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Ahshct. Pure states of a free particle in non-relativistic quantum mechanics are demibed, in 
which the probability of finding the particle to have a negative x-coordinate increases over an 
arbivarily long, but finite. time interval, even though the x-component of the particle’s velocity 
is certainly positive throughout that time internal It is shown that, for any s w  of this type, 
the greatest amount of probability which can Bow back f” positive to negative x-values in 
this counter-intuitive way, over any given time interval, is equal b the largest eigenvalue of a 
certain Hermitian operator, and it is estimated numerically to have a value near 0.04. This value 
is not only independent of the length of the time interval and the mass of the particle, but is also 
independent of the value of Planck‘s constant. It r e f l a  the smcture of Schriidinger’s equation, 
rather than the values of the paramete~s appearing there. Backtlow of positive probability is 
related to the non-positivity of Wigner’s density function, and can be rewded as arising from a 
ROW of negative probability in the same direction as the velocity. Generalizations are indicated, 
to the relativistic free electron, and to non-relativistic cases in which probability backflow occurs 
even in opposition to an arbitrarily strong constant force. 

1. Introduction 

Imagine a classical particle moving along the x-axis, and suppose that at some initial time its 
position x and its velocity U (= dx/dr) are uncertain, whereas it is certain that U is positive. 
If the particle is subject to no forces, it will subsequently travel in the positive x-direction, 
and it is intuitively obvious that the probability of finding it in the spatial inter& (-cq XO) 

will be a non-increasing function of time, for any given XO, say xo = 0. 
In contrast, there exist pure stam of a free particle in (non-relativistic) quantum 

mechanics for which the probability of finding the particle in (-w, 0) increases with time 
for an arbitrarily long (but finite) period, even though at all times the probability equals 
unity that the particle has positive x-component of velocity. 

The reader’s immediate response may be that there is no great surprise here. When 
the velocity of the particle is assumed equal to its momentum divided by its mass, then 
the indeterminacy principle precludes the simultaneous measurement of the position and 
velocity, and even the position and the direction of the velocity are incompatible observables. 
However, in the states described, the direction of the velocity (momentum) is determinate 
and does not require measurement after state preparation, and the increase in the probability 
of finding the particle in (-w,O), in the absence of any measurements at all, can be 
confirmed by making position measurements at various times on a large ensemble of similar 
particles, all prepared in the same state. 

It has been noted by students of the ‘pilot wave’ interpretation of the wavefunction that, 
in the quantum mechanics of a single particle, the direction of the probability flux vector at 
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any particular instant does not necessarily predict the direction of the particle’s momentum, 
measured immediately afterwards (de Broglie 1926, 1960, Bohm 1952, Belinfante 1973), 
but in these studies, the phenomenon of ‘probability backilow’ does not seem to have been 
identified. For the case of a particle moving on the x-axis, another velocity 
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(1) 

is associated with the pilot wave, where j ( x ,  2 )  is the (x-component of the) probability flux 
vector and p ( x ,  I )  is the probability density, as in (8), (9) below. Evidently V ( x ,  t )  always 
has the same sign as j ( x ,  t),  but it is very different in form and structure from the velocity 
operator 

and it is vOp rather than V ( x ,  t )  which represents the observable velocity, according to 
the standard interpretation of quantum mechanics. The first explicit identification of 
probability bacldow seems to have been made in studies of the arrival-time problem in 
quantum mechanics by Allcock (1969), who constructed an example to illustrate the effect, 
although only in terms of an approximate solution to Schrodinger’s equation. However, the 
implications and quantification of such a backRow over a finite time interval do not appear 
to have been explored in the literature. 

It will be armed below that this counter-intuitive quantum effect, in which positive 
probability apparently 00ws in the ‘wrong’ direction, can be regarded as arising from a 
flow of negative probability in the ‘right’ direction. The idea that a formal introduction of 
negative probabilities, in the intermediate stages of calculations, might make some of the 
peculiarities of quantum mechanics easier to describe, if not to digest, has been discussed 
by Feynman (Feynman 1987; see also Dirac (1942), Bartlett (1945)). Although Feynman 
emphasized that he did not ‘claim that quantum mechanics is best understood by going back 
to classical mechanical concepts and allowing negative probabilities’, their introduction does 
provide a strikingly simple interpretation of the peculiar effect under discussion here. 

2. Probability flux vectors 

At the mathematical level, the effect has its origins in the form taken by the probability flux 
vector in quantum mechanics. 

Classically, if p(x, u)SxSv is the probability that at time t = 0 the free particle is 
within 6x of x ,  with velocity within 6u of U, then the corresponding probability at 1 > 0 is 
p(x - ut ,  u)GxSu, and the (2-component of the) probability flux vector at ( x ,  t )  is given by 

(3) 

The integral is restricted to positive values of U because /I vanishes when U is negative, by 
assumption in the present case. Because p is non-negative, it follows from (3) that j ( x ,  t )  
is also non-negative, for all values of x ,  and at all positive times. 

m 
j ( x ,  t )  = 1 p(x - u t ,  u)udu. 

The probability that the particle is within 6x of x at time t is p(x, t)6x, where 
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and the probability that the particle is in the spatial interval ( -oo,O) is P(t) ,  where 

0 

P( t )  = p(x,  t)dx. (5) s_, 
It follows directly from (3) and (4) that p and j satisfy the conservation equation 

and it then follows from (5). provided j(-co, t )  = 0, that 

= -j(O, t). dP(t) 
dt 

Because j (0 ,  t )  > 0 for all t > 0, equation (7) then expresses the result expected intuitively: 
the probability that the particle is in the spatial interval (--CO, 0) is non-increasing with time. 

In quantum mechanics, a free particle with mass m moving on the x-axis is described, 
when in a pure state, by a normalized wavefunction $ ( x ,  t). (The following discussion 
could be formulated using normalized wavefunctions ih three-dimensional space, but this 
would only complicate the arguments unnecessarily.) In terms of $, a probability density 
p(x ,  t )  and flux vector j ( x ,  t )  are defined by 

Like their classical counterparts, these satisfy the conservation equation (6), in this case as 
a result of Schrodinger's equation 

Consequently, if P ( t )  is defined as in (3, with p as in (8), then (7) is again valid, with j 
as in (9). The critical difference from the classical case is that j (0 ,  t )  in (7) can now be 
negative over some finite time~interval, even though the probability equals unity that the 
velocity of the particle is positive throughout that interval. 

The latter is taken to be a consequence of the assumption that the Fourier decomposition 
of $ involves only positive momenta at alI positive times; only those solutions of (10) will 
be considered which have the form 

The normalization condition on the wavefunction rl, requires that 

lw4*(PW(P)dp  = 1. 

By the Born interpretation, this also expresses the fact that the probability equals unity of 
obtaining a positive value on measurement of the momentum, and hence of the velocity, at 
any positive time. 



2200 A J Bracken and G F Melloy 

Note that if the expectation values ( x ) ( t )  and (u,)(t) are introduced in the usual way, 
whenever @ in (11) is such that they are well defined, with 

(x ) ( t )  = / m x @ * ( x , t ) @ ( x , t ) d x  

(13) 
-m 

Sm 
m 

(uop)(O = 1- V ( x 7  t ) v o p W .  t )  = - P + * ( P ) ~ ( P )  dp 
m o  

then (uap)(f) = (uop)(0) > 0, and ( x ) ( t )  = (x)(O)+t(u.,)(O), which increases monotonically 
with t for all t > 0. 

Note also that if j(0,O) is negative, then j (0. t )  will be negative over some time interval 
[O, T), with T > 0, by continuity in t .  However, the consequent flow of probability in 
the negative x-direction over this time interval is not in itself surprising, even if +(x ,  0) 
contains only positive momentum components, unless it is also me that +(x, t )  contains 
only positive components throughout the interval. In the case of a free particle, as is shown 
by (1 l), @(x,  t )  contains only positive components at all positive times, only if it does so 
at r = 0. 

In order to confirm the existence for a free particle of the surprising quantum effect 
under discussion, it is therefore only necessary to find a function $ ( p )  which vanishes 
for p < 0, satisfies (12). and defines through (11). (9) at t = 0 a flux vector satisfying 
j(O.0) < 0. 

3. An illustrative example 

Before proceeding to a realistic example, it is instructive to consider a superposition of two 
plane waves with positive momenta, 

$,(x t) = A@(X.f) + B&&(&r) 

Here A,  B,  p1 and pz  are positive constants, and the constant phases y1 and yz are arbitrary. 
For a single plane wave with positive momentom, the probability flux vector (9) is a positive 
constant, hut for the superposition (14) it takm the form 

1 
j ( x , t )  = m ( ~ ~ A Z + p ~ B 2 + ( p ~  +p~)ABcos[81(x,t)-~z(x,t)l) (15) 

which at any value of x ,  varies with time between an upper value of (p lA+pzB) (A+  B ) / m  
and a lower value of (PIA - pzB) (A  - B ) / m .  If, for example, A > B and p l A  < p z B ,  
then this lower value is negative. 

Because + in (14) is not normalizable, this result has no direct physical interpretation, 
but it does indicate that the occurrence of negative j values, for a superposition of plane 
waves with positive momenta, can be regarded as an interference effect. The following 
example shows that the effect can occur for normalizable wavefunctions. 

In ( l l ) ,  set 
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Figure 1. Plot of j'(O.1') agaiost I'. where j '  = m h j / K 2 ,  I' = K'tlmh, &awing a rime 
interval over which pmbabiily Llackeow orrms. 

where K is a positive constant with dimensions of momentum, and note that (12) is then 
satisfied. It now follows from (11) that 

- @(x,O)  = 18 - [ (Fz - fKx)Z 3@ - 2iKx)* (17) 

and 

< 0. j(0,O) = -- 36K2 
35xmfi 

It also follows from (1 1) that, for f P 0 in this example, 

where f' = K 2 t / m h ,  x' = K x / h ,  and erf is the error function. It is then easy to show, with 
the help of the computer software package Mufhematicu (1991), that in fact j (0 . t )  < 0 
from t = 0 to t = tl % 0.021 m?i/K2 in this case, so that dP/df > 0 over this time interval 
(see figure 1). According to (5), the increase Ap in the probability mass on the spatial 
interval (-00.0) during this period is equal to the area in figure 1 bounded by the plot of 
j'(0, t') and the two coordinate axes, which equals 0.0043, approximately. Thus 

Ap = P(t1) - P(0) M 0.0043. (21) 
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rho' 

Figure 2. Plot of the even function p'(x', 0) against x', where p' = f ip /K ,  x' = K x p ,  and 
p ( x .  a) is defined by (17) and (8). 

Fi- 3. Plot of p'(x', 1') against x' at t' = 0.02, The m a  under the curve to the left of x' = 0 
is p a t e r  than that to the right. 

In figures 2 and 3, the probability density p' = f t p / K  for this case is plotted against 
x' at t = 0 and f = 0.02mh/K2 w 0.94t1, respectively, but the backAow effect is so small 
that it is quite difficult to see from these pictures that the probability has increased on the 
negative x-axis between these times. According to (17), p'(x', 0) in figure 2 is an even 
function of x', so the areas under that curve,' to the left and right of x' = 0, are equal. On 



New dimensionless quantum number 2203 

the other hand, although the curve in figure 3 is suggestive of a movement of the whole 
wavepacket to the right, in fact numerical integration shows that the area under this second 
curve from x' = -1 to x' = 0 is greater than the area from x' = 0 to x' = I, by about 
0.008, confirming that an amount of probability equal to about 0.004 has moved from right 
to the left. This is about one tenth of the maximum amount of probability backflow that can 
occur in general over any finite time interval, with wavefunctions of the form (11). (12), as 
will be shown in section 5. 

In this example, it appears from numerical work that it is only during the initial time 
interval [O, t l )  that probability backflow occurs; for t > tl, the probability flux vector 
j ( 0 ,  t )  is positive (cf figure 1) and, although the wavepacket spreads, the probability flows 
continuously in the positive x-direction (see figure 4). 

rho' 

Figure 4. Plot of p'(x', t') against x' at t' = 0.2, 4.0 and 10.0, showing the movement of the 
wavepacket and associated,probaLdity mass onto the positive x'-axis after probability backflow 
has ceased. 

On the other hand, numerical experiments show that in other examples probability 
backflow can occur on several. and possibly on infinitely many, disjoint subintervals of the 
time interval (0, CO). Nevertheless, in every case, an arbitrarily large proper fraction of the 
total probability mass is located on the positive x-axis after a sufficiently long time has 
elapsed. This is reflected in the general asymptotic result (Whitham 1974) 

which follows from (11) and which shows that the wavefunction tends to become 
concentrated on the positive x-axis, since 6 vanishes for negative values of its argument. 
For the example defined by (16), this is illustrated very clearly in figure 5. 

It is worth noting from (16) and (20) that the expectation values ( x ) ,  ( I J , , ~ )  and (Hop) 
are finite at all times in this example. Here Hop = p&/2m represents the total energy I 
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Figure 5. Plots of ~ ' ( x ' ,  f ')  against x' at f' = 500 and d = K14(Kp')lz against p' = p / K .  
illusuating formula (U) for 4 as in (16). Almost all the probability m a s  has moved onlo the 
positive xi-& ai such Long times, and the lwo plots are indistinguishable in shape. 

of the system. The dispersions Ax, A U ~ ,  and AHop are also finite at all times, where 
Ax = [ ( x z )  - ( x ) ~ ] ~ / ~ ,  etc. AU of these quantities can be calculated explicitly here; the 
only non-constant ones are 

In particular, ( x )  increases monotonically with r for all t =. 0, even during the interval 
[O, t l )  when probability backflow is occurring. 

4. Duration and size of the effect 

Once a normalized +(x ,  t )  of the form (1 1) has been found, leading to j (0, r) c 0 for 
t E [O, T )  for some T > 0, then a normalized $ ( x ,  t )  of the same general form can be 
found for which y(0, t) c 0 for t E [O, A'T), for any A > 0. To see this, simply replace 
+(PI by 

&P) = f i + ( A P )  (24) 

in (1 l), leading to 

It follows that the time interval over which probability flows in the 'wrong' direction can 
be made arbitrarily long by a suitable choice of wavefunction. 

On the other hand, the functions @ and $ related as above lead to the same total flow 
of probability back into (--CO, 0), over the time intervals [O, T )  and [0, A'T) respectively, 
because 

implying from (7) that 

P ( T )  - P(0) = P(A2T) - P(O), 



~ . . ~  

New dimensionless quantum number 2205 

The interesting question, therefore, is not how long this peculiar effect can persist. 
Rather, it is: over a given time interval [O, T ) ,  and allowing all possible choices of $I of 
the form ( l l ) ,  (12), what is the greatest increase that can occur in the probability mass on 
the spatial interval (-00, O)? More precisely: what is the least upper bound A on the set 
of all possible Ap's that can arise with wavefunctions of this type, where 

Ap = P(T) - P(0)  (28) 

in each case? 

clear that 
It follows from the above discussion that is independent of T .  Furthermore, it is 

A < l  (29) 

and also that z\ is at least as big as the Ap in (21). The main purpose of the next section 
is to obtain a reasonably accurate estimate of the value of the dimensionless quantity A. 

5. mobability flow as an eigenvalue problem 

Consider a general $I(x.  f) as in (11),(12). It follows from (9) that 

According to (7), the increase in the probability of finding the particle in the spatial interval 
(-00, O), over the time interval [O, T ) ,  is given by 

A? = P ( T ) - P ( O ) = -  j(0,t)dt. (31) 

Substitution of (30) in (31), and interchange of the orders of integration, assuming @ is 
sufficiently well behaved, gives 

lT 

AP = rim @ * ( ~ ) K ( P ,  4)@(q) dp dq (32) 

after the integration with respect to t is carried out. Here 

Note that there is no singularity at p = q. 

constraint 
The problem of interest is to maximize Ap in (32), subject to the normalization 
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and this leads to consideration of the unconstrained maximum of the functional 
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where A is a Lagrange multiplier. 
At any stationary point of I ,  the Euler-Lagrange equation 

must hold, and it then follows from (32) and (34) that, for such a @, 

Ap = A .  (37) 

Therefore the problem reduces to that of finding the largest positive eigenvalue, or more 
precisely, the least upper bound on the spectrum, of the integral operator in (36) with kernel 
K ( P ,  4 ) .  

Note that 

K ( p , q )  = K ( q ,  P)’ (38) 

so this integral operator is Hermitian, and all its eigenvalues are real. Furthermore, from 
(37) and the meaning of Ap, it can be seen that every eigenvalue A must satisfy 

- 1 < h < 1 .  (39) 

The eigenvalue equation (36) can be written as 

where 

a(p )  = e-ip’T/kfi +(PI (41) 

and because (40) is a real equation, it can be assumed without loss of generality that Q is 
real. Furthermore, setting 

p = 2  -U , = 2 $ 5  

reduces (40) to 

where 
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The form (43) shows that all the eigenvalues A, including in particular i (the largest positive 
A) are independent of T (and, incidentally, of m and h) .  

It has not been possible to solve (43) analytically, and numerical methods have been 
used to estimate i\. With the range of integration in (43) approximated by the interval 
[O, Nr], divided into N segments of length r ,  library subroutines were used to estimate 
the integral over each subinterval and then to find the largest eigenvalue of the associated 
discretized eigenvalue problem. With r = 0.05, the estimates obtained were 

N=100 A = 0.0256 

N = 200 & = 0.0297 

N = 275 = 0.0309 

N = 500 = 0.0323 (45) 

which are apparently converging, linearly in 1/N as N + oi), to &.OS FZ 0.034. In the 
same way, the estimates A0.w e 0.035, ho.ozs 0.037 and i 0 . 0 ~  = 0.038 
were obtained. These in turn are apparently converging, linearly in r as r + 0, to the 
overall estimate 

0.036, x0.02  

& FZ 0.04. (46) 

(In an independent investigation of (43), OUT colleague Dr G A Chandler obtained the 
estimate & zz 0.038, and evidence to suggest that the spectrum consists of, in addition, a 
sequence of smaller positive eigenvalues, with accumulation point at zero, together with the 
continuum [O, -11. He also obtained an approximate eigenfunction corresponding to the 
eigenvalue A. It is hoped that his results will be published separately.) 

6. Flow of negative probability 

The phenomenon can be viewed in an interesting light with the introduction of Wigner's 
density function (Wigner 1932) 

@*(x  - i y .  t ) @ ( x  + i y .  t)e-'""Y'* dy. (47) 

This function is usually expressed in terms of the canonical pair ( x .  p) rather than ( x .  U), 
but the latter is preferred here because it reflects more clearly the fact that W is the closest 
analogue which can be constructed in quantum mechanics to the classical density p of 
section 1. For a free particle, 

W ( x ,  U ,  2 )  = W ( x  - u t ,  U ,  0) (48) 

and W has several properties in common with p ( x  - x t ,  U). In particular, for wavefunctions 
of the form (11). which lead to W vanishing for negative values of U, the flux vector (9) 
can be expressed as 

m 

j ( x ,  t )  = W(x - u t ,  U ,  ONdu. (49) 
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Figure 6. Contour plot of Wigner’s density function W‘(x’. U’, 0) far the example defined 
by (16), with W’ = I W / m ,  U‘ = m v J K .  On darker-shaded regions W’ is negative. and on 
lighter-shaded regions it is positive. 

This may be compared with (3). 
However, it is well known that the W,  unlike p, need not be non-negative everywhere, 

and, in fact, it is at once clear from (49) that if j ( x ,  f )  is negative at some ( x .  t), then 
W ( x  - ut, U. 0) must also be negative there, at least for some values of U. As an illustration 
of this, figure 6 shows a contour plot of W ( x ,  U. 0) in the example defined by (16), for 
which j ( 0 , O )  < 0. Negative values of W ( 0 ,  U, 0) at some U-values can be seen clearly, 
associated with the darker areas. 

Conversely, the appearance of negative values of j ,  despite the reshiction of the integral 
in (49) to positive values of U, can be regarded as a direct consequence of the fact that 
Wigner’s function can take negative values. 

The interpretation of negative values of W and, more generally, the difficulties of 
defining positive semi-definite phase-space density functions in quantum mechanics have 
been much discussed (Wigner 1932, Dirac 1945, Moyal 1949, Barut 1957), but Feynman 
(1987) has argued that interpreting negative values of Wigner’s density function in the 
obvious way, in terms of negative probabilities, need not lead to unphysical conclusions. 
(In this connection, see also Dirac (1942) and Bartlett (1945).) Observables correspond to 
functions f ( x .  U) which have just the structure necessary to avoid such conclusions, when 
their mean values are calculated using W as probability density. For descriptive purposes 
then, W ( x ,  U ,  t )dx6u can be interpreted as the probability that the particle ‘has’ a coordinate 
within 6 x  of x ,  and a velocity within Su of 6 at time f ,  even though this probability can be 
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negative; but it must be kept in mind that there is no observable f ( x ,  U) which has WSxSu 
as its expectation value, and that the indeterminacy principle precludes the observation of 
an event ( x .  U). 

Whatever the difficulties of such an interpretation, it does provide a very simple way of 
describing the peculiar quantum effect which has been the subject of this paper. According 
to (49), all the probability flows in the direction of the particle's velocity. However, not 
all the probability is positive, and a flow of negative probability in the positive x-direction 
is mathematically equivalent to a flow of positive probability in the negative x-direction; it 
is evidently just such a (net) flow of negative probability in the direction of the particle's 
velocity that gives rise to the effect in question. Figure I shows, at a later time, a contour 
plot of the Wigner function of figure 6; all regions of the plot have moved to the right in 
accordance with (48). Whenever the darker (negative) regions passing across the line x = 0 
outweigh the lighter (positive) regions, then there is a net flow of positive probability to the 
left over that line at that time. 

Figure 7. Contour plot of W'(x'-  d f ' ,  U'. 0)  at I' = 1, illusmting the way in which W' evolves 
in time. 

Experimental observation of this remarkable effect is possible in principle, as suggested 
in the introduction. The main difficulty would seem to be preparation of initial states of the 
required type. If that could be achieved, in a reproducible way, then on a large ensemble 
of replicas of the one-particle system, all prepared in the same state, measurements of the 
velocity (or momentum) could be made on one subset to confirm that the wavefunction 
contains only positive velocity (momentum) Lomponents, and measurement-? of the position 
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could be made after various elapsed times on a second disjoint subset, in order to confirm 
that the probability of finding the particle ‘upstream’ of a given point was in fact increasing. 
Such a procedure seems unlikely to be realizable. A more practicable alternative might be, 
for a particle with an electric charge, to prepare various initial states which all contain only 
positive velocity components but are otherwise arbitrary, and in each case to measure at 
some subsequent time the electric current density vector. Since this is proportional to the 
probability flux vector, the observation in any one instance of a current density directed 
opposite to the velocity (muliplied by the charge) would confirm the existence of the effect 
in question. In the light of the comments made above, any such successful observation 
could be regarded as providing direct evidence of negative values of Wigner’s function, if 
not, indeed, of negative probabilities. 
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7. Concluding remarks 

Even when wave-particle duality is bome in mind, it is quite counter-intuitive that there exist 
quantum states of a free particle, with positive x-component of velocity, and with increasing 
probability of finding the particle in the spatial interval (-m, xo), for any given XC,. The 
greatest amount of probability backflow that can occur over any given time interval [0, T )  
has been found to be d = 0.04, and the appearance of this dimensionless quantity in 
the quantum mechanics of a free particle is itself remarkable, because it is not possible 
to construct such a quantity from the parameters m and A appearing in Schrodinger’s 
equation (lo), nor even from m, A and T .  It is the fact that the wavefunction @ itself 
has dimensions of [length]-’/* which enables the construction of dimensionless quantities 
l i e  P ( t )  in (5) and then, indirectly, d. 

It could be said that d in some way characterizes a free particle in quantum mechanics, 
but, since it is independent not only of the length T of the time interval over which the 
backflow occurs but also of the mass m of the particle and of R, it seems more appropriate to 
say that is characteristic of the very nature of the quantum mechanical description itself, 
in terms of the complex wave equation (10). In this sense, and despite its lack of dependence 
on the value of Planck‘s constant, it is truly a ‘quantum’ number. This is true also of any 
other eigenvalues in (36), whose meaning is more obscure. The existence of a quantum 
effect with no classical analogue, but with a magnitude that is independent of Planck‘s 
constant, emphasizes the subtlety of the relationship between a quantum mechanical system 
and its classical counterpaa; it is often implied that the latter can be obtained from the 
former simply by ‘letting R -+ 0’. 

Instead of a free particle, one that is subject to a force in the positive x-direction could 
be considered. At least in the case of a constant force F, it is then easy to show that, just as 
for a free particle, a state that contains only positive momentum components initially will 
do so at all subsequent times. Again, situations exist where probability backflow occurs 
over a time interval of length T ,  no matter what the size of F.  An example is provided 
by again taking the initial value of the wavefunction to be defined by (16). In such cases 
the maximum amount of probability backtlow that can occur is expected to depend on the 
values of F,  A, T and the mass m of the particle, through the dimensionless combination 
F2T3/mA. 

It would also be possible to consider a single particle in relativistic quantum mechanics, 
for example a Dirac electron. Here the relationship between the observable velocity and 
the momentum is more contentious. States could be consbucted that contain only positive 
x-components of momentum, but again lead to a flow of probability in the negative x -  
direction over a time interval of length T .  f n  this case, it is expected that the maximum 
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probability backflow will be found to depend on the dimensionless combination mc2T/Z1, 
where c is the speed of light. 
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