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ABSTRACT

This study explores an analog-based method to generate an ensemble [analog ensemble (AnEn)] in which

the probability distribution of the future state of the atmosphere is estimated with a set of past observations

that correspond to the best analogs of a deterministic numerical weather prediction (NWP). An analog for

a given location and forecast lead time is defined as a past prediction, from the same model, that has similar

values for selected features of the current model forecast. The AnEn is evaluated for 0–48-h probabilistic

predictions of 10-m wind speed and 2-m temperature over the contiguous United States and against obser-

vations provided by 550 surface stations, over the 23 April–31 July 2011 period. The AnEn is generated

from the Environment Canada (EC) deterministic Global Environmental Multiscale (GEM) model and a

12–15-month-long training period of forecasts and observations. The skill and value of AnEn predictions are

compared with forecasts from a state-of-the-science NWP ensemble system, the 21-member Regional En-

semble Prediction System (REPS). The AnEn exhibits high statistical consistency and reliability and the

ability to capture the flow-dependent behavior of errors, and it has equal or superior skill and value compared

to forecasts generated via logistic regression (LR) applied to both the deterministic GEM (as in AnEn) and

REPS [ensemble model output statistics (EMOS)]. The real-time computational cost of AnEn and LR is

lower than EMOS.

1. Introduction

A deterministic numerical weather prediction (NWP)

model forecast can provide useful information for

decision-making. Its utility, however, is fundamentally

limited as it represents only a single plausible future

state of the atmosphere from a continuum of possible

states, resulting from imperfect initial conditions and

model deficiencies that lead to nonlinear error growth

during model integration (Lorenz 1963). Accurate

knowledge of that continuum, the forecast probability

density function (PDF), provides considerably more

utility to decision-making (NRC 2006; AMS 2008; Gill

et al. 2008; Hirschberg et al. 2011).

Epstein (1969) proposed to generate a forecast PDF

via stochastic dynamic NWP, where the range of possi-

ble solutions is integrated forward by incorporating

uncertainty into the model’s prognostic equations. That

approach requires computing power not currently fea-

sible for operations. Leith (1974) proposed a Monte

Carlo approximation to stochastic dynamic forecasting,

referred to here as an NWP ensemble, where the de-

terministic NWP model is run multiple times (called
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ensemble members) over the valid period with plausible

variations to each separate run. The NWP ensembles

have been created using different model initial condi-

tions (e.g., Toth and Kalnay 1993, 1997; Molteni et al.

1996; Bishop and Toth 1999; Houtekamer et al. 2005,

2009; Kuhl et al. 2007), parameterizations within a single

model (e.g., Stensrud et al. 2000; Hacker et al. 2011),

approaches (e.g., Buizza et al. 1999; Eckel and Mass

2005; Teixeira and Reynolds 2008; Bowler et al. 2008;

Berner et al. 2009), numerical schemes (e.g., Thomas

et al. 2002), and models (e.g., Houtekamer et al. 1996;

Krishnamurthi et al. 2000; Hou et al. 2001; Wandishin

et al. 2001), and coupled to ocean and land surface en-

sembles (e.g., Holt et al. 2009).

In this study the forecast PDF is estimated using a set

of n past verifying observations corresponding to the n

best analogs (past model predictions) to a current de-

terministic model forecast. An analog for a given loca-

tion and forecast lead time is defined as a past prediction

from the same model that has similar values for selected

features of the current model forecast as proposed by

Delle Monache et al. (2011). The verifying observation

for each analog is thus a member of the analog ensemble

(AnEn).

Several past studies explored use of analog-based

methods for producing both deterministic and probabi-

listic weather predictions. Van den Dool (1989) gener-

ated 12-h 500-hPa height forecasts from a 15-yr dataset

by finding analogs of the current analysis with past

analyses over a localized area with a radius of about

900 km, and then used the 12-h subsequent analysis to

each analog as a plausible forecast. His results revealed

the ability of this approach to predict the forecast skill of

an NWP model, as indicated by a strong spread-skill

relationship in a 10-member, analog-based ensemble

(see Fig. 9 of van den Dool 1989). Zorita and von Storch

(1999) tested a relatively simple downscaling technique

based on analogs for daily and monthly winter rainfall

over the Iberian Peninsula. They found that their analog

method performs similar to more complex downscaling

techniques, and that it can be applied to both normally

and nonnormally distributed variables because it is fully

nonparametric. Hamill and Whitaker (2006, hereinafter

HW06), who provide a theoretical basis of the analog

approach (see section 2), found analogs for the mean

of an NWP ensemble over a 25-yr reforecast dataset

for probabilistic prediction of 24-h precipitation. They

tested several analog-basedmethods and found dramatic

improvement over the raw NWP ensemble, as well as

skill competitive with a logistic regression (LR) tech-

nique, which is the same baselinemethod analyzed in this

study (explained below). Messner and Mayr (2011) as-

sessed the skill of different configurations of the analog

methods proposed by HW06 in an idealized model set-

ting and found similarly promising results, particularly

for longer lead times. Klausner et al. (2009) proposed

a computationally efficient ‘‘similar day method,’’ based

on a historical dataset of observations for the 0–6-h

prediction of near-surface wind; their approach ex-

hibited skill superior to both a climatological and per-

sistence forecast. Panziera et al. (2011) tested an analog

approach based on radar observations for very short-

term orographic precipitation predictions and found that

their method performed better than persistence for lead

times beyond 1h, and better than a limited area NWP

prediction for lead times up to 4 h. Delle Monache et al.

(2011) proposed two postprocessing analog-based

methods to improve 1–24-h NWP predictions of 10-m

wind speed, which proved to drastically reduce random

and systematic errors of the raw NWP prediction and

considerably improve correlation between forecasts and

observations. The k-nearest neighbors approach (KNN

or k-NN; Fukunaga 1990), based on the concept of

analogy, has been explored extensively in hydrology

(Gangopadhyay et al. 2009; Hopson and Webster 2010,

and references therein) and more recently to downscale

seasonal weather predictions (Wu et al. 2012).

The pioneering contribution of van den Dool (1989)

blazed a path for others to follow. In this paper we

recognize that the analog approach is not merely useful

as a calibration technique for an NWP ensemble, as

performed in HW06, but also as a means to generate

uncertainty (i.e., probabilistic) information from a

purely deterministic forecast. Our focus then is to

compare and contrast the NWP ensemble and AnEn

approaches, along with LR to produce probability from

a deterministic forecast, to explore the approaches’

relative benefits. The AnEn has potential advantages

and disadvantages relative to an NWP ensemble. One

advantage may be to significantly lower the computa-

tional expense of generating an ensemble as AnEn re-

quires only a single model forecast, as opposed to the

multiple model runs of an NWP ensemble. Another

advantage is that forecast uncertainty is based solely

upon past observations, thereby eliminating the need to

simulate all sources of NWP forecast uncertainty via so-

phisticated and computationally intensive techniques, and

perhaps also avoiding the need for postprocessing cali-

bration. The AnEn attempts to capture flow-dependent

error growth by assigning the observed errors from

similar past flows, described by the high-resolution de-

terministic model, to the current model forecast. A dis-

advantagemay be the additional cost of generating a long

history ofmodel forecasts from a frozenmodeling system

needed for finding good analogs, even though these re-

forecast datasets are already produced in operational

OCTOBER 2013 DELLE MONACHE ET AL . 3499



centers to support successful forecast calibration (Hamill

et al. 2004, 2006, 2008, 2013; HW06;Hamill andWhitaker

2007;Wilks andHamill 2007; Hagedorn et al. 2008;Wilks

2009). Of particular interest concerning the reforecast

requirement is the relative sensitivity of AnEn versus

calibrated ensemble forecasts to the reforecasts’ length.

These are some of the issues explored in this paper.

In this work AnEn is evaluated for 0–48-h probabi-

listic predictions of 10-m wind speed and 2-m tempera-

ture at 550 surface stations over the contiguous United

States (CONUS), over the 23 April–31 July 2011 period.

Analogs for AnEn are found over the previous 12–15

months using the regional version of the Environment

Canada (EC) deterministic (15 km) Global Environ-

mental Multiscale (GEM) model. The skill of AnEn is

compared to the skill of a state-of-the-science NWP

ensemble, the 21-member EC Regional (33 km) En-

semble Prediction System (REPS), and LR applied to

both the deterministic 15-km GEM and REPS [ensem-

ble model output statistics (EMOS)].

In section 2 the datasets and the prediction systems

used in the experiments are described followed by an

analysis of the results in section 3, including statistical

consistency, reliability, sharpness, resolution, and value

of the probabilistic predictions. Section 4 presents a

sensitivity analysis of the AnEn algorithm; section 5

discusses the results and presents conclusions.

2. Research datasets

This section describes the surface observations and

the four different systems that produce 0–48-h 3-hourly

predictions (initialized at 1200 UTC) utilized for the

analysis presented in section 3. Figure 1 shows the

timeline of the available datasets. Observations and

raw model predictions are available over the 457-day

(15 months) period of 1May 2010–31 July 2011, with the

verification period consisting of the last 100 days of the

available data. Several of the forecast systems described

below require a training dataset of past forecasts and

observations (black arrow). To take full advantage of

the available data and mimic real-world forecast op-

erations, the training period increases from 12 months

for the first verified forecast (initialized 23 April 2011)

to 15 months for the last (initialized 31 July 2011). It

is worth noting that in operational settings much longer

(i.e., multiyear reforecasts; Hamill et al. 2006, 2013)

training datasets may be available to further improve

these forecast systems. Sensitivity of the forecast sys-

tems’ performance to a shorter training dataset (6–9

months, gray arrow) is also performed and presented in

section 4.

a. Observations

The observational dataset includes hourly 10-m AGL

wind speed and 2-m AGL temperature measurements

from 550 aviation routine weather-reporting stations

(METAR, surface) collected over the 457-day period.

The 550 stations are distributed throughout CONUS

(Fig. 2) spanning a wide range of topographic complexity,

land-use types, and weather regimes, thus allowing for

a robust analysis of forecast skill.

Measurements of 2-min average 10-m wind speed and

5-min average 2-m temperature have observational er-

ror (95% confidence interval) of 62.0 kt (or 5% if wind

speed is greater than 40 kt) and 60.18C, respectively

(NOAA 1998). To account for those errors in the veri-

fication process (e.g., Anderson 1996), verification of

raw REPS output is performed only after first adding

random white noise (scaled by the observation error) to

each REPS member. Such a procedure is not performed

for the other three prediction systems described below

since the observational error is actually incorporated

into their forecast process.

b. Prediction systems

1) ANALOG ENSEMBLE

The AnEn seeks to estimate the probability distri-

bution [ f(�)] of the observed value of the predictand

variable given a model prediction, which can be rep-

resented as

FIG. 1. Timeline of the available datasets. The arrows show the training periods over which

observations and model predictions are available to produce the ensemble model output sta-

tistics (EMOS), the analog ensemble (AnEn), and logistic regression (LR). The dotted lines

indicate the verification period.
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f (y j xf ) , (1)

where, at a given time and location, y is the ob-

served future value of the predictand variable, and

xf 5 (x
f
1 , x

f
2 , . . . , x

f
k ) contains the values of k predictors

from the deterministic model prediction at the same

location and over a time window centered over the same

time.

As shown in Fig. 3, the AnEn method generates

samples of y given xf via three main steps using a history

of cases, called the analog training period, in which both

the NWP deterministic prediction and the verifying

observation are available (a minimum of 6 months in

this study). Analogs are sought independently at each

location and for each lead time (black square in step 1),

and thus also for each time of day since only 1200 UTC

forecasts are used. The best-matching historical fore-

casts for the current prediction are selected as the ana-

logs (blue boxes in step 1). An analog may come from

any past date within the training period (i.e., a day,

week, or several months ago). Next, each analog’s ver-

ifying observation is selected as a member of AnEn

(green boxes in step 2). Taken all together, these ob-

servations constitute the ensemble prediction for the

current forecast (orange circles in step 3).

For step 1 above, the quality of an analog (i.e.,

closeness of the match) is determined by the following

metric, as proposed by Delle Monache et al. (2011):

kFt,At0k5 �
N

y

i51

w
i

s
f
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
j52~t

~t

(Fi,t1j 2Ai,t01j)
2

v

u

u

t , (2)

FIG. 2. Spatial distribution of the 550 stations from the aviation routine weather reports

(METAR, surface), providing the observations of 10-m wind speed and 2-m temperature used

in this study. Darker shading corresponds to higher terrain elevation, rivers are indicated in

light blue, and the U.S. state and international borders in black.

FIG. 3. Schematic representation of the process for finding four members of the analog en-

semble (AnEn) at one forecast lead time. A detailed description of the three main steps is

found in section 2b(1).
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where Ft is the current NWP deterministic forecast valid

at the future time t at a station location; At0 is an analog

at the same location and with the same forecast lead

time but valid at a past time t0;N
y
and wi are the number

of physical variables used in the analogs search and their

weights, respectively; sfi is the standard deviation of the

time series of past forecasts of a given variable at the

same location and forecast lead time; ~t is equal to half

the number of additional times over which the metric is

computed; and Fi,t1j and Ai,t01j are the values of the

forecast and the analog in a time window for a given

variable. Section 4 explores the sensitivity to key choices

of the analog ensemble algorithm proposed below.

Similarly to Delle Monache et al. (2011), ~t is set to 1 so

that the time window is 63 h given the 3-h forecast in-

terval. The weights w
y
are also set to one. In searching

for analogs for 10-m wind speed predictions, N
y
is equal

to 4 and includes 10-m wind speed and direction, 2-m

temperature, and surface pressure (which were chosen

as a reasonable set of predictors out of the 15-km GEM

output, as confirmed by the high-quality probabilistic

predictions presented in section 3). For 2-m temperature

analogs, N
y
is equal to 3 and includes 2-m temperature

and 10-m wind speed and direction. For the latter, the

appropriate definition of difference for a circular vari-

able has been taken into account.

The analog searching algorithm is highly flexible and

allows the search to occur over a time window of any

specified width; however, the current 3-hourly output

for GEMdictates that, with the choice of ~t equal to 1, the

window’s width is 6 h. The idea is to find past forecasts

(at a specific location) that predicted similar temporal

trends and not simply values of the forecasted physical

variables (i.e., the predictors) at one lead time. Including

multiple predictor variables that exhibit correlations to

the predictand further helps distinguish the analogs by

perhaps identifying specific weather regimes. To rule

out possible differences in skill related to sampling error

when comparing AnEn performance to that of the

21-member REPS, AnEn uses only the 21 best analogs.

No calibration is performed on AnEn.

The deterministic NWP prediction used to generate

AnEn is the EC Regional 15-km GEM, which used 58

vertical levels up to 20 September 2010 and 80 vertical

levels thereafter. The implications of this choice in terms

of computational costs when comparing REPS with

AnEn are discussed in the concluding section.

While the basic steps of AnEn have parallels with the

analog ensemble approach in HW06, there are many

distinct differences to note, as follows:

d AnEn is generated using a deterministic dynamical

model prediction, rather than being based on themean

of an NWP ensemble as in HW06. So instead of being

seen as a postprocessing method to calibrate an exist-

ing ensemble, in this study the AnEn is a procedure to

generate an ensemble.
d Here analogs are searched independently for every

location and over a 3-point time window, whereas

in HW06 the analog matching is performed over a

limited-sized 16-point region independently for every

forecast lead time.
d While in this study the analog metric [Eq. (2)] is

multivariate, HW06 found the best performance of the

analog ensemble with a metric computation based

only on the variable of interest (i.e., precipitation in

their case).
d The AnEn searches for analogs throughout the avail-

able historical dataset, whereas HW06 limited their

search to a 645-day window around the date of the

forecast in previous years.

2) LOGISTIC REGRESSION

Forecasts are formulated using logistic regression,

which is a model output statistics (MOS) technique

specifically designed to produce probabilistic forecasts

(Wilks 2006). While the mechanics of LR are quite dif-

ferent from AnEn, both approaches consider the past

relationship between predictor variable(s) and the pre-

dictand to produce a forecast of the predictand given the

predictors’ values in the current forecast cycle. One

difference with LR is that the predictand is the proba-

bility of an event, such as the probability of 10-m wind

speed greater than 5m s21, rather than the value (or

PDF) of 10-m wind speed itself. A nonlinear function is

fit to past pairs of the predictor(s) and the predictand,

which as an observed value takes on a probability of

either 1.0 (event occurred) or 0.0 (event did not occur)

(Wilks 2006):

p5
e(b0

1b
1
x
1
1⋯1b

K
x
K
)

11 e(b0
1b

1
x
1
1⋯1b

K
x
K
)
, (3)

where p is the probability of the event, xK are the K

predictor variables, and bK are the regression coefficients.

To make a fair comparison with AnEn, LR uses the

same training dataset (i.e., deterministic 15-km GEM

forecasts and METAR station observations). Also like

AnEn, training (and application) for LR is performed

separately for each location, each forecast lead time, and

for each forecast initialization within the verification pe-

riod using all historical data available at forecast initiali-

zation time. A difference from AnEn is that in deriving

the probability of an event, LR takes into account the

complete history of forecasts and observations whereas
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AnEn is based only on a small subset of forecasts within

the training dataset that closely match current forecast

conditions. Given a much longer training period than

available in this study, LRmay be trained over seasonally

relevant subsets of the historical data, but would still in

general include much more data than AnEn. Further-

more, the two methods may have different sensitivities to

training data length, as discussed in section 4.

Recall that the four available 15-km GEM predictors

are 10-m wind speed, 10-m wind direction, 2-m tem-

perature, and surface pressure. For 10-m wind speed

probabilistic predictions, LR was found to perform best

using all four predictors, but with a power trans-

formation (square root) of 10-m wind speed to make its

distribution more normal (Hamill et al. 2008). For 2-m

temperature probabilistic predictions, only the 2-m

temperature predictor is used since including any (or

any combination) of the other predictors produced in-

ferior results.

When an event occurs infrequently within the training

data, LR is prone to producing poorly skilled pre-

dictions. Predictand values in the training data are pre-

dominantly 0.0, with only a very few values of 1.0,

making it difficult to fit a dependable curve. The same

issue exists for the inverse situation of an event that

occurs frequently (i.e., training data have mostly pre-

dictand values of 1). This issue, of course, is the general

challenge of probabilistic forecasting of rare events,

which also exists for AnEn and is discussed further in

section 3. For LR, one approach that can alleviate this

problem is weighting rare or extreme forecast events

within the training data, as described in Hamill et al.

(2008). This type of weighting, as well as other related

techniques, was thoroughly tested and provided no sig-

nificant improvement for the variables of interest in this

study, so only the standard logistic regression technique

was employed.

3) REPS

The direct output of REPS is used in this study to

represent forecasts from a state-of-the-science, short-

range NWP ensemble. First described in Li et al. (2008),

the system was upgraded for its 2011 operational im-

plementation, which is the version used here. The REPS

consists of 21 72-h forecasts that use a North American

domain of the GEM model, with grid spacing of 0.38

(;33 km) and 28 vertical levels. All REPS members

have the same model configuration but apply pertur-

bations to physical tendencies (Buizza et al. 1999). Each

REPS member gets initial conditions (used for cold

starts) and 3-hourly boundary condition updates from

the direct model output of a different member of the

21-member Global Ensemble Prediction System (GEPS),

which is run using a grid spacing of ;66 km and 40 ver-

tical levels. The GEPS initial conditions are generated

with the ensemble Kalman filter technique using a 12-h

update cycle and 96 ensemble members (Houtekamer

et al. 2009). In addition to perturbations to physical ten-

dencies, GEPS simulates model uncertainty using mul-

tiple physics as well as the kinetic energy backscatter

approach (Shutts 2005).

4) ENSEMBLE MODEL OUTPUT STATISTICS

Calibrated REPS forecasts are formulated via a form

of the ensemble model output statistics (EMOS) tech-

nique, originally proposed by Gneiting et al. (2005) us-

ing multiple linear regression with predictors being the

ensemble members’ forecast values as well as the en-

semble spread. This study follows Hamill et al. (2008) in

performing EMOS with LR (as described above) using

two predictors—the REPS ensemble mean forecast and

the square root of ensemble spread. The EMOS training

data periods are broken up by location and forecast lead

time to match both AnEn and LR as described above.

The 10-m wind speed ensemble mean predictor is also

transformed by taking its square root, as performed

for LR.

3. Results

The performance of the probabilistic forecast systems

described in section 2b is compared by examining key

attributes of probabilistic predictions, namely statistical

consistency, reliability, sharpness, resolution, and value.

While these attributes and their associated metrics are

briefly reviewed below, thorough descriptions can be

found in Jolliffe and Stephenson (2003) and Wilks

(2006). A detailed analysis with a different dataset of the

analog ensemble mean results can be found in Delle

Monache et al. (2011).

Forecasts for 10-m wind speed and 2-m temperature

from 0 to 48 h (at 3-h increments) initialized daily at

1200 UTC are verified from 23 April to 31 July 2011

(roughly the last 3 months of the 15-month research

dataset; see Fig. 1 for details) against the observations

described in section 2a. The forecast probability for an

event threshold is computed from an ensemble’s mem-

bers using the rank method with uniform probability in

each rank (Hamill and Colucci 1997).

a. Statistical consistency

An ensemble is statistically consistent when its mem-

bers are indistinguishable from the truth (i.e., the PDF

fromwhich the members are drawn is consistentwith the

PDF from which the truth is drawn; Anderson 1996). If

so, an observation ranked among the corresponding
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ordered ensemble members is equally likely to take any

rank i in the range i 5 1, 2, . . . , n 1 1, where n is the

number of ensemble members. Collecting the rank of

the observation over a number of cases and plotting

the results generates a rank histogram, which tests as

flat [i.e., uniform rank probability of 1/(n 1 1)] for a

statistically consistent ensemble (Anderson 1996; Hamill

and Colucci 1997; Talagrand et al. 1997). However, that

test is a necessary but not sufficient condition for statis-

tical consistency (Hamill 2001).

Figure 4 shows the rank histograms for 9-h forecast

10-m wind speed for REPS and AnEn as well as the

missing rate error (MRE), which is the fraction of ob-

servations lower (higher) than the lowest (highest)

ranked prediction above or below the expected missing

rate, 2/(n1 1). Note that rank histograms, as well as the

other statistical consistency plots below, are designed

for ensemble forecasts so only REPS and AnEn results

are displayed in this subsection. The REPS rank histo-

gram (Fig. 4a) reveals a severe lack of statistical con-

sistency, with a notable negative forecast bias (observed

wind speed often greater than all REPS members) as

well as an underspread condition (highest probabilities

in the two outer ranks). The AnEn has much better

statistical consistency, displayed by a nearly uniform

rank histogram (Fig. 4b) with a slightly overspread

condition (MRE equal to21.1%), as is more evident in

Fig. 4c where a tighter vertical axis range is used. Note

that 2-m temperature and other forecast lead times (not

shown) indicated similar results.

Examination of statistical consistency over all forecast

lead times is accomplished following the general defi-

nition by Talagrand et al. (1997) that the mean square

error of the ensemble mean should match the average

FIG. 4. Rank histogram for probabilistic prediction

of 10-m wind speed for (a) the raw Regional En-

semble Prediction System (REPS), (b) the analog

ensemble (AnEn), and (c) AnEn but with a tighter

vertical axis range, and with inset missing rate error

(MRE) results for (a) and (b). Gray histogram bars

show the frequency of the observation occurring in

each rank. The dashed black line indicates perfect,

uniform probability of for the 21-member ensembles.
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ensemble variance over a large number of verifications.

Comparing the square root of those two statistics (to

display results with the predicted variables’ natural unit)

over all forecast lead times produces a dispersion dia-

gram that reveals whether an ensemble is properly dis-

persive (i.e., able to simulate average forecast error

growth).

Figure 5 shows the dispersion diagrams for 10-m

wind speed. The underdispersion of REPS is evident

(Fig. 5a), and the above conclusion of good statistical

consistency by AnEn is now evident at all lead times,

with slight excess spread byAnEn at hours 6, 9, 30, and

33 (Fig. 5b). The dramatic drop in REPS spread from

analysis time (i.e., hour 0) to the 3-h lead time can be

explained by the cold-start initialization of REPS.

Each REPS member uses a GEPS member’s initial

condition, with no data assimilation or model spinup.

Much of the diversity in the initial conditions likely

collapses in the first few REPS time steps as the so-

lutions adjust to the new model grid and converge to

the new attractor (i.e., a set of states toward which the

dynamical system asymptotically approach in the

course of its evolution; Lorenz 1993). Figure 5b shows

that the good statistical consistency of AnEn comes

from not only higher spread than REPS but also from

a lower RMSE of the ensemble mean—achieved from

use of a higher-resolution NWP model as well as

downscaling (i.e., adding information at smaller scales

via the observations that compose AnEn). Note that

the downscale benefit is realized also by EMOS, while

both the downscaling and higher model resolution

benefits are realized by LR, making them more fair

comparisons to AnEn, as seen below.

A more in-depth assessment of statistical consistency

at a particular forecast lead time is possible with a bin-

ned spread-skill plot (Fig. 6), which compares ensemble

spread to RMSE of the ensemble mean over small class

intervals of spread rather than just considering the

overall average spread as in the dispersion diagram (e.g.,

van den Dool 1989; Wang and Bishop 2003). Good

statistical consistency now requires the two metrics to

match at all values of ensemble spread (i.e., results along

the plot’s 1:1 diagonal). For forecast hour 42 of 10-m

wind speed, REPS forecasts are highly underspread

for all spread values (Fig. 6a), while AnEn exhibits

a much better spread-skill relationship with a slight

conditional bias in the second moment of the forecast

PDF—underspread at smaller values and overspread

at higher spreads (Fig. 6b). This conditional bias is

an effect of the limited sampling by AnEn (given the

21 members and the finite historical dataset available)

that can only be seen when the analysis is stratified (i.e.,

when ensembles that satisfy a certain criteria are eval-

uated separately; Siegert et al. 2012). While this bias can

be effectively corrected via postprocessing calibration,

only unaltered AnEn results are presented since they

are fairly well calibrated. This result (which is similar at

other lead times) indicates that AnEn is indeed able to

capture the flow-dependent forecast uncertainty since

the AnEn spread dependably reflects the forecast error

variance.

b. Reliability

Ideally, a large set of 30% probability forecasts will

verify with a 30% occurrence rate of the event (called

the observed relative frequency). In perfectly reliable

FIG. 5. Dispersion diagram for probabilistic prediction of 10-m wind speed (a) for REPS and (b) AnEn. The black

line is the root-mean-square error (RMSE) of the ensemblemean, while the gray line is the average ensemble spread

(m s21). The 95% bootstrap confidence intervals for RMSE are indicated by the error bars.
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(or calibrated) forecasts, the observed relative frequency

equals the forecasted probability for any given level of

probability, resulting in the 1:1 diagonal line on a re-

liability diagram that plots class intervals of forecast

probability against observed relative frequency (Jolliffe

and Stephenson 2003; Wilks 2006).

Figure 7 shows reliability results (black lines with

error bars) for the event of 10-m wind speed greater

than 5m s21 at forecast hour 9. The REPS forecasts are

the least reliable, with notable underestimation (over-

estimation) of the observed relative frequency below

(above) approximately 0.7 (Fig. 7a). The EMOS fore-

casts have rather good reliability (Fig. 7b), with im-

perfections perhaps from limited training of the calibration

routine and/or error variations between the dependent

and independent data.

Both LR andAnEn (Figs. 7c,d, respectively) forecasts

are also imperfect but exhibit roughly the same degree

of good reliability as EMOS. Results were consistent

also at other forecast lead times and thresholds. This

result is important in this study’s comparison of the

NWP and analog ensemble approaches, and is the rea-

son why EMOS was produced. A revealing comparison

of any two ensembles is possible once their forecasts

are similarly reliable and have been trained (and/or

calibrated) using the same history of forecasts and obser-

vations. Poor reliability, associated with systematic errors,

can mask the ability of an ensemble to predict the random

forecast error, so that the intrinsic quality of an ensemble

may only be evident after a simple calibration is applied.

Figure 8 is similar to Fig. 7, except for forecast hour 33

and for the prediction of 2-m temperature less than

158C, chosen colloquially as a jacket versus no-jacket

weather threshold. Conclusions concerning the forecast

systems’ reliability are about the same with the excep-

tion that REPS, while still exhibiting the lowest re-

liability, is far more reliable compared to the wind speed

forecasts. This may be a result of the 33-km GEM hav-

ing better skill at predicting 2-m temperature at the

METAR stations compared to 10-m wind speed pre-

diction (as confirmed below in Fig. 11) and/or REPS

being better able to simulate the forecast uncertainty in

the GEM forecast.

c. Sharpness

A sharper (more narrow) forecast PDF has a greater

concentration of probability density and produces prob-

ability values more toward the extremes (i.e., close to

0% or 100%) for any given event threshold. Sharpness,

which is a property of the forecasts only, is diagnosed in

a reliability diagram by plotting how often (relative

frequency) each class interval of probability is used (the

gray lines with square markers in Fig. 7). A sharper

forecast leads to better resolution (see next subsection)

if the forecasts are reliable (Gneiting et al. 2004).

For forecast hour 9 and 10-m wind speed greater than

5m s21, the REPS forecasts (Fig. 7a) are very sharp with

the majority occurring in the 0%–10% range, but this is

due to overconfidence as indicated by the poor re-

liability. The EMOS forecasts (Fig. 7b) have lower yet

trustworthy sharpness resulting from the calibration’s

correction of REPS overconfidence. AnEn sharpness

(Fig. 7d) is comparable to EMOS (Fig. 7b) and LR

forecasts (Fig. 7c). In Fig. 8 (for forecast hour 33 and for

FIG. 6. Binned spread-skill plot for forecast hour 42 of 10-mwind speed for (a) REPS and (b) AnEn. The error bars

indicate the 95%bootstrap confidence interval, while the diagonal 1:1 line represents the perfect spread-skill line. For

each plot, ensemble spread is binned into 20 equally populated class intervals.
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2-m temperature below 158C) the relative differences in

sharpness among the four prediction systems are mini-

mal compared to the wind speed analysis.

d. Resolution and value

Resolution measures the forecasts’ ability to a priori

sort out when an event occurs or not (Murphy 1973).

Probability forecasts with perfect resolution forecast

100% on occasions when the event occurs and forecast

0% when the event does not occur. The Brier skill score

(BSS), which is the RMSE of probabilistic forecasts, can

be broken up into reliability, resolution, and uncertainty

(Wilks 2006). Figure 9c shows the resolution for fore-

casts of 10-mwind speed greater than 5m s21 by the four

prediction systems. Note that the uncertainty, which

depends solely on the sample climatology and is the

highest possible value of resolution, is the orange line

plotted in Fig. 9a. The AnEn, EMOS, and LR display

similar and greatly superior ability to resolve this event

at all lead times when compared to REPS, which, as

discussed above, is due to higher model resolution (for

AnEn and LR) and downscaling (for AnEn, EMOS,

and LR). The AnEn, EMOS, and LR have very similar

resolution at most lead times, with the differences being

not statistically significant. The BSS results (Fig. 9a)

yield similar conclusions concerning the relative skill

(as well as value as explained below) of the forecast

systems.

FIG. 7. Reliability (black lines with vertical error bars) and sharpness (gray lines with square marks) for (a) REPS,

(b) ensemble model output statistics (EMOS), (c) logistic regression (LR), and (d) AnEn. Results are shown for

forecast hour 9 and 10-mwind speed greater than 5m s21. The horizontal dashed line represents the event’s observed

frequency over the verification period (i.e., sample climatology), while the diagonal 1:1 line represents the perfect

reliability. The error bars indicate the 95% bootstrap confidence interval.
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Signal detection theory (Mason 1980) can analyze

whether probabilistic forecasts, when translated into

binary decisions, may be useful to the end user, and is

employed here to examine the relative value of the

forecasts to individual users. As explained by Jolliffe

and Stephenson (2003), the BSS presents the lower

bound of overall valuewhile the upper bound is revealed

by the relative operating characteristic (ROC) skill

score (ROCSS). TheROCSS is based on the ROC curve

(Mason 1982), which plots the false alarm rate (false

alarms divided by total nonoccurrences of the event)

against the hit rate (correct forecasts divided by total

occurrences of the event) to show the forecast’s ability

to discriminate. The ROC curve (as well as the ROCSS)

thus depends upon resolution and not reliability, and the

area under the ROC curve, known as the ROC score,

conveys overall forecast value (Mason and Graham

1999). The ROCSS translates the ROC score into

a standard skill score so that a ROCSS equal to 1 comes

from perfect forecasts and a ROCSS lower than 0 in-

dicates lower performance than climatological forecasts.

Figure 10 shows the ROCSS results over all lead times

for forecasts of 10-m wind speed greater than 5m s21 (a

common event with sample climatology varying from

18.1% at 1200 UTC to 44.9% at 2100 UTC) as well as

10m s21 (a rare event with sample climatology varying

from 0.6% at 1200 UTC to 3.4% at 2100 UTC). For the

5m s21 event threshold (Fig. 10a), AnEn, EMOS, and

LR exhibit a very similar ROCSS, which agrees with the

BSS resolution term (Fig. 9c). For the 10m s21 event

threshold (Fig. 10b), AnEn has higherROCSS than both

EMOS and LR, although only the differences from LR

are statistically significant. The AnEn superiority over

EMOS likely stems fromAnEn’s use of the 15-kmGEM

FIG. 8. As in Fig. 7, but for forecast hour 33 and for 2-m temperature below 158C.
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versus EMOS’s use of the 33-km GEM. AnEn is able to

identify smaller-scale flows, as well as their uncertainty,

that EMOS cannot resolve as well. AnEn’s superiority

to LR for the 10ms21 event threshold is likely due pri-

marily to LR’s difficulty is fitting a dependable regression

line in the case when the event is rarely observed within

the training dataset. AnEn apparently may not suffer as

severely in forecasting rare events, perhaps because it

avoids some loss of information that LR may experience

when creating a binary observation for the event.

For 2-m temperature less than 158C (a common event

with sample climatology varying from 42.3% at 1200 UTC

to 12.0% at 2100 UTC), AnEn, EMOS, and LR fore-

casts again display similar skill (Fig. 11). The REPS re-

sults are included here since they are competitive at

some forecast lead times, which supports the conclusion

from the reliability diagrams (Fig. 8) that REPS per-

forms relatively better for 2-m temperature forecasts.

Examining value in more detail at a specific forecast

lead time can be done with an economic value dia-

gram, which incorporates the cost/loss decision model

(Richardson 2000; Jolliffe and Stephenson 2003). A value

score (VS; Wilks 2001) is computed using ROC results

combined with hypothetical costs C for a user to protect

against a weather event and lossesL incurred by failing to

protect against an event occurrence. The VS, essentially

a skill score for economic expense, is computed across all

C/L ratios and thus applies generically to a variety of po-

tential users andnot to any specific level or type (monetary

or other) of user expenses. However, a key assumption is

that the users are normative—they consistently take ac-

tion when the risk (i.e., forecast probability) exceeds the

user’s risk tolerance (i.e., the C/L ratio), thus minimizing

expenses over many cases (Thompson 1950). That as-

sumption means that similar to the ROCSS, the economic

value diagram provides the upper bound of value.

FIG. 9. (a) Brier skill score (BSS), (b) reliability (with

the vertical axis on a logarithmic scale), and (c) resolu-

tion against the forecast lead time for the probabilistic

prediction of 10-m wind speed greater than 5m s21.

Shown prediction systems include AnEn (red), REPS

(blue), EMOS (green), and LR (black). The orange line

in (a) represents uncertainty. The error bars indicate the

95% bootstrap confidence intervals. Error bars were

omitted from EMOS and LR in (a), EMOS in (b), and

EMOS and LR in (c) to reduce clutter.
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Figure 12 shows two sample economic value diagrams

for forecast hour 42 that typify results found at other

lead times and event thresholds. Figure 12a supports the

same general conclusions as above concerning relative

value of the four predictive systems for forecasts of 10-m

wind speed greater than 5m s21. Figure 12b confirms

that the result of Fig. 11 for 2-m temperature lower than

158C (i.e., overall AnEn value equivalent to EMOS and

LR) is true also for each value of the user C/L ratio.

4. Sensitivity analysis of the analog ensemble

The sensitivity to a number of parameters and imple-

mentation options inEq. (2) and design choices forAnEn

can be summarized as follows:

d Values for ~t (the half-width time windows over which

squared differences between analog and forecast

values are computed for a given location) in the set

figi50,1,...,6, i 2 N, were tested, resulting in small

differences between the different runs, with a value of
~t 5 1 producing the best results (based on the highest

correlation and lower RMSE of the ensemble mean

across all the available observations and forecast lead

times and the prediction of 10-m wind speed and 2-m

temperature, and the fact the analog ensemble has the

tendency of preserving statistical consistency regard-

less of the algorithmic options chosen, as explained

at the end of section 5). For this reason, as in Delle

Monache et al. (2011), ~t5 1 was used. Because the

data used here have a 3-hourly frequency, this corre-

spond to a comparison of the analog and prediction

over a 6-h window that is able to capture the relevant

information in terms of the predicted value and its

trend, based on the results shown in section 3. Different

datasets may have a different optimal value for ~t.
d As described in section 2, the analog predictors for

10-m wind speed predictions include 10-m wind speed

and direction, 2-m temperature, and surface pressure,

while for 2-m temperature the predictors are 2-m

temperature and 10-mwind speed and direction. These

choices were determined by selecting among the com-

binations of available variables the ones resulting in the

FIG. 10. Relative operating characteristic skill score (ROCSS) against the forecast lead time for the probabilistic

prediction of 10-m wind speed greater than (a) 5ms21 and (b) 10ms21. Note the different range of the vertical axis.

Shownprediction systems includeAnEn (red), EMOS (green), andLR(black). The error bars indicate the 95%bootstrap

confidence intervals. Error bars were omitted from EMOS and LR in (a) and from EMOS in (b) to reduce clutter.

FIG. 11. As in Fig. 10, but for 2-m temperature lower than 158C.
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overall lowest RMSE and highest correlation of the

ensemble mean prediction with the observations, as

done for the choice of the width of the time window

(see above).
d In this analysis we chose to runAnEnwith 21members

to rule out possible difference in skill related to

sampling error when comparing to REPS.
d No attempt was made to find optimal values for the

weights wi.

To explore the impact on AnEn from the NWPmodel

resolution, AnEn is formulated and verified exactly as

described above except using the REPS 20th ensemble

member as the NWPmodel forecast fromwhich analogs

are found. These ensemble forecasts are called AnEn33

since they are generatedwith the 33-kmGEMversus the

15-km GEM used by AnEn. Figure 13a not surprisingly

shows that AnEn33 (dashed red line) performs worse

than AnEn (solid red line). What is interesting is that

AnEn33 results are not much worse than EMOS (see

Fig. 10a, green line). Considering that AnEn33 real-time

processing cost is 1/21 of EMOS (i.e., real-time run of 1

REPS member versus 21 members), AnEn33 is pro-

viding nearly all the value of EMOS (the well-calibrated

NWP ensemble) at amuch lower computational cost. As

shown in Fig. 13b, these conclusions hold similarly for

LR33 (black lines), which is LR run using theREPS 20th

ensemble member.

AnEn (as well as other forecast techniques based on

historical data) may be improved by using a larger

training dataset constructed via reforecasting, which

requires a large one-time expense but only a small in-

crease in real-time processing from the extra searching

for analogs. While the impact on AnEn of increased

training could not be tested because of data limitations,

the impact of decreased training is instead explored. The

AnEnShort formulation is similar toAnEn except that it

uses a shortened training data period that does not in-

clude the first 6 months of the original set (as shown in

Fig. 1). Figure 14a shows that AnEnShort (red dashed

line) performance falls below AnEn (solid red line),

indicating that significant improvements in the analog

ensemble may be achieved with even a modest increase

in the available training data (Hamill et al. 2006). A

portion of the improvement from AnEnShort to AnEn

may be due to the increase in training data from

61 months to 121 months, which allows AnEn to train

with more same-season data for each current forecast.

Interestingly, as shown in Fig. 14b, LR results (black

lines) show smaller improvements than AnEn when

going from the short to the full training dataset, perhaps

indication that a longer training dataset (e.g., multiyear)

could be more beneficial to AnEn than to LR or EMOS.

5. Discussion and conclusions

This study compares an analog ensemble (AnEn),

a 21-member system generated using the past forecasts

and verifying observations of deterministic 15-km Global

Environmental Multiscale (GEM)model runs, to a state-

of-the-science numerical weather prediction (NWP) en-

semble, the Environment Canada Regional Ensemble

Prediction System (REPS) that consists of 21 runs of

a 33-km version of GEM. For fair comparison, the direct

output from REPS is calibrated to produce ensemble

FIG. 12. Economic value score for forecast hour 42 for (a) 10-m wind speed greater than 5m s21 and (b) 2-m

temperature lower than 158C. Note the different range of the vertical axis. Shown prediction systems include AnEn

(red), REPS (blue), EMOS (green), and LR (black). The 95% bootstrap confidence intervals are indicated by the

error bars. Error bars were omitted from EMOS and LR to reduce clutter.
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model output statistics (EMOS) forecasts using the same

historical data available to AnEn. A fourth system, lo-

gistic regression (LR), generates probabilistic forecasts

from the 15-kmGEM to provide another fair comparison

with AnEn. An important difference between previous

implementations of analog-based ensemble methods

(e.g., HW06) and the AnEn method proposed here is

that while the former are postprocessing procedures of

a NWP ensemble, the latter produces an ensemble from

aNWPdeterministic run (as can be done with LRwith its

extended formulation; Wilks 2009). Another key differ-

ence is that inAnEn the analog search is fully localized in

space.

All four forecast systems are tested for 0–48-h prob-

abilistic predictions initialized at 1200 UTC of 10-m

wind speed and 2-m temperature at 550 METAR sta-

tions over the contiguousUnited States for the 23April–

31 July 2011 period. The training set for AnEn, EMOS,

and LR includes all data from 1 May 2010 up to the day

the forecast would have been issued, as if the forecasts

were produced in real time.

Analysis using a suite of ensemble and probabilistic

forecast verification tools shows that REPS suffers from

serious underdispersion and thus poor reliability. The

EMOS exhibits far superior performance to REPS as

the calibration procedure corrects for systematic error

FIG. 13. (a)As in Fig. 10a, but withoutEMOS, andwith the addition ofAnEn andLRdriven by a coarser numerical

weather prediction model (dashed lines), and (b) the percentage change of ROCSS going from the coarse-resolution

to the fine-resolution case. The 95% bootstrap confidence intervals are indicated by the error bars. Error bars are

shown for AnEn only [in (a)] to reduce clutter.

FIG. 14. As in Fig. 13, but with instead the addition of AnEn and LR with a shorter training period of 9 months

(dashed lines).

3512 MONTHLY WEATHER REV IEW VOLUME 141



and downscales the forecasts from the 33-kmmodel grid

to the station locations. Both EMOS and LR are gen-

erally competitive with AnEn, except for rare events

(discussed below). An important finding for AnEn

is that it is able to capture the situation- and flow-

dependent behavior of the errors, as evident by its ex-

cellent spread-skill relationship (Fig. 7). This capability

is from AnEn properly finding (i.e., filtering) observa-

tions from the past that are relevant to the atmospheric

flow described in the current NWP forecast and thus

represent valid samples of the forecast PDF (see be-

low).

For the event of 10-m wind speed above 10m s21 (i.e.,

a rare event), AnEn exhibits superior skill to both LR

and EMOS due to several factors. One obvious factor,

for only EMOS, is the use of a higher model resolution

of AnEn. A second factor may be that the logistic re-

gression approach (used by both LR and EMOS) bases

probabilistic forecasts on much more historical data (all

available in this study), while AnEn uses only the best

matching analogs of a given forecast, thus considering

only the most appropriate information. A third factor

for theAnEn superior performance of rare events is that

logistic regression may be losing some information in

the process of creating binary observations, whereas

AnEn retains the original observations in constructing

a forecast PDF.

The AnEn and LR seem to be more efficient than

EMOS, as shown in Fig. 13 where AnEn and LR are

generated using a single member of REPS (i.e., at 1/21 of

the computational cost of EMOS) and exhibit only

a small decrease in performance with respect to EMOS.

The general choice then is to run the members of a real-

time NWP ensemble that also requires calibration using

historical data, or to generate probabilistic forecasts

from a single NWP forecast (allowing for smaller grid

increments than any on the NWP ensemble members)

using the same historical dataset that would be used to

calibrate the NWP ensemble. The latter may be the

preferred choice for applications where predictions are

necessary at specific locations (e.g., renewable energy),

but further studies (see below) are necessary to de-

termine the relative benefit of the two options for ap-

plications where two- or three-dimensional fields are

needed.

The greater efficiency of AnEn than EMOS can be

explained by the following considerations. Grid spacing

(i.e., model resolution) is an important factor in the

quality of atmospheric prediction. In formulating an

estimate of the forecast probability density function

(PDF), an ensemble simulates uncertainty information

only about atmospheric phenomena on scales resolved

by theNWPmodel. Potential errors of unresolved scales

must then be incorporated bywidening the forecast PDF

via calibration. Increasing model resolution allows for

direct simulation of smaller scales and increased reso-

lution (and value) of the probabilistic forecasts. Thus

a key advantage of AnEn is the use of a 15-km model

grid versus the EMOS use of a 33-km model grid.

Comparing these two ensembles may seem unfair at

first, but the point to consider is that the resources re-

quired to run any n-member NWP ensemble could be

put toward producing a single NWP run at a much

higher resolution, for which the analog method can then

provide reliable forecast uncertainty information, per-

haps resulting in more value for decision making by the

end user.

A complex NWP model, even run at very fine resolu-

tion, is still a coarse approximation of the real atmo-

sphere. An NWP ensemble, no matter how well designed,

cannot sample from the true forecast PDF given the

challenges of simulating both analysis and model un-

certainties. Of the two sources of error (i.e., analysis and

model), simulating model uncertainty is particularly

daunting. Many techniques have been tried with varying

degrees of success (see references in section 1) and

typically yield an underdispersive NWP ensemble. This

limitation can be compensated for by postprocessing

calibration, as shown in this study.

Unlike an NWP ensemble, AnEn attempts to sample

directly from the true forecast PDF [Eq. (1)], thus

avoiding the challenges of simulatingmodel uncertainty.

If an infinite record of observations and predictions were

available, it would be possible to find n analogs that are

perfect matches to today’s forecast, and the verifying

observations would sample the true forecast PDF [as

defined in Eckel et al. (2012)]. This process maps a point

on the model attractor to a portion of the true attractor,

which includes many possible true states that exist due

to all uncertainties (from both analysis and model) in

the forecast.1Using only a finite history of observations

and model forecasts, AnEn approximates that process

and introduces extra uncertainty. The n analogs are

only similar (i.e., not perfect) matches so instead of

mapping from a single point, AnEn effectively maps

from n nearby points on the model attractor, each one

associated with a different and likely overlapping por-

tion of the true attractor. The result, relative to em-

ploying an infinite training period, is a wider spread by

the analog ensemble members and decreased resolution

of the forecast PDF.

1A similar concept has been explored in data assimilation with

shadowing filters (e.g., Judd 2008).
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Although resolution of AnEn forecasts is degraded by

a finite training period, reliability is not. Similar to the

way the spread of AnEn members increases as training

length decreases, the root-mean-square error of the

ensemblemean increases so that statistical consistency is

maintained. Each imperfect analog contributes addi-

tional error to the AnEn mean, with worse matches

creating larger error as well as creating larger spread

among the members as a different portion of true states

is sampled from. This effect may not hold true for a very

small number of analog ensemble members, due to

sampling errors, or for a very large number of members

in which analogs become extremely unrepresentative.

This study’s finding of greater efficiency by AnEn in

producing skillful probabilistic forecasts is encouraging

and motivates further investigations. Testing should be

expanded from prediction of 10-m wind speed and 2-m

temperature to other forecast variables (e.g., relative

humidity, pressure, precipitation), from prediction at

observation locations at the surface to upper-air fore-

casts over a three-dimensional grid, and also to include

different and longer verification regions and periods.

Research is also needed on the sensitivity of AnEn

performance to key aspects of its formulation such as the

number of members to use, aspects of the analog search

(e.g., the set of predictors included, their weights, and

the formulation of the analog-quality metric), and the

length of the training dataset. As shown in Fig. 14, AnEn

and LR greatly benefit from increased training, with

AnEn perhaps benefiting the most from such extension,

which may be due to the distinct differences in AnEn

design discussed above. Testing could also be performed

on a hybrid ensemble approach that combines both the

analog and NWP ensemble by finding multiple analogs

for each member of the NWP ensemble, which may

calibrate the NWP ensemble members while generating

a more thoroughly sampled forecast PDF.
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