PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL
DISTRIBUTIONS, IV: THE DISTRIBUTION OF HOMOGENEOUS
AND NON-HOMOGENEOUS QUADRATIC FUNCTIONS OF NORMAL
VARIABLES'
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0. Synopsis. The distribution function of a non-negative quadratic form, both
homogeneous and non-homogeneous, of a finite number of correlated normal
random variables is expressed as an infinite linear combination of chi-square
distribution functions with arbitrary scale parameter. An alternative represen-
tation of the distribution function of the non-homogeneous form in terms of
non-ceniral chi-square distribution functions with arbitrary scale parameter is
also derived. ‘

The nature and accuracy of the above series representations is discussed in
detail. It is shown that these reduce to mizture representations for certain values
of the scale parameter.

1. Introduction and summary. Let y denote an n-dimensional vector which
has a multivariate normal distribution with zero expectation and non-singular
variance-covariance matrix V. We shall consider the distribution of the quad-
ratic form (y — «)’C(y — «) for a given vector ¢ and a given symmetric positive
definite matrix C. In geometrical terms, we wish to evaluate the probability
content of a fixed ellipsoid R* of arbitrary size, location and orientation under
an underlying mutlivariate normal distribution. This probability content is
equal to

(L1) my v [ e g,
B
where R* = {y: (y — a)'C(y — @) = 4.

Without loss of generality, the required distribution may be expressed in
canonical form as the distribution of (x — b)’A(x — b), where x hasa centered,
standardized -spherical normal distribution of dimensionality n, b is a fixed
n-dimensional vector and A is a diagonal matrix of size n X n with diagonal
elements a; ,- - -,a.(a; > 0). This is achieved by the linear transformations

(1.2) y = LKx, « = LKb,
where L is a lower triangular matrix defined by V = LL’ and K is the orthogonal
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1 The bulk of this research was carried out during visits to the Boeing Scientific Re-
search Laboratories in the summers of 1960 and 1961, and revised and slightly extended at
the University of Sheffield. The main results of this paper are to be found in the Research
Report [20].
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matrix of the eigenvectors of L'CL(cf.[19], p. 610). We then find that (1.1)
reduces to

(13)  Haap(t) = (20" f ¢ dx = P[; ai(z; — b;)’ < t],
R

where R = {x: (x — b)’A(x — b) = {}, A = K'L’CLK, while the a; are the
eigenvalues of L’CL and therefore of VC. Thus, for ¢ > 0, H,. () is the prob-
ability content, under a centered spherical normal distribution with unit standard
deviation in any direction, of an ellipsoid centered at the point (by,---,bs),
with fixed orientation and with lengths of semi-axes (¢/a;) L (t/a,) '

We shall assume for convenience, again without suffering any loss of generality,
thato; € @ < --+ = a,. )

An equivalent geometrical interpretation of H, () is worth noting. On
replacing x by A%z in (1.3), we obtain

(14) Huan(t) = (@) 4™ [ o874y,
Ree

where A = |A| = a;---a, and R** = {z: (z — A'b)'(z — A'D) = #; that is,
H,.a(t) is the probability content of an offset sphere under a centered uncor-
related multivariate normal distribution with standard deviations a} e -,af. .

Clearly, the previous discussion can be generalized to include the case where
C is semi-definite positive. Here at least one of the a; is zero, R is an elliptic
cylinder (rather than an ellipsoid) for ¢ > 0, and (1.1) reduces to

(21!')_%"[ e—h'x dx = P[Zl: ai(xi - b,')2 é t:' ,

R

where 7’ is the rank of C, i.e., the number of positive (non-zero) a;. In brief,
the results obtained in the sequel are valid, with a suitable interpretation of
n, for all non-negative quadratic forms of normal variables.

It will be observed that the central and non-central chi-square distribution
functions are subsumed under the H-distribution function as very special and
relatively trivial cases. Let F,(-) and G...(-) denote the distribution functions
of x%, a (central) chi-square with n degrees of freedom, and of a non-central
chi-square with »n degreesof freedom and non-centrality parameter , respectively,
Le.,

(15) F.(t) = P[i xS t],
so that
(15) R = (2" [ e ay (t>0),
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while

(16) Gurl®) = P| 3 (e = 0 5 1]

so that ([14], [19]) |

(1.6') Gra(t) = 3 dn g [0 t ey L (k) dy (t>0),

=0 (t=0),

where I,(z) = ¢ "Jn(iz) is the Bessel function of the first kind with purely
imaginary argument. Then

(1.7) Fo(t) = Haxo()
and
(1.8) G (t) = Hppin(2) (K2 = Z:: b3>’

where I is the unit n X » matrix. Geometrically, for { > 0, F,(¢) is the prob-
ability content, under an n-dimensional spherical distribution, of a sphere of
radius ¢* whose center coincides with the center of the distribution, while G,..(¢)
is the probability content, under the same distribution, of a sphere of radius
¢* whose center is at a distance « from the center of the distribution.

A rather extensive literature is in existence on the special case Hy2,0(),
the distribution function of a homogeneous quadratic form,

Hpp0(t) = P[i a;z: < t] .

(See [19] and [22] for brief reviews with some applications, and also [1], [2],
[5], [6], [7] and [15], pp. 19-24. For tables of the distribution functions and/or
percentile points of Y ; ax? and i aiz?, additional to those listed in [19],
see [4], [11] and [22].) In particular, from the point of point of view of this
paper the results which are most directly relevant are due to Robbins [16]
and Robbins and Pitman [17]. These express the distribution function of v aah
as a linear combination of Gamma distribution functions: more specifically,

Robbins’s result is of the form
(1-9) Hn;A;O(t) = ]=Zo wan+2j(t/aﬂ),

where g, is the geometric mean of the a; , while Robbins and Pitman’s result is
of the form

(1.10) Hop0(t) = j;ow"F"‘”"f(t/a‘)’
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where the w; form a probability sequence, i.e.

(1.11) w; 20 =01-), 2w =L

0
The w; are, in fact, the probabilities in the convolution of » negative binomial
distributions; in the terminology of Robbins and Pitman, the distribution of
> 7 ax? as represented in (1.10) is a mixture representation. We shall generalize
(1.9) and (1.10) (Section 3) in the sense of establishing the relationship

(112) Hupalt) = 3= o1/,

where p is an arbitrary positive constant and the c; involve p (as well as n and
A). Thus (1.12) expresses the distribution function of Y7 az? as a linear com-
bination of Gamma distribution functions with arbitrary scale parameter
P (Fas2(t/p) is, for varying ¢, the distribution function of px312; , where x%s; is
a chi-square with n + 2j degrees of freedom). The arbitrary nature of p in
(1.12) is an advantage inasmuch as it allows of greater flexibility and com-
prehensiveness, and, moreover, for certain values of p, (1.12) is a mixture
representation. The significance of the two scale constants p = a,, p = @ in
(1.9) and (1.10), respectively, will be discussed in Section 5.

Reverting to the general case of H,;5 ,(t), where b = 0, very few, if any,
theoretical results appear to have been obtained so far’ (though tables of
H;,1(t), presented in a form suitable for the evaluation of the probability of
offset circles, as in (1.4), have recently been given in [10] and [18], while the
efficient numerical evaluation of this function is discussed in [3] and, finally,
some further, unpublished, numerical results have been obtained by Marsaglia
for Hya5(t) and Hsap(2)). In order to fill this theoretical gap, we shall show
that the distribution function of Y .r a:(z: — b:)” may be expressed as a linear
combination of infinitely many chi-square distribution functions with arbitrary
scale parameter p, analogously to (1.12), and, furthermore, this distribution
function may also be expressed as a linear combination of infinitely many non-
ceniral chi-square distribution functions with arbitrary scale parameter p. More
specifically,

(1.13) Honn(f) = gcmm,-(t/m,

2 A representation of H, ab(f) as a power series in ¢ has recently been given in [21].
However, from a practical point of view, this series, like the corresponding power series
for Hna,0(¢) in [13] of which it is a generalization, is of limited value, except perhaps for
quite low values of ¢,

Note added in proof: Since revision of this paper, a futher theoretical discussion of the
distribution of the non-homogeneous form has appeared in print (J. P. Imhof, “Computing
the distribution of quadratic forms in normal variables,” Biometrika, Vol. 48, 1961).
Imhof’s paper appears to have no point of contact with the present paper.
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and also
(114) Hn;A,b(t) = ; den+2j;x(t/p) (K2 = Z bf),

where ¢; = ¢jna (D), di = djnap(p). As in (1.12), (1.13) and (1.14) are
mixture representations for suitable choice of p.

Generating functions as well as both explicit and recursive formulae for the
coefficients (the ¢; and the d;) in the series (1.12), (1.13) and (1.14) will be
derived, and upper bounds for the errors induced by using the various series in
truncated form will be deduced. The latter recursive formulae are relatively
rather simple; in particular, for the special cases p = @, and p = a; in (1.9)
and (1.10) for H,.ae(t), they appear to be much more effective than the re-
cursion relationships given previously in [16] and [17].

Notation and terminology.

(i) x = (z1,"*-,x.) will denote a random n-dimensional vector or point in
Euclidean n-space E, ,and 1 = (I ,---,l,) a random vector with terminal point
on the surface, 2., of the unit n-sphere centered at the origin (> 1l = 1).
In accordance with custom, x and 1 will also be used in two additional senses,
namely, as open vector variables and as dummy integration variables. (The
inconsistency of this notation has proved harmless in the past and will do so
again at present.)

(i) |x| will denote the norm of x(|x| = + (> 1 z5)}).

(iii) dx will represent the volume-content of an infinitesimal n-dimensional
element at the point x and dl the surface-content of an infinitesimal (n — 1)-
dimensional element on 2, at the point 1.

(iv) S, will denote the (surface) content of Q,,

(1.15) 8, = 2¢'"/T(3n).

(v) For the special case where 1 is uniformly distributed on @, , E¢(l) will
be written as Me¢(1), i.e.,

(1.16) Ma(l) = 87" - f 6(1) dl.
Qn
In connection with the M-operator, we note that
(1.17) Mo, = 3 Moi(D)
if >0 ¢;(1) converges uniformly on €, .
(vi) Whenever convenient, M¢(l) will henceforth be written as M¢, and
E¢(x) as E¢. Thus the argument of ¢ will generally be suppressed and supplied

by the context (1if the expectation operator is M and x if the expectation oper-
ator is F). Furthermore, even in the absence of an expectation operator, we
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shall in general designate both ¢(1) and ¢(x) indifferently by ¢, where the
argument in ¢ is to be supplied by the context.

(vil) We shall say that 1is induced by x if 1 = x/|x| for x = 0, and if x = 0,
1 is determined by a random mechanism which assigns a probability measure
dl/ S, to an infinitesimal element at 1{on Q,) of surface-content dl. Note that
this is equivalent to generating a probability-mass distribution on &, from that
in E, by radial projection of the mass in E, on to ©,, with the additional
stipulation that any concentration of mass at the origin is to be spread uni-
formly on @, .

(viii) We shall say that x has a centered spherical distribution (or has cen-
tered spherical symmetry) if the distribution of Tx is the same as that of x
for every orthogonal matrix T: equivalently, if the probability measure of every
Borel set in E, is invariant with respect to all rotations about the origin.

(ix) In all summations, and elsewhere in the text, the range of 7 will be from
1 to 7 and that of j, unless otherwise specified, from 0 to .

RemaArk. If x has a centered spherical distribution and 1 is induced by x,
then 1is uniform on ©, and, furthermore, 1 and |x| are independently distributed.

These are immediate consequences of the definition of centered spherical
symmetry. Thus, to prove the first part of the assertion, consider two arbitrary
congruent half-cones in E, with vertices at the origin. To prove the second
part, consider the portions of the two latter half-cones which are interior to
an arbitrary sphere with center at the origin.

2. Preliminary lemmas.

Lemma 1. If x has a centered spherical destribution, 1 is induced by X, ¢(X)
is a homogeneous scalar function in the x; of degree k and E |¢p(x)| < <, then

(2.1) E¢(x) = Elx|*-Mg(1).

Proor. On using the defining property of a homogeneous function together
with the property of stochastic independence of 1 and |x|, we find

E¢(x) = Elp([x|1)]
= E[lxl's(1)]
= E|x|*-Ep(1).

Since 1 is uniform on @, , E¢(l) can be replaced by Me¢(l) and the lemms is
proved.

CoRrOLLARY. If x has a centered standardized spherical normal distribution
with density function

(2.2) (2) THngHEI?
then
(2.3) M¢ = [T(3n)/(2¥T(3(n + k))}]-E.
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Equation (2.3) follows on using (2.2) in (2.1) (or, equivalently, on noting
that |x|"is a x2).
LumMma 2. Define

(2.4) L) =L=2pk, Q1) =Q=2q&
on Q. , where p; and q; are real and q; > 0. Then
(2.5) L'/Q = 2. pi/gi.

Proor. Set h; = ¢il; and use the Schwarz inequality. Thus
L/Q = T ((p/a)hdy LK
= 2 (pid/d)' 2k 2k
= Z Pf/ Qi .
LemMA 3. Define
(2.6) L(x) =L =2 pai, Q) =Q=2 qal
on E, , where the p; and q; are real, and let H(t) denote the Hermite polynomial

of degree k in ¢:

[k/2] . k!
(2.7) H,(t) = ;} (—1) m!

k—2r

([k/2] denotes, as usual, the integral part of k/2). Then if the distribution of X is
spherical normal as in (2.2),

(28) |EIQ'Ho,(L/QH)/ (2) 1] < (3n)s(g0 + 3 2 0D /41,

where (3n); = T(3n + §)/T(3n) and g = max; |g..
Proovr. From (2.7),

(29) QHAL/Q) = 3 (—1) BN 1

Since |Q] < ¢ > 7 and > zi isa x5, |

(2.10) EQ| < ¢0-2°(3m). .

Again, since L is normal with mean zero and variance ) p;,

(2.11) B = (59125 — 20 /1257 — 0.

Applying (2.10) and (2.11) in (2.9) and replacing (in), by (3n);, we obtain
BIQH AL/ < 3 @—]—_%))—'@7, : (Zp?)"'Z—f_z,—J('JT%’);)—!

(2w (), = (DY - 2 T

= {(3n);(27) /i1 (g + % 2 p})°.
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LemMmaA 4. The series

(2.12) 3 Ln 'H);‘ Foioi(2) (nz0)
converges uniformlyon — o < x £ X < o for every non-negative u and on — © =
z = o when 0 = u < 1.

If 0 = p < 1 an upper bound to the remainder after k terms s
(2.13) (1= oo DR p iy 0= w<)

T(Gn) k!
for —o £ g £ o,
Proor. The first part of the lemma is trivial for X < 0, while the second
part is trivial for x = 0. Assume, then, that X > 0 and z > 0, respectively.
From (1.5"),

Fupoi(z) < (2"D(dn + 5)} " f e dy
0

= 2-{2"Y T (4n + j) ) (z > 0).2
Hence the series (2.12) is equal to zero for x < 0 and is majorized for0 < z = X
by

0 _1_ F)
2-(2""T(3n) } 2 D0 2“’”) < 2-(2PT(3n) )XY

0

The uniform convergence of the series on every finite z-interval when ¢ = 0
is thus established. To prove uniformity of convergence for all z (finite or in-
finite) when 0 = u < 1, observe that the series is then dominated by

r( P10 + 7) u — —in
Fmally, to prove the last part of the lemma, observe that (for x > 0)
TGn4+dw, _ 1 f“’”z —oin ’"+’_1
2 M 8 o) = [ TR
after using an obvious scale transformation in the integral deﬁmng Fop0i(x),

interchange of summation and integration being allowed by the uniformity of
convergence. But

v§n+j—l _ v§n+k— i o - v§n+k—l r
=% ! =S+ DE+2)- k41T k! ’
Hence for 0 = “ <1,
r(zn +J) ¢’ # . < 1 f”m —v(1—p)/p, dntk—1
e B

- r(in + &) &
= (1 =) DT B 11— pal.
(1 - u) L Fral(1 ~ W]
3 This inequality is valid forn = 2,3, --- and j = 0, 1, --- . The subsequent modifica-

tion of the proof for the special case » = 1,j = 0is both obvious and trivial (the first term
in the series (2.12) is then Fi(z) £ F1(X)).
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Lremma 5. The series
I(3n +4)
2.14 2 25
( ) Z F(ln) ]' G +27; (x) (I-"
converges uniformlyon —x < x £ X < o for every non-negative u and on —
TS o when0 = u<l.
If 0 £ p < 1 an upper bound to the remainder after k terms is

_ e TG+ k) W
Tn) k!

v
N

I\

(2.15) (1 Fopul(l1 —p)zl (0=2p<1)
Jor —o £z £ .
Proor. We have

Gmie(®) = Fu(2)

(the equality sign holds, trivially, only for k = 0 or for z = 0). This inequality
follows from the well-known fact of the decreasing character of the G-function
with respect to x and on recalling that G.,o(z) = F.(z). Hence the series (2.14)
is dominated by the series (2.12) and Lemma 5 follows directly from Lemma, 4.

3. Evaluation of H.,. (f) as an infinite linear combination of x° distribution
functions. In this section we prove two fundamental theorems. The second
theorem, which deals with the central case b = 0, may, of course, be regarded
as a quite special case of the first theorem. However, because of the great im-
portance of this special case, and also because it will serve subsequently to
motivate a fresh theorem (Theorem 3, Section 4), in which H,.4 .1 is represented
for b s 0 as an infinite linear combination of non-central x* distribution func-
tions, Theorem 2 will be stated explicitly.

TuroreMm 1.
(i)
(3.1) Hoppp(t) = ZO:Can+2f(t/P),

where p ts an arbitrary posiiive constant,
i = Ciman(P)
= A7 B QL (/@D 1/ (25)
L and Q are defined by
(33) L=L(x) = X (b/ahz:, Q=Q® = X (Va— 1/p)al,

and the x; are independent normal variables with zero means and unit variances.
Further, the series in (3.1) converges uniformly on every finite interval of &.

(i1)

(34) [ g 2. b _,Ll—__zz)_/;)_z] H{@-)Tl - (1 - %)z]_*}

=2 ¢z (lz] <min |1~ p/a;[™).

(3.2)
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(iii) The c; satisfy the recursion relationship

e = ¢ I (p/ad)’,

{3.5) it
¢j = (2j)_1r=zog,-_,c,, j=1,2 -,
where
(3.6) gm = Z(l_p/a”)m"‘mpZ(bf/az)(l_p/a,,)m_l, m= 1’2,.'.
Proor.
(i) Set
in (1.3). Then
. — A%, ib'b, —in —1E AT b AT E
(3.8) Hoap(t) = A% (27) -/;z'gét} ‘ ax.
On substituting
(39) g=rl (r=|%])
in (3.8),

}

Hoan() = 47% 0 (2m)H f t f g HATI AT )

- 0 Ja,
(3.10) , ¢
= 24 % ®P{olr(1n) ) f Mgt o gy
0

where L and Q are linear and quadratic functions defined (in matrix notation)
on 9, as in (3.3) by
(3.11) L=L) =bAT, Q= =U(A"—p DL

We now expand exp (—@Qr°/2 — Lr) as a power series in r. Recall that

(3.12) I = S HL (v)u™/ml,
m=0
whence
(3.13) gt = }_;0 (—1)"Q™H (L/QYr™/ml.

In order to evaluate the mean of exp (—Qr/2 — Lr) on Q, (required in
3.10), note that the series in (3.13), regarded as a series of functions in 1 for
fixed »r < # < o, converges uniformly on ©, . For, since by the Schwarz in-
equality,

(3.14) Ll = X (bi/an)},



552 HAROLD RUBEN

we have
im 3 — R m! m—2r N1
[m/2]
@) S S

= (—0)"g"Ha(1(2_0}/a:)}/q})
(g0 = max;|1/p — 1/a:|), whence the series on the right of (3.13) is majorized
by

(3.16) Z (—0) " H (G ( 20 bi/a)/gd)rm/m! = exp | far’ + (2 bi/an),

on using (3.12). This establishes the uniform convergence of the series in (3.13)
with respect to 1. Consequently (refer to (1.17)),

(3.17) M) = 3 (1) "MIQ™HA(L/Q) I /ml.

m=0
Next, we observe that for odd m, Q%'”HM(L/Q%) is changed in sign when 1 is
replaced by —1 (this transformation changes L to —L and leaves @ unchanged).
Therefore, by symmetry,

(3.18) MIQH .(L/Qh] = 0, m=13, -,
and (3.17) reduces to
(3.19) M) = 37 MIQ'H;(L/QY) W/ (29) 1.

Again, from (2.9) we note that Q’H,;(L/Q%) is a homogeneous-function in the
I; of degree 24, so that (3.19) may be expressed with the aid of (2.3) in the
form

(320) Mgt =3 L (3n) {EIQH,;(L/@H1/(25) )™

2T@Gn + )
Substituting (3.20) in (3.10),

Hoan(t) = 247201 (3n)
) TS ) @i (@) (23 e
The series under the integral sign in (3.21) is uniformly convergent. For, on
using (2.8), this series is majorized by

p r(3n)  TGn+7) (g + 1 b /@)’ P Y

2T(Gn +j) TGn) J!

(3.22) D) (3(g0 + ZZb /a:)r")’

— e—;ﬂu/p—qr%zbi/a.-) rn—l’
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thereby establishing the uniform convergence of the series for r = & < .
Consequently, term by term integration in (3.21) is permissible, and, moreover,
such integration will yield a series which is likewise uniformly convergent'
forr < ¢! < «. Formula (3.1) now follows immediately from (3.21) with the aid
of the formula

3

t . . .
(323) f eI g = 32D (30 + ) Fani(t/p).

0
(ii) Denote the left-hand member of (3.4) by ¥(z). We have

Wz) = 11{(;:»/0»;)%-*"3 L= (1 — p/add™

oo (3% ]

(3.25) f (20) 1 g = gih0 Rl§ > 0,

(3.24)

On recalling that

¥(2) may be expressed in the integral form

W) =TI {(z»/ai)*e-*"?

(3.26) . f_ : @) Fexp [—3{1 — (1 — p/as)e}zi — (p2)}(bs/ad)z)] dx.-}

-]
—3 — 2 —_ — —_ —iy’
= A7l pin, [ grhemLand, (g ymingmix'x gy

(lz| < min; | 1 — p/a; |7),

or, o}n using (3.13) to express exp (—Qpz/2 — L(pz) *) as a power series in
(p2)’,

¥(z) = Atz "

(3.27) [: [Z,o( "Q™H.(L/QY) (Pz) ](2 ying T gy
_A—}‘—}EIF jn /; l::éo( l)mQ}mHm(L/Q}) (pz) ]dP

where P is the probability measure (defined over the Borel field of subsets in
E,) induced by the standardized n-dimensional spherical normal density func-

4 The uniform convergence of the series in (3.1) on every finite -interval follows also
from Lemma 4, after majorization of the series through the upper bounds for the [c;] im-
plied by (2.8) in Lemma 3 (see (4.14)).
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tion (2.2). From (3.16)° (replace #* in (3.16) by p|z|x'x), the partial sums of
the series under the second integral sign in (3.27) are dominated by

(3.28) exp (3o(ple)x’x + (X bi/a) (plelx®) Y,

and

[ e thauto |2 Dx'x + (ZH/a)¥(p | | 0"} 0P

n

(3.29) _ (zﬂ.)‘%” [—: exp {—3(1 — pg | 2 )¥'x

+ (2bi/a)}(p | 2| x0)} dx < =,
since )
(3.30) 1 — pgole] = 1 — max; |1 — p/ail|e] > 0 (le| < min; [l — p/a]™).

Thus, by Lebesgue dominated convergence, integration term by term over
E, is permissible in (3.27); and, since from (3.18) and the corollary of Lemma
1,

(3.31) EQ*H.(L/@"H] = 0, m=13, -,
(3.27) reduces to

ATt g 5 BlQ L (L) B2

Y(e) = @p
= Z CjZ »
thereby demonstrating that ¢(-) is a generating function for the ¢; in the sense
of (3.4).
(iii) From (34),
(3.32) ¥'(2) = K(2)¥(2),
where

K(z) = 3{ 22 (1 — p/an)[l — (1 — p/ade]”

(3.33) 2 —2

+p2 (b/a)ll — (1 — p/ada]"}.
We obtain after some simplification
K9(0) = (d/dz)°K(2) |:=0

(3.34) st3{ 2 (1 = p/a)*™ + (s + DpX (bi/a) (1 — p/ai)’},

s=0,1,---.

5 To avoid confusion, recall that L = L(1), @ = Q1) in (3.13), whereas L = L(x),
Q = Q) in (3.27).
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Therefore, on differentiating (3.32) j — 1 times at z = 0 and replacing ¥*”(0) by
sles , we obtain

g=l /s '
(335) jlci = Z <] r 1) K(]_l—r)(o)'rlcr; .7 = 11 2; )
r=0
which reduces to (3.5) and (3.6) with the aid of (3.34).
THEOREM 2.
(i)
(3.36) Hop0(t) = ZO: ¢iF 125 (t/D),

where p ts an arbiirary positive constant, .
(3.37) ¢i = ciman(p) = A" E(=Q)/ (27,

and @ is defined in (3.3). Purther, the series in (3.36) converges uniformly on
every finite tnterval of t.

(ii)
(338) TI{(p/ad’ll — (1 — p/adel™ = 2 ¢z’ (2] < min: I — p/ai™).

(ii1) The c; satisfy the recursion relationship
j—1
(339) &= ()7 g0 (G=12-), = Il(/a),

where
(340) Im = Z (1 - P/ai)m, m = 1’ 2) Tt

Proor. Set b = 0in Theorem 1.

We conclude this Section by deriving two rather special and known results
from Theorems 1 and 2. At the same time this will illustrate the use of the latter
‘Theorems in more general situations.

First, consider the case A = Iand let p = 1.{ Here

(3.41) L= bz, Q=0,
so that (3.2) and (2.11) give
(3.42) ¢; = ¢ IELY/(29)1

PR OO L)
since L is normal with zero mean and variance ) b;. Thus (3.1) yields

Hn;I;b(t) = Gnv"(t)

R 721 i (%Kz)jF (t) ( 2 Zb2)
= € . ]' n+2j K = i/

I

(3.43)




556 HAROLD RUBEN

i.e., the non-central x” distribution function is expressible as a mixture of (cen-
tral) x” distribution functions in which the coefficients are Poisson probabilities.®
This result appears to have been first proved by Robbins and Pitman [17].

Next, consider the case A = I, b = 0. Theorem 2 gives through either (3.37)
or (3.38),

Hauxo(t) = Fal?)

(344 1,). )
) = 1)*"2 gzjn—,)J (1 = p)'Frnyai(t/p).

This result was first proved in [17] for p < 1 and stated (without proof) for
p > 1. Formula (3.44) demonstrates that the %~ distribution function may be
expressed as a mixture of scaled x distribution functions in which the coefficients
are the probabilities in a negative binomial distribution (p = 1).

ReMark. The series in (3.1) and (3.36) have been shown to converge uni-
formly on every finite t-interval for each p > 0. The domain of uniform con-
vergence may, however, be extended to the entire -axis by suitable restriction
of p. In fact from the upper bound subsequently established (Equ. (4.14)) for
c;], we find that the series in (3.1) is majorized by

r(3n +4) ¥
co- 2 TTGR) Fry2i(t/p),
where u = max; |l — p/a) + (p/2) 2 b3/a; . Tt follows from Lemma 4 that
the series in (3.1) converges uniformly on the entire (extended) ¢-axis for each
p satisfying max; [1 — p/a:| + (p/2) D bi/a; < 1. In particular, the series in
(3.36) has the same uniform convergence property for each p satisfying

max; |1 — p/ai| < 1,

ie., for p < 2a;.

Observe that uniform convergence over the extended ¢-axis implies that ¢
can be replaced by + « in (3.1) and (3.36), i.e., it implies that Se; =11t
will in fact be shown subsequently (Section 5) that > ¢; = 1if and only if
p < 2a;, whatever the value of b.

3.1. Further explicit formulae for the c; . In addition to the recursion formula
(3.5) for the ¢; of Theorem 1, two (equivalent) explicit formulae for these
coefficients have been given, namely, ¢; was expressed as the expectation of a
certain homogeneous function of degree 2; in independent standardized normal
variables z; , - - - , 2, (formula (3.2)), and jl¢; was expressed as the jth deriva-
tive at the origin of a certain generating function (formula (3.4)). Exactly
similar remarks apply to the ¢; of Theorem 2 (Theorem 2 is a special case of
Theorem 1).

§ (3.43) may also be derived directly by expanding the Bessel function occurring in the
density function of the non-central x? (see, for instance, [14] and [19]) in its usual power
series form and integrating term by term.
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We shall now obtain an additional explicit formula for the ¢; as polynomials
in the g.. . Recall that the g, occur in the recursion formulae for the c; .

To obtain the desired formula, consider first the special case of Theorem 2
(b = 0). On referring to (3.37), ¢; can be expressed in terms of the jth moment,
s , of a distribution by

(3.1.1) ¢; = B[22 (1 — p/a)) (23/2))7/51.

From the aditive property of cumulants, the 8th cumulant, Ag, of the variate
within square brackets is {(8 — 1) 1/2}- 2 (1 — p/a:)® = {(8 — 1)1/2}gs. On
using the well-known formula ([8], pp. 68-69)

u > (M/1D) (A/21)% (/70

Jt i+2ig+ 4 ii =] tlig! - - 45!
for moments in terms of cumulants, we find
(91/2)"(g2/4) " (gs/6)™ - - - (g;/27)"

§142i g i j=] ’L'1 ! 7:2 Peve 1j !

(312) ¢ =c -

Consider now the ¢; in the general case (Theorem 1). On comparing the re-
cursion formulae for the ¢; in Theorems 1 and 2 (Equs. (3.5) and (3.39), re-
spectively), we find that these are of precisely the same form. It follows that the
¢j of Theorem 1 are likewise given by (3.1.2) with the appropriate values of the
gm as given in (3.6). In brief, (3.1.2) is valid quite generally.

On using (3.1.2), or alternatively through repeated application of the re-
cursion formulae, the first few ¢’s are found to have the following values:

¢ = 3g16,
(3.13) e = g + 3gD)co,
cs = 3(gs + 3001 + b)) o,
e = (ga + 30301 + 302 + 10ige + Fegl).
It is of some interest to note that the ¢; of Theorem 2 may be expressed al-
ternatively in terms of powers and products of powers of the n quantities

1 — p/a;.
Thus (3.1.1) yields

il
C; = Co'E[ Z ~r—]‘——"
1o tig=f 1}t * " Un !

(1 = pla)iatit . (1 = p/an>‘"x‘f::'"] / @i
60,[ ()1 -+ (23)! |

i R ()P (@ )P

(1= pla)* - (1 — p/an)i":'/22".

(3.1.4)

i
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We remark finally that the recursion formulae appear to be best adapted for
purposes of computation.

4. Evaluation of H, s y(¢{) as an infinite linear combination of non-central
x° distributions. In Theorem 2, the distribution function of the homogeneous
quadratic form > ax? was represented as an infinite linear combination of
central x* distribution functions, i.e., the probability content of the ellipsoid
> a@: < t was expressed as an infinite linear combination of the probability
contents of spheres, under spherical normal distributions with unit standard
deviation in any direction, immersed in Euclidean spaces of dimensionalities
n,n + 2, --- and with centers at the centers of the corresponding distributions.
This result suggests by analogy that the probability content of the offset el-
lipsoid D a«(z: — b:;)* < ¢ may be expressed as an infinite linear combination
of the probability contents of offset spheres, under spherical normal distributions
with unit standard deviation in any direction, immersed in Euclidean spaces of
dimensionalities n, n + 2, --- ; i.e., it suggests that the distribution function
of the non-homogeneous quadratic form > ai(x; — b)® may be represented as
an infinite linear combination of non-central x* distribution functions. This
conjecture will be proved in Theorem 3. We then have a result which provides
an interesting contrast to Theorem 1: whereas Theorem 1 represents the dis-
tribution function of the non-homogeneous quadratic form in terms of central
x* distribution functions, Theorem 3 represents this distribution function in
terms of non-central x” distribution functions.

The form of the coefficients in the required expansion is ¢ndicated by the
following consideration: Assume that

(4.1) Hoan(t) = 20 dGriziie(t/P) (= 2209,
=
where d; = d; ..a.5(p), for arbitrary positive p. According to (3.43),
0 1 2\r
(4.2) Griain(t/p) = € Z_;, (2:v) Frioivar(t/p).

On substituting for Gni2;:.(t/p), as given by (4.2), in (4.1), and proceeding
quite formally (without any attempt at rigour), we obtain plausibly

© 0 1,.2yr
(4.3) Hoan(t) = P ZO z;) d; (i:'—)— Froine(3/D).
j=0 r= :
On comparing (4.3) with (3.1), we have the tentative result
(4.4) =¥ Z g 3 §=01,2 -
. € = l=01(8—'l)!’ =Y hHLa ’

or, equivalently,
(4.5) {ei} = {d}+le ™ (358,

where {u;} #{v,} is the sequence formed by the Cauchy product of the sequences
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{u;}, {v;}. (In the special case when {u;} and {v;} are probability sequences,
* represents the convolution operator.)

Equation (4.5) suggests a further result concerning the tie-up between the
generating function ¢/(-) of the ¢; (given by the left-hand member of (3.4)) and
the generating function, say ¥(-), of the d; . The probability generating function
of the Poisson distribution with mean «*/2 is

(4.6) ¢,
Therefore, (4.5) indicates that
(47) V(z) = e%ﬂ(l—z),‘l/(z)’

from which the possible relationship between the present d; and the ¢, of Theorem
1 is easily obtained by equating the coefficients of 2’ for j = 0, 1, - - - .
We now proceed to prove these results rigorously.

THEOREM 3.
6)
(4.8) Hoap(t) = Zod,»am,-;x(t/p) (& = > bd),

where p is an arbitrary positive constant, and the d; (d; = djnan(p)) and the c;,
defined in Theorem 1, are related reciprocally by

w s (=37

(49) d] = @ ~ ————(] — l)! c,
Fl 1 2y\5—1
’ J— —ix2 (7" )
(49 ) Cji &~ (] — l)' dl .

Further, the series in (4.8) converges uniformly on every finite interval of t.
(ii)
1 24 _ . 2(1 — 2) :I
o[ -3 Dot = p/o) =0
1 {A(p/a,-)*[l — (1 — p/a)e ) = 3 d;z' (2] < min; |1 — p/aij™).
(iii) The d; satisfy the recursion relationship

do =TI (9/a9%,

j—1
dj = (2)7 2 hirdy,

(4.10)

4.11)
( ) 1,2’ ceey

.
It

where’
ho= 22 (1 =0b)(1 — p/ad),
B = 2 (1 — p/a)™ + mp2_ (bi/a) (1 — p/a)™", m =2,3,---.

7 It will be observed that in terms of the g, of (3.6), b1 = g1 — « while hn = gn(m =
2,3, ).

(4.12)
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Proor.
(i) We show first that the series in (4.8) is absolutely convergent by estab-
lishing an upper bound to |d;. We have
(2K )J—l

(4.13) laj| = & Z il

Again, from the explicit formula for ¢; in (3.2) and the inequality (2.8) (with
p: in the latter inequality replaced by b./a} and ¢, denoting, as before,
max; |1/a; — 1/p}),

R ACLE N

(4.14) |61] < ¢ —f‘(w—l! ’
where
(4.15) p=p(g + 32 bi/a).

On applying (4.14) in (4.13),

lmgww”iﬁéﬁ>1@$wé>
%zﬂm+ﬂ(UK é)

(4:16) = e I‘(ln) ]'
_ g DG+ 5) (et 3
0 T'(3n) J! )

Therefore, from Lemma 5, the series in (4.8) converges absolutely, and it follows
with the aid of (4.2) that the latter series may be expressed as an absolutely
convergent repeated series in the following manner:

idenHj;x(t/p) i:od i e (2"') Frioia(t/p)

j=0 r=0

(4.17) @ (1)
=™ Z 2 d; ZK. Fursivar(t/p).

J=0 r=0

The sum of the required series is thus equal to the sum of the convergent
double series

(4.18) ¢ ”Z_o d; n+2i+2r(t/p)1

which series is then equivalent to

(4.19) mz:o A ny2m(t/D),

where

(4.20) ) ( i =01,

8=0 S) 1’
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On substituting for d, from (4.9) in (4.20),
m § (__%K2)s-—l (lKZ)m—s
4.21 - = 2
(421) s s;o;(s—m m — 81
The coefficient of ¢; in (4.21) is
Zm: (—%KZ)S_I (%KZ)m_s =m—l (—%Kz)k (%K2)m—l—k
=t (s—=Dl (m—9)! i k! (m—1—k)
= (=3¢ + 3" /(m — D1,
i.e., the coefficient of ¢; in (4.21) is 1 for | = m and is zero for I = 0,1, ---,
m — 1. In other words, A, = ¢ , as required. [Formula (4.9") of (i) is proved
below.]

The uniform convergence of the series in (4.8) on every finite #-interval

follows from (4.16) and Lemma 5. In fact, the latter series is majorized by
2 IGn +9) (e + 36)
AR (D R
and this majorizing series converges uniformly by Lemma 5 on every finite
t-interval.

(ii) Denoting the left-hand member in (4.10) by ¥(z), it is easily verified
that ¥(z) is related to y(2) (the left-hand member in (3.4)) by (4.7). Equating
coefficients of 2z’ in (4.7) immediately yields (4.10).

The inverse relationship (4.9”) for the ¢; in terms of the d; is now readily
established by expressing ¢(2) in terms of ¥(z),

(4.22) ¥(2) = ¥ Py(p).

Equating coefficients of 2’ in (4.22) immediately yields (4.9’).
(iii) We have

(4.23) ¥'(z) = N(2)¥(z2),

where

n+2i;x(t/p);

N(2) =32 (1 — p/ad{ll — (1 — p/a)el™
— bill = 224 (1 = p/a)I1 = (1 = p/ai)el ™.
We obtain after some simplification
N®(0) = (d/d2)'N(2):mo
=13 {22 (1 —p/a)™ + (s + 1)pX (bi/a:) (1 — p/as)?},
s=1,2 -,

(4.24)

(4.25)

N(0) = 32° (1 — b)) (1 — p/ay).
Therefore, on differentiating (4.23) j — 1 times at z = 0 and replacing ¥ (0)
by s!d, . we obtain

il g ,
(4.26) jd; = Z(J r 1) NY(0) 0k, G=1,2,--,

r=0

which reduces to (4.11) and (4.12) with the aid of (4.25).
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ReEMARK. The series in (4.8) has been shown to converge uniformly on every
finite t-interval for each p > 0. Just as for the series in (3.1) and (3.36), the
domain of uniform convergence may be extended to the entire {-axis by suit-
ably restricting p. Thus, from (4.16) the series in (4.8) is majorized by

1 y J
a L MBED Y6t/
wherey = max; |1 — p/ad + > (b3/2)(1 + p/as). It follows from Lemma 4
that the series in (4.8) converges uniformly on the entire {-axis for each p satisfy-
ing max: [1 ~ p/ad + 22 (b%/2)(1 + p/as) < L.

Observe that uniform convergence over the extended f-axis implies that ¢ can
be replaced by -+ in (4.8), i.e., it implies that Y d; = 1. It will in fact be
shown subsequently (Section 5) that 2. d; = 1 if and only if p < 2a; .

4.1. A further explicit formula for the d; . On comparing (4.11) with (3.5), we
find that the d; satisfy the same recursion relationship as the ¢; , provided g, is
replaced by A, . It follows from (3.1.2) that

(hl/z)fl(h2/4)f2(h3/6)ff e (hj/zj)ff.

Ty42i g+ -+ 'il "Lz Lees 'Lj!

@11  d; = dp

In particular, the first few d’s are given by

dy = thd,,

dy = 1(hs + $h1)do,

d; = %(h:s + %hzhl + %hf)do;

de = §(hs + $hahy + Yha + thike + Zshi).

We remark finally that in spite of the undoubted theoretical interest of (4.1.1),
the d; (like the ¢;) are best computed recursively.

(4.1.2)

6. The nature and accuracy of the expansions. In this concluding Section, we
discuss briefly the significance of the scale factor p in the fundamental expansions
(3.1), (3.36) and (4.8), with special reference to the question whether, and under
what conditions, these expansions reduce to mixture representations, in the sense
of Robbins and Pitman [17], by suitable choice of p. Specifically, we pose the
problem?®: Is there a (non-empty) set of values of p for which

(5.1) ci(p) 20,  2eilp) =1,
and
(5.2) di(p) 20, 2 dip) = 1.

8 This problem can be posed in terms of characteristic functions as follows: It has been
shown previously that ¥ (z) and ¥ (2) are generating functions of the ¢; and d;, respectively.
We now require that ¥ (z) and ¥ (2) shall represent probability generating functions,i.e., that
(exp 77) and ¥ (exp ¢r) shall represent characteristic functions (r real). More precisely, we
wish to determine the sets of values of p for which the two latter functions are characteris-
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We propose also to obtain various upper bounds to the errors induced by using
the fundamental expansions in truncated form.

Let us first consider the following three special valuesof p:p = a1, p = @a,
p = a, , where g, is (as before) the geometric mean of the a; (@ = (@1 -+ Gn) Vmy
Now the n-dimensional spheres of radii (¢/ a.)t and (t/a;)* with centers at the
center of the ellipsoid D_ ai(z; — b:)*> S ¢ are inscribed and circumscribed
spheres, respectively, with respect to this ellipsoid. Therefore, since the prob-
ability contents of the latter spheres are Gn;«(t/a.) and Gn.x(t/a1) (as remarked
after Equ. (1.8)) while the probability content of the ellipsoid is H;a:n(t), we
have

(5-3) Gn;x(t/an) = Hn;A.b(t) = Gn;x(t/al) ("2 = Z bf)’

i.e., Gn.(t/a,) underestimates the required probabilfty content while G,;.(t/a1)
overestimates it (the equality signs in (5.3) hold, trivially, only when a; =
@ = -+ = a,). In particular, on setting x = 0, we have

(54:) Fn(t/an) é Hn;A.O(t) é Fn(t/al))

ie., Fu(t/a,) and F.(t/a;) underestimate and overestimate, respectively, the
probability content of the (centrally situated) ellipsoid. Now the first term in
the expansions (4.8) and (3.36) are do(p)Ga..(t/p) and co(p) Fo(t/p), respec-
tively, and it is of some interest to observe that the form of dy and ¢ is consist-
ent with these considerations, in the sense that do(a1), co(a) = 1 while

do(an), CO(an) = 1.

We remark that p = a; was used in [17] in developing a special case of Theorem 2.

Consider now the choice p = a, . It is easily verified that the volume-content
of the n-dimensional sphere with radius ( t/ag)* is equal to the volume-contents
of the ellipsoids . a:(z: — b:)® < ¢t and > ax: < t. Call the n-dimensional
sphere of radius (¢/ a,)* and with center at the center of the ellipsoid

Z ai(z; — b)) <S¢

the “equivalent” sphere (equivalent to the latter ellipsoid in the sense that the
centroids and volume-contents of the two bodies coincide). It appears reasonable
to approximate the probability content of the ellipsoid by the probability content
of the “equivalent” sphere, i.e., to approximate H ;s n(t) by Gr.(t/a,) and, con-
comitantly, to approximate Hna;o(t) by Fa(t/a,)®. It is of considerable in-

tic functions. In order to ensure boundedness and continuity of these functions the inequal-
ities |1 — p/a:| < 1,fors = 1, --+ , n, must be satisfied, and these inequalities are equiva-
lent to p < 2a; (as determined subsequently by other considerations). Subject to this
inequality, the required sets then contain precisely those values of p for which y(exp 1)
and ¥{exp i) are non-negative definite. (We appeal here to one of the possible sets of con-
ditions characterizing the class of characteristic functions, viz. Bochner’s theorem [9],
p. 207.) However, this characterization of the required sets, though compact, is of little
value in actually deriving the sets for specified a; and b: .

9 From the fact that the density in a spherical normal distribution decreases with dis-
tance from the center of the distribution it follows that H A 0(8) = Fa(t/a;) (see [12}).
This gives a sharper upper bound to Huae(f) than (5.4).
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terest that the form of dp in (4.8) and of ¢ in (3.36) is consistent with these
considerations, in the sense that dy(a,) = 1 and e;(a,) = 1 in these expansions.”
We remark that p = a, was used in [16] in developing a special case of Theorem 2.

One other special value of p, namely p = @, , where a, denotes the harmonic
mean of the a;(az* = D ai'/n) is of some interest. For this value of p, we find
in Theorem 2 that ¢; = 0, so that the first correcting term in the expansion of
H,.50(t) when only the first term, cy(ps) Fr(¢/pr), is used as an approximant
involves the x* distribution function with n + 4 (not n + 2) degrees of freedom.

We now consider the nature of our expansions from the point of view of
mixtures of distributions. Denote the sets of values of p for which the basic
expansions (3.1) and (3.36) of Theorems 1 and 2 are mixture representations
(in the sense of (5.1) and (5.2)) by C = Cna,p and Co = Cyr 4,0, respectively.
As a preliminary, we may note that p £ Co if p > a,, for with such a value of
p, @ > 0 with probability 1, and therefore, on referring to (3.37), the ¢; oscillate
in sign. (Indeed this statement may be strengthened by the assertion that
pzCoif p > a, since p > a, implies ¢; < 0(b = 0).)

For a mixture representation, the coefficients must (i) be non-negative and
(ii) sum to 1. From the form of the ¢, in (3.2), together with (2.9), we find that
(i) is satisfied if, and only if,

i 1y (2! 24—2r yr .
(5.5) ;0( 1) mE[L Q1=0, j=01,

As for (ii), consider the generating function ¥(2) on the left of (3.4). This func-
tion is regular and analytic within the circle of convergence,

o] < min: |1 — p/ai™

3

of its power series expansion as given on the right of (3.4). Therefore z = 1 may
be substituted in (3.4) if, and only if, the latter point is interior to the circle of
convergence, ie. 1 < min; |1 — p/a;"; and this inequality is satisfied if, and
only if,

(5.6) p < 2a.

Thus C is the intersection of the two sets (of p) defined by (5.5) and (5.6).
In particular, on setting b = 0 (for which L = 0), Cy is the intersection of the
set of p satisfying E[(—Q)] 2 0(j = 0, 1, - -+ ), which is equivalent to

(5.7) EQl =<0, j=1,8 -,

and the set (5.6).
From these considerations, it follows immediately that

(5.8) [p0<p=aeC, {(pi0 < p =} eChy.

10 Note also that ¢i(a;) = (#/2) (1 — a,/a) < 0, where @ is the harmonic mean of the
a: (cf., [16]), so that the second term is the expansion (3.36) when p = g, is non-positive.
This is consistent with the inequality in footnote 9.
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Forif 0 < p = a1, then @ = 0, and so each of the terms on the left of (5.5) is
non-negative, while (5.6) is, of course, satisfied trivially. The second part of
(5.8) is proved similarly. However, it is important to note that {p:0 < p £ ai}
is, in general, only a proper subset of C or of (o, i.e., there will, in general, be
values of p > a; which yield mixture representations. We shall exhibit this by
a specific example when b = 0. Choose p = @, and consider the special case
where » is even and the 1/a; are distributed symmetrically around 1/a, in the
sense that

(5.9) Gntepr — ai' = — (a7t — ai") (s =1,2,---n/2;neven).
Then by symmetry

EQ1=0 (G =1,8, - ;neven; 1/a; symmetri-

(5.10) cally distributed around 1/as ; p = as),

so that (5.7) is satisfied for p = a, with a symmetrical distribution of the 1/a, .
Moreover, (5.6) is easily seen to hold for p = a; . We have thus established the
result that when n is even and the 1/a; are distributed symmetrically around
the reciprocal of the harmonic mean of the a;, then p = a,(Z a1) yields a
mixture representation in (3.36)". Indeed, this result may be strengthened to
include values of p in the open interval (a:, ax). Thus, since

A(EQN) /op = (j/P)E( 2 =) Q]
>0, ] =13,

we find with the aid of (5.10) that (5.7) holds for a; < p < ax. Again, for
p > an, i < 0 whatever be the distribution of the 1/a; . Thus,

(5.11) Co = {p:0 < p £ an} (n even; 1/a; symmetrically
distributed around 1/a;).

In particular, for n = 2, 1/a; and 1/a, are necessarily distributed symmetrically
around a;' = (a1 + az)/(2a10a,), so that

(5.12) Co = {p:0 < p = 2a100/ (a1 + )} (n=2)

We have so far discussed the nature of the sets C and Cp . Similar considera-
tions are involved in the determination of the set of values of p, say D, D =
D..ap, for which (4.8) is a mixture representation. The nature of D will not
here be discussed in detail, but we shall content ourselves by pointing out that
it follows from (4.1.1) that b, = 0,s = 1,2, --- ,impliesd; = 0,5 = 0,1, --- .
Again, as before, D d; = 1if, and only if, p < 2a; . In other words, the set of
p for which b, = 0(s = 1,2, --+ ) and p < 2a; is a subset of D. As a conse-

quence of this result, we may note that if p < @, and if further

1 Clearly, a similar result holds for symmetrically distributed 1/a; when n is odd and

ap = Gny1)i2 -
12 These two inequalities ensure that 5, 2 0,s = 1,2, --- .
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then we have a mixture representation in (4.8). Formally, the intersection of
the two sets defined by the inequalities p < a;and 3 (1 — b}) (1 — p/a;) = 0
is a subset of D.

We now obtain upper bounds for the error after & terms in the fundamental
expansions of Theorems 1, 2 and 3. First, for a value of p which yields a mixture
representation,

k—1

0= Hﬂ;A.b(t) - Zci(p)FnHj(t/p)
(5.13) w 0 -1
L = o /) S (1 > cj(p))'an:(t/P) (p e Cunn),

and similarly*®

0= Hﬂ;A,b(t) - ; di(P)Gn+2j:x(t/p)
(5.14) iy
< (1 5> d,-<p>)-Gn+m(t/p) (9 ¢ Duas).

Clearly, the last two inequalities are weakened (cf., [17]) if Fni2(4/p) and
G2 (t/p) are replaced by 1. The modified inequalities are, however, uniform
with respect to &.

Alternative upper bounds which are, in general, considerably sharper than
those provided by (5.13) and (5.14) may be derived from Lemmas 4 and 5. On
referring to these lemmas, and using the upper bounds for |¢;| and |d,| given
previously (formulae (4.14) and (4.16) ), we obtain ‘
- 3n + j)

22 ¢i(p)Farai(t/p)| < CO(P);; F(F(%n)

i
% !

(5.15) rGn + k) 4
~ < alp): _ZF(_%—n—)__T T

(1= p)y Pl —p)/pl, 0w =1,
and

5 4o Guralt/p)| 5 dalp)- L IR AD L b 6 )

13 In the derivation of (5.13) and (5.14) the monotonic decreasing character with respect
to N of the functions Fy(-) and Gx;«(-) has been used. That Gy;.(-) is a decreasing fune-
tion in N follows perhaps most simply from the following considerations: Gy.rx(y) and
Gw,«(y) are the probability measures of the spheres, in Euclidean spaces of dimensionality
N + r and N, respectively, defined by > oi"(z, — x)? < y and D1y (@ — x)? Sy,
where, without any loss in generality, xs =0, s =N +1,:--, N+ 7,2 i1 ks = &*
and the z,,8 = 1, -+ , N + r, are independent normal variables with zero means and unit
variances. However, Gy,«(y) may also be interpreted as the probability measure of the
cylinder set > 2Ly (z; — k)? £ y in (N + r)-dimensional Euclidean space. The required
result follows on noting that the (N + r)-sphere is a subset of the cylinder.
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(5.16) < a5 TR AR (et 3

(1 — - %K2)~qn+k)Fn+2k[(1 — u — ¥/l
0<u+ <1,

where u = max; |1 — p/ai + p2. bi/(2a:;) (Equ. 4.15) and &= D bi.Asa
special (but important) case, consider p < a1, b = 0. (We recall that every
p £ a, gives a mixture representation when b = 0.) Here p = 1 — p/aa, and
the right-hand member of (5.15) reduces to

] 1 — 1)
II (a,> TGn + k) (a/p — 1) Fasas(t/an).

a; r'(3n) k!
This expression is minimized subject to p < @, when p = a;. Hence

a.\! TGn + k) (an/a — 1)*

HoweYer, it should be noted that the upper bound can be considerably sharpened
by 1sulta\,bl;a choice of p > a;. Consider, for example, the case where p =
(at™ + az")/2. This value of p corresponds to the point at which the graph of
p = max; |l — p/a| against p changes slope (u is equal to 1 — p/a. for
0<p=<2/(a + a7)

and to p/a; — 1 for p = 2/(a]* + a3')), and does not, in general, give a mix-
ture representation for Hn,s o¢(t). The inequality (5.15) reduces for this value
of p, say p = po, to

L]

; ¢ (o) Fay2i(t/ Do)

L]

; ¢i(@1) Fryoi(t/a1)

(5.17)

i

a.\} TGn + k) (an/a — 1)*
é H (‘E:) ) I‘(%n) 2kk! Fn+2k(t/an)

(po = 2a1an/(al + an), b = 0),

i.e., on comparing (5.18) with (5.17), the effect of choosing a scale factor p, rather
than a; is to reduce the upper bound for the error after k terms by the factor
27* This highlights the fact that from a numerical point of view it is not al-
ways advisable to choose a value of p which yields a mixture representation.
We have so far discussed the accuracy of the fundamental expansions for
small or moderate p by obtaining upper bounds for the truncation errors in these
expansions. We now obtain upper bounds for the truncation errors when p is
large: specifically, p > @, in Theorem 1, and p 2 @ in Theorem 2. (We recall
that every p > a, fails to give a mixture representation when b = 0.) At the
same time, this will suggest that p,, which is intermediate in value between
a: and a, , is a highly efficient choice for p in the expansion of Theorem 2. Since

(5.18)

9° 2 2,9 0 2
C’s(T) =9 e—;or —Lr __ e;L .9 4 1QUr+L/Q)

(5.19) ars ars
= O (— )@ HIQUr + L/@K T,
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we have (through the general mean-value theorem)
8—1

(520) S = S (1) QHA(L/Q) Tm! +oue) ;_' 0<¢<r

m
The fundamental expansion of Theorem 1 was derived from (3.10) after repre-
senting exp (—Qr’/2 — rL) as an infinite power series (3.13). If, then, the
polynomial of degree s — 1 in r on the right of (5.20) is used in (3.10) as an
approximant for exp (—Qr’/2 — rL), the error is

L)
247 () 17 [T MIGUOTE T dr,
Vo

or,"* on setting s = 2k and replacing m in (5.20) by 2j,

k=1

Hpp0(t) — Z ¢;(p) Fayai(t/p)
(521) ’ 1

1]
= 94 b obnp 1,y —4r2/p n-+2k—1
= 2472 R () |7 fo MIC(e)]e 2 g,

The required upper bound is now obtained by establishing an upper bound
for M[Cx(¢)] in (5.21). To achieve this, we establish an upper bound for each
of the three terms on the right of (5.19) with s = 2k. First, from Lemma 2,

(5.22) e < esz(b?/aou/a.-—up)’ P> an.
Next, for &k > 0,

(5.23) ‘ Q < (1/a — 1/p)*, P> .
Finally, from the identity™® (see e.g., [8], p. 157)

Hu(ne™ = (=D [ a%e™-(2m) " do,

we have (on replacing ¢*™ by 1)
[Ha(n)e ™| < (2k) 1/ (2')  real,
and, therefore, since @ > 0 for p > a,,

(5.24) |HQH(¢ + L/Q)1e ¢+ < (2k) 1/ (2% , P> an.

14 Because of (3.18), the approximation of exp(—Qr?/2 — rL) by the polynomial of
degree s — 1 (= 2k — 1) yields only k terms, namely, S b ¢;()Fas2i(t/p), after the k
zero terms have been deleted.

15 This identity follows from the well-known formula

® (2m) exp(—22/2 4+ inz) dz = exp(—»%/2)

(itself a particular case of (3.25), vis8 = 1, 7 = —in) by differentiating 2k times with re-
gpect to 5.
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On applying the inequalities (5.22), (5.23) and (5.24) in (5.19) with s = 2k,
we obtain

(5.25)  |M[Cu(§)]] < BOHe0a1D (170 _ 1/p)E.(20) 1/ (2%1), p > an.

The use of (5.25) in (5.21) yields (with the aid of (3.23)) the required upper
bound to the error after k terms in the form

k—1

HMMQ—Z%@EWWM
(5.26)

<¢ 120 ;b3 (p—a;) H( 1) Pn(, ;i;)k) (p/alk!— 1) Fria(t/D), P> @a.

Examination of the method of derivation of (5.26) shows that if b = 0, then
the condition p > a, may be strengthened to p = a. . Thus (5.26) gives as a
special case
k—1

Haao(t) — Z ¢i(D) Fry2i(t/D) {

<H( i) I‘n&lj;) k) (p/alkl— 1)* Funt/p), p2an

Now it may be shown that the right-hand member in this inequality is an
increasing function in p, so that the latter expression is minimized, subject to
p = a,, when p = a,. We then have

k—1

Hono(t) — Zoi ¢;(@n) Fay2i(t/an)

<HC§ n 4B (/e =1 g,/

On comparing (5.28) with (5.17), we find that so far as can be judged from
the upper bounds given by these two inequalities no gain or loss in accuracy is
obtained in using p = a, rather than p = a;, provided b = 0. On the other
hand, recall that when b = 0, p = po = 2a:a,/(a: + a,) gives much greater
accuracy than p = a; (formula (5.18)). Thus the choice of p is crucial from the
point of view of accuracy. In the absence of a more detailed analysis, the above
discussion suggests that p = p,, which is intermediate between @, and a, , is a
highly efficient choice when b = 0 and may be near the optimal value. We have
in fact shown that p = pois certainly a superior choice than any value of p < a, or
2 a,whenb = 0. /

(5.27)

(5.28)
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