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Abstract—A new particle swarm optimization (PSO) 
algorithm that is more effective for discrete, multi-valued 
optimization problems is presented.  The new algorithm is 
probabilistically driven since it uses probabilistic 
transition rules to move from one discrete value to 
another in the search for an optimum solution. Properties 
of the binary discrete particle swarms are discussed. The 
new algorithm for discrete multi-values is designed with 
the similar properties. The algorithm is tested on a suite of 
benchmarks and comparisons are made between the 
binary PSO and the new discrete PSO implemented for 
ternary, quaternary systems. The results show that the 
new algorithm’s performance is close and even slightly 
better than the original discrete, binary PSO designed by 
Kennedy and Eberhart. The algorithm can be used in any 
real world optimization problems, which have a discrete, 
bounded field.  

I. INTRODUCTION  

Many real world optimization problems, like 
design optimization in transistor sizing problems, are 
discrete and multi-valued. Any field, whose values are 
discrete, need a discrete, multi-valued optimization 
algorithm. There is an increasing need to develop these 
types of algorithms as the uses for optimization 
algorithms grow. In this paper, a new algorithm based 
on particle swarm optimization is presented. We 
analyze the performance of the discrete, binary PSO 
developed by Kennedy, et al.,[8] to identify the critical 
properties needed by discrete PSOs. We design a 
particle swarm for the discrete, multi-valued 
optimization problems that exhibits the same critical 
properties as the original discrete, binary PSO. The new 
algorithm’s performance is tested using benchmarks 
adapted from Liang et al. [11]. 

The particle swarm optimization algorithm, 
originally introduced in terms of social and cognitive 
behavior by Kennedy and Eberhart in 1995 [1], can 
effectively solve optimization problems in many fields, 
especially engineering and computer science. The 
power in the technique is its fairly simple computations 
and sharing of information within the algorithm as it 

derives its internal communications from the social 
behavior of individuals. The individuals, called parti-
cles henceforth, are flown through the multi-
dimensional search space with each particle 
representing a possible solution to the multi-
dimensional problem. Each solution’s fitness is based 
on a performance function related to the optimization 
problem being solved.  

The movement of the particles is influenced by two 
factors using information from iteration-to-iteration as 
well as particle-to-particle. As a result of iteration-to-
iteration information, the particle stores in its memory 
the best solution visited so far, called pbest, and 
experiences an attraction towards this solution as it 
traverses through the solution search space. As a result 
of the particle-to-particle information, the particle 
stores in its memory the best solution visited by any 
particle, and experiences an attraction towards this 
solution, called gbest, as well. The first and second 
factors are called cognitive and social components, 
respectively. After each iteration the pbest and gbest are 
updated for each particle if a better or more dominating 
solution (in terms of fitness) is found. This process 
continues, iteratively, until either the desired result is 
converged upon, or it’s determined that an acceptable 
solution cannot be found within computational limits.  

The PSO formulae define each particle in the D-
dimensional space as ),....,,( 21 iDiii xxxX = , where 
the subscript i represents the particle number, and the 
second subscript is the dimension. The memory of the 
previous best position, pbest, is represented as 

),....,,( 21 iDiii pppP =  and velocity as 

),....,,( 21 iDiii vvvV = .  After each iteration, the 
velocity term is updated influenced by both its own best 
position, Pi , and the global best position, Pg. The 
velocity update equation is 

( 1)  t
idV + =

( ) ( ) ( )
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where U[0,1] is a sample from a uniform random 
number generator, t represents a relative time index, 1ψ  
is a weight determining the impact of the previous best 
solution, and 2ψ  is the weight on the global best 
solution’s impact on particle velocity. The next solution 
to test is  
                        )1()()1( ++ += t

id
t

id
t

id VXX  .                  (2) 

The next solution in (2) is defined in a continuous 
valued solution space.  

Kennedy and Eberhart [8] designed a discrete 
version of the algorithm, which is significantly different 
from the continuous version. The algorithm uses the 
same velocity update equation but the values for the 
solution or ‘X’ are now discrete and binary.  Kennedy, 
et al., preserved the social and cognitive learning 
components in the algorithm but changed the particle 
solution updating.  

In the next section, the motivation for designing a 
particle swarm algorithm for discrete multi-valued 
optimization problems is presented. Analysis of 
probabilistic transitions made in the binary PSO is 
presented in Section 3. The new PSO algorithm for 
discrete multi-valued optimization problem is presented 
in Section 4. In Section 5, the benchmarks and the 
experimental settings are described. Results are 
presented in Section 6 followed by conclusions and 
future work in Section 7. 

II. MOTIVATION : DISCRETE MULTI VALUED 
PARTICLE SWARM  OPTIMIZATION  

Recently, there has been an increasing interest in 
developing particle swarm optimization based algorithm 
for discrete multi-valued optimization problems [12, 
13]. Many real world optimization problems have 
discrete variable values. It can be argued that discrete 
variables can be transformed into an equivalent binary 
representation, and the binary PSO can be used. 
However, the range of the discrete variable often does 
not match the upper limit of the equivalent binary 
representation. For example, a discrete variable of range 
[0,1,2,3,4,5] requires a three bit binary representation, 
which ranges between [0-7]. Thus, special conditions 
are required to manage the values past the original range 
of the discrete variable. Secondly, the Hamming 
distance between two discrete values undergoes a non-
linear transformation when an equivalent binary 
representation is used instead. This often adds 
complexity to the search process. The third reason is that 
the binary representation increases the dimensions of the 
particle. For these reasons, an extension to the original 
discrete, binary PSO converting it to a discrete multi-
valued PSO is necessary.  

Previously researchers have attempted to enhance 
the performance of the binary PSO. Al Kazemi, et al. 
[10], improves the original binary PSO algorithm by 
modifying the way particles interact. The research on 
algorithms that optimize discrete, multi-valued 
problems, however, is sparse.  

With the new algorithm, any discrete multi-valued 
problem can be optimized using particle swarms without 
converting the problem into equivalent binary 
representations. The algorithm’s properties and 
probabilistic rules are introduced and discussed in 
Section IV. The movement of the particles through 
solution value updates remains probabilistic for 
performance reasons. Results are presented for a suite of 
5 benchmark problems adapted from [11].  

III. PROPERTIES AND ANALYSIS OF DISCRETE 
BINARY PSO 

Kennedy and Eberhart designed a discrete version of 
the PSO algorithm. The algorithm uses the same 
velocity update equation as in (1) but the values of ‘X’ 
are now discrete and binary.  For position update, first 
the velocity is transformed into a [0, 1] interval using 
the sigmoid function given by  

                        
1

( )
1 idid id VS sig V

e−= =
+

                     (3) 

where idV  is the velocity of the ith particle’s dth 
dimension. A random number is generated using a 
uniform distribution which is compared to the value 
generated from the sigmoid function and a decision is 
made about the idX in the following manner.  

                          ( [0,1])id idX u S U= −                        (4) 

u is a unit step function. The decision regarding idX is 
now probabilistic, implying that higher the value of the 

idV , higher the value of the Sid, making probability of 

deciding ‘1’ for idX  higher. As ∞→idV , then 

1→idS  making it unlikely that idX  will become 
zero again. Figure 1 shows this property of the 
probability, Xid =1 increases as Vid increases, in the 
binary PSO. However, ( 1)idP X = is almost equal to 1 
for Vid>10 but not equal to 1. This is the key to the 
design of the discrete binary PSO, since this prevents 
particles from getting stuck once. However, it raises 
some important questions about the velocity. Will the 
velocity of a particle tend toward infinity if the local 
optimum is at (1,1) for (Pid, Pgd)? What parameter 
values result for higher velocities? Can we analyze 
swarm’s behavior for such conditions? Finally, can we 
design a similar model for a discrete multi-valued 
optimization problem?  
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Figure 1.  Probability of Xid =1 and Xid=0 given the Vid  

In the velocity update function (1) in the Binary 
PSO, one or both terms of influence become equal to 
zero depending on the difference between the current 
solution, local best solution, Pid, and the global best 
solution, Pgd. When the influences are not to zero, the 
number added to the previous velocity ( Vω ) comes 
from standard distributions. Unlike the continuous PSO, 
these distributions do not get scaled, nor are their 
properties changed over iterations. This makes analysis 
of binary PSO easier than the continuous PSO. In the 
next section, four different cases and distributions used 
in the velocity equation (1) are described. 

Ozcan, et al., [4], presented the theoretical 
framework for the analysis of a continuous PSO. A 
simple particle’s behavior in one-dimensional space is 
analyzed leading to a conclusion that the particle 
follows a sinusoidal path, when ‘gbest’ and ‘pbest’ are 
fixed. In this paper, the discrete binary particle swarm 
optimization algorithm is analyzed for fixed ‘gbest’ and 
‘pbest’. Since the values of the ‘pbest’ and ‘gbest’ are 
binary, there are four cases. We generate the probability 
density of velocity for these different cases analyzing 
the behavior of a single particle in a one-dimensional 
space.  

The probability density of velocity is formed 
through Monte Carlo runs. First the algorithm is run by 
starting the algorithm at different velocities [-10,10] 
and is run for 2000 iterations each time for a fixed case 
i.e., fixed ‘gbest’ and ‘pbest’. This captures the steady 
state behavior of the particle.  This set of runs can be 
repeated forming an average probability density of the 
velocity for each specific case. The probability density 
of velocity is analyzed for different values of 1 2,  ψ ψ  
and ω in the four cases. 

A. 4 Case Analysis  
Considering a single dimension and a single 

particle. Let us drop the ‘id’ notation in (1) as ‘i’ 
implies particle number and ‘d’ dimension number. 
Four cases occur in the discrete binary PSO with each 
causing certain behaviors in the velocity. Pbest is now 

P; gbest is now G for simplicity. ( )tX  is the current 
position of the particle. The analysis assumes parameter 
values of 1 21,  1ψ ψ≥ ≥ , 0 1ω≤ ≤ . The generalized 
form of velocity update equation for discrete binary 
PSO is given by 

                        ( 1) ( )t tV Vω ψ+ = × +                        (5) 
ψ  is given by  
     1 2[0,1] ( ) [0,1] ( )U P X U G Xψ ψ ψ= × × − + × × −  (6) 
and is a random number that comes from different 
distributions for different cases.  

1) Case 1 : P=0; G=1;  
Depending upon the current position of the particle 

one of the two influences become zero. Thus, only one 
influence remains in the velocity update equation. When 

( ) 1tX = , ψ is a random number generated from the 

uniform distribution 1[ ,0]U ψ− . When ( ) 0tX = , it is a 
random sample generated from uniform distribution 

2[0, ]U ψ . In this case, the particle will swing between 
values ‘0’ and ‘1’ until ‘G=0’. The particle then falls 
into case 4.  

Figure 2 shows the probability density of velocity 
when  ‘gbest’ is G=1 and ‘pbest’is P=0. The two 
variables, 1 2[ , ]ψ ψ , are varied to analyze the affect. The 
probability density of the velocity is centered around 
zero, and an increase in 1 2[ , ]ψ ψ  increases the standard 
deviation of the probability density of the velocity but 
still centers around zero. The statistics collected for the 
position of the particle revealed a 50-50% distribution 
for a value of X=1 and X=0. Change in 1 2,ψ ψ  did not 
affect this distribution.  

2) Case 2 : P=1; G=0; 
This case is similar to Case 1 with the particle will 

swinging between values of ‘0’ and ‘1’ until ‘G=1’. The 
particle then behaves as in 3rd case. In case P=0 the 
particle behaves as in 4th case.  

3) Case 3 : P=1; G=1 
The velocity changes when the particle value is 0, 

0tX =  and  

                       1 2[0,1] [0,1]U Uψ ψ ψ= × + ×                (7) 
Hence, the convolution of two uniform distributions 
yields the triangular distribution (when 1 2ψ ψ= ) that is  

     

1
1 2

2 1
1 2 1

1 2

                    0

( )   

  

f

ψ ψ ψ
ψ ψ

ψ
ψ ψ ψ ψ ψ ψ ψ

ψ ψ

� ≤ <�
��= �
� + −
� ≤ < +
��

               (8) 

 
, when ( ) 1tX = , the random term is simply,ψ =0 and 
velocity gets scaled by ω . 
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Figure 2.  Probability density of the velocity for different 1 2,ψ ψ  

for Case 1.  

This case is important to analyze since due to the 
sigmoid function there is always a probability that the 
particle’s current position will become ‘0’ increasing 
the velocity of the particle whose P stays at 1 and G at 
1. 

The probability density for the velocity is plotted for 
different 1 2,  ψ ψ  in Figure 3. It can be seen as 1 2,  ψ ψ  
increases the probability density of the velocity spreads 
over a wider range of velocities. Hence by controlling 
the values of 1 2,ψ ψ one can control the values of the 

velocity. Three different cases of 1 2,  ψ ψ  are shown in 
the figure. The positions of the particle had a 75% and 
25 % distribution for X=1 and X=0 respectively, for 

1 2ψ ψ= =1, as shown in Figure 4.  When 1 2,  ψ ψ  are 
increased to 4 the positions of the particles had a 
distribution of 86.8% and 13.2% for X=1 and X=0 
respectively. Increasing the 1 2,  ψ ψ stabilizes the 
positions of the particles since there are higher 
velocities that are possible.  

Similar analysis can be done to demonstrate the 
affect of ω  on the probability density of velocity.  

4) Case 4: P=0; G=0 
The velocity is only changed in this case when the 

current value of the particle position, i.e., 1tX =  and 
ψ is a random number generated from the triangular 

distribution in (8). When ( ) 0tX = , the random value is 
ψ =0.  

This analysis shows that the probability of higher 
velocities is very low even for high values of 

1 2 4ψ ψ= = .  

 
Figure 3.  Probability density of velocities for the Case 4 for 

different 1 2,ψ ψ .  

IV. DISCRETE MULTI VALUED PARTICLE SWARM 
OPTIMIZATION 

For discrete multi valued optimization problems the 
range of the discrete variable values between [0 M-1], 
where ‘M’ implies the M-ary number system. The same 
velocity update and particle representation are used in 
the algorithm as for the binary valued PSO. The 
position update equation is however changed in the 
following manner. The velocity is transformed into a 
number between [0, M] using the sigmoid 
transformation,  

                            
1 idid V

M
S

e−=
+

                          (9) 

 
Figure 4.  Histogram of the current position X for Case 3  for 

1 2ψ ψ= = 1; ω =0.8 

A number is generated using the normal distribution 
with parameters ( , ( 1))idN S Mσ − . The result is rounded 
to  
      ( ( 1) (1))id idX round S M randnσ= + − × ×          (10) 
If  

1, 1
0, 0

id
id

id

M X M
X

X

− > −�
= � <�
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The velocity update equation remains the same as (1). 
The positions of the particles are discrete values 
between [0, M-1]. Note that for any given Sid there is a 
probability for choosing a number between [0, M-1]. 
However, in this paper, the probability of selecting a 
number decreases based on its distance from Sid. In the 
following subsection the relationship between Sid and 
the probability of picking discrete values is given.  

A. Probability of a discrete value ‘m’ 
For a particular Sid, the probability of a discrete 

variable becoming assigned to a value of ‘m’ is 
discussed in this section.  
For m = 0, the probability is 

                
0.5

( 0 | ) ( ) id idP X S g x dx
−∞

= = �                     (11) 

0.5
1

( 1)
idS

Q
Mσ
−� �= − � 	−
 �

 

,where, Q is the error function and the function, g, is 

   
2 22 2

1 1
( ) exp ( )

2 ( 1)2 ( 1)
idg x x S

MM σπσ
� �−= −� 	−− 
 �

      (12) 

For m in the range 1 to M—2, the probability is 

                  
0.5

0.5
( | ) ( ) 

m

id id
m

P X m S g x dx
+

−
= = �          (13) or 

0.5 0.5
( 1) ( 1)

id idm S m S
Q Q

M Mσ σ
− − + −� � � �= −� 	 � 	− −
 � 
 �

    

 
For m = M-1, the probability is               

      
( 1) 0.5

( ( 1) | ) ( ) id id
M

P X M S g x dx
∞

− −
= − = �          (14) or 

( 1) 0.5
( 1)

idM S
Q

Mσ
− − −� �= � 	−
 �

 

Of course, the sum of the probability is always  

                    
0

( / ) 1
M

id id
m

P X m S
=

= =�                      (15) 

 
Figure 5.  Probability of different discrete variables as Sid varies 
between the limits of [0  M]. This example is shown for a ternary 

system, M=3, and σ =0.5 

Figure 5 shows the probability of various discrete 
variables for different Sid values.  The figure is for a 
ternary system using a σ  of 0.5 or standard deviation 
for the normal distribution of ‘1’.  In Figure 6, the plot 
is shown for 0.1σ = or equivalently standard deviation 
of 0.2. As σ  value decreases, one gets curves with 
sharper peaks for the probability of discrete value given 
Sid. As σ � 0 the algorithm will simply round the Sid 
value to determine the discrete value. If a higher σ  is 
used, the algorithm approaches a uniform distribution. 
In the new algorithm, an additional parameter σ  is 
introduced. The setting of this σ  is critical to the 
algorithms performance. Empirical results show that a  
sigma of 0.2 is a good choice for ternary system. 

B. Case Analysis for a Ternary System  
For a ternary system, 9 cases exist for different sets 

of  ‘pbest’ and ‘gbest’. Due to limitations of space we 
show the preliminary analysis for one case, (P=2, G=2).  
Since P=2, G=2, the velocity update equation becomes 
                           ( 1) ( )t tV Vω ψ+ = × +                         (16) 
The distribution is triangular for both X values, X=1 
and X=0. However, the triangular distribution for X=0 
has twice the support range when compared to the 
triangular distribution for X=1.   

The probability density of the velocity is plotted for 
different values of ( 1 2,ψ ψ ) in the Figure 7. The 
probability density of the velocity spikes near 2 and, 
eventually, decreases as the velocity increases. With an 
increase in ( 1 2,ψ ψ ), a longer tail appears on the 
distribution indicating higher velocities being selected. 
Similar to the binary PSO, one controls the velocities 
using the parameters, ( 1 2,ψ ψ ) in the new algorithm. 

 
Figure 6.  Affect of Selection of Omega on the Probability of 

different values for a discrete variable given Sid. This example is 
shown for a trenary system, M=3, 0.1σ =  

The new algorithm designed for discrete multi-
valued optimization problems is an extension of the 
binary PSO so has similar properties and reacts to 
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1 2,ψ ψ . In the next section, the new algorithm is tested 
using different benchmark problems. 

 

 
Figure 7.  Probability density of velocities for the ternary system for 

different 1 2,ψ ψ  .  

V. EXPERIMENTAL SETUP AND BENCHMARKS 

Five benchmark problems are used from Liang, et 
al., [11] for comparing the binary discrete PSO 
algorithm with the multi-valued discrete PSO. For each 
benchmark, the algorithm executes for 25 trials with 10 
dimensions of each problem. For more details about the 
benchmarks, the reader is referred to [11].  A brief 
description of the benchmark problems is given in the 
following subsection.  

A. Benchmark Problems  
The five-benchmark functions are defined in this 

section with information concerning their optima as in 
[11]. 

1) Shifted Rotated Ackley’s Function with Global 
Optima on Bounds  

1( )f x =
2

1 1

1 1
20exp( 0.2 ) exp( cos(2 ))

20 _

D D

i i
i i

x x
D D

e f bias

π
= =

− − −� �

+ + +
 

2) Shifted Rastrigin’s Function  
2

2
1

( ) ( 10cos(2 ) 10) _
D

i i
i

f x x x f biasπ
=

= − + +�  

3) Shifted Rotated Rastigrin’s Function  
2

3
1

( ) ( 10cos(2 ) 10) _
D

i i
i

f x x x f biasπ
=

= − + +�  

4) Shifted Rotated Weierstrass Function 

4 ( )f x =

max

1 0

max

0

( cos(2 ( 0.5)) )

cos(2 0.5) _

D k
k k

i
i k

k
k k

k

a b x

D a b f bias

π

π

= =

=

 �+� � � �

 �− +� � �

 

5) Schwefel’s Problem 2.13 
2

5
1

( ) ( ( )) _
D

i i
i

f x A B x f bias
=

= − +�  

Where, 
1
( sin cos )

D

i ij j ij j
j

A a bα α
=

= +�  

and 
1
( sin cos )

D

i ij j ij j
j

B a x b x
=

= +�  

For i=1,…D, A and B are two D x D matrices, 
,ij ija b are integer random numbers generated in the 

range [-100, 100], 1 2[ , ......... ],D jα α α α α=  are random 

numbers generated from [ ],π π− .  

B. Sampling the Search Space for Different Discrete 
Domains  

The discrete multi-valued PSO is applied to different 
bases, binary, ternary and quaternary, and tested using 
standard fitness functions originally designed for 
continuous functions. Each dimension in the original 
function has a recommended search space range. A 
procedure is used to transform these functions into 
discrete domain. In the following table 1, we define 
terms used in this and following sections. 
 
Table 1: Term Definitions for Benchmarks 

Term Definition 
Dimension Dimension of the original continuous 

benchmark problem 
Base The base of the number system (e.g. 

binary = base 2) 
Digits The length of the numerical character 

string used in the number system (e.g. 
binary = 2 digits, i.e., [0,1]) 

  
Each original dimension is represented using 16 bits for 
a binary based system or 8 quaternary digits which 
results in 65536 discrete values each. In a ternary based 
system, 10 digits would only result in 59049 steps. 
Thus, these representations have resulted in 65536 
samples of search space for binary and quaternary 
bases, and 59049 samples for ternary. Higher sampling 
of fitness landscape provides more information about 
the landscape leading to better performance of the 
algorithm. As the samples tend toward infinity, we 
approach the continuous domain again. Hence, it is 
pertinent for comparisons that the same samples of the 
fitness landscape are provided to all the algorithms. 
Fairness is achieved by sampling the exact same points 
for all bases. The base that yields the smallest number 
of steps, which is 3 fixes the sample step size.  The 
additional samples for the other bases are adjusted to 
have the value at the upper or lower range of the 
problem. It is assumed that the particles won’t dwell 
significantly in these regions of the landscape.  

C. Particle Swarm Settings  
The benchmarks are compared using the same 

parameter settings. An equal weight of 1 1ψ = and 
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2 1ψ = is used. A time varying inertia, ω , is used as 
described in [14, 15]. For an iteration ‘i’, the value is 
given by  

       
( 0.4) ( .  )

( )
.  0.4

no of Iterations i
i

no of Iterations
ωω − × −=

−
           (17) 

, where, 0.9ω = . The number of particles used in the 
simulations is 20 and the number of iterations is equal 
to 5000.  

VI. RESULTS  

A. Affect of σ on the Discrete PSO algorithm 

One parameter that controls the new algorithm is 
σ . It is shown in figures, 5 and 6, that higher σ  
flattens out the probabilities of the three discrete values. 
The resulting probabilities for σ =0.5 are given in 
figure 5. If the σ  is further increased, the probability of 
each discrete value for a given S will eventually 
become � 0.33 for a ternary system. This makes the 
curves appear nearly flat and algorithm completely 
random and defeats the purpose of using a swarm-based 
algorithm. A σ =0.4 or less is a better choice for the 
new algorithm. In this section, results achieved for 
ternary system using σ =0.4 and σ =0.2 are shown. 
The results are shown for Function 2 described in 
previous section. Similar performance results occur 
with the other functions described in section V.A..  
Figure 8 shows that a σ =0.2 produced better results for 
function 2. Hence in this paper, a σ =0.2 is used for a 
ternary system.  

B. Results with 0.2σ =  

In this section, the results for the five-benchmark 
problems are presented. The new algorithm, designed 
for higher number systems, performed better than the 
binary PSO for all the benchmark problems as can be 
seen in figures 9, 10, 11, 12, 13. Varying sigma 
significantly affects the performance of the algorithm. 
0.2 seems to be reasonable choice for sigma, for a 
ternary system. The sigma has to be varied for different 
number systems, i.e., ternary, quaternary and so on. A 
sigma of 0.1 has been used for quaternary system in this 
paper.  
Table 2 presents the statistics for different algorithms 
for the 25 trials that were performed. Ternary PSO 
performed equivalent to the Binary PSO or even 
slightly better. Quaternary PSO performed better than 
the binary and ternary PSO. These results are 
significant and allow the new algorithm to be used for 
number systems other than binary.  

 
Figure 8.  Comparison of minima achieved for different σ  used for 

an algorithm designed for a ternary system for Function 2.  

 
Figure 9.  Minima achieved (averaged over 25 trials) for a 10 

dimensional Shifted Rotated Ackley’s Function  

 
 

Figure 10.  Minima achieved (averaged over 25 trials) for a 10 
dimensional Shifted Rastrigin’s Function  
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Figure 11.  Minima achieved (averaged over 25 trials) for a 10 

dimensional Shifted Rotated Rastrigin’s Function  

 

Figure 12.  Minima achieved (averaged over 25 trials) for a 10 
dimensional Shifted Rotated Weierstrass Function  

VII. CONCLUSIONS AND FUTURE WORK  

In this paper we proposed a new algorithm for 
discrete multi valued optimization problems. A 
theoretical framework employing probabilistic analysis 
for binary PSO is presented. Specifically, probability 
density function for the velocity is modeled to 
investigate the affects of different parameters of the PSO 
algorithm on the velocity. The new algorithm is 
analyzed under this framework to examine its stability 
and affects of the parameters of the algorithm. 

The algorithm is applied to five benchmark problems 
and the results presented show the performance benefits 
of the new algorithm. The algorithm can be successfully 
used for any number system.  

In future work, we want to formalize the analytic 
framework for the discrete PSO and analyze the 
convergence and search behavior. Specifically, the 
closed form expressions for the probability density 
functions of the velocity will be derived.  This is first 
attempt to analyze a binary PSO and its behavior. 
Further analysis for the binary PSO will also be done.   

The new algorithm will be tested on deceptive 
functions; trap functions designed for higher ordered 
number systems. 

Table 2: Averaged Results for Different Functions 

Binary PSO Ternary PSO Quaternary PSO  

f Mean Std Mean Std Mean Std 

f1 -119.63 0.06 -119.66 0.07 -119.64 0.068 

f2 -287.08 5.80 -300.72 4.11 -309.12 4.68 

f3 -271.18 6.15 -276.1 8.45 -283.87 6.39 

f4 99.03 0.49 97.83 0.87 97.50 0.89 

f5 25596.
9 

6231.9 23199.
19 

6847.4
3 

14986.
13 

5215.
12 

 

Figure 13.  Minima achieved (averaged over 25 trials) for a 10 
dimensional Schwefel’s Problem 2.13  

References  
[1] Eberhart, R. and Kennedy, J., “A New Optimizer Using 

Particles Swarm Theory”, Sixth International Symposium on 
Micro Machine and Human Science, 1995, Nayoga, Japan. 

[2] James Kennedy, Russell Eberhart and Shi, Y.H., Swarm 
Intelligence, Morgan Kaufman Publishers, 2001. 

[3] Evolutionary Computation 1: Basics, Algorithms and Operators, 
Institute of Physics Publishing, 2000. 

[4] E. Ozcan and C. K. Mohan, “Particle Swarm Optimzation: 
Surfing the Waves”, Proceedings of Congress on Evolutionary 
Computation (CEC’99), Washington D. C., July 1999, pp 1939-
1944. 

[5] Shi. Y, R. C. Eberhart, “Empirical Study of Particle Swarm 
Optimization”, 1999 Congress on Evolutionary Computing, Vol 
III, pp 1945-1950. 

[6] Shi Y. H., Eberhart R.C., “A Modified Particle Swarm 
Optimization Algorithm”, IEEE International Conference on 
Evolutionary Computation, 1998, Anchorage, Alaska. 

[7] C. K. Mohan, B. Al-Kazemi, “Discrete Particle Swarm 
Optimization,” Proc. Workshop on Particle Swarm 
Optimization, Indianapolis , IN, 2001. 

148

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



[8] J. Kennedy and R. C. Eberhart, “A Discrete Binary Version of 
Particle Swarm Optimization,” Proceedings of the 1997 Conf. 
on Systems, Man, and Cybernetics, pp. 4104-4109. IEEE 
service center, Piscataway, NJ.  

[9] Maurice Clerc, James Kennedy, “The Particle Swarm – 
Explosion, Stability, and Convergence in a Multidimensional 
Complex Space,” IEEE Transactions on Evolutionary 
Computation, Vol. 6, No. 1, February, 2002.  

[10] B. Al-Kazemi and C. K. Mohan, “Multi-Phase Discrete Particle 
Swarm Optimization,” Proc. The Fourth International 
Workshop on Frontiers in Evolutionary Algorithms, 2002.  

[11] J. J. Liang, P. N. Suganthan and K. Deb, “ Novel Comparison 
Test Functions for Numerical Global Optimization”, IEEE 
Swarm Intelligence Symposium, pp. 68-75, June 2005.  

[12] Elon S. Correa, Alex A. Freitas, Colin G. Johnson, “ A New 
Discrete Particle Swarm Algorithm Applied to Attribute 
Selection in a Bioinformtics Data Set”, GECCO’06, Seattle, 
Washington, USA, July 8-12, 2006.  

[13] Jim Pugh, Alcherio Martinoli, “Discrete Multi-Valued Particle 
Swarm Optimization”, IEEE Swarm Intelligence Symposium’ 
06, Indianapolis, Indiana, USA, May 12-14, 2006.  

[14] Kalyan Veeramachaneni, Thanmaya Peram, Chilukuri Mohan, 
lisa Osadciw, “Optimization Using Particle Swarm Using Near 
Neighbor Interactions”, GECCO’03, Chicago, Illinois, USA, 
July, 2003.  

[15] Particle Swarm Optimization Code, Yuhui Shi, 
www.engr.iupui.edu/~shi.  

 
 

 

149

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)


