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1. Introduction. The blowing up of the solutions of the following semilinear

parabolic equation

8u(t, x)/8t = Gu(t, x) + c(x)u(t, x)e,       (ß ä 2)

( ' ' u(0, x) =f(x),       x e Rd,

depends on the dimension d and power ß, where G is the infinitesimal generator

of a linear nonnegative contraction semigroup on the space B(Rd) of bounded

measurable functions on Rd and c is a bounded nonnegative measurable function

on Rd. This fact was recently proved by Fujita [2] when G is the Laplacian operator.

In this paper we will give upper and lower bounds for the solution of (1.1) con-

structed by a probabilistic method (cf. (3.4) and (4.7)). As a corollary we shall

obtain Fujita's result when G is a fractional power — (—A)a, 0<aá2, of the

Laplacian operator.

Our method is based on probabilistic arguments relating to the branching

Markov processes (cf. Ikeda-Nagasawa-Watanabe [3], Sirao [8] and Nagasawa

[7]). The necessary facts of probabilistic arguments in this context will be sum-

marized in §2, while in §3 and §4 we shall give upper and lower bounds of the

probabilistic solution of (1.1) and some applications.

2. Preliminaries. Let D be a compact Hausdorff space with a countable open

base, B(D) be the space of bounded Borel measurable functions on D. B+(D)

denotes the set of nonnegative elements of B(D). Let {F¡ ; / ä 0} be a nonnegative

contraction semigroup on B(D) defined through a kernel Tt(x, dy) such that

(i) Tt(x, • ) is a nonnegative Borel measure on D with Tt(x, D) S I ;

(ii) F.( •, B) is measurable on [0, oo) x D for any Borel subset B of D,

(iii) Tt+S(x, B) = j Tt(x, dy)Ts(y, B) for any /, s SO, xe D and Borel subset B,

and

(iv) TJ(x)= ¡Tt(x, dy)f(y) for fie B(D).

We shall consider the following nonlinear integral equation with an initial data

fieB+(D) instead of (1.1):

(2.1) vit, x) = Ttfix)+J* dsTs(c-v(t-s, -y)(x),
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where c e B+(D), which will be fixed throughout the paper, and ß = 2, 3, 4,....

One may apply the usual successive approximation method to obtain a solution

of (2.1). This is, however, not appropriate for our present purpose. We shall treat

the nonlinear integral equation in a different way, finding a linear integral equation

which is a Azzear dilatation of the equation (2.1). This linear integral equation will be

defined on an enlarged space

(2.2) S =  Ü D\
n = l

where Dn is the symmetric «-fold product(2) of D, n ̂  1.

For feB+(D), set
n

(2.3) f(x) = ] ~[ f(xj),   when x = (xls x2,..., xn) e Dn,
1=1

fis, then, a measurable function on S and/e B+(S) when/á 1.

We shall state some fundamental facts which will play an important role in the

following discussion.

[a.l] There exist unique nonnegative kernels Ft(x, dy) and Y(x, ds dy) defined

on [0, oo) x S x S and S x [0, oo) x S respectively, such that when x=(x1; x2,..., x„)

(2.4) f Tt(x, dy)f(y) = fí Ttf(x¿,      fe B+(D),
Js j=i

and(3)

(2.5) f Y(x,dsdy)f(s,y) = ds ¿ Ts(cf(s, -y)(xk)    fl   T*(f(s> OX*)-
JS fc=l ¡#te;i = l

Moreover the support of Tt(x, ■) is concentrated on Dn and that of *F(x, ds-) on

yj)n+/?-i (cf ikeda-Nagasawa-Watanabe [3, Lemma 0.3]).

Then we define a linear integral equation with an initial data/

(2.6) u(t, x) = Ttf(x) + f í T(x, ds dy)u(t-s, y),       xeS,      fe B+(S),
Jo Js

where

Now set

(2.7)

Ttf(x) = js Ux, dy)f(y).

u0(t, x) = Ttf(x),

uk(t,x)= Y(x,dsdy)uk.x(t-s,y),
Jo Js

k^l.

(2) That is, D" is the quotient space of the «-fold product of D by the permutation of the

coordinate.

(3) /(s, x) is obtained by applying (2.3) to /(i, x) for fixed s.
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[a.2] uk(t, x) is well defined and 2"= o uk(t, x) converges for sufficiently small

t > 0. If we put

CO

(2.8) u(t, x) = 2 «*('. *).
fc = 0

when the right-hand side converges, then it is the minimal (local) solution of (2.6)

(cf. [3, Chapter IV]).

[a. 3] The most important property of the u(t, x) is the following branching

property:

n

(2.9) u(t, x) = ] I u(t, Xj),   when x = (xx, x2,..., xn) e Dn,
z=i

(cf. [3, Chapter I]).

[a.4] Accordingly, by the branching property, (2.4), and (2.5), it is easy to see

that the restriction of u(t, x) on D is a solution of the nonlinear integral equation

(2.1). Moreover, it is the minimal solution of (2.1), since if v(t, x) is a solution of

(2.1) then v(t, x) = Fl"=i «<*. *>)> xeDnisa solution of (2.6) (cf. [3, Theorem 4.7]).

We shall call this minimal solution u(t, x), x e D, of (2.1) obtained through (2.6)

the probabilistic solution of (2.1)(*).

[a.5] Let fki(s, x) (/'= 1, 2,..., m) be in B+([0, oo) x D) and akl... kn be certain

constants which are symmetric with respect to (kx,k2,...,km). When x=

(Xj, x2,..., xn) e D ,

(2.10)

jDm Y(x, ds oy)| 2 «**« •• • ». O/*.(*. yùj

n   (k.m) /       B \ n

= ds 2 2 ^■■•j.kn/^ •)(*«) n w*a )x^),
1 = 1 \ / /#!;Z = 1

where «z=«+/3-l, 2<fc,m) denotes the sum over all (kx,k2,...,km) satisfying

2™=i Fj = F, and T~[B the product over i=l, «+1, « + 2,..., m. This representation

of Y follows from the fact that the integrand of the left-hand side of (2.10) can be

expressed by a linear combination of functions of the form g, g e B+(D).

We will give upper and lower bounds of uk(t, x) in the following sections.

3. Case 1. There exists a global solution.   Now we give an upper bound of

uk(t, x).

Lemma 3.1. For fie B+(D) and x=(xx, x2,..., xn) e Dn, uk(t, x) which is defined

by (2.7) has an upper bound

(4) When Tt is the semigroup of exp (—J„ c(*>) ifa)-subprocess of a conservative Markov

process on D, u(t, x) in (2.8) exists for all ZäO and Utf(x) = u(t, x), where Ut is the semigroup

of a Markov process on S which has the branching property (branching Markov process).

This remark is also true for any Tt, but we need some additional structure for branching Markov

processes (cf. Sirao [8], Nagasawa [7]).
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(3.1)    uk(t,x)ú \\c

U{n + i(ß-l)}   r,t
k.   i = 0 •{f sup Ks^y-'dsY-fl h(t,Xj),

Uo  y=D J    fmfk\

where k= 1, 2, 3,... and

(3.2) A(/,x) = F(/(x).

Proof. We shall prove (3.1) by induction. ux(t, x) is estimated as follows: By

(2.5) and (2.7)

ux(t, x) = Çds f Fs(c-A?_ ,)(*,)• n rA-s(*i)
Jo ¡=1 i*l

(3.3) Ú \\c\\ f *{sup h(t-s, y)?-*} J f] FSA(-S(xf)
Jo        IveD J   fz*x {■_•}

/•í n

= «||c||     í/íísupA^jy-n-n^^X
Jo       \veZ3 J    f=t

where we used that Tsht_s(x) = h(t, x)(5). Thus (3.1) is valid for k= 1.

Suppose that (3.1) is valid for k S 1. Then by (2.7) and the induction hypothesis,

we have for x = (x!, x2,..., xn) and m=n+ß-l

uk + x(t,x) = Y(x,dsdy)uk(t-s,y)
Jo Jom

rt n {n + ß-l+i(ß-l)}  rrl_, ,k
è   c

¡•til  \ii-rp— i-r'\y     ¡.js   r r-t-s

k     —-fri-1        dr sup h(r,yy-^
Jo K-- Uo î/eD

T(x,*o»-n^-^^)
jDm j=X

By (2.5) this is equal to

n{n + ß-l+i(ß-l)}  rt     ,  ,_s ,k

M*~-k\-J0 *{J0     ̂ ^P^^)""1}

2Fs(c-Af_5)(x,)-nrA-sfe)
!=1 j*l

k-1

=í «\\c fc+1    '=0
FT {«+/S-1+<(£-!)}   rt

■     ds sup h^y)»-1
ZC! Jo        !/eO

[fa-z-supAir.^-^-nA^x,)
Uo ï£i» J      y = i

=   c
ft {"-

fc + 1   i=0

(k +

This proves (3.1) for zc4-1, completing the proof.

jyi-\jods sup h(s, yy - * j      . f] Afc *i)(6)-

(5) We write sometimes ht{x) for h{t, x).

(6) Note: J^F(i)F(i)"/A;! = F(/)'£+1/(A:+l)!, F(0)=0.
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Corollary 3.2. Let u(t, x) be the probabilistic solution of (2.1), then

(3.4) u(t, x) S F(/(x)|l + J ^Oj.

where

ÍYo+íGS-i)}1 1   \i-r'\r>—ijf  r ft \k

(3.5) vk(t) = ^2__-|||c|| Jo sup (TJ(y)Y-i dsj .

Remark. When Ttf(y)< 1, (3.5) shows that larger ß provides better converging

factor (Ft/(y))i-1. Therefore 2^=1 vk(t) converges more easily for larger ß.

Theorem 3.3. ForfeB+(D) satisfying

(3.6) OS- l)|c| I"0 sup (^/(y))*"1 dt < 1,
Jo     yeD

there exists a global solution u(t, x) 0/(2.1).

Moreover there exists a constant M>0 such that

(3.7) u(t, x) S MTJ(x)C).

Proof. By (3.5) we have

^si+atii.w rsupiTtfiy)y-idt.
t Vk(t) K+l J0      yeD

Therefore (3.6) implies

CO

SUP   2   vk(0  < °°-
(     fc = l

Thus the probabilistic solution actually provides a global solution. (3.7) follows

from (3.4), completing the proof.

We shall give some applications of the preceding theorem.

Corollary 3.4. Suppose that the semigroup Tt is transient in the following sense:

For any open set £/<= D with compact closure U, (U^D)

(3.8) r sup Ttilv)ix)dt <oo(8).
Jo        X

If we assume ß^2 and if 8 > 0 is sufficiently small, then there exists a global solution

u(t, x) ofi2.1)forfi=8Iu, and it satisfies (3.7).

(7) In this case «(/, x) is the unique bounded solution of (2.1), because u" satisfies locally

Lipschitz's condition.

(°) Iv is the indicator of U.
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Proof. The assertion of this corollary is clear from

P sup (TJ(x)y~1dt S S"-1 P sup TJuix) dt.
Jo       X JO        x

Theorem 3.5. Let Tt be the semigroup of the d-dimensional symmetric stable

process of index a (0 < a S 2), i.e.

(3.9)

TJ(x) = jRdP(t,x-y)fi(y)dy,

e-tw = f   eK*-x)pit, x) dxi9).
Jr"

Let

(3.10) d(ß-l)/a > 1,

and y a positive number. Then there exists a positive number 8 with the following

property: If

(3.11) 0Sf(x)S8p(y,x),

then there exists a global solution u(t, x) of (2.1) which satisfies

(3.12) 0 S u(t, x) S Mp(t + y, x),

for some positive constant M.

When a = 2, i.e., Tt is the semigroup of the ¿-dimensional Brownian motion,

this theorem was first proved by Fujita [2] by a different method.

Proof. If an initial data/satisfies (3.11), we have

Ttf(x) S 8p(t+y, x).

Since

p(t + y,x) = (t + y)-dlap(l, (t + y)-llax),

and

p(l,y) Sp(l,0),   foryeRO,

we have

P supfF^x))«-1 dt S 8^-^(1, O)*-1 P (r+y)-"«-»/« dt
JO       x Jo

vl-d(i-l)/ct

= y-wuoy-1- y
d(ß-l)/a-l

Therefore if we take 8 sufficiently small, (3.6) is satisfied. Hence the assertion of

this theorem follows from Theorem 3.3.

(9) \z\ and (z, x) denote norm and inner product, respectively.
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Remark.   Put

A = IaHx)^i + Im^

where aij and A' are sufficiently smooth and subject to 2W ati(x)XiXj S: 2t ^i f°r a^

x e Rd. Then it is known that the elementary solution p(t, x, y) of 8u/8t=Au has

the following upper bound:

p(t,x,y) á Frd/2exp(-a|x-j|70,

where a and K are certain positive constants. Therefore Theorem 3.5 is true when

we take j p(t, x, y) dyf(y) as TJ(x), where we put a=2.

4. Case 2. There exists no global solution.   In order to obtain a criterion for

existence of no global solution, we give a lower bound of uk(t, x).

Lemma 4.1. Assume

(4.1) inf c(x) = c0 > 0.
xeD

Then, far nonnegative f e B(D) and x=(xx, x2,..., xn), uk(t, x), which is defined by

(2.7), has a lower bound

rtk.n) -,

uk(t, x) ä cg{ 2 akxk2...kh(t, Xi)k¿*-»-h(t, jca)*.«-» • • • h(t, *„)*.«-»}

i=i "■■

wAere zc = 1, 2, 3,..., A(?, x) = Ttf(x), andaklk2 ...kn are certain symmetric constants

satisfying

(4.3) 'Üföw*. = «(«+/S-l).-.(« + (zc-1)08-1)),

where 2(fc-B> denotes the sum over all (ku k2,..., kn) satisfying 2"=i k{ = k.

Proof. We shall prove (4.2) by induction. Noting the following inequality

which is justified by Jensen's inequality(10),

(4.4) Ts(h(t -s, ■ Y) =% {Ts(h(t-s, ■ W = Kt, xY,

we have by (2.7)

ui(t, x) =  f ds 2 Fs(cAf-s)(x,)-n TA-Áxdn,
Jo        ¡=1 i#¡

ïc0 Çds ̂ K^xd'-YlK^Xi),
Jo 1 = 1 1*1

that is, (4.2) is verified for k = 1, with a00 • • • oio • ■ ■ o = 1 •

(10)j8ê2.

O1) We write/z,(x)=/i(.í,;c).
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Suppose that (4.2) is valid for k^ 1. By (2.7), the assumption, and (2.10), we

have for x = (x1; x2,.. .,xn)e Dn and m=n-l+ß

uk + x(t, x) = ^(x, ds dy)uk(t - s, y)
JO JDm

ft   f ((k.m) m \     r.        \k

= ck0 Jo jDm Y(x, ds Oy)| 2 aklk2 - - ■ *. fi Kt - s, ydk'iB "1)+1|- ̂ ^

*t n    (k.m) ,   B \

^cg+i \ ds% 2 ^ik2-kjs(Ylh^-1)+1)M
JO 1=1

n fs(«^-i)+i)(x,).^^(12)

n    (fc.m)

2 ■= 4+i2 2 "kikt-kMt'Xd1'^-1^}
n. tk + l      /-13-v

„n **-"'râ  '
where we used (4.4) and performed the integration with respect to s in the last step.

The last line is equal to

n    (k.m) n

CS + 12  2 flfcifca-*.^.*«)^*«"'"-"-   n   Kt.x^-»

•n^^)'(TTî)

If we introduce k'¡ = 2" *"¡ +1, this can be written as

1 = 1  *"' t#t z=i (.zc+i)!

Consequently we have

(k + l,n)

uk + x(t, x) Ï cg + 1    2    «U-^. »i)"»"-"•*(*. »a)*»"-1' • • ■ Kt, *„)*.«-«
n <)c + l

nW'XJ-çrTîy:

where we put
n

(4.6) <4k2->c„=2 2 afci •'•' •"*«•
1 = 1 Pi + kn + ! + ••• + fcm = fci - 1

This proves (4.2) for ä:+ 1. a^ ...kll are symmetric because so are akl ...k . More-

over, since we have, by the induction hypothesis,

(k.m)

2 aklk2-km = {« + 03- l)}{« + 203- !)}■•• {n+k(ß- 1)},

(12) ns denotes the product over i=l, n + \, n + 2,..., m.

(13) 2* denotes the sum over i=l, n+\, n + 2,.. .,m.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] SOLUTIONS FOR A NONLINEAR INTEGRAL EQUATION 309

we have, noting (4.6),

(fc + l.n)

2  a'klk2...kn = n{n + (ß-l)}{n + 2(ß-l)} ■ ■ ■ {n+k(ß-I)},

which proves (4.3) for k+1, completing the proof.

Corollary 4.2. Let u(t, x) be the probabilistic solution of (2.1), then

(4.7) u(t, x) ^ Ttf(x)(l + | vk(t, x)\,       xeD,

where

k-l

(4.8) vk(t, x) = i f] {1 +j(ß- l)}{Co/(Fí/(x))"-1}fc.
K-   j = 0

Theorem 4.3. For fe B+(D) satisfying, for some x0e D and t0>0,

(4.9) 0-l)*o'oŒ(/(*o))i-1> 1(14),

all solution u(t, x) of the equation (2.1) blows up at a point in a finite time interval

(i.e. no global solution exists).

Proof. By [a.3] the probabilistic solution u(t, x) is the minimal solution of (2.1).

Therefore it is sufficient to consider this solution u(t, x). Assume that u(t, x) does

not blow up all t > 0. Then u(t, x) satisfies (4.7). We have, however, for sufficiently

large k

Vk + l(tp, Xp) _   1 +k(ß— 1) ,        -,     YVÍ -1  -    1

vk(t0,x0)   -      k+l      C°MW°»       > l>

which contradicts the assumption.

We shall give some applications of the above theorem.

Corollary 4.4(15). Let D be a bounded domain in Rd and let Tt be the semigroup

of an A-diffusion on D with absorbing boundary(ie). If the initial data /^0 takes

sufficiently large values on an open set with positive Lebesgue measure, then the

solution u(t, x) of (2.1) blows up in a finite time interval'-1^.

Remark. In the above corollary, ,4-diffusion with absorbing boundary is a

process on D = D u {8} (one-point compactification of D) with S as the terminal

point. We always assume/(S)=0 for fie B(D).

(14)c0 = infX6Dinfc(x:)>0.

(15) A different proof of this theorem is given in S. Ito [6].

(16) This is the process with transition probability p(t, x, y) dy, where pit, x, y) is the

elementary solution of Sujet=Au, «|aD=0, A^a'KxW/dx* dxi) + bi(x)Sldxi.

(") We assume infxec c(x) = ca>0.
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Theorem 4.5(18). Let Tt be the semigroup of the d-dimensional symmetric stable

process with index a (0 < a á 2). Let

(4.10) 0 < d(ß-l)/a < 1.

Then for any nonnegative measurable function f on Rd which has strictly positive

values in an open set with positive Lebesgue measure, all solution u(t, x) of (2.1)(19)

blows up in a finite time interval, i.e., (2.1) has no global solution.

Proof. First of all we note that we have, ifffcl, TJ(x)^raittTif(x). On the

other hand there exists x0 £ Rd such that 0 < Tif(x0) by the assumption. There-

fore under the condition (4.10), we have, if t is sufficiently large,

(ß-i)c0t(Ttf(Xo)y-i = (ß-i)coti-«»-»"(Tif(x0)y-1 > i.

Hence u(t, x) blows up in a finite time interval by Theorem 4.3. This completes

the proof.
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