
Probabilistically Driven Particle Swarms for Optimization of Multi Valued Discrete
Problems : Design and Analysis

Kalyan Veeramachaneni, Lisa Osadciw, Ganapathi Kamath

Department of Electrical Engineering and Computer Science
277, Link Hall

Syracuse University, Syracuse NY –13244
kveerama, laosadci,gkamathh@syr.edu

Abstract—A new particle swarm optimization (PSO)
algorithm that is more effective for discrete, multi-valued
optimization problems is presented. The new algorithm is
probabilistically driven since it uses probabilistic
transition rules to move from one discrete value to
another in the search for an optimum solution. Properties
of the binary discrete particle swarms are discussed. The
new algorithm for discrete multi-values is designed with
the similar properties. The algorithm is tested on a suite of
benchmarks and comparisons are made between the
binary PSO and the new discrete PSO implemented for
ternary, quaternary systems. The results show that the
new algorithm’s performance is close and even slightly
better than the original discrete, binary PSO designed by
Kennedy and Eberhart. The algorithm can be used in any
real world optimization problems, which have a discrete,
bounded field.

I. INTRODUCTION

Many real world optimization problems, like
design optimization in transistor sizing problems, are
discrete and multi-valued. Any field, whose values are
discrete, need a discrete, multi-valued optimization
algorithm. There is an increasing need to develop these
types of algorithms as the uses for optimization
algorithms grow. In this paper, a new algorithm based
on particle swarm optimization is presented. We
analyze the performance of the discrete, binary PSO
developed by Kennedy, et al.,[8] to identify the critical
properties needed by discrete PSOs. We design a
particle swarm for the discrete, multi-valued
optimization problems that exhibits the same critical
properties as the original discrete, binary PSO. The new
algorithm’s performance is tested using benchmarks
adapted from Liang et al. [11].

The particle swarm optimization algorithm,
originally introduced in terms of social and cognitive
behavior by Kennedy and Eberhart in 1995 [1], can
effectively solve optimization problems in many fields,
especially engineering and computer science. The
power in the technique is its fairly simple computations
and sharing of information within the algorithm as it

derives its internal communications from the social
behavior of individuals. The individuals, called parti-
cles henceforth, are flown through the multi-
dimensional search space with each particle
representing a possible solution to the multi-
dimensional problem. Each solution’s fitness is based
on a performance function related to the optimization
problem being solved.

The movement of the particles is influenced by two
factors using information from iteration-to-iteration as
well as particle-to-particle. As a result of iteration-to-
iteration information, the particle stores in its memory
the best solution visited so far, called pbest, and
experiences an attraction towards this solution as it
traverses through the solution search space. As a result
of the particle-to-particle information, the particle
stores in its memory the best solution visited by any
particle, and experiences an attraction towards this
solution, called gbest, as well. The first and second
factors are called cognitive and social components,
respectively. After each iteration the pbest and gbest are
updated for each particle if a better or more dominating
solution (in terms of fitness) is found. This process
continues, iteratively, until either the desired result is
converged upon, or it’s determined that an acceptable
solution cannot be found within computational limits.

The PSO formulae define each particle in the D-
dimensional space as),....,,(21 iDiii xxxX = , where
the subscript i represents the particle number, and the
second subscript is the dimension. The memory of the
previous best position, pbest, is represented as

),....,,(21 iDiii pppP = and velocity as

),....,,(21 iDiii vvvV = . After each iteration, the
velocity term is updated influenced by both its own best
position, Pi , and the global best position, Pg. The
velocity update equation is

(1) t
idV + =

() () ()
1

() ()
2

[0,1] ()

[0,1] ()

t t t
id id id

t t
gd id

V U p x

U p x

ω ψ
ψ

× + × × − +

× × −
 (1)

141

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

where U[0,1] is a sample from a uniform random
number generator, t represents a relative time index, 1ψ
is a weight determining the impact of the previous best
solution, and 2ψ is the weight on the global best
solution’s impact on particle velocity. The next solution
to test is
)1()()1(++ += t

id
t

id
t

id VXX . (2)

The next solution in (2) is defined in a continuous
valued solution space.

Kennedy and Eberhart [8] designed a discrete
version of the algorithm, which is significantly different
from the continuous version. The algorithm uses the
same velocity update equation but the values for the
solution or ‘X’ are now discrete and binary. Kennedy,
et al., preserved the social and cognitive learning
components in the algorithm but changed the particle
solution updating.

In the next section, the motivation for designing a
particle swarm algorithm for discrete multi-valued
optimization problems is presented. Analysis of
probabilistic transitions made in the binary PSO is
presented in Section 3. The new PSO algorithm for
discrete multi-valued optimization problem is presented
in Section 4. In Section 5, the benchmarks and the
experimental settings are described. Results are
presented in Section 6 followed by conclusions and
future work in Section 7.

II. MOTIVATION : DISCRETE MULTI VALUED
PARTICLE SWARM OPTIMIZATION

Recently, there has been an increasing interest in
developing particle swarm optimization based algorithm
for discrete multi-valued optimization problems [12,
13]. Many real world optimization problems have
discrete variable values. It can be argued that discrete
variables can be transformed into an equivalent binary
representation, and the binary PSO can be used.
However, the range of the discrete variable often does
not match the upper limit of the equivalent binary
representation. For example, a discrete variable of range
[0,1,2,3,4,5] requires a three bit binary representation,
which ranges between [0-7]. Thus, special conditions
are required to manage the values past the original range
of the discrete variable. Secondly, the Hamming
distance between two discrete values undergoes a non-
linear transformation when an equivalent binary
representation is used instead. This often adds
complexity to the search process. The third reason is that
the binary representation increases the dimensions of the
particle. For these reasons, an extension to the original
discrete, binary PSO converting it to a discrete multi-
valued PSO is necessary.

Previously researchers have attempted to enhance
the performance of the binary PSO. Al Kazemi, et al.
[10], improves the original binary PSO algorithm by
modifying the way particles interact. The research on
algorithms that optimize discrete, multi-valued
problems, however, is sparse.

With the new algorithm, any discrete multi-valued
problem can be optimized using particle swarms without
converting the problem into equivalent binary
representations. The algorithm’s properties and
probabilistic rules are introduced and discussed in
Section IV. The movement of the particles through
solution value updates remains probabilistic for
performance reasons. Results are presented for a suite of
5 benchmark problems adapted from [11].

III. PROPERTIES AND ANALYSIS OF DISCRETE
BINARY PSO

Kennedy and Eberhart designed a discrete version of
the PSO algorithm. The algorithm uses the same
velocity update equation as in (1) but the values of ‘X’
are now discrete and binary. For position update, first
the velocity is transformed into a [0, 1] interval using
the sigmoid function given by

1

()
1 idid id VS sig V

e−= =
+

 (3)

where idV is the velocity of the ith particle’s dth
dimension. A random number is generated using a
uniform distribution which is compared to the value
generated from the sigmoid function and a decision is
made about the idX in the following manner.

 ([0,1])id idX u S U= − (4)

u is a unit step function. The decision regarding idX is
now probabilistic, implying that higher the value of the

idV , higher the value of the Sid, making probability of

deciding ‘1’ for idX higher. As ∞→idV , then

1→idS making it unlikely that idX will become
zero again. Figure 1 shows this property of the
probability, Xid =1 increases as Vid increases, in the
binary PSO. However, (1)idP X = is almost equal to 1
for Vid>10 but not equal to 1. This is the key to the
design of the discrete binary PSO, since this prevents
particles from getting stuck once. However, it raises
some important questions about the velocity. Will the
velocity of a particle tend toward infinity if the local
optimum is at (1,1) for (Pid, Pgd)? What parameter
values result for higher velocities? Can we analyze
swarm’s behavior for such conditions? Finally, can we
design a similar model for a discrete multi-valued
optimization problem?

142

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Figure 1. Probability of Xid =1 and Xid=0 given the Vid

In the velocity update function (1) in the Binary
PSO, one or both terms of influence become equal to
zero depending on the difference between the current
solution, local best solution, Pid, and the global best
solution, Pgd. When the influences are not to zero, the
number added to the previous velocity (Vω) comes
from standard distributions. Unlike the continuous PSO,
these distributions do not get scaled, nor are their
properties changed over iterations. This makes analysis
of binary PSO easier than the continuous PSO. In the
next section, four different cases and distributions used
in the velocity equation (1) are described.

Ozcan, et al., [4], presented the theoretical
framework for the analysis of a continuous PSO. A
simple particle’s behavior in one-dimensional space is
analyzed leading to a conclusion that the particle
follows a sinusoidal path, when ‘gbest’ and ‘pbest’ are
fixed. In this paper, the discrete binary particle swarm
optimization algorithm is analyzed for fixed ‘gbest’ and
‘pbest’. Since the values of the ‘pbest’ and ‘gbest’ are
binary, there are four cases. We generate the probability
density of velocity for these different cases analyzing
the behavior of a single particle in a one-dimensional
space.

The probability density of velocity is formed
through Monte Carlo runs. First the algorithm is run by
starting the algorithm at different velocities [-10,10]
and is run for 2000 iterations each time for a fixed case
i.e., fixed ‘gbest’ and ‘pbest’. This captures the steady
state behavior of the particle. This set of runs can be
repeated forming an average probability density of the
velocity for each specific case. The probability density
of velocity is analyzed for different values of 1 2, ψ ψ
and ω in the four cases.

A. 4 Case Analysis
Considering a single dimension and a single

particle. Let us drop the ‘id’ notation in (1) as ‘i’
implies particle number and ‘d’ dimension number.
Four cases occur in the discrete binary PSO with each
causing certain behaviors in the velocity. Pbest is now

P; gbest is now G for simplicity. ()tX is the current
position of the particle. The analysis assumes parameter
values of 1 21, 1ψ ψ≥ ≥ , 0 1ω≤ ≤ . The generalized
form of velocity update equation for discrete binary
PSO is given by

 (1) ()t tV Vω ψ+ = × + (5)
ψ is given by
 1 2[0,1] () [0,1] ()U P X U G Xψ ψ ψ= × × − + × × − (6)
and is a random number that comes from different
distributions for different cases.

1) Case 1 : P=0; G=1;
Depending upon the current position of the particle

one of the two influences become zero. Thus, only one
influence remains in the velocity update equation. When

() 1tX = , ψ is a random number generated from the

uniform distribution 1[,0]U ψ− . When () 0tX = , it is a
random sample generated from uniform distribution

2[0,]U ψ . In this case, the particle will swing between
values ‘0’ and ‘1’ until ‘G=0’. The particle then falls
into case 4.

Figure 2 shows the probability density of velocity
when ‘gbest’ is G=1 and ‘pbest’is P=0. The two
variables, 1 2[,]ψ ψ , are varied to analyze the affect. The
probability density of the velocity is centered around
zero, and an increase in 1 2[,]ψ ψ increases the standard
deviation of the probability density of the velocity but
still centers around zero. The statistics collected for the
position of the particle revealed a 50-50% distribution
for a value of X=1 and X=0. Change in 1 2,ψ ψ did not
affect this distribution.

2) Case 2 : P=1; G=0;
This case is similar to Case 1 with the particle will

swinging between values of ‘0’ and ‘1’ until ‘G=1’. The
particle then behaves as in 3rd case. In case P=0 the
particle behaves as in 4th case.

3) Case 3 : P=1; G=1
The velocity changes when the particle value is 0,

0tX = and

 1 2[0,1] [0,1]U Uψ ψ ψ= × + × (7)
Hence, the convolution of two uniform distributions
yields the triangular distribution (when 1 2ψ ψ=) that is

1
1 2

2 1
1 2 1

1 2

 0

()

f

ψ ψ ψ
ψ ψ

ψ
ψ ψ ψ ψ ψ ψ ψ

ψ ψ

� ≤ <�
��= �
� + −
� ≤ < +
��

 (8)

, when () 1tX = , the random term is simply,ψ =0 and
velocity gets scaled by ω .

143

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Figure 2. Probability density of the velocity for different 1 2,ψ ψ

for Case 1.

This case is important to analyze since due to the
sigmoid function there is always a probability that the
particle’s current position will become ‘0’ increasing
the velocity of the particle whose P stays at 1 and G at
1.

The probability density for the velocity is plotted for
different 1 2, ψ ψ in Figure 3. It can be seen as 1 2, ψ ψ
increases the probability density of the velocity spreads
over a wider range of velocities. Hence by controlling
the values of 1 2,ψ ψ one can control the values of the

velocity. Three different cases of 1 2, ψ ψ are shown in
the figure. The positions of the particle had a 75% and
25 % distribution for X=1 and X=0 respectively, for

1 2ψ ψ= =1, as shown in Figure 4. When 1 2, ψ ψ are
increased to 4 the positions of the particles had a
distribution of 86.8% and 13.2% for X=1 and X=0
respectively. Increasing the 1 2, ψ ψ stabilizes the
positions of the particles since there are higher
velocities that are possible.

Similar analysis can be done to demonstrate the
affect of ω on the probability density of velocity.

4) Case 4: P=0; G=0
The velocity is only changed in this case when the

current value of the particle position, i.e., 1tX = and
ψ is a random number generated from the triangular

distribution in (8). When () 0tX = , the random value is
ψ =0.

This analysis shows that the probability of higher
velocities is very low even for high values of

1 2 4ψ ψ= = .

Figure 3. Probability density of velocities for the Case 4 for

different 1 2,ψ ψ .

IV. DISCRETE MULTI VALUED PARTICLE SWARM
OPTIMIZATION

For discrete multi valued optimization problems the
range of the discrete variable values between [0 M-1],
where ‘M’ implies the M-ary number system. The same
velocity update and particle representation are used in
the algorithm as for the binary valued PSO. The
position update equation is however changed in the
following manner. The velocity is transformed into a
number between [0, M] using the sigmoid
transformation,

1 idid V

M
S

e−=
+

 (9)

Figure 4. Histogram of the current position X for Case 3 for

1 2ψ ψ= = 1; ω =0.8

A number is generated using the normal distribution
with parameters (, (1))idN S Mσ − . The result is rounded
to
 ((1) (1))id idX round S M randnσ= + − × × (10)
If

1, 1
0, 0

id
id

id

M X M
X

X

− > −�
= � <�

144

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

The velocity update equation remains the same as (1).
The positions of the particles are discrete values
between [0, M-1]. Note that for any given Sid there is a
probability for choosing a number between [0, M-1].
However, in this paper, the probability of selecting a
number decreases based on its distance from Sid. In the
following subsection the relationship between Sid and
the probability of picking discrete values is given.

A. Probability of a discrete value ‘m’
For a particular Sid, the probability of a discrete

variable becoming assigned to a value of ‘m’ is
discussed in this section.
For m = 0, the probability is

0.5

(0 |) () id idP X S g x dx
−∞

= = � (11)

0.5
1

(1)
idS

Q
Mσ
−� �= − � 	−
 �

,where, Q is the error function and the function, g, is

2 22 2

1 1
() exp ()

2 (1)2 (1)
idg x x S

MM σπσ
� �−= −� 	−−
 �

 (12)

For m in the range 1 to M—2, the probability is

0.5

0.5
(|) ()

m

id id
m

P X m S g x dx
+

−
= = � (13) or

0.5 0.5
(1) (1)

id idm S m S
Q Q

M Mσ σ
− − + −� � � �= −� 	 � 	− −
 �
 �

For m = M-1, the probability is

(1) 0.5

((1) |) () id id
M

P X M S g x dx
∞

− −
= − = � (14) or

(1) 0.5
(1)

idM S
Q

Mσ
− − −� �= � 	−
 �

Of course, the sum of the probability is always

0

(/) 1
M

id id
m

P X m S
=

= =� (15)

Figure 5. Probability of different discrete variables as Sid varies
between the limits of [0 M]. This example is shown for a ternary

system, M=3, and σ =0.5

Figure 5 shows the probability of various discrete
variables for different Sid values. The figure is for a
ternary system using a σ of 0.5 or standard deviation
for the normal distribution of ‘1’. In Figure 6, the plot
is shown for 0.1σ = or equivalently standard deviation
of 0.2. As σ value decreases, one gets curves with
sharper peaks for the probability of discrete value given
Sid. As σ � 0 the algorithm will simply round the Sid
value to determine the discrete value. If a higher σ is
used, the algorithm approaches a uniform distribution.
In the new algorithm, an additional parameter σ is
introduced. The setting of this σ is critical to the
algorithms performance. Empirical results show that a
sigma of 0.2 is a good choice for ternary system.

B. Case Analysis for a Ternary System
For a ternary system, 9 cases exist for different sets

of ‘pbest’ and ‘gbest’. Due to limitations of space we
show the preliminary analysis for one case, (P=2, G=2).
Since P=2, G=2, the velocity update equation becomes
 (1) ()t tV Vω ψ+ = × + (16)
The distribution is triangular for both X values, X=1
and X=0. However, the triangular distribution for X=0
has twice the support range when compared to the
triangular distribution for X=1.

The probability density of the velocity is plotted for
different values of (1 2,ψ ψ) in the Figure 7. The
probability density of the velocity spikes near 2 and,
eventually, decreases as the velocity increases. With an
increase in (1 2,ψ ψ), a longer tail appears on the
distribution indicating higher velocities being selected.
Similar to the binary PSO, one controls the velocities
using the parameters, (1 2,ψ ψ) in the new algorithm.

Figure 6. Affect of Selection of Omega on the Probability of

different values for a discrete variable given Sid. This example is
shown for a trenary system, M=3, 0.1σ =

The new algorithm designed for discrete multi-
valued optimization problems is an extension of the
binary PSO so has similar properties and reacts to

145

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1 2,ψ ψ . In the next section, the new algorithm is tested
using different benchmark problems.

Figure 7. Probability density of velocities for the ternary system for

different 1 2,ψ ψ .

V. EXPERIMENTAL SETUP AND BENCHMARKS

Five benchmark problems are used from Liang, et
al., [11] for comparing the binary discrete PSO
algorithm with the multi-valued discrete PSO. For each
benchmark, the algorithm executes for 25 trials with 10
dimensions of each problem. For more details about the
benchmarks, the reader is referred to [11]. A brief
description of the benchmark problems is given in the
following subsection.

A. Benchmark Problems
The five-benchmark functions are defined in this

section with information concerning their optima as in
[11].

1) Shifted Rotated Ackley’s Function with Global
Optima on Bounds

1()f x =
2

1 1

1 1
20exp(0.2) exp(cos(2))

20 _

D D

i i
i i

x x
D D

e f bias

π
= =

− − −� �

+ + +

2) Shifted Rastrigin’s Function
2

2
1

() (10cos(2) 10) _
D

i i
i

f x x x f biasπ
=

= − + +�

3) Shifted Rotated Rastigrin’s Function
2

3
1

() (10cos(2) 10) _
D

i i
i

f x x x f biasπ
=

= − + +�

4) Shifted Rotated Weierstrass Function

4 ()f x =

max

1 0

max

0

(cos(2 (0.5)))

cos(2 0.5) _

D k
k k

i
i k

k
k k

k

a b x

D a b f bias

π

π

= =

=

 �+� � � �

 �− +� � �

5) Schwefel’s Problem 2.13
2

5
1

() (()) _
D

i i
i

f x A B x f bias
=

= − +�

Where,
1
(sin cos)

D

i ij j ij j
j

A a bα α
=

= +�

and
1
(sin cos)

D

i ij j ij j
j

B a x b x
=

= +�

For i=1,…D, A and B are two D x D matrices,
,ij ija b are integer random numbers generated in the

range [-100, 100], 1 2[,],D jα α α α α= are random

numbers generated from [],π π− .

B. Sampling the Search Space for Different Discrete
Domains

The discrete multi-valued PSO is applied to different
bases, binary, ternary and quaternary, and tested using
standard fitness functions originally designed for
continuous functions. Each dimension in the original
function has a recommended search space range. A
procedure is used to transform these functions into
discrete domain. In the following table 1, we define
terms used in this and following sections.

Table 1: Term Definitions for Benchmarks

Term Definition
Dimension Dimension of the original continuous

benchmark problem
Base The base of the number system (e.g.

binary = base 2)
Digits The length of the numerical character

string used in the number system (e.g.
binary = 2 digits, i.e., [0,1])

Each original dimension is represented using 16 bits for
a binary based system or 8 quaternary digits which
results in 65536 discrete values each. In a ternary based
system, 10 digits would only result in 59049 steps.
Thus, these representations have resulted in 65536
samples of search space for binary and quaternary
bases, and 59049 samples for ternary. Higher sampling
of fitness landscape provides more information about
the landscape leading to better performance of the
algorithm. As the samples tend toward infinity, we
approach the continuous domain again. Hence, it is
pertinent for comparisons that the same samples of the
fitness landscape are provided to all the algorithms.
Fairness is achieved by sampling the exact same points
for all bases. The base that yields the smallest number
of steps, which is 3 fixes the sample step size. The
additional samples for the other bases are adjusted to
have the value at the upper or lower range of the
problem. It is assumed that the particles won’t dwell
significantly in these regions of the landscape.

C. Particle Swarm Settings
The benchmarks are compared using the same

parameter settings. An equal weight of 1 1ψ = and

146

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

2 1ψ = is used. A time varying inertia, ω , is used as
described in [14, 15]. For an iteration ‘i’, the value is
given by

(0.4) (.)

()
. 0.4

no of Iterations i
i

no of Iterations
ωω − × −=

−
 (17)

, where, 0.9ω = . The number of particles used in the
simulations is 20 and the number of iterations is equal
to 5000.

VI. RESULTS

A. Affect of σ on the Discrete PSO algorithm

One parameter that controls the new algorithm is
σ . It is shown in figures, 5 and 6, that higher σ
flattens out the probabilities of the three discrete values.
The resulting probabilities for σ =0.5 are given in
figure 5. If the σ is further increased, the probability of
each discrete value for a given S will eventually
become � 0.33 for a ternary system. This makes the
curves appear nearly flat and algorithm completely
random and defeats the purpose of using a swarm-based
algorithm. A σ =0.4 or less is a better choice for the
new algorithm. In this section, results achieved for
ternary system using σ =0.4 and σ =0.2 are shown.
The results are shown for Function 2 described in
previous section. Similar performance results occur
with the other functions described in section V.A..
Figure 8 shows that a σ =0.2 produced better results for
function 2. Hence in this paper, a σ =0.2 is used for a
ternary system.

B. Results with 0.2σ =

In this section, the results for the five-benchmark
problems are presented. The new algorithm, designed
for higher number systems, performed better than the
binary PSO for all the benchmark problems as can be
seen in figures 9, 10, 11, 12, 13. Varying sigma
significantly affects the performance of the algorithm.
0.2 seems to be reasonable choice for sigma, for a
ternary system. The sigma has to be varied for different
number systems, i.e., ternary, quaternary and so on. A
sigma of 0.1 has been used for quaternary system in this
paper.
Table 2 presents the statistics for different algorithms
for the 25 trials that were performed. Ternary PSO
performed equivalent to the Binary PSO or even
slightly better. Quaternary PSO performed better than
the binary and ternary PSO. These results are
significant and allow the new algorithm to be used for
number systems other than binary.

Figure 8. Comparison of minima achieved for different σ used for

an algorithm designed for a ternary system for Function 2.

Figure 9. Minima achieved (averaged over 25 trials) for a 10

dimensional Shifted Rotated Ackley’s Function

Figure 10. Minima achieved (averaged over 25 trials) for a 10
dimensional Shifted Rastrigin’s Function

147

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Figure 11. Minima achieved (averaged over 25 trials) for a 10

dimensional Shifted Rotated Rastrigin’s Function

Figure 12. Minima achieved (averaged over 25 trials) for a 10
dimensional Shifted Rotated Weierstrass Function

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a new algorithm for
discrete multi valued optimization problems. A
theoretical framework employing probabilistic analysis
for binary PSO is presented. Specifically, probability
density function for the velocity is modeled to
investigate the affects of different parameters of the PSO
algorithm on the velocity. The new algorithm is
analyzed under this framework to examine its stability
and affects of the parameters of the algorithm.

The algorithm is applied to five benchmark problems
and the results presented show the performance benefits
of the new algorithm. The algorithm can be successfully
used for any number system.

In future work, we want to formalize the analytic
framework for the discrete PSO and analyze the
convergence and search behavior. Specifically, the
closed form expressions for the probability density
functions of the velocity will be derived. This is first
attempt to analyze a binary PSO and its behavior.
Further analysis for the binary PSO will also be done.

The new algorithm will be tested on deceptive
functions; trap functions designed for higher ordered
number systems.

Table 2: Averaged Results for Different Functions

Binary PSO Ternary PSO Quaternary PSO

f Mean Std Mean Std Mean Std

f1 -119.63 0.06 -119.66 0.07 -119.64 0.068

f2 -287.08 5.80 -300.72 4.11 -309.12 4.68

f3 -271.18 6.15 -276.1 8.45 -283.87 6.39

f4 99.03 0.49 97.83 0.87 97.50 0.89

f5 25596.
9

6231.9 23199.
19

6847.4
3

14986.
13

5215.
12

Figure 13. Minima achieved (averaged over 25 trials) for a 10
dimensional Schwefel’s Problem 2.13

References
[1] Eberhart, R. and Kennedy, J., “A New Optimizer Using

Particles Swarm Theory”, Sixth International Symposium on
Micro Machine and Human Science, 1995, Nayoga, Japan.

[2] James Kennedy, Russell Eberhart and Shi, Y.H., Swarm
Intelligence, Morgan Kaufman Publishers, 2001.

[3] Evolutionary Computation 1: Basics, Algorithms and Operators,
Institute of Physics Publishing, 2000.

[4] E. Ozcan and C. K. Mohan, “Particle Swarm Optimzation:
Surfing the Waves”, Proceedings of Congress on Evolutionary
Computation (CEC’99), Washington D. C., July 1999, pp 1939-
1944.

[5] Shi. Y, R. C. Eberhart, “Empirical Study of Particle Swarm
Optimization”, 1999 Congress on Evolutionary Computing, Vol
III, pp 1945-1950.

[6] Shi Y. H., Eberhart R.C., “A Modified Particle Swarm
Optimization Algorithm”, IEEE International Conference on
Evolutionary Computation, 1998, Anchorage, Alaska.

[7] C. K. Mohan, B. Al-Kazemi, “Discrete Particle Swarm
Optimization,” Proc. Workshop on Particle Swarm
Optimization, Indianapolis , IN, 2001.

148

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

[8] J. Kennedy and R. C. Eberhart, “A Discrete Binary Version of
Particle Swarm Optimization,” Proceedings of the 1997 Conf.
on Systems, Man, and Cybernetics, pp. 4104-4109. IEEE
service center, Piscataway, NJ.

[9] Maurice Clerc, James Kennedy, “The Particle Swarm –
Explosion, Stability, and Convergence in a Multidimensional
Complex Space,” IEEE Transactions on Evolutionary
Computation, Vol. 6, No. 1, February, 2002.

[10] B. Al-Kazemi and C. K. Mohan, “Multi-Phase Discrete Particle
Swarm Optimization,” Proc. The Fourth International
Workshop on Frontiers in Evolutionary Algorithms, 2002.

[11] J. J. Liang, P. N. Suganthan and K. Deb, “ Novel Comparison
Test Functions for Numerical Global Optimization”, IEEE
Swarm Intelligence Symposium, pp. 68-75, June 2005.

[12] Elon S. Correa, Alex A. Freitas, Colin G. Johnson, “ A New
Discrete Particle Swarm Algorithm Applied to Attribute
Selection in a Bioinformtics Data Set”, GECCO’06, Seattle,
Washington, USA, July 8-12, 2006.

[13] Jim Pugh, Alcherio Martinoli, “Discrete Multi-Valued Particle
Swarm Optimization”, IEEE Swarm Intelligence Symposium’
06, Indianapolis, Indiana, USA, May 12-14, 2006.

[14] Kalyan Veeramachaneni, Thanmaya Peram, Chilukuri Mohan,
lisa Osadciw, “Optimization Using Particle Swarm Using Near
Neighbor Interactions”, GECCO’03, Chicago, Illinois, USA,
July, 2003.

[15] Particle Swarm Optimization Code, Yuhui Shi,
www.engr.iupui.edu/~shi.

149

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

