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Abstract Probabilistic topic models are widely used in different contexts to uncover the
hidden structure in large text corpora. One of the main (and perhaps strong) assumption of
these models is that generative process follows a bag-of-words assumption, i.e. each token is
independent from the previous one. We extend the popular Latent Dirichlet Allocation model
by exploiting three different conditional Markovian assumptions: (i) the token generation
depends on the current topic and on the previous token; (ii) the topic associated with each
observation depends on topic associated with the previous one; (iii) the token generation
depends on the current and previous topic. For each of these modeling assumptions we
present a Gibbs Sampling procedure for parameter estimation. Experimental evaluation over
real-word data shows the performance advantages, in terms of recall and precision, of the
sequence-modeling approaches.
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Notations

M # Traces

N # Distinct tokens

K # Topics

w Collection of traces, W = {wy, ..., Wy}

Ny # tokens in trace d

Wy Token trace d, wy; = {wy W42 Wi Ny—1 .wu,Nd}

wg,;  j-thtoken in trace d

Z Collection of topic traces, Z = {zy, ..., Zy}

Z4 Topics for trace d, Z; = {za,1-2a,2- " -+ -Zd,Nyj—1-2d, Ny}

24, Jj-th topic in trace d

n’;’x Number of times token s has been associated with topic k for trace d

| LVN®) Vector Ng )= {I’ltli,(_), ey n(II{,(~)}

n, ¢y Number of times topic k has been associated with trace d in the whole data

n’(‘,).r Vector n’(‘w = {n'(‘,).r‘l, e, ”f-),r.zv}

n’(‘,)’” Number of times topic k has been associated with the token pair r.s in the whole
data

ng,  Vectornf, ={n( ,....n{, )

”]((.)A,s Number of times token s has been associated with topic k in the whole data

ny  Vectornf ,={nk{ . ....n5E}

nﬁ;’(“) Number of times that topic pair 4.k has been associated with the trace d

nZ:((Z)) Number of times that a topic pair, that begins with topic 4, has been associated
with the trace d

nlf  Vectornff ={n{,....n{ )

ni’)"é Number of times that topic pair 4.k has been associated with the token s in the
whole data

o (LDA, TokenBigram and TokenBitopic Model) hyper parameters for topic
Dirichlet distribution & = {ty, ..., ag} (Topic Bigram Model) set of hyper
parameters for topic Dirichlet distribution & = {ao, ..., g}

o, Hyper parameters for topic Dirichlet distribution e, = {oy, 1, ..., 0.k }

B (LDA and TopicBigram Model) set of hyper parameters for token Dirichlet
distribution 8 = {B, ..., Bx} (TokenBigram Model) set of hyper parameters for
token Dirichlet distribution 8 = {8, 1,.... Bk 1+---+B12+---» Br2r---» B n}
(TokenBitopic Model) set of hyper parameters for token Dirichlet distribution
B={Bii - Bxai--sBra-- Bras - Brk}

B Hyper parameters for token Dirichlet distribution 8, = {Bx.1, ..., BN}

Bis Hyper parameters for token Dirichlet distribution 8, ; = {Bis.1,- .., Brs.n}

B,  Hyper parameters for token Dirichlet distribution 8, , = {Bnx.1s---» Bri.n}

(o} Matrix of parameters 6,

0, Mixing proportion of topics for trace d

Y.x  Mixing coefficient of the topic k for trace d

Yqnk  Mixing coefficient of the topic sequence 4.k for the trace d

P (LDA and TopicBigram Model) matrix of parameters ¢, = {¢ s} (TokenBigram

Model) matrix of parameters ¢, = {¢x s} (TokenBitopic Model) matrix of
parameters @, , = {@n.xs}
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Pr.s Mixing coefficient of the topic k for the token s

ocrs  Mixing coefficient of the topic & for the token sequence r.s
onks Mixing coefficient of the topic sequence .k for the token s
Z @ Z—A{za;}

. , _ Iirap

A(q) Dirichlet’s Delta A(q) = ol T@y T

1 Introduction and background

Probabilistic topic models, such as the popular Latent Dirichlet Allocation (LDA) (Blei et al.
2003), assume that each collection of documents exhibits an hidden thematic structure. The
intuition is that each document may exhibit multiple topics, where each topic is character-
ized by a probability distribution over words of a fixed size dictionary. This representation of
the data into the latent-topic space offers several advantages from a modeling perspective,
and topic modeling techniques have been applied to different contexts. Example scenar-
ios range from traditional problems (such as dimensionality reduction and classification) to
novel areas (such as the generation of personalized recommendations).

Traditional LDA-based approaches propose a data generation process that is based on a
“bag-of-words” assumption, i.e. such that the order of the items in a document can be ne-
glected. This assumption fits textual data, where probabilistic topic models are able to detect
recurrent co-occurrence patterns, which are used to define the topic space. However, there
are several real-world applications where data can be “naturally” interpreted as sequences,
such as biological data, web navigation logs, customer purchase history, etc. Ignoring the in-
trinsic sequentiality of the data, may result in poor modeling: according to the bag-of-word
assumption, co-occurrences are modeled independently for each word, via a probability dis-
tribution over the dictionary in which some words exhibit a higher likelihood to appear than
others. On the other hand, sequential data may express causality and dependency, and dif-
ferent topics can be used to characterize different dependency likelihoods. The focus here is
the context where a current user acts and expresses preferences, i.e., the environment, char-
acterized by side information, where the observations hold. Our claim is that the context
can be enriched by the sequential information, and the latter allows a more refined model-
ing. In practice, a sequence expresses a context which provides valuable information for the
modeling.

The above observation is particularly noteworthy when data express preferences made
by users, and the ultimate objective is to model a user’s behavior in order to provide ac-
curate recommendations. The analysis of the sequential patterns has important applications
in modern recommender systems (RSs), which are significantly focusing on an accurate
balance between personalization and contextualization techniques. For example, in Internet
based streaming services for music or video (such as Last.fm' and Videolectures.net?), the
context of the user interaction with the system can easily be interpreted by analyzing the
content previously requested. The assumption here is that the current item (and/or its genre)
influences the next choice of the user. In particular, if a specific user is in the “mood” for
classical music (as observed in the current choice), it is unlikely that the immediate subse-
quent choice will depart from the aforementioned mood, in favor of a song of different genre.

1 http://last.fm.
2http://videolecturesnet‘
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Being able to capture such properties and exploiting them in recommendation strategy can
greatly improve the accuracy of the recommendation.

Recommender systems have greatly benefited from probabilistic modeling techniques
based on LDA. Recent works in fact have empirically shown that probabilistic latent topics
models represent the state-of-the-art in the generation of accurate personalized recommen-
dations (Barbieri and Manco 2011; Barbieri et al. 2011, 2012). More generally, probabilistic
techniques offer some renowned advantages: notably, they can be tuned to optimize a va-
riety of loss functions; moreover optimizing the likelihood allows to model a distribution
over rating values which can be used to determine the confidence of the model in providing
a recommendation; finally, they allow the possibility to include prior knowledge into the
generative process, thus allowing a more effective modeling of the underlying data distribu-
tion. Notably, when preferences are implicitly modeled through selection (that is, when no
rating information is available), the simple LDA best models the probability that an item is
actually selected by a user so far (Barbieri and Manco 2011).

Following the research direction outlined above, in this paper we study the effects of
“contextual” information in probabilistic modeling of preference data. We focus on the case
where the context can be inferred from the analysis of the sequence data, and we propose
some topic models which explicitly make use of dependency information. As a matter of
fact, the issue has been dealt with in similar papers (like, e.g. Wallach 2006). Here, we
summarize and extend the approaches in the literature, by covering different ways of model-
ing dependency within preference data. Furthermore, we concentrate on the effects of such
modeling on recommendation accuracy, as it explicitly reflects accurate modeling of user
behavior.

In short, the contributions of the paper can be summarized as follows.

1. We propose a unified probabilistic framework to model dependency in preference data,
and instantiate the framework in accordance to different assumptions on the sequentiality
of the underlying generative process.

2. We study and experimentally compare the proposed models, and highlight relative ad-
vantages and weaknesses.

3. We study how to adapt the proposed frameworks to support a recommendation scenario.
In particular, for each of the proposed model, we provide the relative ranking functions
that can be used to generate personalized and context-aware recommendation lists.

4. We finally show that the proposed sequential modeling of preference data better models
the underlying data, as it allows more accurate recommendations in terms of precision
and recall.

The paper is structured as follows. In Sect. 2 we introduce sequential modeling according
to different dependency assumptions, and specify in Sect. 3 the corresponding item ranking
functions for supporting recommendations. The experimental evaluation of the proposed
approaches is then presented in Sect. 4, in which we measure the performance of the ap-
proaches in a recommendation scenario. In Sect. 5 we qualitatively compare the models
studied in this paper with the current literature. Section 6 concludes the paper with a sum-
mary of the findings and a discussion of possible extensions.

2 Modeling sequence data

In a general setting, we consider a set Z = {1, ..., N} of tokens, representing the vocabulary
of possible events that can be observed. Example events are words that can be observed in
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a document, or items that can be purchased by a customer. A corpus W = {wy, ..., Wy} is
a collection of traces, where Wy = [wy,1.Wa 2. - -+ Wy n,—1.Wa,n,] 1S the sequence of tokens
for trace d, and wy ; € Z. The set Z; C 7 denotes all the tokens in w,. We also assume
that each token is characterized by a latent factor, called topic, triggering the underlying
event. That is, a topic set Z = {z;,...,Zy} is associated to the data, where, again z,; =
[z4,1-2a,2-+ -Zda,n —1-2d,n,] 1S @ latent topic sequence, and z4; € {1,..., K} is the latent
topic associated with token wy, ;. By assuming that @ and @ are the distribution functions
governing the likelihood of W and Z (with respective priors § and ), we can express the
complete likelihood as:

PW,Z,0,®|a,$)=P(W|Z,P)P(®|B)P(Z|O)P(O|a)
M M (])

P(WIZ,®) =[] P(Walza, ®),  P(Z|©)=]]P@l0a)

d=1 d=1

where P(®|B) and P(O |a) are specified according to the modeling assumptions. In par-
ticular, in the standard LDA setting where all tokens are independent and exchangeable, we
have:

Ng N
PWylza. @) = [ P(wajlza;. ®).  Pwlk.®)=[]e"

j=1 s=1
Ng K s

Pzgl0)=[[Pzajl00).  PGIO) =T[5
j=1 k=1 ?)
M K K

O o) @
POl =][P®sla).  P@Ode) = L 0) ok

X
d=1 [Tioi )

o reel Bes) N Brs—1
P@B)=[]PwilB). Pl =—==T]ey
R T T B

Here, 8, represents the Kronecker delta function, returning 1 when a = b and 0 other-
wise. Figure 1(a) graphically describes the generative process. As usual, the joint topic-data
probability can be obtained by marginalizing over the @ and @ components:

P(W,Z|oc,/3)=// PWI|Z,®)P(®|B)P(Z|O)P(O|a)dPdO
2 Jo

In the following, we model further assumptions on both w, and z,;, which explicitly
reject the exchangeability assumption and instead rely on the idea of sequential dependency.
We concentrate on three basic models, which in a sense subsume the core of sequential
modeling. Here, a sequence can be modeled as a stationary first order Markov chain:

e A Markovian process naturally models the sequential nature of the data, where depen-
dencies among past and future tokens reflect changes over time that are still governed by
similar features;

e The chain is stationary, as a fixed number of tokens is likely to frequently appear in
sequences;
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o The order of the chain is 1 because the possibility that two subsequent tokens share some
features is more likely than that of two tokens distant in time.?

‘We now analyze each model in turn.

Token-bigram model In this model, we assume that w, represents a first-order Markov
chain, where, each token w, ; depends on the most recent token wy ;_; observed by far.
This is essentially the same model proposed in Wallach (2006), Cadez et al. (2000), and the
probability of a trace has to be changed from Eq. (2) as

Na
P(Wd|zd7¢):Hp(wd,jlwd,jfl’zd,ja¢) 3)
=1

In practice, a token w, ; is generated according to a multinomial distribution ¢, 4 W j-1
which depends on both the current topic z4 ; and the previous token wy, j—;. (Notice that
when j = 1, the previous token is empty and the multinomial resolves to ¢ZM , representing
the initial status of a Markov chain). The conjugate prior for ¢ can be defined as:

F(Zs‘ llBk rS) Brrs—1
P(<I>|/3)—||||P(¢ 1B )—|||| Phis
k=1r=0 e kerHslr('Bk”)slky

Since the Markovian process does not affect the topic sampling, both P(z,|6,) and P (@ |&)
are defined as in Eq. (2). The generative model, depicted in Fig. 1(b), can be described as
follows:

e For each trace d € {1, ..., M} sample the topic-mixture components 8, ~ Dirichlet(e)
and sequence length n,; ~ Poisson(§)

e Foreachtopickel,..., K andtokenr € {0,..., N}
— sample token selection components ¢, , ~ Dirichlet(; ,)

e Foreachtraced €{l,...,M}and j €{1,..., N4}
— sample a topic z,4,; ~ Discrete(6 ;)

— sample a token wy ; ~ Dzscrete((bZd g 1)
Notice that we explicitly assume the existence of a family {8, ,} with k = {1, ..., K}
and r = {0, ..., N} of Dirichlet coefficients, and of a special token r = 0 which represents

the previous token of the first token of each trace. As shown in Wallach (2006), different
modeling strategies (e.g., shared priors S ., = By) can affect the accuracy of the model.
By algebraic manipulations, the joint token-topic distribution can be simplified into:

A Ay, + B,
p(w,zm,ﬂ):(l_[ (nz((;ja)xl_[l_[ n(A)(,, B ) @
kr

d=1 k=1 r=0

31t is also worth noticing that higher order dependencies introduce an unpractical computational overhead, as
the number of parameters grows exponentially with the order of the chain (Bishop 2006, Chap. 13).
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Fig. 1 Graphical models

The latter is the basis for developing a stochastic EM strategy (Bishop 2006, Sect. 11.1.6),
where the E step consists in a collapsed Gibbs sampling procedure (Heinrich 2008; Bishop
2006) for estimating Z, and the M step estimates both the predictive distributions @ and ¢
and the hyper parameters o and B given Z. Within Gibbs sampling, topics are iteratively
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sampled, according to the probability:

I’l]((')q” + ,Bk,r.s -1
N k
ZS/:I n(~),r.s’ + ,Bk,r.s’ -1

P(za; =klZ ), W) o (nly ( + o — 1) - Q)

relative to the topic to associate with the n-th token of the d-th trace, where wy j—; =r and
Wy, ji= S.
Given Z, the parameters @ and @ can be estimated according to the following equations:

nz'q(') + Ak n]((.),m- + ,Bk,ns
l?d,k ==K v < © s Dr,rs = i i (6)
Zk’:l (f’ld,(.) + o) Zx’:l (n(4)’m, + ,Bk,m’)

The estimation of the hyper parameters will be approached later in the paper.

Topic-bigram model A different approach can be taken by assuming that sequentiality re-
gards topics, rather than tokens. That is, we can still consider tokens independent to each
other and related to a latent topic. However, since topics represent the ultimate factors un-
derlying a token appearance in the sequence, correlation between topics can better model
an evolution of the underlying themes. Assuming a first-order Markovian dependency, the
probability of a sequence of latent topics in Eq. (2) can be redefined as:

Ng
P(24104) =] | P(za.124.7-1,04) @)
j=1
The difference here is in the distribution generating z, ;, which is a multinomial 6 4, 201 P

rameterized by both a trace d and a previously sampled topic z4,;—i. The conjugate Dirichlet
distributions can be expressed as:

POl )—H]_[F(Zk 1244) - D! ®)

a=tn=o 1 Le=t T (@ni)

P(wy|zy, @) and P(®|B) are still defined as in Eq. (2). Again, the generative process is
shown in Fig. 1(c) and described below.

e Foreachtraced € {1,..., M} andtopic i € {0, ..., K} sample topic-mixture components
0,1, ~ Dirichlet(a;,) and sequence length Ny ~ Poisson(§)
e Foreachtopick=1,..., K
— sample token selection components @, ~ Dirichlet(f8;)
e Foreachd e {l,...,M}and j €{1,..., Ny} sequentially:
— sample a topic zy,; ~ Discrete(04,,, ;)
— sample a token wy ; ~ Discrete(¢, d_j)

Here, h = 0 is a special topic that precedes the first topic of each trace.
The joint token-topic distribution becomes:

A o Fean) (L AmE, + B
POV, 2 m‘(““ Aay) )(H A ©

d=1h=0 k=1
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and the corresponding collapsed Gibbs sampler works by iteratively sampling a topic k
relative to token wy, ; = s of trace d according to the following:

2d,j—1-k
Mgyt k=1

P(za.j =klZ_4.j), W) x Y
Do Mgy T & — 1

k.zg j+1
nd,(g + O‘Iazd,j#—l -1

' K24 j+1
p% gy ! +0‘k’»z(1.,~+1 -1
k
. Nt Brs —
N
Z ! — ln s/ + ﬂk s 1

(10)

Also, the multinomial parameters can be estimated according to the following equations:

nZ:]E.) + i nl((,) s+ Brs

Vank = <KX r Pk,s = ﬁ (11)
Zk’:l ng ) T % Zy;l eyt Br.s'
Token-bitopic model In the last model, we still relate tokens to past events. However, the
events we are interested in are the recent latent topics which trigger the past tokens. The
generative model is shown in Fig. 1(b). Again, topic selection probability is defined like
in Eq. (2), whereas token selection probability can be defined in terms of the multinomial
P, 4jr2d,j1 (and its related conjugate):

Na
P(Walza, ®) =] [ P(wa,jlza j» 241, @) (12)
j=1
F 5 hk,s—
P(«b|ﬁ)-]‘[1‘[ D Pras) T o (13)

h=0 k= ll_[s 1F(ﬁhks); 1

These assumptions are at the basis of the following generative process.

e For each trace d € {1, ..., M} sample topic-mixture components 8, ~ Dirichlet(ac) and
sequence length N, ~ Poisson(§)

e For each topic pair 4.k, where h € {0, ..., K} and ke {1,..., K}
— sample token selection components @, , ~ Dirichlet(B), i)

e Foreachd €{l,...,M}and j € {1, ..., N;} in sequence:
— sample a topic z4, ; ~ Discrete(84)

— sample a token wy ; ~ DiSCVEfe((bzd_j,zd_j,])

Once again & = 0 is the special topic which precedes all the first topics of the traces. As
usual, by algebraic manipulations, the joint token-topic distribution can be expressed as

Ay, )+ @) A(nf‘)" +Bi)
P(W,Z = | | | || | 14
(W, Zla §) ( A(a) )( ABL) (14)

d=1 h=0k=1

which induce the following inference steps:
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14 Mach Learn (2013) 93:5-29

E step: for the token w, ; = s at position j in trace d, sample a topic k according to the
following probability:
P(za; =k|Z_g,j, W) o (nf ., + o — 1)

”dl 1.k

] ()é + ,Bzd,j_lAk,s -1
N -1k
Zs/:l n(.) s/ + ﬁzdﬁj,].k.s/ -1

k 2, j+1

()5 +:3kzdj+ls_1

: (15)
N kz
Z ()iﬁl‘l'ﬁk&dﬁlé -1
M Step: estimate multinomial probabilities according to the following equations:
n];() + O nﬁ’)kv —+ ﬁh.k,s
Bax = K r Phks = T (16)
Zk’:l nd,(A) + (279 Z () s + ,Bh.k.s’

2.1 Log-likelihoods

A crucial component in the inference and estimation steps is the computation of the data
likelihood. In general, the likelihood function is defined as:

M
P(W) = ]'[ P(wy) = ]'[ P(wg.++ wan,)
M K
=[1D_P@war. - wan, zan, =k
d=1 k=1
Now, each model differs in the way the P(wy,;." - .Wa,N,, Za,n,) cOmponent is defined.

Token-bigram Bayes rule and the first order Markov assumption over tokens simplifies the
above probability into:

M Ny
log P(W) = log (H > ﬂd,kcpk,wd,,w(,,,> (17)
d=1 j=1 k

Topic-bigram By algebraic manipulations (see Bishop 2006, Sect. 13.2 for details), we
obtain

P(wd.l~ ©r W4 Ng» Zd, Ny = k)
=P(wg,1. - wany1Zan, =K)P(zan, =k)
= Prowan, Z P(wg,1. - - WaNg—1,2d,Ng—1 =) Fq i
h

The result is a recursive equation which can be simplified into the following y function:

YeWa; 1) = @r ug ;5 Ye(Was J) = Qruy Z)/h(wd; J—DPani
T

@ Springer



Mach Learn (2013) 93:5-29 15

Substituting into the likelihood, yields:
M
log P(W) = Zlog(Z T Nd)) (18)
d=1 k

Token-bitopic  The term P(wgy ;.- -+ .Wa,n,|2a,n, = k) can be decomposed according to the
assumption of independence among topics:

P(wg,1, ..., Wanylzan, =k)
K
= Zﬁd,hp(wd,l- < Wa Ny ZaNg—1 =D, Zan, =K)
=1
K
= Zﬁd,mphk,sp(wd.l-”' Wy Ny—112ang—1 = h)

h=1

where wy y, = 5. Again, the latter yields the following recursive equations

ViWa, 1) = @u, ks vi(Wq, j) = Z)’h Wa, ] = DVOan@uy ;ni
I

where € is a special topic, referring to the begin of the trace. The likelihood can hence be
expressed as:

M
log P(W) = Zlog(Z Vi(Wa; Nd)ﬁd,k) (19)

d=1 k

2.2 Estimating the Hyper parameters

We consider asymmetric Dirichlet priors over the trace topic distributions and a symmetric
prior over the topic distributions. This modeling strategy has been reported to achieve im-
portant advantages over the symmetric version (Wallach et al. 2009a). For the token-bigram
and token-bitopic models, we adopted the procedure for updating the prior « as described
in Heinrich (2008), Minka (2000). The topic-bigram model requires a difference formu-
lation of the latter. Given a state of the Markov chain Z, the optimal «-hyper parameters
can be computed by maximizing the likelihood of the observed pseudo-counts nf’,z’é,) via the
fixed-point iteration method:

ppl Wl + ani) — MY (i)
S Wl 4+ Yoy i) — MW (Y o)

new
O =k

(20)

where ¥ (-) indicates the digamma function.

3 Application to Recommender Systems
The general framework introduced above has a natural interpretation when dealing with

users’ preference data: the set of users defines the corpus, each user is considered as a trace,
the items purchased are considered as tokens and, finally, the topics correspond, intuitively,
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16 Mach Learn (2013) 93:5-29

to the reason why the users purchased particular products. In the following, we assume that
a user can be denoted by a unique index d, and a previous history is given by w, of size N;.
We are interested in providing a ranking for s, the (N, + 1)-th choice wg, y,41-

LDA Following (Barbieri and Manco 2011) we adopt the following ranking function:

K K

rank(s,d) =Y P(slzan, 11 =K PGang1 =kI00) =Y ¢ics - D
k=1 k=1

It has been shown (Barbieri and Manco 2011) that LDA, equipped with the above ranking
function, significantly outperforms the most significant approaches to modeling user pref-
erences. Hence, it is a natural baseline function upon which to measure the performance of
the other approaches proposed in this paper.

Token-bigram model The dependency of the current selection from the previous history
can be made explicit, thus yielding the following upgrade to the LDA ranking function:

K K

rank(s, d) = P(slzungt1 =k, W) PGangr1 =kI00) =D @icrs - Dk
k=1 k=1

where r = w, y, is the last item selected by user d in her currently history.

Topic-bigram model This situation resembles the forward-backward algorithm for the hid-
den Markov models (Bishop 2006, Sect. 13.2.2). In practice, we need to build a recursive
chain of probabilities, representing a hypothetical random walk among the hidden topics.
As above, we can define the following rank:

K
rank(s,d) = P(Wa.ny+1 =5, Zuny+1=k|Wa)

K
_ Z P(wg,1. - . Wa,Ny+15 Zd,Ng+1)
- P(w
pa (Wa)
which requires solving P(wg, 1.+ .Wa,N;+1, Zd,n,+1)- As shown in the previous section, the

latter can be computed recursively by exploiting the y function. Hence, the ranking function
can be formulated as:

K
rank(s, d) o< Y ye(Wa.s, Ny + 1)
k=1

Token-bitopic model Since in this case item selection depends on the previous topics, by
exploiting the y function, we can define the following:

rank(s, d) = P(wg n,41 = S|Waq)

K
0 Y P (War. Wa g5 2N 1)
k=1
K
= Z Ye(Wa.s, Ng + D)qx
=1
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4 Experimental evaluation

In this section we study the behavior of the proposed models, compared to some baseline
models. In particular, we study two main aspects.

e On a general setting, we study how the proposed method perform in terms of quality. We
measure the quality as a function of the likelihood, as explained in the next section.

e On a more specific setting, we compare the models in the envisaged recommendation
scenario. Here, the quality of a model is measured indirectly, in terms of the accuracy of
the recommendations it boosts. This is explained in Sect. 4.2.

4.1 Perplexity

Topic models are typically evaluated by either measuring performance on some secondary
task, such as document classification or information retrieval, or by estimating the probabil-
ity of unseen held-out traces given some training traces. Notably, a better model will give
rise to a higher probability of held-out traces, on average.

Since log likelihoods are usually large negative numbers, perplexity is used instead
(Heinrich 2008; Blei et al. 2003), the latter being defined as the reciprocal geometrical mean
of the token likelihoods in the test corpus given the data used to train the model:

Nest
log P(Wy| Wi
PeVP(WTes;|WTmm) :exp{_Zd:I g ( d| Tmn)}

Nest
Dt na

Evaluating P (w;|Wr.i,) is a little tricky, as exact inference would require integrating
over all possible model parameters. In Wallach et al. (2009b) authors discuss some meth-
ods for an accurate inference using a point estimate. In our experiments we adopted the
evaluation methods based on document completion. This method offers the advantage of
providing unbiased estimates, as it infers the missing parameters on a separate part of the
document, and then to evaluate the perplexity on the remaining part. In short, the evaluation
methodology can be summarized as follows:

e For each w,; € w’®!

1. Let wf;) and Wi,z)

2. Fors=1,...,S
(a) sample z9 ~ P(z“'s)|wfll),W,min,a,ﬂ, @) using the Gibbs Sampling equa-
tions;
(b) estimate 0((;) from z(9;
3. Approximate P (w;|Wri,) with é > P(w§2)|0(”, @), where the latter is computed
by exploiting the formulas in Sect. 2.1.

be an arbitrary split of w,.

Following (Wallach 2006), in the experiments we use a dataset composed by drawing
150 Psychological Review abstracts from the data made available by Griffith and Steyvers.*
The drawing was made among those documents containing at least 54 tokens. Also, we
preprocessed the data as specified in Wallach (2006), by remapping all numbers with the
special token NUMBER, and all items with frequency 1 in the training set or appearing as
tokens in the test set but not in the training set as UNSEEN. The result of the cleaning process

4http://psiexp.ss.uci.edu/resear(:h/programs_data/toolbox.htm.
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is a vocabulary of 860 item. Starting with the cleaned dataset, we did several random splits
of the dataset, by choosing 100 documents as training data and keeping the remaining ones
as test data. The splits roughly maintained the proportion 67-33 % on the tokens.

In the following we report the results obtained by the three proposed models. The results
are compared with LDA. We also compare the models with the DCMLDA model (Doyle
and Elkan 2009). The latter is a modification of LDA to account for the tendency of tokens
to appear in bursts, that is if a token appears once in a trace, it is more likely to be appear
again. DCMLDA does not model sequentiality, however burstiness can also be interpreted as
non-independence between tokens. In this respect, it is interesting how the proposed models
compare to it. It is worth noticing, however, that burstiness is not necessarily alternative to
sequentiality, as the approaches proposed in this paper can easily be adapted to model a
combination of burstiness and sequentiality.

Figure 2(a) reports the average perplexity on the test data. The values plot the error bars
related to the perplexity values. Figure 2(b) also analyzes the pairwise comparisons: each
of the three methods proposed here is compared with the baselines, and the difference in
perplexity (in average and standard error) is plotted.

DCMLDA exhibits the best perplexity, as a result of the customized fitting of token prob-
abilities to a specific document. As a matter of fact, the documents we are investigating here
seem to naturally comply with the burstiness assumption.

Also, TokenBitopic seems to worsen the performance as the number of topics increase.
This behavior is worth further explanation. The model conditions the probability of appear-
ance of a token to a pair of latent factors. In a sense, this makes the model comparable to a
“fresh” LDA model, where the number of latent factors is quadratic in K: in practice, a To-
kenBitopic model with K =4 can be deemed similar to an LDA model with K = 16 topics,
and each pair of latent factors is associated to a specific latent factor in the quadratic LDA
model. In Fig. 2(c) we compare the two models: the models show the same tendency.

For the rest, models clearly outperform LDA. However, the TokenBigram model requires
further explanation. Both the sampling process and the item selection probabilities rely on
the frequencies of bigrams. Zero-frequency bigrams appearing in the test set compromise the
evaluation just like zero-frequency items. We chose to treat them by associating them with a
default frequency. Figure 2(d) shows how this affects the evaluation: here, NoP corresponds
to keeping the original frequency, whereas P3 associates a frequency which implicitly cor-
responds to flattening all the zero-frequency bigrams to a default UNSEEN bigram. The
latter is the one reported in Fig. 2(a). The approaches P1 and P2 correspond to intermediate
solutions, where the default frequency of the (implicit) UNSEEN bigram is lowered.’

Finally, Fig. 2(e) denotes the running times of the training algorithms on the training data.
Although the TopicBigram model requires less parameters than the TokenBitopic approach,
the learning time of the first one is considerably larger. This is mainly due to the larger
number of hyper parameters (K x K vs. K) and to the complexity of the M step for the
update of the hyper parameters o.

4.2 Recommendation accuracy

In this section we present an empirical evaluation of the proposed models which focuses
on the recommendation problem. Given the past observed preferences of a users, the goal

5 Clearly this is where non-parametric methods should be used to provide a gradual step into the TokenBigram
model. The integration of non-parametric techniques in the TokenBigram would better handle cases in which
there is less data and it would automatically solve the treatment of the zero-frequency items.
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Table 1 Summary statistics on real-life recommendation datasets

IPTV1 IPTV2

Training Test Training Test
Users 16,237 16,153 64,334 63,878
Items 759 731 2802 2777
Evaluations 314,042 78,557 1,224,790 306,271
Avg # evals (user) 19 5 19 5
Avg # evals (item) 414 107 437 110
Min # evals (user) 4 1 4 1
Min # evals (item) 5 1 5 1
Max # evals (user) 252 15 497 17
Max # evals (item) 2284 1527 9606 3167

Avg time between two evals
per user 13 days 6 days
per item 9 hours 23 hours

of a recommender systems is to provide her with personalized (and contextualized) recom-
mendations about previously non-purchased items that meet her interest. We evaluate the
proposed techniques by measuring their predictive abilities on two datasets, namely IPTV1
and IPTV2. These data were collected by analyzing the pay-per-view movies purchased by
the users of two European IPTV providers over a period of several months (Cremonesi and
Turrin 2009; Bambini et al. 2011). The original data have been preprocessed by removing
users with less than 10 purchases. We perform a chronological split of the data by selecting
the final 20 % purchases of each user as test data, and using the remaining data for training
purposes. The main features of the datasets are summarized in Table 1.

The two datasets exhibit a substantial difference in the frequencies of bigrams, as shown
in Fig. 3: in particular, IPTV2 exhibits frequencies which differ of an order of magnitude.
Hence, by comparing the results of the proposed algorithms, we can characterize the effects
of sparsity on the performances of the proposed methods.

Testing protocol Let Wr,;,, and Wy, denote respectively training and test data. To eval-
uate the capabilities of the considered approaches in generating accurate recommendations,
we check whether an actual token can be included into an hypothetical recommendation
list containing H items, generated according to the model. More specifically the following
protocol is adopted, which is justified and detailed in Barbieri and Manco (2011):

e For each user u, let w/, be the trace associated to u in Wy, and w,, the trace in Wy,
(with n, = |w,|). For each token w, , € w,:
- generate the candidate list C, by randomly drawing c items i # w, , such that i ¢ 7, ;
— add w, , to C, and sort the list according to the scoring function provided by the RS;
— record the position of the w, , in the ordered list: if it belongs to the top-H items, we
have a hit otherwise, we have a miss.

Recall and precision relative to # can hence be defined based on the number of hits. Recall
can be defined as the number of hits, relative to the expected number of relevant items (which
are all the items in w,,). Also, precision represents the probability that the top-ranked items
are actually a hit (and hence it represents the likelihood of a hit weighted by the size H) of
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Recall(u, H) = , Precision(u, H) = = 21
ny H xn, H

The final precision and recall values are obtained averaging on all users. All the considered
models were run varying the number of topics. We perform 5000 Gibbs Sampling iterations,
discarding the first 1000 (burn in period), and with a sample lag of 30. The length of the
candidate random list is set to 250 for [PTV1 and 1000 for IPTV2.

In the evaluation, we compare the bigram models with some baseline methods from the
current literature. These include the aforementioned DCMLDA model, and a version of
the LDA where, for each user, the tokens represent (unordered) bigrams rather than single
item occurrences. This is in practice a preprocessing of the data, which produces a different
representation of the dataset upon which the standard LDA model is trained. Clearly, the
ranking function has to be tuned accordingly.

We also provide two further baselines. The first one is a simple bigram model where
the probability of occurrence of an item is modeled as P(w,) = Afy, + (1 — &) fu,jw,_; -
Here, f; is the relative frequency of i in the training set, whereas f; ; represents the same
frequency conditioned to a preceding occurrence of j in the sequence. The A parameter
weighs the importance of the two components, and is tuned in a way proportional to the
frequency of i, as typically low-frequency items do not provide a reliable estimates of the
sequential part.

Finally, we also compare the proposed models to a baseline rooted on matrix factor-
ization (Koren et al. 2009; Menon and Elkan 2011). The basic idea here is to exploit
the matrix factorization for ranking, e.g., by providing an estimate of the probability of
the item appearance (Menon and Elkan 2010). There are some issues to consider when
applying matrix factorization to the case at hand. In our context, matrix factorization is
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Fig. 4 Recommendation accuracy

aimed at modeling item occurrence rather then an explicit rating. In this respect, non-
occurrence of an item has a bivalent interpretation, either as unknown (the user has not
considered the item yet), or negative (she does not prefer it at all). Thus, the traditional
approaches based on explicit preference (such as Salakhutdinov and Mnih 2007) cannot
be applied. We experimented with several specific techniques, including (Hu et al. 2008;
Sindhwani et al. 2010) and the standard SVD model. In the following, we report the results
of the SVD®, that still outperforms all the other methods, as a confirmation of the findings
in Cremonesi et al. (2010), Barbieri and Manco (2011).

Results  Figure 4 summarizes the results in recommendation accuracy achieved over the
two considered datasets. For each model, the optimal number of topics is given in brackets.
On both datasets, the proposed models improve the baselines. Concerning IPTV1, both
TopicBigram and TokenBigram achieve a significant margin with respect to the other com-
petitors. On IPTV2, TokenBigram outperforms TopicBigram, which is still the runner-up
performer.
In summary, the results suggest that:

e The underlying assumption within TokenBiTopic does not involve a remarkable increase
of the predictive capabilities of the model. In practice, the topic structure of the Token-
BiTopic model can be “simulated” by an LDA model with a quadratic number of topics.
As a result, the model seems more prone to overfitting.

e Contextual information, with particular reference to sequence modeling, provides a sub-
stantial contribution to recommendation accuracy. This is proven not only by the models
proposed in this paper: even the SimpleBigram baseline model achieves remarkable accu-
racy. In particular, when the recommendation list is relative small, the latter achieves an
accuracy comparable to TokenBitopic. As a matter of fact, all the sequential approaches
seem to provide a better estimate of the selection probability for the user’s next choice.

6Based on the SVDLIBC implementation, http://tedlab.mit.edu/~dr/SVDLIBC/. The other matrix factoriza-
tion methods were obtained from the Graphlab Library, http://graphlab.org/.
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Fig. 5 Precision and Recall for different training splits

e There is a strict correlation between the frequencies exhibited by bigrams and the perfor-
mance of the TokenBigram model. IPTV2 exhibits more frequent bigrams, and hence it
is more likely to boost the performances of the TokenBigram model. By the converse, the
TopicBigram exhibits a better capability in generalizing the dependency between the pre-
vious hidden context and the next choice. Geometrically, while the TokenBigram model
focuses exclusively a restricted area of the topic space, induced by considering only the
previous item, the TopicBigram model is actually able to identify larger homogeneous
region within the topic space and to estimate the connections (transition probabilities)
between them.

e Among the competitors, DCMLDA is rather weak. This is somehow surprising, consid-
ering that DCMLDA exhibits the best perplexity in the previous sets of experiments.
A viable explanation of this dichotomy can be found in the nature of the sequential data
explored here, which does not necessarily support burstiness: notably in a movie rental
scenario, once a movie is rented by a user, it is unlikely that it is rented again in the future.

e LDABigram does not provide a substantial improvement either. Again, this is unexpected,
in some sense, as bigrams can be considered contextual information as well. It seems
that, when bigrams are introduced without an ordering relationship, the resulting ranking
function is weakened.
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Fig. 6 Recall on random selections of users

In order to analyze the stability of the results, we perform some further experiments. First,
we analyze the robustness of the previous experiment with regards to different training/test
splits. Figure 5 shows the precision/recall results on three further batches where each user
sequence is splitted respectively to 50 %, 60 % and 70 % of the size. In these plots, both
TokenBigram and SimpleBigram tend to provide stable results, especially on IPTV2. All
other methods seem to suffer the shrinking of the training partition.

In a second batch of experiments, we are interested in analyzing the robustness of the
results with regards to random variations of the datasets. To this purpose, we repeat the
above experiment on several random samples of the original dataset, where each sample
includes 50 % of the whole user set. Training and test sets for each sample are obtained
by splitting each sequence with the standard 80-20 percentages. Figure 6 shows average
recall, as well as the intervals of variability. It is worth noticing that the TopicBigram model
exhibits the highest variations (especially on [IPTV1). Notwithstanding, the performances of
Fig. 4 are confirmed, thus witnessing a viable robustness of the proposed methods.

Finally, we confront in Fig. 7 the performance with regards to the number of latent fac-
tors, with a recommendation list fixed at size 20. TokenBiTopic expresses a wide range of
variability in IPTV1, and tends to improve with an increasing number of topics. The other
models are stable, and in general do not show a large variance. On IPTV2, TopicBigram
shows a progressive increase. However, the slope is progressively decreasing and hence we
can expect a maximum on 50 topics. As for the competitors, SVD degrades as long as the
number of latent factors is increased: a clear sign of overfitting (as also well-known from
the literature). It is worth noticing that, albeit stabler, other matrix factorization approaches
based on regularization (not reported here) are still weaker than SVD.

The results presented above experimentally show the effectiveness of sequential topic
models in predicting future user choices. However those models increase significantly the
number of parameters to be learned and this implies an increase in the learning time. In
Fig. 8 we plot the learning time (5000 Gibbs Sampling iterations) for different numbers of
topics. Again, TopicBigram exhibits a quadratic behavior, due to the Markovian dependency
among topic.

The last two plots in Fig. 8 highlight the contribution of asymmetric priors in the learning
process. As expected, asymmetric priors significantly improve the accuracy. However, the
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Fig. 7 Recall(20) and Precision(20) of the considered approaches varying the number of topics

learning time is greatly affected, as learning these parameters requires a further iterative fix
point procedure to embed in the main algorithm, as explained in Sect. 2.2.

5 Related work

The generative process, which is common to many extensions of the Latent Dirichlet Alloca-
tion (Blei 2011), is strongly based on a “bag-of-words” assumption. Even if this assumption
may sound unrealistic, this modeling works really good in practice. Latent Dirichlet Alloca-
tion and similar models combine the structure-discovery power of dimensionality reduction
approaches, such as the latent semantic indexing (Deerwester 1988), with informative pri-
ors modeling, which are estimated by Bayesian inference techniques. The definition of the
topic space and of the projection of each document into this space, provide an effective
tool to infer the semantic concept of each document, or generally entity. In particular, these
approaches support 3 main tasks (Griffiths et al. 2007): topic extraction, word sense disam-
biguation and prediction.

Among all the different contexts in which these approaches have achieved significant
results, in this paper we consider the application of probabilistic topic models to the recom-
mendation problem (Hofmann 2004). As mentioned above, this choice is motivated by some
interesting recent findings (Barbieri and Manco 2011) which can be summarized as follows:
(i) the item-selection probability computed for each user is a key component for generating
accurate item-ranking functions; (ii) among all competitors, LDA provides the best results
measured in precision and recall of the recommendation list. These promising results mo-
tivate us in exploring extensions of topic models which may provide better representation
of the inherent sequential correlation between items, and thus provide better performances
in predictions. In the following, we are going to briefly review state-of-the-art probabilistic
approaches to sequence data modeling, mainly focusing on topic approaches.

A simple approach to model sequential data within a probabilistic framework has been
proposed in Cadez et al. (2000). In their work, the authors present a framework based on
mixtures of Markov models for clustering and modeling of web site navigation logs, which
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is applied for clustering and visualizing user behavior on a web site. Albeit simple, the pro-
posed model suffers from the limitation that a single latent topic underlies all the observation
in a single sequence. This approach has been overtaken by other methods based on latent
semantic indexing and LDA. In Wallach (2006), Wang and Wei (2007), for example, the
authors propose extension of the LDA model which assume a first-order Markov chain for
the word generation process. In the resulting Token-Bigram Model (see Sect. 2) and Topical
n-grams, the current word depends on the current topic and the previous word observed in
the sequence.

The N-gram modeling can be extended by considering different kind of dependencies be-
tween the hidden states of the model. These kind of dependencies are formalized by exploit-
ing Hidden Markov models (HMM) (Bishop 2006, Chap. 13), which are a general reference
framework both for modeling sequence data and for natural language processing (Manning
and Schiitze 1999). HMMs assume that sequential data are generated using a Markov chain
of latent variables, with each observation conditioned on the state of the corresponding la-
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(a) HTTM (b) Collocation (c¢) Composite

Fig. 9 HTMM, Collocation and Composite Graphical Model for the generation of a document

tent variable. The resulting likelihood can be interpreted as an extension of a mixture model
in which the choice of mixture components for each observation is not selected indepen-
dently but depends on the choice of components for the previous observation. In Gruber
et al. (2007), authors explore this direction, and propose an Hidden Topic Markov Model
(HTMM) for text documents. HTMM defines a Markov chain over latent topics of the doc-
ument. The corresponding generative process, depicted in Fig. 9(a), assumes that all words
in the same sentence share the same topic, while successive sentences can either rely on the
previous topic, or introduce a new one. The topics in a document form a Markov chain with
a transition probability that depends on a binary topic transition variable . When ¢ = 1,
a new topic is drawn for the n-th sentence, otherwise the same previous topic is used.

The LDA Collocation Model (Gritfiths et al. 2007) introduces a new set of random vari-
ables (for bigram status) which denotes whether a bigram can be formed with the previous
word token. More specifically, as represented in Fig. 9(b), the generative process specifies
for each word both a topic and a collocation status. The collocation status adds a more flex-
ible modeling than Token Bigram model which always generates bigrams and, according to
this formulation, the distribution on bigram does not depend on the topic. The introduction
of the collocation status enrich the generative semantic of the model and this idea can be
applied to all the approaches proposed in Sect. 2.

All the previously discussed models approach the problem of sequence modeling by in-
ferring the underlying latent topic and then generate a sequence of words according to this
distribution. This perspective does not take into account the fact that words in a text doc-
ument may exhibit both syntactical and semantic correlations. A Composite Model, which
captures both semantic and syntactic roles, has been proposed in Griffiths et al. (2005). The
graphical model for the generation of a document, given in Fig. 9(c), clarify this concept.
The semantic/syntactic dependencies among words are modeled by employing two different
latent variables, namely Z and C; while the semantic layer follows a simple LDA model, the
syntactic one is instantiated by modeling transitions between the set of classes C through
a hidden Markov model. One of these classes corresponds to the semantic class and, when
is observed, enables the generation of the word according the current topic. Other classes
capture word co-occurrences that are due to syntactic aspects of the modeled language.

Textual documents exhibit a natural sequential structure: people develop documents by
building upon a main semantic concept, and by interleaving several segments/subsections,
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which express related topics, in a coherent logical flow. As described above, HTMM models
topic cohesion at the level of phrases (words within the same sentence share the same latent
topic), but does not model directly a smooth evolution between topics in different segments
that frame a document. Sequential LDA (Du et al. 2010) is a variant of LDA which models
a sequential dependency between sub-topics: the topic of the current segment is closely
related to the topic of its antecedent and subsequent segments. This smooth evolution of the
topic flow is modeled by using a Poisson-Dirichlet process.

The sequential structure is not limited exclusively to words, but it can affect also senti-
ments. Dependency-Sentiment-LDA (Li et al. 2010) builds on the assumption that sentiments
are expressed in a coherent way. Conjunctive words, such as “and” or “but”, can be used to
detect sentiment transitions, and the sentiment of a word is dependent on the sentiment of
its previous one.

6 Conclusion and future work

In this paper we studied three extensions of the LDA model which relax the bag-of-word
assumption by hypothesizing that the current observation depends on previous information.
For each of the proposed model we provided a Gibbs Sampling parameter estimation pro-
cedure and an experimental evaluation was accomplished by studying the models both from
a model fitting and an applicative perspective. In particular, the proposed models provide a
better framework for modeling contextual information in a recommendation scenario, when
the data exhibit intrinsic temporal dependency.

We believe that the models and results presented in this paper open two interesting re-
search directions. On the one side, it would be interesting to generalize the notion of “con-
textual information”: in this paper, a context was represented by temporal dependency. How-
ever, there are other observable features that can contribute in the likelihood of observing an
item in a user’s trace, such as geographical location, tags etc.

Even further, the interaction of a user in a social network is having an increasing impact
in her behavior. Analyzing the influence of the neighbors in a network (Barbieri et al. 2013)
can help to better evaluate both the temporal dependencies and the likelihood of an item to
be selected.
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DCMLDA model.
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