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Abstract. The visualization of large text databases and document col-
lections is an important step towards more flexible and interactive types
of information retrieval. This paper presents a probabilistic approach
which combines a statistical, model–based analysis with a topological
visualization principle. Our method can be utilized to derive topic maps
which represent topical information by characteristic keyword distri-
butions arranged in a two–dimensional spatial layout. Combined with
multi-resolution techniques this provides a three-dimensional space for
interactive information navigation in large text collections.

1 Introduction

Despite of the great enthusiasm and excitement our time shows for all types of
new media, it is indisputable that the most nuanced and sophisticated medium
to express or communicate our thoughts is what Herder calls the ‘vehiculum of
our thoughts and the content of all wisdom and knowledge’[5] – our language.
Consequently, prodigious benefits could result from the enhanced circulation
and propagation of recorded language by todays digital networks, which make
abundant repositories of text documents such as electronic libraries available to
a large public. Yet, the availability of large databases does not automatically
imply easy access to relevant information, since retrieving information from a
glut of nuisance data can be tedious and extremely time consuming.

What is urgently needed are navigation aids, overlooks which offer uncompli-
cated and fast visual access to information, and maps that provide orientation,
possibly on different level of resolution and abstraction. This paper deals with a
statistical approach to provide such overlooks and maps for large collections of
text documents. It aims at a concise visualization of conceptual and topical sim-
ilarities between documents or aspects of documents in the form of topic maps.
The proposed method has two building blocks:

i. A latent semantic analysis technique for text collections [3, 6] which models
context–dependent word occurrences.

ii. A principle of topology preservation [11] which allows to visualize the ex-
tracted information, for example, in the form of a two–dimensional map.
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Herein, data analysis and visualization are not treated as separate procedural
stages; as we will discuss in more detail later on, it is a benefit of our procedure
that it unites both problems. This is formally achieved by optimizing a single
objective function which combines a statistical criterion with topological con-
straints to ensure visualization. This coupling makes sense, whenever the final
end is not the analysis per se, but the presentation and visualization of regu-
larities and patterns extracted from data to a user. As a general principle, the
latter implies that the value of an analysis carried out by means of a machine
learning algorithm depends on whether or not its results can be represented in a
way which makes it amenable to human (visual) inspection and allow an effort-
less interpretation. Obviously it can be of great advantage, if this is taken into
account as early as possible in the analysis and not in a post hoc manner.

Our approach is somewhat related in spirit to the WEBSOM learning archi-
tecture [10] which continues earlier work on semantic maps [15] and performs
a topological clustering of words represented as context–vectors. However, the
method presented here is based on a strictly probabilistic data model which is
fitted by maximum likelihood estimation. The discrete nature of words is di-
rectly taken into account without deviation via a (randomized) vector space
representation as in the WEBSOM. In addition, our model does not perform
word clustering, but models topics via word distributions.

The rest of the paper is organized as follows: Section 2 briefly introduces a
probabilistic method for latent semantic analysis [6], which is then extended to
incorporate topological constraints in Section 3. Finally, Section 4 shows some
exemplary results of multi-resolution maps extracted from document collections.

2 Probabilistic Latent Semantic Analysis

2.1 Data Representation

Probabilistic Latent Semantic Analysis (PLSA) [6, 7] is a general method for sta-
tistical factor analysis of two-mode and count data which we apply here to learn-
ing from document collections. Formally, text collections are represented as pairs
over a set of documents D = {d1, . . . , dN} and a set of wordsW = {w1, . . . , wM},
i.e, the elementary observations we consider are of the form (d, w), denoting the
occurrence of a word w in a document d. Summarizing all observations by counts
n(d, w) of how often a word occurred in a document, one obtains a rectangular
N by M matrix N = [n(di, wj)]i,j which is usually referred to as term–document
matrix. The key assumption of this representation is the so–called ‘bag-of-words’
view which presupposes that conditioned on the identity of a particular docu-
ment, word occurrences are statistically independent. This also the basis for the
popular vector-space model of documents [16] and it is known that N will in
many cases preserve most of the relevant information, e.g., for tasks like text
retrieval based on keywords, which makes it a reasonable starting point for our
purposes.

The term–document matrix immediately reveals the problem of data sparse-
ness, which is one of the problems latent semantic analysis aims to address. A
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typical matrix derived from short texts like news stories, book summaries or
paper abstracts may only have a tiny fraction of non-zero entries, because just
a small part of the vocabulary is typically used in a single document. This has
consequences, in particular for methods that are evaluating similarities between
documents by comparing or counting common terms. The main goal of PLSA in
this context is to map documents and words to a more suitable representation in
a probabilistic latent semantic space. As the name suggests, the representation
of documents and terms in this space is supposed to make semantic relations
more explicit. PLSA is an attempt to achieve this goal in a purely data driven
fashion without recourse to general linguistic knowledge, i.e, based exclusively
on a document collection or corpus at hand. Given these expectations could be
met, PLSA would offers great advantages in terms of flexibility as well as in
terms of domain adaptivity.

2.2 Probabilistic Latent Semantic Analysis

PLSA is based on a latent class model which associates an unobserved class
variable z ∈ Z = {z1, . . . , zK} with each observation (d, w). As will be explained
in more detail, the intention pursued by introducing latent variables is to model
text topics such that each possible state z ∈ Z would ideally represent one
particular topic or subject. Formally, let us define the following multinomial
distributions: P (d) is used to denote the probability that a word is observed in
a particular document.1 P (w|z) denotes a word distributions conditioned on the
latent class variable z, which represent different topic factors. Finally, P (z|d) is
used to denote document-specific distributions over the latent variable space Z.
We may now define the following probabilistic model over D ×W

P (d, w) = P (d)P (w|d), where P (w|d) =
∑

z∈Z
P (w|z)P (z|d) . (1)

This model is based on a crucial conditional independence assumption, namely
that d and w are independent conditioned on the state of the latent variable z
associated with the observation (d, w). As a result, the conditional distributions
P (w|d) in (1) are represented as convex combinations of the K factors P (w|z).
Since in the typical case one has K � N , the latent variable z can be thought
of as a bottleneck variable in predicting words conditioned on documents.

To demonstrate how this corresponds to a mixture decomposition of the
term–document matrix, we switch to an alternative parameterization by apply-
ing Bayes’ rule to P (z|d) and arriving at

P (d, w) =
∑

z∈Z
P (z)P (d|z)P (w|z) , (2)

which is perfectly symmetric in both entities documents and words. Based on (2)
let us formulate the probability model (1) in matrix notation, by defining U=
[P (di|zk)]i,k, V = [P (wj |zk)]j,k, Σ = diag[P (zk)]k, so that P = [P (di, wj)]i,j =

1 This is intended to account for varying document lengths.
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UΣVt. The algebraic form of this decomposition corresponds exactly to the de-
composition of N obtained by Singular Value Decomposition (SVD) in standard
Latent Semantic Analysis (LSA) [3]. However, the statistical model fitting prin-
ciple used in conjunction with PLSA is the likelihood principle, while LSA is
based on the Frobenius or L2–norm of matrices. The statistical approach offers
important advantages since it explicitly aims at minimizing word perplexity2.
The mixture approximation P of the co-occurrence table is a well-defined prob-
ability distribution and factors have a clear probabilistic meaning in terms of
mixture component distributions. In contrast, LSA does not define a properly
normalized probability distribution and the obtained approximation may even
contain negative entries. In addition, the probabilistic approach can take advan-
tage of the well-established statistical theory for model selection and complexity
control, e.g, to determine the optimal number of latent space dimensions (cf. [6]).
Last but not least, the statistical formulation can be systematically extended and
generalized in various ways, an example being the model presented in Section 3
of this paper.

2.3 EM Algorithm for PLSA

In order fit the model in (1) we follow the statistical standard procedure and
perform maximum likelihood estimation with the EM algorithm [4, 17]. One has
to maximize

L =
∑

d∈D

∑

w∈W
n(d, w) log P (d, w) (3)

with respect to all multinomial distributions which define P (d, w). EM is guar-
anteed to find a local maximum of L by alternating two steps: (i) an expectation
(E) step where posterior probabilities for the latent variables are computed based
on the current estimates of the parameters, (ii) a maximization (M) step, where
parameters are updated based on the posterior probabilities computed in the
E–step. For the E–step one simply applies Bayes’ formula, e.g., in the parame-
terization of (1), to obtain

P (z|d, w) =
P (z|d)P (w|z)∑

z′∈Z P (z′|d)P (w|z′) . (4)

It is straightforward to derive the M–step equations [9]

P (w|z) ∝
∑

d∈D
n(d, w)P (z|d, w), P (z|d) ∝

∑

w∈W
n(d, w)P (z|d, w) . (5)

The estimation of P (d) ∝ ∑
w n(d, w) can be carried out independently. Alter-

nating (4) and (5) initialized from randomized starting conditions results in a
procedure which converges to a local maximum of the log–likelihood in (3).
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“image processing” “speech recognition” “video coding”

image speaker video

segment speech sequence

textur recognition motion

color signal frame

tissue train scene

brain hmm segment

slice source shot

cluster speaker image

mri segment cluster

volume sound visual

Fig. 1. The 3 latent factors to most likely generate the word ‘segment’, derived
from a K = 128 PLSA of the CLUSTER document collection. The displayed
terms are the most probable in the class-conditional distribution P (w|z).

2.4 Example: Analysis of Word Usage with PLSA

Let us briefly discuss an elucidating example application of PLSA at this point.
We have run PLSA with 128 factors on two datasets: (i) CLUSTER: a collection
of paper abstracts on clustering and (ii) the TDT1 collection (cf. Section 4 for
details).

As a particularly interesting term in the CLUSTER domain we have chosen
the word ‘segment’. Figure 1 shows the most probable words of 3 out of the 128
factors which have the highest probability to generate the term ‘segment’. This
sketchy characterization reveals very meaningful sub-domains: The first factor
deals with image processing, where “segment” refers to a region in an image. The
second factor describes speech recognition where “segment” refers to a phonetic
unit of an acoustic signal such as a phoneme. The third factor deals with video
coding, where “segment” is used in the context of motion segmentation in image
sequences. The factors thus seem to capture relevant topics in the domain under
consideration.

Three factors from the decomposition of the TDT1 collections with a high
probability for the term “UN” are displayed in Figure 2. The vocabulary clearly
characterizes news stories related to certain incidents in the period of 1994/1995
covered by the TDT1 collection. The first factor deals with the war in Bosnia,
the second with UN sanctions against Iraq, and the third with the Rwandan
genocide. These example shows that the topic identified by PLSA might also
correspond to something one might more appropriately refer to as events. De-

2 Perplexity is a term from statistical language modeling which is utilized here to refer
to the (log-averaged) inverse predictive probability 1/P (w|d).
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“Bosnia” “Iraq” “Rwanda”

un iraq refugees

bosnian iraqi aid

serbs sanctions rwanda

bosnia kuwait relief

serb un people

sarajevo council camps

nato gulf zaire

peacekeepers saddam camp

nations baghdad food

peace hussein rwandan

Fig. 2. Three factors to most likely generate the word “UN” from a 128 factor
decomposition of the TDT1 corpus.

pendent on the training collection and the specific domain the notion of topic
has thus to be taken in a broader sense.

2.5 PLSA: What Is Missing?

From the example in Figure 1 one can see that the factors P (w|z) extracted
by PLSA provide a fairly concise description of topics or events, which can
potentially be utilized for interactive retrieval and navigation. However, there is
one major drawback: assuming that for large text collections one would like to
perform PLSA with a latent space dimensionality of the order of several hundreds
or even thousands, it seems inappropriate to expect the user to examine all
factors in search for relevant documents and topics of interest. Of course, one
may ask the user to provide additional keywords to narrow the search, but this
is nothing more than an ad hoc remedy to the problem.

What is really missing in PLSA as presented so far, is a relationship between
the different factors. Suppose for concreteness one had identified a relevant topic
represented by some P (w|z); the identity of z does not provide any information
about whether or not another topic P (w|z′) could be relevant as well. The gen-
eralization we present in the following section, extends the PLSA model in a
way that enables it to captures additional information about the relationships
between topics. In the case of a two–dimensional map, this results in a spatial
arrangement of topics on a two–dimensional grid, a format which may support
different types of visualization and navigation. Other topologies can be obtained
by exactly the same mechanism described in the sequel.
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3 Topological PLSA

In order to extend the PLSA model in the described way, we make use of a
principle that was originally proposed in the seminal work of Kohonen on Self–
Organizing Maps (SOM) [11, 12]. While the formulation of the algorithm in [11]
was heuristic and mainly motivated in a biological setting, several authors have
subsequently proposed modifications which have stressed an information theo-
retic foundation of the SOM and pointed out the relations to vector quantization
for noisy communication channels (cf. [14, 2, 8]). Moreover, it has been noticed
[1] that the topology–preserving properties of the SOM are independent of the
vectorial representation, most research on the SOM has been focusing on.

3.1 Topologies from Confusion Probabilities

The key step in the proposed generalization is to introduce an additional latent
variable v ∈ Z of the same cardinality as z to define the probability model

P (d, w) = P (d)P (w|d), P (w|d) =
∑

z∈Z
P (w|z)

∑

v∈Z
P (z|v)P (v|d) . (6)

It is straightforward to verify that from a purely statistical point of view this
does not offers any additional modeling power. Whatever the choice for P (z|v)
and P (v|d) might be, one can simply define P (z|d) =

∑
v P (z|v)P (v|d) to obtain

exactly the same distribution over D × W in the more parsimonious model of
(1). Yet, we do not propose to fit all model parameters in (6) from training data,
but to fix the confusion probabilities3 P (z|v) to prespecified values derived from
a neighborhood function in the latent variable space Z. We will focus on means
to enforce a topological organization of the topic representations P (w|z) on a
two–dimensional grid with boundaries. Let us introduce the notation z(x, y),
1 ≤ x, y ≤ L, x, y ∈ IN to identify latent states z(x, y) ∈ Z with points (x, y) on
the grid. By the Euclidean metric, this embedding induces a distance function
on Z, namely

d(z(x, y), z(x′, y′)) = d((x, y), (x′, y′)) =
√

(x − x′)2 + (y − y′)2. (7)

Now we propose to define P (z|v) via a Gaussian with standard deviation σ

P (z|v) =
exp

[−d(z, v)2/(2σ2)
]

∑
z′ exp [−d(z′, v)2/(2σ2)]

, (8)

where σ is assumed to be fixed for now. To understand why this favors a topo-
logical organization of topics, consider a document d with its topic distribu-
tion P (v|t). The confusion probabilities tilt this distribution to a distribution

3 We use this terminology, because the relationship between z and v can be thought
of in terms of a communication scenario: v represents the original message and z the
message received after sending it via a noisy channel. P (z|v) then correspond to the
channel characteristic, i.e., how probable it is to receive z after sending v.
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P (z|d) =
∑

z P (z|v)P (v|d). For simplicity assume that P (v|d) = 1 for a particu-
lar v ∈ Z, then the confusion probabilities will blend-in additional contributions
mainly from neighboring states z of v on the two–dimensional grid. If these
neighboring states represent very different topics, the resulting word distribu-
tion P (w|d) in (6) will significantly deviate from the distribution one would get
from (1), which – assuming that P (v|d) was chosen optimal – will result in a poor
estimate. If on the other hand the neighbors of v represent closely related top-
ics, this deviation will in general be much less severe. A meaningful topological
arrangement of topics will thus pay off in terms of word perplexity.

3.2 EM Algorithm for Topological PLSA

The next step consists in deriving the EM equations for topological PLSA. Stan-
dard calculations yield the M–step re-estimation formulae

P (w|z) ∝
∑

d

n(d, w)P (z|d, w), and P (v|d) ∝
∑

w

n(d, w)P (v|d, w) . (9)

For the evaluation of (9) the marginal posterior probabilities are sufficient and
it is not necessary to compute the joint posterior P (v, z|d, w). The marginal
posterior probabilities are given by

P (v|d, w) =
∑

z

P (v, z|d, w) =
P (v|d)P (w|v)∑
v′ P (v′|d)P (w|v′) , and (10)

P (z|d, w) =
∑

v

P (v, z|d, w) =
P (z|d)P (w|z)∑
z′ P (z′|d)P (w|z′) , (11)

where P (w|v) =
∑

z P (w|z)P (z|v) and P (z|d) =
∑

v P (z|v)P (v|d). Notice also
that the marginal posteriors are simply related by

P (v|d, w) =
∑

z

P (v|z)P (z|d, w), P (z|d, w) =
∑

v

P (z|v)P (v|d, w) . (12)

In summary, one observes that the EM algorithm for topological PLSA re-
quires the computation of marginal posteriors and document/word conditionals
for both variables v and z. Moreover, these quantities are related by a simple
matrix multiplication with the confusion matrix [P (zk|vl)]k,l or its counterpart
[P (vk|zl)]k,l.

3.3 Topologies and Hierarchies

There are two ways in which hierarchies are of interest in the context of topo-
logical PLSA: (i) To accelerate the PLSA by a multi-resolution optimization
over a sequence of coarsened grids. (ii) To improve the visualization by offering
multiple levels of abstraction or resolution on which the data can be visualized.

A significant computational improvement can be achieved by performing
PLSA on a coarse grid, say starting on a 2×2 grid, and then recursively prolon-
gating the found solution according to an quadtree–like scheme. This involves
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Fig. 3. Multi-resolution visualization of the CLUSTER collection with grid maps
at 2 × 2 4×, 8 × 8 (upper left corner), and 16 (upper left corner). Subfigure
(3) shows the 4 × 4 subgrid obtained by zooming the marked 2 × 2 window
in subfigure (2). Similarly, subfigure (4) is a zoomed-in version of the marked
window in subfigure (3).

copying the distributions P (w|z) – with a small random disturbance – to the suc-
cessors of z on the finer grid and distributing P (v|d) from the coarse level among
its four successor states on the finer grid. This procedure has the additional ad-
vantage that it often leads to better topological arrangements, since it is less
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sensitive to ‘topological defects’.4 The multi-resolution optimization is coupled
with a schedule for σ, which defines the length-scale for the confusion probabil-
ities in (8). In our experiments we have utilized a schedule σn = (1/ m

√
2)nσ0,

where m corresponds to the number of iterations performed at a particular res-
olution level, i.e, after m iterations we have σn+m = (1/2)σm. Prolongations to
a finer grid is performed at iterations n = m, 2m, 3m, . . . .

Notice that the topological organization of topics has the further advantage
to support a simple coarsening procedure for visualization at different resolution
levels. The fact that neighboring latent states represent similar topics suggests to
merge states, e.g., four at a time, to generate a coarser map with word distribu-
tions P (w|z) obtained by averaging over the associated distributions on the finer
grid with the appropriate weights P (z). One can thus dynamically navigate in
a three-dimensional information space: vertical between topic maps of different
resolution and horizontally inside a particular two-dimensional topic map.

4 Experimental Results

We have utilized two document collections for our experiments: (i) the TDT1
collection (Topic Detection and Tracking, distributed by the Linguistic Data
Consortium [13]) with 49,225 transcribed broadcast news stories, (ii) a collection
of 1,568 abstract of research papers on ‘clustering’ (CLUSTER). All texts have
been preprocessed with a stop word list, in addition very infrequent words with
less than 3 occurrences have also been eliminated. For the TDT1 collection word
frequencies have been weighted with an entropic term weight [16]. The 5 most
probable words in factors P (w|z) have been utilized for visualization and are
displayed at the position corresponding to the topic on the two–dimensional
grid to produce topic maps. In an interactive setting one would of course vary
the number of displayed terms according to the user’s preferences.

A pyramidal visualization of the CLUSTER collection based on a 256 factor,
16×16 topological PLSA is depicted in Figure 3. One can see that a meaningful
coarsened maps can be obtained from the 16 × 16 map, different areas like as-
tronomy, physics, databases, and pattern recognition can be easily identified. In
particular on the finer levels, the topological organization is very helpful where
the relation of different subtopics in signal processing, including image process-
ing and speech recogniton, is well–preserved by the topic map. A similar map
hierarchy for the TDT1 collection is depicted in Figure 4. Different topics and
events can effortlessly be identified from the word distributions. Again, subtopics
like the ones dealing with different events of international politics are mapped
to neighboring positions on the lattice.

4 There is a large body of literature dealing with the topology–preserving properties
of SOMs. The reader is referred to [12] and the references therein.
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Fig. 4. Multi-resolution visualization of the TDT1 collection with grid maps at
2×2 4×, 8×8 (upper left corner), and 16 (upper left corner). Subfigure (3) shows
the 4×4 subgrid obtained by zooming the marked 2×2 window in subfigure (2).
Similarly, subfigure (4) is a zoomed-in version of the marked window in subfigure
(3).

5 Conclusion

We have presented a novel probabilistic technique for visualizing text databases
by topic maps. The main advantages are (i) a sound statistical foundation on a
latent class model with EM as a fitting procedure, (ii) the principled combina-
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tion of probabilistic modeling and topology-preservation, and (iii) the natural
definition of resolution hierarchies. The benefits of this approach to support in-
teractive retrieval have been demonstrated briefly with simple two–dimensional
maps, however, since arbitrary topologies can be extracted, one might expect
even more benefits in combination with more elaborate interfaces.
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