is (1) sufficient; and

(2) necessary to compute nontrivial bounds on state probabilities.
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PROOF. Let X score be a subset of query output tuples retrieved in score or-
der. For any state sl whose tuples form an arbitrary subset of X score, we have
Isl

⊆ X score. Hence, X score is sufficient to precisely compute P(sl ), and thus (1)
follows.

We prove (2) by showing that tuple orders, different from sorted score order,
fail to provide nontrivial bounds on state probabilities. We divide such orders
into two groups:

(i) Nonprobability orders: Let X arbitrary be a subset of query output tuples re-
trieved in an arbitrary order following neither score nor probability. For
any state sl whose tuples are an arbitrary subset of X arbitrary, assume a yet
nonretrieved tuple t /∈ X arbitrary, such that t ∈ Isl

, t has probability 1, and t

is independent from tuples in sl . Then, P(sl ) = 0. Hence, based on X arbitrary,
the only safe lower-bound on P(sl ) is 0.

(ii) Probability order: Let X prob be subset of query output tuples retrieved in
probability order. For any state sl whose tuples form an arbitrary subset
of X prob, assume a yet nonretrieved tuple t /∈ X prob, such that t ∈ Isl

, and
Pr(sl ∧ ¬t) = 0. Then, P(sl ) = 0. Hence, based on X prob, the only safe lower-
bound on P(sl ) is 0.

Based on (i) and (ii), we conclude that (2) is correct.

Relaxing the assumptions stated in Theorem 1 makes other tuple retrieval
orders useful in evaluating our queries. We discuss such orders in Section 6.2.

5.2 Generating the Search Space

In this section we show how to use score-ordered tuple retrieval to build the
search space.

A top-l state is a combination of tuple events. In possible worlds seman-
tics, the probability of any combination of tuple events is the summation of
the worlds’ probabilities where this combination is satisfied. For example in
Figure 3, the probability of the tuple event combination (t1.e ∧ ¬t2.e) is the
same as Pr(PW 3) + Pr(PW 4) = 0.12. We next explain an important property
of space states.

PROPERTY 1. PROBABILITY REDUCTION. When extending any combination of tu-

ple events by adding another tuple existence/absence event, the resulting com-

bination will have at most the same probability.

Property 1 follows from set theory, where a set cannot be larger than its
intersection with another set. This holds in our uncertainty model, since for any
two sets of tuple events En and En+1 (with lengths n and n + 1, respectively),
where En ⊂ En+1, the set of possible worlds where En+1 is satisfied ⊆ the set
of possible worlds where En is satisfied.

Search states are generated as follows. Assume a current state sl . After re-
trieving a new tuple t from the Tuple Access Layer, we extend sl into two states:
(1) śl : a state with the same tuple vector as sl , where we define Iśl

= Isl
∪ {t};

and (2) sl+1: a state composed of the tuple vector of sl appended by t, where
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Fig. 6. Interaction of framework components.

Isl+1
= Isl

. For example, assume a state s2 = 〈t1, t2〉, where Is2
= {t3}. Hence,

P(s2) = Pr((t1.e ∧ t2.e) ∧ (¬t3.e)). Upon retrieving t4, the next tuple in score
order, we extend s2 into (1) ś2 = 〈t1, t2〉, where Iś2

= {t3, t4}, and hence
P(ś2) = Pr((t1.e∧t2.e)∧(¬t3.e∧¬t4.e)); and (2) s3 = 〈t1, t2, t4〉, where Is3

= {t3},
and hence P(s3) = Pr((t1.e ∧ t2.e ∧ t4.e) ∧ (¬t3.e)). Based on Property 1, both
P(śl ) and P(sl+1) cannot exceed P(sl ). In addition, P(śl ) + P(sl+1) = P(sl ).

We illustrate state generation using the interaction of our framework com-
ponents depicted by Figure 6, which describes U-Topk processing of Query 1 in
Figure 1. Three tuples are produced by a (score-based) top-k query plan, run-
ning in the tuple access layer, and submitted to the space navigation module,
which generates possible states based on the three seen tuples. Each state is ex-
tended by newly retrieved tuples to create new candidate top-l states. In order
to compute the probability of each state, the state formulation module contacts
the rule engine. For example, for state s2 = 〈t1, t5〉 with Is2

= {t2}, the state
formulation module formulates the event combination ((t1.e ∧ t5.e) ∧ (¬t2.e)),
and requests its probability from the rule engine, which responds back with the
value 0.072. In Section 5.3, we give efficient search algorithms that partially
materialize the space by retrieving the least number of tuples and creating the
least number of states.

Cost Metric. Based on our problem definition in Section 3.2, the number of
possible top-k answers that can be obtained from n retrieved tuples is bounded
by

(

n
k

)

, which is in O(nk/k!). Since k is a query parameter, our primary cost
metric is n, the number of consumed tuples from the tuple access layer. Addi-
tionally, since we aim at searching the space of possible answers, we would like
to minimize the size of the materialized space.

5.3 Navigating the Search Space

In this section we give the details of our probability-guided search algorithms
for U-Topk (Section 5.3.1) and U-kRanks (Section 5.3.2) queries.
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5.3.1 Processing U-Topk Queries. We describe Algorithm OPTU-Topk, our
processing algorithm for U-Topk queries. The details of OPTU-Topk are given in
Algorithm 1. The general idea is to buffer retrieved score-ordered tuples and
adopt a lazy space materialization scheme to extend the state space, that is, a
state might not be extended by all retrieved tuples. At each step, the algorithm
extends only the state with the highest probability. State extension is performed
using the next tuple drawn either from the buffer or from the underlying tuple
access layer. The algorithm terminates when it reaches a complete state with
the highest probability among all possible states.

Algorithm 1. OptU-Topk

U-TOPK (source : Score-ordered tuple stream, k : result size)

1 Q ← empty priority queue for states ordered on probabilities

2 d ← 0

3 Insert s0,0 into Q {initialize Q with an empty state}

4 while (source is not exhausted AND Q is not empty)

5 do

6 sl ,i ← dequeue (Q) {get the state with the highest probability}

7 if (l = k)

8 then return sl ,i {highest probability state is complete, then terminate}

9 else

10 if (i = d )

11 then {need to retrieve a new tuple}

12 t ← next tuple from source

13 d ← d + 1

14 else {can use an already retrieved tuple}

15 t ← tuple at pos i + 1 in seen tuples buffer

16 Extend sl ,i using t into sl ,i+1, sl+1,i+1 {See Section 5.2}

17 Insert sl ,i+1, sl+1,i+1 into Q

18 if (l + 1 = k)

19 then {a complete state is reached, prune inferior states}

20 remove any state s ∈ Q where P(s) < P(sl+1,i+1)

We now discuss the details of Algorithm 1. We overload state definition sl to
be sl ,i, where i is the position of the last seen tuple by sl ,i in the score-ordered
tuple stream. Note that i can point to a buffered tuple or to the next tuple to
be retrieved from the tuple access layer. We define s0,0 as an initial empty state

of length 0, where P(s0,0) = 1. The probability of the empty state upper-bounds
the probability of any nonmaterialized state, since any nonmaterialized state
is an extension of the empty state (cf., Property 1).

Let Q be a priority queue of states based on probability, where ties are
broken using deterministic tie-breaking rules. We initialize Q with s0,0. Let
d be the number of retrieved tuples. OPTU-Topk iteratively retrieves the top
state in Q, say sl ,i, extends it into the two next possible states (Section 5.2),
and inserts the resulting two states back to Q according to their probabili-
ties. Extending sl ,i leads to consuming a new tuple from the tuple access layer
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only if i = d , otherwise sl ,i is extended using the buffered tuple pointed to by
i + 1.

OPTU-Topk terminates when the top state in Q is a complete state. If a com-
plete state sk,n is on top of Q, then both materialized and nonmaterialized states
(which are upper-bounded by the empty state) have smaller probabilities than
sk,n. This means that there is no way to generate another complete state that
will beat sk,n, based on Property 1.

In addition to extending the space lazily, that is, only the top Q state is
extended at each step, Algorithm 1 also applies a pruning criterion to signifi-
cantly cut down the size of Q (line 18): If a complete state sk,n is reached, then
all states in Q with probabilities less than P(sk,n) can be safely pruned, based
on Property 1.

In Section 5.4, we analyze the complexity and performance guarantees of
Algorithm OPTU-Topk.

5.3.2 Processing U-kRanks Queries. We describe OPTU-kRanks, our query
processing algorithm for U-kRanks queries. Let t be the nth tuple in score-
ordered tuple stream. Let Pt,i be the probability that tuple t appears at rank
i. It follows from our state definition that Pt,i is the summation of the prob-
abilities of all states with length i whose tuple vectors end with t. In other
words, we can compute Pt,i, for i = 1 . . . n as soon as we retrieve t from the
tuple access layer. Algorithm OPTU-kRanks uses this observation by extending
all maintained states on retrieving each new tuple t, causing all possible ranks
of t to be identified. An upper-bound is maintained for the probability of an un-
seen tuple being at rank i = 1 . . . k. The algorithm reports an answer t∗ at rank
i when Pt∗,i is greater than both the probability of any retrieved tuples being
at rank i and the probability upper-bound of any nonretrieved tuple being at
rank i.

Algorithm 2 describes the details of OPTU-kRanks. For each rank i, the al-
gorithm remembers only the most probable answer obtained so far. This is
because an unseen tuple u cannot change Pt,i of a seen tuple t, since u can
never appear before t in any possible world. In order to conclude an answer for
rank i, the algorithm upper-bounds the probability of any unseen tuple to be
at rank i as follows. Let ω j be the current set of states with length j , and let
Z j =

∑

s j ∈ω j
P(s j ). For any rank i, the value of

∑

j<i Z j can never increase when

new tuples are consumed. Therefore, the maximum probability of an unseen
tuple u being at rank i is

∑

j<i Z j (we formally prove this bound in Theorem 3).
Let t∗ be the current U-kRanks answer for rank i. The termination condition
of Algorithm OPTU-kRanks, for rank i, is thus Pt∗,i ≥

∑

j<i Z j .

Algorithm 2. OptU-kRanks

U-KRANKS (source : Score-ordered tuple stream, k : Result size)

1 Initialize {answer1 . . . answerk} as {null , . . . , null }

2 Initialize (ubound1, . . . , uboundk) as (1, . . . , 1) {bounds of unseen tuples}

3 reported ← 0

4 depth ← 1
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5 space ← φ {current set of materialized states }

6 {while ( source is not exhausted AND reported < k)

7 do

8 t ← next tuple from source

9 Extend all states in space based on t

10 for (i=1 to min(k, depth))

11 do

12 if(answeri is previously reported)

13 then Continue

14 Set uboundi ←
∑

j<i Z j based on space {see Section 5.3.2}

15 Compute Pt,i

16 if ( (answeri is null) OR

(answeri is not null AND Pt,i > answeri .prob) )

17 then {found a better answer at rank i}

18 answeri ← t

19 answeri .prob ← Pt,i

20 if (answeri .prob ≥ uboundi)

21 then {termination condition reached at rank i}

22 Report answeri

23 reported ← reported + 1

24 depth ← depth + 1

We analyze the complexity and performance guarantees of Algorithm
OPTU-kRanks in Section 5.4.

5.4 Complexity of Search Algorithms

In this section we give optimality proofs and complexity analysis for our algo-
rithms. We start by showing that Algorithm OptU-Topk reduces to an instance
of A∗ search [Hart et al. 1968] over the space of possible top-k answers. Given
an initial state s0, A∗ incrementally searches the space to find the path with the
least cost to a goal state s∗. A∗ applies a best-first search strategy, where visiting
a state s is determined by a cost function f (s) = g (s) + h(s), where g (s) is the
cost of the path from s0 to s, while h(s) is an estimate for the cost of the path
from s to s∗. The state with the least f (.) value is visited next, until the goal
is reached. If the function f is admissible, that is, it does not overestimate the
path cost, A∗ algorithm is also admissible, which means that it is guaranteed to
find the path with the least cost by correctly bounding other unexplored paths.
Moreover, if A∗ uses the tightest estimate of h(.) to cost the search paths, then
all admissible algorithms that are no more informed than A∗ have to visit the
same states visited by A∗, which means that A∗ is optimal in the number of
visited states.

Similar to A∗ search, OptU-Topk starts from an empty (initial) state, and
terminates at a complete (goal) state with the maximum probability. For a
state sl , let the cost function f (sl ) = P(sl ). Based on Property 1, P(sl ) ≥ P(sk)
for any complete state sk derived from sl . Hence, P(sl ) is admissible since it does
not underestimate state probability. Since OptU-Topk terminates when finding
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a complete state whose probability is not below P(sl ) of any other state in the
space, it follows that OptU-Topk is admissible.

Further, P(sl ) is the tightest upper-bound of the probability of a complete
state derived from sl , under the tuple access and available dependency infor-
mation assumptions. To see this, assume that there exist k − l nonretrieved
tuples, where each tuple has a probability 1, and is independent of all other
tuples. In this case, the probability of a complete state derived from sl is the
same as P(sl ). It follows that OptU-Topk is an instance of A∗ with optimality
guarantees on the number of visited states, as we rigorously prove next.

THEOREM 2. Let C be the class of algorithms that search the problem space

defined in Section 5.1 under the assumptions given in Section 4.2 to correctly

find a complete state with the highest probability (i.e., members of C can use

arbitrary state traversal orders not necessarily based on state probability). Then,

any algorithm A ∈ C must visit all the states visited by OptU-Topk.

PROOF. The proof is similar to the optimality proof of A∗ algorithm [Hart
et al. 1968].

Case 1. State probabilities have no ties. Assume there exists some incomplete
state sl skipped by A but visited by OptU-Topk. Let the answer reported by A be
xk , and the answer reported by OptU-Topk be yk . Since both A and OptU-Topk

are correct, it follows that xk = yk . Since sl is visited by OptU-Topk, then P(sl ) >

P( yk) (based on Property 1 and the state traversal order of OptU-Topk). Hence,
P(sl ) > P(xk) . . .(†). However, since A has skipped sl , and A is correct, it follows
that P(sl ) < P(xk) . . .(‡). By contradiction of (†) and (‡), Theorem 2 is proven
for Case 1.

Case 2. State probabilities can have ties. Let OptU-Topk∗ be the set of algo-
rithms identical to OptU-Topk, but each algorithm resolves ties in a different
way, such that members of OptU-Topk∗ cover all possible tie-breaking rules. In
the following, we show that there exists some member Y ∗ ∈ OptU-Topk∗ such
that any algorithm A ∈ C must visit all the states visited by Y ∗. Assume A

visits the same states as Y ∗ until some state sl that is skipped by A but visited
by Y ∗. Let the next state visited by A be śl . Since, at this point, sl is the most
probable state in the space, we have two possibilities: (i) P(śl ) < P(sl ); and
(ii) P(śl ) = P(sl ). However, possibility (i) contradicts with A being correct as
proven in Case 1. Hence, we consider possibility (ii). Let Y ∗ = Y ∗

1 , where Y ∗
1 ∈

OptU-Topk∗, and Y ∗
1 picks śl as its next state. By repeating the above procedure

at each state visited by Y ∗, and skipped by A, we can show that there exists a
member Y ∗ ∈ OptU-Topk∗, such that any state visited by Y ∗ must be visited by
A as well, and hence Theorem 2 is proven for Case 2.

It follows from Theorem 2 that A must consume at least the same number of
tuples as OptU-Topk (or a member of OptU-Topk∗ in the case of probability ties)
since A visits at least the same states as OptU-Topk.

The optimality of Algorithm OPTU-kRanks is defined in terms of the number
of retrieved tuples, since OPTU-kRanks materializes all space states based on
the retrieved tuples. We formulate our result in Theorem 3.
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THEOREM 3. Algorithm OPTU-kRanks retrieves the least number of tuples to

compute U-kRanks query answers.

PROOF. At any step during OPTU-kRanks processing, let ω j be the set of mate-
rialized states with length j , and let Z j =

∑

s j ∈ω j
P(s j ). Assume OPTU-kRanks

reports t as the U-kRanks answer for rank i, while the termination condi-
tion is not reached, that is, Pt,i <

∑

j<i Z j . Assume the next nonretrieved
i − 1 tuples are {u1, . . . , ui−1}, such that u j is implied by each state in ω j−1,
and exclusive with any other state sl , for l �= j − 1. It follows that u j ex-
tends all states in ω j−1 into states of length j with exactly the same prob-
abilities, and no state s j−1 will be remaining. Additionally, the probability
and the length of any other state sl for l �= j − 1 will not change. By in-
duction, it follows that Pui−1,i =

∑

j<i Z j . Then,
∑

j<i Z j upper-bounds Pu,i

for a nonretrieved tuple u. Further, assuming a higher upper-bound would be
loose, based on Property 1 and the fact that Pu,i depends only on states with
length < i. Hence,

∑

j<i Z j is the tightest upper-bound of Pu,i. It follows that
OPTU-kRanks consumes the least number of tuples to terminate. That is, if any
other space search algorithm A, where A is no more informed than OPTU-kRanks

and works under the same assumptions and space model, assumes a looser
bound than

∑

j<i Z j , then A cannot terminate while retrieving less tuples than
OPTU-kRanks.

Complexity analysis. We next give time and space complexity analysis. We
mean by space complexity the size of the materialized search space. In the
following, we assume the cost of computing a state probability by the rule en-
gine is bounded by some constant cost. We denote with n the number of tuples
retrieved from the tuple access layer to compute query answer.

Algorithm OPTU-Topk. Since OPTU-Topk is an instance of optimal A∗ search,
we expect its worst-case complexity bounds to be exponential similar to A∗.
We next analyze the complexity bounds. Based on the algorithm description in
Section 5.3.1, the lower-bound time complexity of OPTU-Topk is �(klogk), and
the corresponding space complexity is �(k). These bounds are achieved when
the algorithm always extends the state with the largest length at each step
(iteration). This allows the algorithm to terminate in exactly k steps, where,
at each step, OPTU-Topk generates two new states that replace their parent
state in the priority queue, which costs O(logk) time. The upper-bound (worst
case) time complexity of OPTU-Topk is O( nk

k!
log( nk

k!
)), and the corresponding space

complexity is O( nk

k!
). These bounds are achieved under the extreme case, where

all possible score-ordered prefixes of the retrieved n tuples, that is, prefixes
with lengths 0 . . . k, are fully materialized before concluding query answer (the
number of possible score-ordered prefixes of length m out of n tuples is in
O( nm

m!
)).

We note, however, that on the average and for practical values of k, the algo-
rithm efficiently computes query answers by exploiting its probability-guided
search, and space-pruning criteria. We demonstrate this behavior through ex-
periments conducted on different data distributions and tuple correlations
(Section 10.1).
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Algorithm OPTU-kRanks. The lower-bound time complexity of OPTU-kRanks

is �(k2k), and its corresponding space complexity is �(2k). These bounds are
achieved when the algorithm terminates in k steps, where in each step the
whole space is extended by the new retrieved tuple. The upper-bound time
complexity is O( nk+1

k!
) and the corresponding space complexity is O( nk

k!
), since

all possible score-ordered prefixes of the retrieved n tuples are maintained and
extended by each retrieved tuple.

Based on our experimental evaluation, the main factors that affect the aver-
age case performance of our algorithms are the following:

(1) Score-probability correlation: In general, positive score-probability correla-
tion leads to finding highly-probable query answers early, which allows for
early termination.

(2) Complexity of tuple dependencies: Heavy dependencies negatively affect the
performance by increasing the probability computation cost in the rule en-
gine.

(3) Score and probability distributions: Distributions of scores and probabili-
ties affect the performance of the algorithms. For example, an exponential
distribution of tuple probabilities with a fast rate of decay negatively affects
the performance since many tuples will have small probabilities.

We empirically demonstrate the effect of these different factors in Sec-
tion 10.1.

6. RELAXING FRAMEWORK ASSUMPTIONS

Our framework assumptions, discussed in Section 4.2, can be relaxed in some
cases where additional information on the problem space is available. In this
section we show how to exploit such information for more efficient processing.
In Section 6.1, we discuss the effect of relaxing the available dependency infor-

mation assumption, where we assume all tuples are known to be independent.
In Section 6.2, we discuss the effect of relaxing our score-ordered tuple access

assumption, where we use different tuple orders.

6.1 Exploiting Additional Information on Tuple Dependencies

Under general tuple dependencies, top-l states are generally incomparable,
even if they have the same length. This is because each state could be extended
in a different manner to a complete state. For example, the tuples in one state
might imply all other unseen tuples. The materialized states could be reduced
significantly if we have an ability to prune states from our search space early.
In general, an incomplete state sl can be pruned if there exists a complete state
sk with P(sk) > P(sl ). Hence, for an incomplete state sl , if we can compute
the maximum probability of a valid complete state generated from sl , denoted
pmax(sl ), we can safely prune all states with probability less than pmax(sl ). The
rule engine may be able to compute pmax(sl ) of a given state sl . However, this
operation is sensitive to the complexity of tuple dependencies, and the rule
engine design. We show in the following how to conduct such pruning for the
case of independent tuples.
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Fig. 7. IndepU-Topk processing steps.

6.1.1 U-Topk Queries Under Independence. Under tuple independence, we
can aggressively prune incomplete states, early in our search, to keep only the
states that could lead to query answer. This property is formulated in Lemma 1.

LEMMA 1. Under tuple independence, a state ym is pruned if there exists

another state xn with P(xn) > P( ym), such that xn and ym are both maintained

after seeing the same set of score-ranked tuples and n ≥ m.

Lemma 1 formulates a setting where an incomplete state ym can be pruned
early from the search space. The reason is that, based on the conditions in
Lemma 1, the most probable complete states derived from each of the states
xn and ym are obtained using the same set of unseen tuples. Due to tuple
independence, xn and ym would use exactly the same set of existence/absence
events of unseen tuples to reach complete states. However, since n ≥ m, the
state xn will reach a complete state at most in the same number of steps as ym.
Since P(xn) > P( ym), and based on Property 1, we conclude that the complete
state derived from xn would have a higher probability than the one derived from
ym, and we can thus prune ym early from our search space.

Algorithm IndepU-Topk uses Lemma 1 by grouping states based on state
length. The algorithm keeps at most one state for each length 0 . . . k in a
candidate set. The candidate set is extended upon retrieving a new tuple.
IndepU-Topk terminates when (1) at least k tuples have been retrieved, and
(2) the probability of any current state is not above the probability of the cur-
rent complete candidate.

Consider for example the score-ranked tuple stream in Figure 7 (fractions
indicate probabilities, and scores are omitted for brevity), where we are inter-
ested in the U-Top3 answer. We represent each state sl with its tuple vector and
distinguish tuples in Isl

(tuples seen but not included in sl ) with the ¬ symbol. In
step (a), after retrieving the first tuple t1, we construct two states 〈¬t1〉 and 〈t1〉

with lengths 0 and 1, respectively. In step (b), the candidate set is updated based
on the new tuple t2, where two possible candidates with length 1, 〈t1, ¬t2〉 and
〈¬t1, t2〉, are generated. However, we keep only the candidate with the highest
probability, since the other candidate is pruned based on Lemma 1.

Step (c) continues in the same manner by updating the candidate set based
on tuple t3, and pruning the less probable candidate from each equivalence
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Fig. 8. IndepU-kRanks processing steps.

class. Note that the candidate 〈¬t1, ¬t2, ¬t3〉 is pruned because there is another
candidate 〈¬t1, ¬t2, t3〉 with a larger length and higher probability. In step (c)
we reach the first complete candidate, 〈t1, t2, t3〉, and the first termination
condition is met. In step (d) we update the candidate set based on t4. Notice
that we cannot stop after step (d) because the second termination condition is
not met yet—there are candidates with higher probabilities than the current
complete candidate—and so, there is a chance that 〈t1, t2, t3〉 will be beaten.
Applying the space pruning criterion given in Lemma 1 results in significant
performance improvements as we illustrate in Section 10.1.

Complexity analysis. Let n be the total number of consumed tuples. For each
tuple, Algorithm IndepU-Topk extends at most k states. The time complexity is
thus in O(nk), while space complexity is in O(k).

6.1.2 U-kRanks Queries Under Independence. Under tuple independence,
a U-kRanks query exhibits the optimal substructure property, that is, the op-
timal solution of the larger problem is constructed from solutions of smaller
problems. This allows using a dynamic programming algorithm. We now de-
scribe IndepU-kRanks, a dynamic programming algorithm to answer U-kRanks
queries under the independence of tuple events.

Consider the example depicted by Figure 8, where we are interested in U-
3Ranks query answer. In the table in Figure 8, a cell at row i and column x

contains Px,i (the probability of tuple x to be at rank i). Hence, Px,1 = Pr(x.e) ×
∏

z:F(x)<F(z)(1 − Pr(z.e)), which is the probability that x.e is true and all tuple
events with higher scores are false. The computation of the probabilities in the
remaining rows is based on the following property:

PROPERTY 2. Under tuple independence and for i > 1,

Px,i = Pr(x.e) ×
∑

y :F( y)>F(x)

Py ,i−1 ×
∏

z:F(x)<F(z)<F( y)

(1 − Pr(z.e))

The rationale of Property 2 is that under independence for tuple x to appear
at rank i, we need only to consider the probability that x is consecutive to every
other tuple y at rank i −1. This probability is computed as the probability that
x exists, each tuple z that appears at an intermediate rank between x and y

does not exist, and y appears at rank i − 1.
For example, in Figure 8, Pt2,2 = 0.9×0.3 = 0.27, while Pt3,2 = (0.6×0.63)+

(0.6×0.1×0.3) = 0.396. The shaded cells indicate the U-3Ranks query answers
at each rank. Notice that the summation of the probabilities of each row will be
1 if we completely exhaust the tuple stream. This is because each row actually
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represents a horizontal slice in all ranked possible worlds. This means that
we can report an answer from any row whenever the maximum probability
in that row is greater than (1 − sum(row probabilities)). Notice also that the
computation in each row depends solely on the row above.

The description above gives rise to the following dynamic programming
formulation. We construct a matrix M with k rows, where a new column is
added to M whenever we retrieve a new tuple from the score-ranked stream.
Upon retrieving a new tuple t, the column of t in M is filled downwards as
follows:

M [i, t] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Pr(t.e) ×
∏

z:F(t)<F(z)

(1 − Pr(z.e)) if i = 1

Pr(t.e) ×
∑

y :F( y)>F(t)

M [i − 1, y] ×
∏

z:F(t)<F(z)<F( y)

(1 − Pr(z.e)) if i > 1

(5)

For example in Figure 8, M [2, 3] = Pr(t3.e)× (M [1, 2]+ (1−Pr(t2.e))× M [1, 1]).
Algorithm IndepU-kRanks returns a set of k tuples {t1 . . . tk}, where ti =

ar gmaxx M [i, x].
Complexity analysis. The size of the matrix M is in O(nk), where n is the

number of consumed tuple. For each consumed tuple, the algorithm scans the
matrix rows to compute tuple probability at each rank. The time complexity is
thus in O(n2k).

6.2 Using Other Tuple Retrieval Orders

Our previous algorithms retrieve tuples in score order, which is the necessary
order to compute nontrivial lower-bounds on state probabilities for general tu-
ple dependencies, as we show in Section 5.1. We show in this section two settings
where probability order can be used to bound states probabilities, when tuples
are independent.

Combining score and probability orders. We describe an adaptation of our
algorithms in Section 6.1 to combine score and probability orders in a threshold

algorithm-like fashion. Threshold algorithm (TA) [Fagin et al. 2003] aggregates
multiple ranked lists for the same set of objects based on a monotone score
aggregation function. TA finds the top-k objects by scanning the ranked lists
in parallel, computing the aggregated score of seen objects, and bounding the
scores of unseen objects.
We assume two ranked lists sorting tuples in descending score and probability
orders. The aggregation function is not explicit in our settings. However, based
on Property 1, state probability is monotone in the number of state tuple events,
that is, adding a tuple event to some state does not increase its probability. We
thus use the score list to construct states, and the probability list to further
shrink state probabilities by upper-bounding the probabilities of nonretrieved
tuples in the score list. We give a high-level description of our TA-adaptation
of Algorithm IndepU-Topk in the following:

(1) Retrieve a tuple t from the score list, use random access to the probability
list to get the probability of t. Update search states based on t, as described
in Algorithm IndepU-Topk.
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(2) Retrieve a tuple t́ from the probability list. If t́ is not retrieved before in the
score list, let p be the probability of t́. Hence, p upper-bounds the probability
of any nonretrieved tuple in the score list. We do not need to probe the score
list with t́ since it comes out of score order.

(3) For each state materialized sl , the maximum probability of a complete state
reached from sl is U(sl ) = P(sl ) × p(k−l ). We use U(sl ), instead of P(sl ), to
decide on state pruning in IndepU-Topk using the same pruning criteria in
Lemma 1.

(4) Repeat from step (1) until the termination conditions of IndepU-Topk are
reached.

In step (3), U(sl ) is computed by optimistically assuming that sl extends to a
complete state by appending k − l tuples to sl , each has a probability p. This
bound is correct since it assumes the maximum probability that can be achieved
by a complete state derived from sl , based on the largest possible probability
of the nonretrieved tuples. Since U(sl ) ≤ P(sl ), using probability order allows
further reduction in the probabilities of incomplete states, which can lead to
faster termination of IndepU-Topk.

If arbitrary tuple dependencies exist, probability order can give a tighter
upper-bound for the probability of any complete state derived from a state sl as
U(sl ) = min(P(sl ), p), since the probability of an event conjunction is bounded
by the minimum probability of the conjuncted events. However, incomplete
states cannot be pruned early by comparing their bounds, since a lower-bound
on state probability is still trivially 0 (e.g., consider the case of a nonretrieved
tuple in the score list whose event is mutually exclusive with one event in the
incomplete state).

Using probability order only. When further information is available, prob-
ability order can be used by itself to compute probabilistic top-k queries,
while possibly providing early query termination. Specifically, knowing N ,
the total number of tuples in query output, and that all tuples are indepen-
dent, we can compute nontrivial lower bounds on state probabilities. For ex-
ample, assume the two top tuples in probability order are t1 and t2 with
probabilities 1.0 and 0.1, and scores 1 and 10, respectively. Then, a state
s2 = 〈t2, t1〉 has a probability lower-bound of 0.1 × 1.0 × (1 − 0.1)(N−2),
which is computed pessimistically by assuming all nonretrieved tuples have
the highest possible probability (0.1), and higher scores than t1. Hence, s2

is pessimistically the top-2 in all worlds that exclude all the remaining tu-
ples. Note that the knowledge of N is essential to compute this bound, since
otherwise the absence probability of nonretrieved tuples cannot be bounded.
Nontrivial lower-bounds of state probabilities clearly allow for early query
termination.

We note, however, that the lower-bounds computed in the above manner can
be very loose, that is, they heavily underestimate actual probabilities, since
the lower-bound is polynomial in the number of nonretrieved tuples, which is
usually a large number. Hence, in practice, it is hard to argue for the value of
using probability order by itself.
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7. PROBABILISTIC TOP-k AGGREGATE QUERIES

We now describe our approach to compute probabilistic top-k aggregate queries.
The aggregate functions we study are in the class of bounded functions, defined
as follows: an aggregate functionF is bounded if the upper-bound (lower-bound)
of F on a group g can be obtained by assuming all members of g have the
maximum (minimum) scores in g . Bounded aggregate functions are monotone,
since increasing (decreasing) the maximum scores in g results in increasing
(decreasing) the value ofF . Typical aggregate functions such as sum and average

are bounded functions. The properties of bounded functions allow bounding
group aggregates, based on a partial retrieval of group tuples.

The main idea of our approach to compute probabilistic top-k aggregate
queries is to conduct space search, staged on two levels: (1) intragroup search
to provide ranked retrieval of group aggregates that is necessary to incremen-
tally construct the space; and (2) intergroup search to find the query answer
in the space of group aggregates’ combinations. In the first stage, we compute
ordered nonoverlapping aggregate ranges by lazily consuming group tuples to
materialize only the necessary parts in the aggregate distribution within each
group (Section 7.2.1). In the second stage, we use probability-guided search
techniques to navigate the space of possible answers. We allow early query
termination by bounding the probabilities of explored and unexplored search
paths (Section 7.2.2).

The techniques in this section are similar to the techniques in Section 5 in
adopting score-ordered retrieval. However, while the retrieved units in Section 5
are the tuples, the retrieved units in this section are ranked partitions of group
aggregate distribution.

7.1 Problem Space

We define the space of top-k aggregate query answers as a space of possible top-
k group vectors aggregated across ranked possible worlds. In the following, we
use the term “tuple instances” to refer to the existence and absence events, t.e

and ¬t.e, of tuple t. We start by giving formal definitions for space components.

Definition 6. Group World. Let gi = {t1, . . . , tn} ⊆ D be a group in D. A
group world gw

j
i = {t́1, . . . , t́n} of gi is obtained by picking an instance t́ of

each tuple t ∈ gi. Pr(gw
j
i ) = Pr(t́1, . . . , t́n), and the aggregate value of gw

j
i

results from applyingF to the tuple instances in gw
j
i corresponding to existence

events.

Group worlds project the space of possible worlds on the grouping at-
tributes. For example, Figure 9(b) shows the group worlds, for the aggre-
gate function sum(Score), for the probabilistic relation in Figure 9(a). The
group world gw1

1 = {t1, ¬t4} of g1 is obtained by picking a possible instance
for each of t1 and t4. In this example we assume independence among in-
stances of different tuples, which means that the joint probability of tuple in-
stances is obtained by multiplying their probabilities. Therefore, Pr(gw1

1) =

Pr(t1) × Pr(¬t4) = 0.6 × 0.9 = 0.54. The aggregate value of a group world is
obtained by applying the aggregate function to tuple instances corresponding to
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Fig. 9. (a) Probabilistic relation with grouping attribute; (b) group worlds; (c) global worlds.

existence events in that group world. For example, sum(gw3
1) = sum(100, 80) =

180. The aggregate of each group is a probability distribution on the ag-
gregates of group worlds, as opposed to a single value as in deterministic
databases.

Definition 7. Global World. Let D be a probabilistic database with m differ-
ent groups, and F be a group aggregate function. Let gw(gi) = {gw1

i . . . gw
ni

i }

be the set of group worlds of group gi in D, for i = 1 . . . m. A global world
GLW j = SortedF ({ ´gw1 . . . ´gwm}) is obtained by picking exactly one group
world ´gwi from each group gi, and sorting all picked group worlds based on F .
The probability of GLW j is computed as Pr(GLW j ) = Pr( ´gw1, . . . , ´gwm).

Figure 9(c) shows the global worlds for the given probabilistic rela-
tion and the group ranking corresponding to each world. For example,
GLW 9 = {gw3

1, gw1
2, gw1

3} = {t1, t4, t2, t3} corresponds to the group rank-

ing 〈g1, g2, g3〉, where Pr(GLW 9) = 0.06 × 0.7 × 0.4 = 0.017, assuming tuple
independence.

Based on Definition 7, a global world is a grouped and ranked version of
one possible world of the database. We show in Section 7.2 that treating pos-
sible worlds as global worlds makes it easier to understand the semantics of
probabilistic top-k aggregate queries.

Let D be a probabilistic database. Let PW = {GLW 1, . . . , GLW n} be the set
of global worlds of D based on grouping attributes A and a group aggregate
function F . Let Pg ,i be the probability of group identifier g to appear at rank
i. We now redefine our problem based on our space components.
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Definition 8. U-Topk-Agg Query (revised). Let Gi,k be a prefix of length k in
GLW i, where Pr(Ǵk) =

∑

GLW i :Gi,k=Ǵk
Pr(GLW i). A U-Topk-Agg query returns a

k-length global world prefix G∗
k with the highest probability.

For example, in Figure 9(c), U-Top2-Agg query answer is 〈g2, g1〉 with prob-
ability 0.39, which is the summation of the probabilities of GLW 1 , GLW 2, and
GLW 6.

Definition 9. U-kRanks-Agg Query (revised). Let γi, j be the group iden-
tifier that appears at rank i in the global world GLW j . Then, Pg ,i =
∑

GLW j :γi, j =g Pr(GLW j ). A U-kRanks-Agg query returns a set of k group iden-

tifiers {g∗
(1), . . . , g∗

(k)}, where for each g∗
(i), the value of Pg∗

(i),i
is the maximum

among all other group identifiers.

In Figure 9(c), U-2Ranks-Agg answer is {g2 : 0.65, g1 : 0.4}, since g2
is ranked 1st in {GLW 1, GLW 2, GLW 5, GLW 6, GLW 13, GLW 14}, and g1 is
ranked 2nd in {GLW 1, GLW 2, GLW 6, GLW 7} with probability summations
0.65 and 0.4, respectively.

7.2 Space Navigation

In this section we describe how to explore the space of probabilistic ranking ag-
gregates. In Section 7.2.1 we show how to provide aggregate-ordered retrieval,
while in Section 7.2.2 we show how to combine group aggregates to compute
query answer.

7.2.1 Intragroup Space Navigation. Our intragroup aggregation layer pro-
duces an aggregate-ranked retrieval of (partial) group worlds, which is neces-
sary to minimize the materialized space size and the number of retrieved tuples
to evaluate our queries (Theorem 5 formalizes the necessity of this retrieval or-
der). We start by formulating intragroup space, followed by describing the space
navigation techniques.

Definition 10. Group State. A group state sg of group g is a set of tuple
instances Tsg

= {t́1 . . . t́m} derived from (a subset of) g tuples. The group state
sg is described by (1) its probability: Pr(sg ) = Pr(Tsg

) = Pr(t́1 ∧ . . . ∧ t́m); and
(2) its aggregate range: let RF (sg ) be the lowest aggregate value of g given Tsg

,
and R

F
(sg ) be the highest aggregate value of g given Tsg

. The aggregate range
of sg is defined as RF (sg ) = [RF (sg ), R

F
(sg )].

Each state sg aggregates all group worlds of g subsuming Tsg
. We use group

states to incrementally navigate the space of group worlds by refining group
states, as needed, using an incremental retrieval of group tuples. The aggregate
ranges of group states allows ordering the groups, based on a partial space
materialization.

Computing group state probability. Consider Figure 10. Assume a group g =

{t1, t2, . . . , tn}, where all tuples are independent. Assume that t1 has score 5
and probability 0.4, while t2 has score 4 and probability 0.8. Let sum be the
aggregate function. Figure 10(a) shows g ’s world space after consuming t1. The
space is partitioned into two group states: s1

g = {t1}, and s2
g = {¬t1}. Pr(s1

g ) = 0.4
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Fig. 10. Group worlds space navigation.

is the probability summation of all g ’s worlds that include t1, while Pr(s2
g ) = 0.6

is the probability summation of all g ’s worlds that do not include t1. Each group
state thus aggregates a part of g ’s space. Figure 10(b) shows how g ’s space is
further partitioned into four finer states s11

g , s12
g , s21

g , and s22
g , after consuming t2.

State probabilities are computed by multiplying the corresponding tuple events,
assuming independence. In general, probability computation is performed by
the rule engine component (Section 4), which maintains tuple dependencies.
An important property that applies to group states is the following:

PROPERTY 3. Any two states si
g and s

j
g of the same group g are mutually

exclusive.

Property 3 holds because no group world is subsumed by two group states at
the same time, since each state is conditioned on an event that conflicts with
all other states. For example, in Figure 10(b), s11

g is conditioned on (t1 ∧ ¬t2),

while s12
g is conditioned on (t1 ∧ t2).

Computing the aggregate range of group state. Computing group aggregate
bounds, from a partial retrieval of group tuples, is possible if we have knowledge
about (1) group size; and (2) bounds over tuple score. Li et al. [2006] show that
for a bounded aggregate function F applied to a group g = {t1, . . . , tn}, where α

is the maximum tuple score in g , an algorithm that retrieves g tuples one by
one can upper-bound F(g ) as follows:

F(g ) = F(x1, . . . , xn), where xi =

{

ti .score i f ti is seen

α i f ti is unseen
(6)

F(g ) can be lower-bounded similarly, if we know the minimum score of g tuples.
We build on these results to bound the aggregates of group states.

As described in Section 4, we assume the tuple access layer, is rank-aware

and group-aware. By rank-awareness we mean that tuples are pipelined in score
order, which can be realized efficiently using available rank-aware query oper-
ators [Ilyas et al. 2004], and rank-aware relational algebra [Li et al. 2005]. By
group-awareness we mean the knowledge of (bounds of) the size of each group
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(the group cardinality information assumption), and the existence of an inter-
face allowing consuming tuples from specific groups incrementally. Proposed
techniques can satisfy group-awareness in different forms including the use of
materialized views [Goldstein and Larson 2001] and index striding [Hellerstein
et al. 1997]. We discuss these techniques in Section 11.

Consider Figure 10(a). We show how to compute Rsum(s1
g ). Assume that

the minimum tuple score in g is 0. Then, Rsum(s1
g ) = 5, since any group

world subsuming s1
g must include t1 which has score 5. In addition, since

only t1 is included in s1
g , there are |g | − 1 “unknown” tuples that can fur-

ther partition s1
g . Assume that the maximum score of such tuples is α, then

R
sum

(s1
g ) = 5 + (|g | − 1) × α. Similarly, since t1 does not belong to s2

g , then
Rsum(s2

g ) = 0 while R
sum

(s2
g ) = (|g | − 1) × α. Retrieving tuples in score order

allows reducing α, the maximum score of unseen tuples. The aggregate range of
group states, for aggregate functions other than sum, can be computed similarly.
Group space can thus be navigated lazily by incrementally retrieving tuples
in score-order, and using these tuples to refine the aggregate bounds of group
states. The goal is to partition group space into aggregate-ordered group states.

Algorithm 3. Intra-Group Aggregation

INITIALIZE (g : Tuple Group)

1 Q ← priority queue for states of g ordered on R
F

(.)

2 s0
g ← an empty state, where Ts0

g
= φ, Pr(s0

g ) = 1, and RF (s0
g ) = [F(g ), F(g )]

3 Insert s0
g into Q

GETNEXTSTATE (g : Tuple Group)

1 while (Q is not empty)

2 do

3 if (Q.size > 1)

4 then

5 s∗
g ← top state in Q ; s∗∗

g ← second top state in Q

6 if (RF (s∗
g ) ≥ R

F
(s∗∗

g ))

7 then return s∗
g

8 s∗
g ← dequeue (Q)

9 t ← next g tuple in score order not used yet in partitioning s∗
g

10 Partition s∗
g using t into s1

g and s2
g

11 Insert s1
g and s2

g into Q

12 return null

Algorithm 3 gives the details of our intragroup aggregation procedure. On
each invocation of procedure GETNEXTSTATE, the algorithm returns the next
state of group g in aggregate order. This is done by maintaining a priority queue
(initialized in procedure INITIALIZE) of visited group states ordered on aggregate
upper-bound. Group tuples are retrieved, when needed, in score order. At each
step, the state s∗

g at queue top is partitioned using the next tuple in score order
that is not used yet in partitioning s∗

g . Partitioning a state results in two new
states that replace the old state in the queue. State partitioning ends when the
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Fig. 11. Partitioning group worlds space.

aggregate lower-bound of queue top state is higher than the aggregate upper-
bound of all other states, and the algorithm reports the state at queue top. We
prove the necessity of visiting group states in aggregate upper-bound order in
Theorem 4.

We illustrate Algorithm 3 using Figure 11. For the shown group g , tuple
score is assumed to be in [0,10], |g | = 6, and the aggregate function is sum.
The algorithm starts from state s0

g , where Rsum(s0
g ) = [0, 60] and Pr(s0

g ) = 1. In

Figure 11(a), t1 partitions s0
g into s1

g and s2
g . The probabilities and aggregate

ranges of s1
g and s2

g are computed, and they are stored in the state priority

queue. In Figure 11(b), the top queue state s2
g is partitioned into s3

g and s4
g ,

using t2. At this point, we update our information about the scores of unseen
g tuples, which is now bounded by 5. Moreover, R

sum
(s1

g ) is also updated to

sum(0, |g − 1| × 5) = 25, without actually partitioning s1
g . In Figure 11(c),

s4
g is partitioned using t3, and the upper-bounds of s1

g and s3
g are updated.

Note that the state queue maintains only the leaves of the state partitioning
tree.

THEOREM 4. The group state with the highest aggregate upper-bound cannot

be skipped while partitioning group space using incrementally retrieved score-

ordered tuples.

PROOF. Assume an algorithm A that incrementally retrieves score-ordered
group tuples to find the next group state in aggregate order. Assume that A

skipped partitioning s∗
g , the state with the highest aggregate upper-bound, but

could correctly report śg , the next state in aggregate order. Hence, RF (śg ) ≥

R
F

(s∗
g ) . . . (†).

However, since s∗
g is not partitioned by A, the value of R

F
(s∗

g ) remains
the maximum among the upper-bounds of all states including śg . Hence,
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the condition (†) cannot be satisfied, and A has reported an incorrect
state.

It follows from Theorem 4 that any algorithm that works under our frame-
work assumptions by incrementally consuming score-ordered tuples to report
nonoverlapping aggregate ranges cannot visit less states than our intragroup
aggregation algorithm. The worst-case scenario of our algorithm is to fully ma-
terialize the exponential space of group worlds, which can be unavoidable in
some cases under the assumptions of our processing framework. In practice,
our experiments (Section 10.2.1) show that materialized group space is usually
manageable for practical values of k.

We conclude this section by describing how to produce aggregate-ranked
states coming from different groups. The intragroup aggregation layer prior-
itizes groups based on their aggregate upper-bounds. That is, the group with
the highest aggregate upper-bound is requested for its next state in aggregate-
order. A reported group state sl

gi
, from the intragroup aggregation layer, sat-

isfies the following condition: RF (sl
gi

) ≥ R
F

(sm
g j

), for any unreported state sm
g j

in any group g j . The output of the intragroup aggregation layer is reported
incrementally (on demand) to the intergroup layer, which is described next.

7.2.2 Intergroup Space Navigation. We discuss in this section how to
use aggregate-ordered group states to search the answer space of ranking-
aggregate queries. We start by formulating the search space, then we demon-
strate the necessity of consuming aggregate-ordered group states to efficiently
evaluate our queries.

Definition 11. Intergroups State. An intergroups state Sl , with l ≤ k, is a
vector of l different group identifiers appearing as a prefix in one or more global
worlds. Pr(Sl ) =

∑

GLW j :G j ,l =Sl
Pr(GLW j ). An intergroups state is complete if

l = k.

Definition 12. Global State. A global state Gl , with l ≤ k, is vector of l

group states ordered on aggregate ranges. Pr(Gl ) = Pr(Gl ∧ ¬IGl
), where IGl

is the set of group states seen by Gl in aggregate order, but not included in
Gl .

Each intergroups state aggregates global states with a matching group identifer
vector. We illustrate the above definitions using the next example.

Example 5. Matching Intergroups State and Global State. Recall that
s

j
gi

denotes group state j in group gi. Assume an intergroups state S3 =

〈g1, g3, g4〉. The global state G3 = 〈s1
g1

, s5
g3

, s2
g4

〉 matches S3, since the group

identifiers in G3 match those in S3 in the same order. Let IG3
= {s1

g2
}. Then,

Pr(G3) = Pr(s1
g1

∧ s5
g3

∧ s2
g4

∧ ¬s1
g2

).

Notice that global states do not contain group states with the same group iden-
tifier, since group states coming from the same group are mutually exclusive
(Property 3). Intergroups states comprise the candidate answers of our ranking-
aggregates queries.
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Algorithm 4. Inter-Group Aggregation

U-TOPK-AGG (source: Aggregate-ordered stream of group states, k : Result Size )

1 Q ← priority queue of intergroups states ordered on probability upper-bounds

2 S0 ← an empty state, with probability 1

3 Insert S0 into Q

4 {while (Q is not empty AND source not exhausted)

5 do

6 S∗
l ← dequeue (Q)

7 Gl ← remove the most probable matching global state to S∗
l

8 Extend Gl into Gl+1 and Ǵl , using next state from source not seen yet by Gl

9 Insert Gl+1 and Ǵl in their matching sets of global states

10 Update probability bounds of affected intergroups states

11 S∗
l ← peek at top state in Q

12 if (l = k AND Pr(S∗
l ) ≥ probability upper-bounds of other states in Q)

13 then return S∗
l

14 return null

Similar to our discussion of tuple orders in Section 5.1, retrieving group
states in aggregate order is necessary and sufficient to compute nontrivial
bounds on the probabilities of intergroups states.

THEOREM 5. Retrieving group states in aggregate order is necessary and suf-

ficient to compute nontrivial bounds on the probabilities of intergroups states.

PROOF. Follows directly from Theorem 1’s proof.

Computing U-Topk-Agg queries. Based on Definition 11, the answer to U-
Topk-Agg query is a complete intergroups state with the maximum probability.
Our strategy to find such a state is to grow intergroups state space until we have
guarantees that a complete state has the maximum probability. Intergroups
states are constructed by aggregating global states, which are constructed from
the ranked stream of group states consumed from the intragroup aggregation
layer.

Let Gl be a global state. Let sg be the next group state, in aggregate order, not
seen yet by Gl . We extend Gl using sg into Gl+1 (by appending sg to Gl ), and Ǵl

(by appending sg to IGl
). Note that Pr(Gl ) = Pr(Gl+1) + Pr(Ǵl ). An intergroups

state is extended by extending one of its matching global states.
Algorithm 4 describes our intergroup aggregation technique for U-Topk-Agg

query. The algorithm retrieves aggregate-ordered group states from the in-
tragroup aggregation layer. The algorithm visits intergroups states in the or-
der of their probability upper-bounds (we show how to compute these bounds
next). Each visited state is extended by extending its matching global state
with the highest probability. The search ends when finding a complete in-
tergroups state whose probability is not below the probability upper-bounds
of other states. The details of the algorithm are illustrated through the next
example.
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Fig. 12. Inter-groups states and matching global states.

Consider Figure 12, where aggregate-ordered group states produced by the
intragroup aggregation layer is shown at the top. Space search starts from the
empty state S0. In Figure 12(a), the first group state s1

g1
extends S0 into 〈g1〉 and

S0. Each intergroups state is linked to matching global states, and each global
state remembers its last seen group state. The current probability of an inter-
groups state Sl is the summation of the probabilities of its currently matching
global states. The actual probability of Sl may be larger because of nonmateri-
alized global state that match Sl . We thus upper-bound the probability of Sl by
the summation of Sl ’s current probability, and the current probabilities of other
intergroups states sharing a prefix with Sl . For example, the state S1 = 〈g1〉

has a current probability of 0.6, and is upper-bounded by 0.6 + 0.4 = 1.0, since
it shares the empty prefix with S0. The rationale is that a nonmaterialized
intergroups state, identical to Sl , could only be produced by extending a state
sharing a prefix with Sl . For example, another 〈g1〉 state could only be produced
from S0. Hence, the summation of the current probabilities of S0 and 〈g1〉 is
the maximum probability 〈g1〉 could eventually have.

We buffer intergroups states in a priority queue ordered on their upper-bound
probabilities. At each step, the top queue state is extended by extending its cur-
rent matching global state Gl with the highest probability. In Figure 12(b), 〈g1〉

is extended by extending the global state 〈s1
g1

〉 using the next group state s1
g2

.

This results in two global states 〈s1
g1

, s1
g2

〉 and 〈s1
g1

, ¬s1
g2

〉. The first state creates
a new entry, 〈g1, g2〉, in the intergroups state queue, while the second state
updates the probability of 〈g1〉. The probability upper-bounds of the states are
updated accordingly. In Figure 12(c), the state 〈g1, g2〉 is extended by extending
its most probable global state 〈s1

g1
, s1

g2
〉.

Computing U-kRanks-Agg queries. Our processing algorithm for U-kRanks-
Agg queries uses the same intergroup aggregation machinery discussed above.
However, in this case, each input group state, coming from the intragroup ag-
gregation layer, is used to extend all maintained global states. We keep a list of
group identifiers that appear at each rank 1 . . . k in one or more global states.
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For group identifier gi, we bound Pgi , j as follows. The lower-bound of Pgi , j is
computed by adding up the probabilities of all global states having gi at rank
j , while the upper-bound of Pgi , j is computed by adding its lower-bound to the
probability summation of all global states Gl , where l < j (as discussed in
Section 5.3.2). Similarly, an upper-bound for Pgu, j , for any unseen group identi-
fier gu, is computed by summing the probabilities of all global states Gl , where
l < j . We report an answer gi for rank j when the lower-bound of Pgi , j is not
below the upper-bound of Pgr , j for all other group identifiers gr , including the
unseen groups.

8. OTHER QUERY TYPES

In this section we discuss other query types that can be computed using our
processing framework.

Beyond the most probable answers. We extend our search algorithms to find
the l most probable answers, as opposed to terminating on finding the most
probable answer, where l is an input parameter. We illustrate this extension
using our probabilistic top-k search algorithms. The extension of probabilistic
top-k aggregates algorithms is similar.

Algorithm 1 can be extended to return the l most probable U-Topk answers
by changing its termination condition as follows: “terminate upon returning l

complete states.” Since each reported state is guaranteed to be the most prob-
able among all unreported states, the algorithm correctly computes the l most
probable U-Topk answers. Similarly, Algorithm 2 can be extended to return the
l most probable U-kRanks answers at each rank i = 1 . . . k by maintaining, for
each rank i, a set Ti of l retrieved tuples with the largest Pt,i values among all
retrieved tuples. The termination condition at rank i changes to “terminate at
rank i when the minimum Pt,i value in Ti is not below

∑

j<i Z j .”
Another generalization of Algorithm 2 is to find distinct U-kRanks query an-

swers. Based on U-kRanks query definition (Definition 2), the same tuple can
be the most probable to appear at multiple ranks. Algorithm 2 can be general-
ized to report distinct answers at different ranks by changing the termination
as follows: “terminate at rank i with tuple t if (1) t is not reported as an answer
at rank j < i; and (2) Pt,i ≥

∑

j<i Z j .”
Top-k sets. Another possible query semantics that arise from the integra-

tion of the scoring and probability dimensions is to find the most probable top-k
set, that is, the k tuples with the highest probabilities of appearing in the top-k
prefix of different worlds. We next show that our U-kRanks algorithm (Algo-
rithm 2) can be used to compute this query. The probability of tuple t to appear
in the top-k is Ptopk(t) =

∑k
i=1 Pt,i. Hence, the value of Ptopk(t) can be computed

by summing up the Pt,i values (computed at line (15) in Algorithm 2) over all
ranks. Let Ttopk be the set of k retrieved tuples with the maximum Ptopk(t)

values, and let U = min(1,
∑k

i=1 ui), where ui = 1 −
∑

Pt,i for any retrieved
tuple t. The algorithm terminates when (min t∈Ttopk

Ptopk(t)) ≥ U . We note, how-
ever, that the above extension may not be the most efficient solution for this
problem due to the extra overhead incurred in computing Pt,i at individual
ranks.
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Fig. 13. (a) Relation with probabilistic tuple scores (b) Equivalent normalized relation.

Top-k queries with probabilistic scores. Our uncertainty model assumes
probabilistic tuples with deterministic scores. An interesting extension is to
allow each tuple to have a probability distribution over its possible scores. For
example, assume a database of car makes, where each car make is given a
set of ratings (scores), and each rating is associated with a probability values
reflecting the fraction in a sample of users’ population who agree on that rat-
ing. Figure 13(a) shows an example of such Reviews relation, where each tuple
maintains a probability distribution of the ratings given to some car make.

Consider a query that finds the top-k rated car makes in the Reviews relation.
This query can be viewed as an implicit “top-k groups” query, where group
identifier is the same as tuple id (the “Make” attribute). That is, each tuple
is a distinct group whose members are tuple duplicates, with each duplicate
assigned one possible score. The uncertainty in tuple scores is thus mapped to
tuple membership uncertainty by transforming the original relation to its 1NF,
as shown in Figure 13(b). The added exclusiveness rules enforce that no two
instances of the same tuple co-exist in the same possible world (ti. j is instance
j of tuple ti). Note that this transformation is only possible for discrete score
distribution.

Under the above settings, each group has at most one instance in any possible
world. Conceptually, this “top-k aggregate query” aggregates all possible top-k
vectors with the same ranking of car makes. For example both 〈t3.1, t2.1〉 and
〈t3.1, t2.2〉 map to the same ranking 〈t3, t2〉, and so their probabilities need to
be aggregated. The techniques described in Section 7.2 can be applied to the
normalized relation to compute such ranking-aggregate query under our the
semantics: U-Topk-Agg and U-kRanks-Agg.

9. HANDLING EXPENSIVE PROBABILITY COMPUTATION

In this section we address relaxing the event probability computation assump-
tion of our framework. Our previous discussion assumes that the probabili-
ties of query output tuples (or tuple combinations), as computed by the Rule

Engine, are exact. However, computing the exact probabilities is expensive for
some query types [Dalvi and Suciu 2007]. To illustrate, assume an SPJ query
plan π

p
x (R ✶

p S) (cf, Section 2). Assume that the two join results (r1 ✶
p s1), and

(r1 ✶
p s2) have the same value in attribute x. Then, the event associated with

a query output tuple tq is tq .e = (r1.e ∧ s1.e) ∨ (r1.e ∧ s2.e). Computing Pr(tq .e)
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is equivalent to finding the satisfiability ratio of a DNF formula, which is #P-
Complete [Valiant 1979]. Specifically, to find the exact value of Pr(tq .e), we need
to enumerate all possible truth assignments of the events r1.e, s1.e, and s2.e,
and sum up the probabilities of the assignments that reduce the DNF formula
to true.

Ré et al. [2007] describes a simulation algorithm, based on Monte-Carlo
method [Karp and Luby 1983], that computes intervals enclosing the precise
probabilities with high confidence. These intervals are tightened, when needed,
by simulating random truth assignments of the involved events. We next de-
scribe an extension of our techniques, based on Monte-Carlo simulation, to han-
dle expensive probability computation. We focus our discussion on Algorithm
OPTU-Topk. The extension of other algorithms is similar.

As described in Section 5.3.1, Algorithm OPTU-Topk maintains a priority
queue based on states’ probabilities. The algorithm iteratively picks the state
at queue top, extends it, and inserts the resulting two states into the queue. The
algorithm terminates when the state at queue top is complete. All states are
assumed to have exact probabilities as computed by the rule engine. We now
consider the case where the probabilities of one or more output tuple events are
expensive to compute, and hence they are represented using intervals enclos-
ing the exact probabilities. Since our states are formulated as conjunctions (i.e.,
CNF formulas) of tuple events, state probability in this case is represented as
an interval as well. That is, for a state sl , an interval [P(sl ), P(sl )] enclosing the
exact P(sl ) is computed by simulating random truth assignments of the events
involved in the CNF formula representing sl .

Following our strategy of growing a state space guided by probability, two
operations can now be applied to each state: (1) tightening state probability
intervals by simulating further truth assignments of its tuple events; and (2)
extending state (if not complete) with its next unused tuple. An important
property that allows early query termination is the following:

PROPERTY 4. P(sl ) does not increase when sl is further simulated, or ex-

tended.

Property 4 is true, since simulating further truth assignments in sl would
decrease P(sl ), or keep it the same. Furthermore, extending sl yields a new CNF
formula that is unsatisfiable under any simulated truth assignment that did
not satisfy the original CNF formula of sl . This means that the value of P(.) for
extended states from sl is always bounded by P(sl ). We can thus report query
answers by bounding the probabilities of both complete and incomplete states,
which allows avoiding the costly computation of exact probabilities.

Moreover, we can further tighten the upper-bounds of states’ probabilities by
exploiting their correlation under possible worlds semantics. Specifically, at any
point, the summation of the P(.) of all maintained states is the total probability
that is already assigned to some (partial) answers in the space. The remainder,
that is, (1−

∑

P(sl )), is a probability margin that any state can further obtain. A
tighter probability upper-bound for state sl , denoted TU (sl ), is thus computed
as follows: TU (sl ) = min(P(sl ), 1 −

∑

ś �=sl
P(ś)).
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Based on the above discussion, a general U-Topk query processing algorithm
that handles expensive probability computation is described in the following:

(1) Keep a priority queue for all visited states based on TU (.).

(2) At any step, if there exists a complete state s∗
k at queue top, where P(s∗

k) >

TU (s) for any other state s, terminate with s∗
k .

(3) Simulate the top queue state using a new random assignment of its vari-
ables, while updating the queue at each simulation step, until the state s∗

l

at queue top satisfies the condition P(s∗
l ) > TU (s) for any other state s.

(4) Extend s∗
l using the next tuple event, and replace it in the queue with the

two resulting states. Goto step (3).

Based on our previous discussion in Section 5.3.1, and Theorem 2, it can be
shown that the above algorithm minimizes the number of visited states, since it
does not extend a state unless it is indeed the state with the highest probability.

10. EXPERIMENTS

Our experiments are conducted on a 3GHz Pentium IV PC with 1 GB of memory,
running Debian GNU/Linux3.1. We built our framework on top of RankSQL [Li
et al. 2005], which provides rank-awareness and group-awareness support. We
used synthesized datasets generated by R [R-project ]. Space navigation al-
gorithms, and a rule engine prototype were implemented in C. We created a
customized set of rules for each dataset to control the generation of possible
worlds. Section 10.1 describes the experiments we conducted to evaluate our
techniques for computing probabilistic top-k queries, while Section 10.2 is our
experimental evaluation for probabilistic top-k aggregates techniques.

10.1 Probabilistic Top-k Queries

The main performance metrics to evaluate probabilistic top-k query processing
techniques are (1) query execution time, and (2) tuple scan depth (the number of
consumed tuples from D). In all experiments we used rank-aware plans to effi-
ciently report tuples in score order. We emphasize, however, that our techniques
are transparent from the underlying source of score-ranked tuples.

10.1.1 The Naı̈ve Approach. We illustrate the infeasibility of applying the
naive approach of materializing possible worlds space, sorting each world
individually, and merging identical top-k answers. Due to space explosion, we
applied this approach, to small databases of sizes less than 30 tuples with dif-
ferent sets of generation rules. The materialization phase was the bottleneck
in this approach consuming, on the average, one order of magnitude longer
times than the merging phase. For example, processing a database of 28 tu-
ples with exclusiveness rules yielded 524,288 possible worlds, and top-k query
answer was returned after 1940 seconds of which 1895 seconds were used to
materialize the space.

10.1.2 Effect of the Distribution of Tuples Probabilities. We evaluate here
the effect of the distribution of tuples probabilities on execution time and
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Fig. 14. IndepU-Topk time (different distributions).

Fig. 15. IndepU-Topk depth (different distributions).

Fig. 16. IndepU-kRanks time (different distributions).

scan depth. We used datasets with the following (score,probability) distribu-
tion pairs: (1) uu: score and probability are uniformly distributed; (2) un (mean

x): score is uniformly distributed and probability is normally distributed with
mean x, where x = 0.5 or 0.9, and standard deviation 0.2, and (3) uexp (x):
score is uniformly distributed and probability is exponentially distributed with
mean x, where x = 0.2 or 0.5.

Figures 14 and 15 show the time and scan depth of IndepU-Topk, respectively,
while Figures 16 and 17 show the time and scan depth of IndepU-kRanks, re-
spectively, for k values up to 1000. The best case for both algorithms is to
frequently find highly probable tuples in the score-ranked stream. This al-
lows obtaining strong candidates to prune other candidates aggressively, and
thus terminate the search quickly. This scenario applies to un(mean 0.9) dis-
tribution pair where a considerable number of tuples are highly probable. The
counter scenario applies to uexp(0.2) where the exponential rate of decay in
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Fig. 17. IndepU-kRanks depth (different distributions).

Fig. 18. IndepU-Topk (correlations).

Fig. 19. IndepU-kRanks (correlations).

probabilities results in a small number of highly-probable tuples. IndepU-Topk

execution time is under 10 seconds for all data distributions, and it consumes a
maximum of 15,000 tuples for k=1000 under exponentially-skewed distribution.
The maximum scan depth of IndepU-kRanks is 4800 tuple, however the execu-
tion time is generally larger (a maximum of 2 minutes). This can be attributed
to the design of both algorithms where bookkeeping and candidate maintenance
are more expensive operations in IndepU-kRanks than IndepU-kRanks.

10.1.3 Score-Probability Correlations. We evaluate the effect of score-
probability correlations. We generated bivariate Gaussian data on score and
probability dimensions, and controlled the correlation coefficient by adjust-
ing the bivariate covariance matrix. Positive correlations result in large sav-
ings, since in this case highly-scored tuples have high probabilities, which al-
lows reducing the number of needed-to-see tuples to compute query answers.
Figures 18 and 19 show the effect of the correlation coefficient on the scan
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Fig. 20. OPTU-Topk (depth).

Fig. 21. OPTU-Topk (time).

depth of IndepU-Topk and IndepU-kRanks, respectively. Increasing the corre-
lation coefficient from 0.1 to 0.8 reduces the scan depth of IndepU-Topk and
IndepU-kRanks by an average of 20% and 26%, respectively. Negative cor-
relation degrades the performance since it leads to consuming more tuples.
For example, decreasing the correlation coefficient from −0.5 to −1 results in
an increase, with an average of 1.5 orders of magnitude, in scan depth for
IndepU-Topk, and 1 order of magnitude for IndepU-kRanks. The effect on exe-
cution time is similar.

10.1.4 Evaluating Algorithms Performance. We evaluate the performance
of OPTU-Topk. We used databases of exclusive tuples with uncorrelated, pos-
itively correlated, and negatively correlated score and probability values.
Figures 20 and 21 show the scan depth and execution time of the OPTU-Topk

algorithm. The execution time is under 100 seconds for values of k reaching 30.
The time is consumed by the algorithm in maintaining the materialized states
in the priority queue before concluding an answer. However, for positively cor-
related data, the time is only under 1 second for all k values. The scan depth
of OPTU-Topk increases by an average of 1 order of magnitude when going from
positively to negatively correlated data. This can be explained based on the fact
that for positively correlated data, highly-probable states are reached quickly
after retrieving a small number of tuples, while for negatively correlated data
more tuples need to be retrieved before concluding an answer, which leads to
materializing more states.
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Fig. 22. Rule set complexity.

10.1.5 Rule Set Complexity. We evaluate the effect of potential complex-
ity of model rules on the performance. Since the study of efficient rule eval-
uation techniques is beyond the scope of this article, we implemented a rule
engine prototype that computes the probabilities of partial states under tuple
exclusiveness. We experimented with different rule sets with different XOR

degrees; which is the number of tuples that are exclusive with a given tuple.
Figure 22 shows the execution times of OPTU-Topk and OPTU-kRanks with dif-
ferent XOR degrees. Increasing the XOR degree generally results in increasing
the execution time, with an average of one order of magnitude when going from
XOR = 2 to XOR = 4, or from XOR = 4 to XOR = 8 at the same value of k. In-
creasing the XOR degree raises the cost involved in each request to the rule
engine since it increases the possibility that a newly seen tuple is exclusive with
other tuples in currently processed states, which leads to larger computational
overhead.

10.2 Probabilistic Top-k Aggregate Queries

In this section we give the experimental evaluation of our processing techniques
for top-k aggregate queries and top-k queries with probabilistic tuple scores.
Probabilistic tuple scores are represented as multiple exclusive tuple instances
associated with the same tuple identifier. We assume the independence of tuples
coming from different groups to simplify computing the probabilities of global
states. The intra- and intergroup aggregation layers are implemented on top of
a rank-aware and group-aware RDBMS [Li et al. 2005, 2006]. Our experimental
study does not take into consideration tuple retrieval cost, which is transparent
to our techniques.

We study the effect of k, the number of groups, and the group tuple count,
on the performance of our techniques. The performance metrics are query ex-
ecution time, the number of retrieved tuples, the number of generated group
states, and the pruning power of our space navigation techniques, where the
pruning power is estimated using the nonmaterialized portion of the possible
worlds space.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 13, Publication date: August 2008.



13:46 • M. A. Soliman et al.

Fig. 23. Effect of k on execution time.

10.2.1 Effect of Changing k Values. We evaluate the performance of our
techniques with different k values. The problem space grows exponentially
when increasing k. Specifically, for n groups the total number of possible U-
Topk-Agg query answers is all the possible group permutations of length k,
which is in O(nk). Increasing the value of k results in exponential increases
in query execution time and the number of processed tuples and groups. How-
ever, our space pruning and efficient navigation algorithms allow for graceful
performance for typical values of k, as we show in this experiment.

To study the effect of increasing k, we generated three different datasets
DB1, DB2, and DB3 with the following configurations:

—the size of each database is 1 million record;

—group tuple count within each database is uniformly distributed on [1,50]
tuples;

—the dirtiness ratio of DB1, DB2, and DB3 are 10%, 25%, 50%, respectively,
where a tuple is considered dirty if its membership probability is less than 1.

Figure 23 shows query execution time when increasing the value of k from 5 to
30 for the different databases. Query execution time increases by an average of
3 orders of magnitude when the value of k increases from 5 to 30. This behavior
is expected because of the nature of our problem space. The maximum query
execution time is around 600 seconds in the worst case (DB3 at k = 30).

The dirtiness ratio contributes to the increase in query execution times, as
shown in Figure 23. Query execution time increases by an average of 1.5 orders
of magnitude between DB1 and DB2, and by an average of 2.2 orders of mag-
nitude between DB2 and DB3. Smaller execution times in cleaner datasets are
attributed to how space is navigated. When a state is extended with a proba-
bilistic tuple, a new state needs to be maintained. On the other hand, when a
state is extended with a certain tuple, no new states are generated. Encounter-
ing certain tuples frequently while processing U-Topk-Agg queries reduces the
materialized space size, and consequently contributes to smaller query execu-
tion time.

Figure 24 shows the effect of increasing k on the number of retrieved tuples.
In general, increasing k does not contribute to large increases in the number
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Fig. 24. Effect of k on retrieved tuples.

Fig. 25. Effect of k on generated group states.

of retrieved tuples. The number of retrieved tuples for the three datasets was
comparable for the same k values. The interpretation is that a small number
of tuples generates a huge number of possible top-k vectors. Tuples that are
located deep inside the score-ordered tuple stream have negligible chances of
contributing to the top-k answer, since their existence in an answer is condi-
tioned on the nonexistence of most of the preceding tuples.

Figure 25 shows the number of group states generated from the intragroup
aggregation layer for each dataset at different k values. Figure 25 shows that
the number of consumed states is small. Specifically, the number of gener-
ated states doubled by 4 times, in the worst case of DB3, when the value of k

doubled by 6 times. Our score-ordered state traversal enables the aggregation
techniques to generate highly-probable query answers based on the seen states,
and hence no useless states are generated.

10.2.2 Varying the Number of Groups. We evaluate the effect of varying
the number of groups on the performance of our techniques. Figure 26 shows
the execution time for U-Top5-Agg queries with a number of groups ranging
from 100,000 to 500,000 and a fixed group size of 5 exclusive tuples. Increasing
the number of groups does not dramatically degrade the performance. The max-
imum query execution time is 80 seconds for the case of 500,000 groups. This
can be interpreted based on how our processing framework picks groups/group
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Fig. 26. Effect of number of groups on execution time.

Fig. 27. Effect of number of groups on retrieved tuples.

states to process based on both score and probability. Useless groups/group
states that do not contribute to query answer are not processed based on the
upper bounds maintained on scores and probabilities. Our framework always
explores the groups/states with the highest chances of contributing to query
answer. Increasing the number of groups, however, involves extra processing in
the intragroup aggregation layer to produce the next group state in score order
across all groups, which results in relatively small increase in query execution
time, as shown in Figure 28.

The number of retrieved tuples is not largely affected by the increase in
the number of groups, as shown in Figure 27. The number of retrieved tu-
ples increased by 129% when the number of groups increased from 100,000 to
500,000. This is due to the fact that a limited number of groups contribute to
query answer. Our space search methods probe a small number of groups based
on probability guidance, which results in retrieving a small number of tuples.

10.2.3 Varying the Group Size. Varying the group size results in changing
the number of group worlds, which influences our techniques as follows. For
groups of small number of worlds, the probability of each group world is consid-
erable. This allows the intragroup aggregation layer to generate group states
with high probability early during its processing. Obtaining highly-probable
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Fig. 28. Effect of number of groups on group states.

Fig. 29. Effect of group size on execution time.

states early from the intragroup aggregation layer enables the processing
framework to conclude answers quickly. On the other hand, when the number
of group worlds increases, the probability of each world is small. The generated
group states, which aggregate the probabilities of many group worlds, would
therefore have small probabilities as well. This forces the intergroup aggrega-
tion layer to consume more group states before concluding an answer.

Figure 29 shows query execution time for datasets of 1000 groups, and the
number of group tuples ranges from 10 to 500. The variation in the number of
group worlds is simulated by customizing the rule set to control the number
of possible group worlds. The sensitivity of our techniques to group size leads
to increasing query execution time from 0.05 seconds to 150 seconds when
group size increases from 10 to 500 worlds. Figures 30 and 31 show similar
behavior for the number of retrieved tuples, and the number of generated states,
respectively, which both increased by almost one order of magnitude when group
size increases from 10 to 500 worlds.

10.2.4 Evaluating the Pruning Power of Space Navigation. We evaluate
the performance of our techniques with respect to the savings in the materi-
alized space. Table I shows the results obtained with different parameter con-
figurations. Each result is obtained from the average of 10 independent runs
with the same parameter configurations. In all runs, datasets with groups of
exclusive tuples are used to allow computing the exact size of the answer space.
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Fig. 30. Effect of group size on retrieved tuples.

Fig. 31. Effect of group size on generated states.

For a database of n groups with m exclusive tuples within each group, the num-
ber of possible worlds is mn, while the number of possible U-Topk-Agg query
answers is in O(nk), which corresponds to all possible k-length permutations
of n groups. Although the problem space is exponentially large, the number of
materialized intergroups states is manageable for typical k values. The ratio
between the number of intergroups states to the total number of possible an-
swers is negligible, which reflects the efficiency of our techniques in pruning
the answer space and the applicability of our methods in practical settings.

11. RELATED WORK

Our study is mainly related to proposals in two large areas:
(1) Probabilistic query processing. Several recent research projects address

query processing aspects in uncertain databases. The Trio system [Widom 2005;
Sarma et al. 2006; Benjelloun et al. 2006] introduced working models to cap-
ture uncertainty at different levels by relating uncertainty with lineage and
leveraging existing DBMSs capabilities for uncertain data management. The
ORION project [Cheng et al. 2007] deals with constantly evolving data as con-
tinuous intervals and presents query processing and indexing techniques to
manage uncertainty over continuous intervals. However, it does not address
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Table I. Materialized Intergroups States for Different Configurations

Group Size Groups k Space Size Inter-groups States Inter-groups States / Space Size

1000 500 5 5005 14,223 4.6E-10

2000 500 5 5005 14,267 4.5E-10

5000 500 5 5005 16,319 5.2E-10

possible worlds semantics under membership uncertainty and generation rules.
The CONQUER project [Fuxman et al. 2005; Andritsos et al. 2006] introduced
query rewriting algorithms to extract clean and consistent answers from un-
clean databases under possible worlds semantics and proposed methods to de-
rive the probabilities of uncertain data items.

Most of the proposed probabilistic query processing methods mainly assume
Boolean queries, and so they are insufficient to compute probabilistic top-k
queries efficiently. The reason is twofold: (1) the proposed algorithms are pri-
marily tuple-based, that is, they compute probabilities for individual output
tuples, while probabilistic top-k queries are after tuple vectors; and (2) con-
ventional score-based ranking criteria are not considered in any of these algo-
rithms. Ré et al. [2007] address top-k queries in probabilistic databases based
on the probability dimension only, where a top-k query reports the k most prob-
able tuples in query output. The proposed technique computes query answers
using Monte-Carlo simulation, where computing the exact probability of an
answer is relaxed in favor of computing the correct answers efficiently. How-
ever, an integrated solution that combines both scores and probabilities as two
interacting ranking dimensions does not exist.

Probabilistic aggregate operators have been addressed in Ross et al. [2005],
with the objective of computing the probability distribution of the aggregate
value over the whole probabilistic relation. The authors proposed a method to
group the relation’s possible worlds into buckets with the same aggregate value
and solve a linear program over each bucket to derive its probability bounds.
The algorithm has a general exponential complexity. Polynomial approximation
algorithms are proposed to only process the worlds specified by a selection strat-
egy, for example, filtering out worlds whose probabilities are below a certain
threshold. Jayram et al. [2007] study the semantics and processing of aggregate
queries in probabilistic data streams. The adopted semantics is reporting the
expected aggregate value, based on aggregate probability distribution. The au-
thors proposed efficient data stream algorithms that estimate aggregate values
within accuracy bounds. None of these works address formulating and process-
ing ranking-aggregate queries.

The work in Yi et al. [2008] uses our query definitions, and presents efficient
algorithms to handle special cases of our general search algorithms, where only
the most probable U-Topk or U-kRanks query answer is required, and tuples
are either independent or mutually exclusive.

(2) Rank/group-aware query processing. Recent proposals in rank-aware
query processing [Ilyas et al. 2004; Li et al. 2005], focus on embedding rank-
awareness in query operators to allow for early-out of top-k queries. While
these approaches provide a good basis for ranking probabilistic data in general,
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they are not explicitly designed to treat probability as an additional ranking
dimension.

Group-awareness can be supported by several existing methods. In Gold-
stein and Larson [2001], view-matching algorithms are proposed for group-by
queries to determine whether a query can be fully or partially answered us-
ing precomputed materialized views. Matching views can provide statistics on
different groups, for example, group tuple count. Additionally, frequently-used
grouping columns, based on query workloads, can be indexed in the views to
provide efficient means to incrementally access group tuples.

Datacubes [Gray et al. 1997] are widely-adopted in OLAP environment. A
datacube aggregates a measure attribute based on different subsets of dimen-
sional attributes. Given the potentially huge size of datacubes, different ma-
terialized views, summaries, and index structures are usually used to make
extracting information from datacubes more efficient. Such methods can be
directly applied to materialize statistics, including group tuple count, for arbi-
trary groups; or at least making obtaining such statistics relatively cheap.

In Hellerstein et al. [1997], an index striding method is proposed to draw
random tuples from each group, allowing progressive improvement in the ac-
curacy of the computed aggregates. When grouping attributes are indexed, the
index striding method opens multiple cursors on the index, one per group, such
that a cursor is advanced whenever a tuple is retrieved. When multikey indexes
are available, such that the grouping attribute is the primary key and the scor-
ing attribute is the secondary key, index striding can provide incremental tuple
access from each group in score order [Li et al. 2006].

The previous methods can be used to provide an interface that allows us to
incrementally access tuples in specific groups based on score order, in addition
to giving bounds on group tuple count. This allows scheduling group access to
minimize the number of needed-to-see tuples from each group, while computing
the top-k groups [Li et al. 2006] (we build on these results in our intragroup
aggregation layer in Section 7.2.1). However, these methods cannot be used
solely when group aggregates are probabilistically defined.

12. CONCLUSIONS

To the best of our knowledge, this article presents the first work that studies
formulating and processing probabilistic top-k and top-k aggregate queries.
Our work provides insights on the interplay between the score and probability
dimensions in these query types and presents efficient mechanisms to aggregate
probabilities across possible worlds.

We introduced new probabilistic formulations for top-k and ranking-
aggregate queries under possible worlds semantics. We modeled our problem
as a state space search, and described several query processing algorithms with
guarantees on the number of accessed tuples and the size of materialized search
space. Our processing methods integrate tuple retrieval, ranking, grouping, and
uncertainty management in the same framework, while leveraging existing in-
dexing and query processing techniques in RDBMSs. We introduced several
extensions to our techniques to handle other problem variants and query types.
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Our experimental study illustrates the efficiency of our techniques in different
practical settings.
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