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PROBABILITY DENSITIES WITH GIVEN MARGINALS!

By S. KuLLBACK

The George Washington University

1. Introduction. Ireland and Kullback (1968) considered the problem of es-
timating contingency tables with given marginals on the basis of an observed
contingency table, by minimizing a diserimination information value. It was
noted that the procedures they described for the case of discrete distributions
may also be extended to probability densities. It is the purpose of this paper to
carry out the appropriate extension. It will be noted that although the proce-
dures and results are developed in detail for bivariate densities, as a matter of
convenience, there is nothing inherent in the techniques restricting the results
to bivariate densities, and indeed in Section 3 are given appropriate results for a
four-variate density.

The following is the formulation of the problem to be considered. Let = (z, )
be some bivariate probability density, and required the bivariate probability
density f(z, y) with given marginal probability densities g(z), h(y), such that

(1.1) I(f;m) = [ [f(z,y) W f(z, y)/x (2, y) de dy

is a minimum over all bivariate probability densities with the given marginals.
(See the discussion in Kullback [(1959), Chapter 5] and that in Good (1963),
(1966) of a principle of minimum discriminability.) Note that if I(f; =) < o
then f(z, y) determines a probability measure which is absolutely continuous
with respect to the probability measure determined by =(z, y) [Kullback,
(1959), p. 5].

In order to apply the minimum discrimination information theorem [Kullback
and Khairat, (1966)] to the problem formulated above define

(1'2) Tx(f, 77) = 6(:[ - g); TZJ(E} 77) = B(y - 77)1
where § is the Dirac delta-function [Rényi, (1962), p. 298] so that

(1.3) [ [ et n)f (& n) didn

= [z — )f(& n)dedn = [o(x — £)g(£) dt = g().
(14) [ [ Ty(& )f (& n) dedn

= [[o(y — n)f(& n)dedn = [8(y — m)h(n)dn = h(y).

By the minimum discrimination information theorem, the minimizing func-
tion is
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(1.5) f*(z,y) = exp{[r(&)s(z — &) d + [ o(n)6(y — n) dn}m(z, ) [M (r,0)]"
= exp {r(z) + o(y)}r(z, y)[M (1, )]
where

(1.6) M(r,0)

I

[ Jexp{[r(8)s(z — &) dt+ [ a(n)6(y — ) dn}w(,y) dzdy
= [ [exp {r(2) + o(y)}n(z, y) dzdy,

and 7, o are functions to be determined so that the marginal requirements are
satisfied.

By setting exp (7(z)) = a(x), exp (¢(y) = b(y) and normalizing so that
M(r,s) = 1, the minimizing density is

(L.7) (e, y) = a@)b(y)r(z, y),
where a(z) and b(y) are functions to be determined such that
(18) g(z) = a(z) [b(y)n(z, y)dy,  h(y) = b(y) [a(z)n(z, y) de,
[ Ja@)b(y)n(z, y) dzdy = 1.
The minimum value of (1.1) is
(1L9) I(55m) = [ [7 = 9) Wf* (e, y)/n(z, y) dzdy
— [g(z) n a(2) de + [ h(y) In b(y) dy.

A result not explicitly stated in Kullback [(1959), pp. 36-39] or [Kullback
and Khairat, (1966)] but that easily follows (or that may be shown directly in
this case) is

(1.10) I(f;m) = IG5 m) + 1 7%),

where f is any density with the given marginals and f* is of the form in (1.7).
Since the terms in (1.10), as discrimination information numbers, are =0
[Kullback, (1959), pp. 14-18], it is seen that

(1.11) I(f;m) z I(f* )
with equality, if and only if,

(1.12) I(f; 1) = 05
that is, if and only if [Kullback, (1959), pp. 14-18],

(1.13) fx,y) =fHz,y) ae.

Hence, it will suffice to exhibit a density of the form of (1.7) and having the given
marginals to have the minimizing density. In the next section in equations
(2.18)—(2.23) is given a direct proof of the foregoing assertion as a matter of
interest. ’

2. Iterative procedure. An iterative procedure alternately satisfying one and
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then the other marginal for the determination of f*(z, y) satisfying (1.7) and
(1.8) will now be given and it will be shown that it converges. Iterated func-
tions and their associated values will be indicated by subscripts. The iteration
is given by

(2.1)  fon1(2, ¥) = g(2)[g2a2(2)] Fona(z,¥),
Fan(2, ¥) = WY [han-1(P)] fonalz,y), n =12, fo(z,y) = n(z,y).
It is seen from (2.1) that
(2.2)  gama(z) = g(x),  haw(y) = h(y),
f2n—l<x; y) = an(x)bn(y)"r(x; y)y f2n(x7 ?/) = an<x)bn+l(y>7<x; y);

so that all the iterated functions are of the form (1.7) also.
To show convergence, consider

IG5 fan) = [ J£*(z, v) In (@, ¥)[fonla, ¥)] " dedy
(23) = [ [ v) nf (@, y)[fanalz, ] dz dy
— [ h(y) In Ay lhena(y)] ™ dy
= I(f*; fonu1) — I(h; hana);
and
I(*; o) = J [z, 9) Inf* (2, ) anna(z, )] dady
[ [ ¥, y) nf* (@, y)fen(m, )] " dudy
— [9(2) In g(2)[gen(2)] ' dz

(2.4)

= I(f*; fon) — 1(g; gon)-

Since the discrimination information values in (2.3) and (2.4) are =0 [Kull-
back, (1959), pp. 14-18], (2.3) implies

(2.5) I(f*; fon) < I(f*; fana)
with equality, if and only if,

(2.6) I(h; hear) = 0;

that is, if and only if [Kullback, (1959), pp. 14-18],
(2.7) h(y) = haa(y) ae.,
and (2.4) implies ’

(2.8) I(f*; fanrr) S I(F*; fon)

with equality, if and only if,
(2.9) I(g; g2) = 0;
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that is, if and only if [Kullback, (1959), pp. 14-18],
(2.10) g(x) = go(z) a.e.
It is clear that (2.5) and (2.8) imply the sequence
(211) I(f*5H) 2 IG5 6) 2 -+ 2 I("5 fanr) 2 (F5 f20) 2 -+ 2 0.

Let us first consider the case when there is equality someplace in (2.11), say

(2.12) I(f*; fona) = I(f*; fn),
then from (2.5), (2.6), and (2.7), (2.12) holds, if and only if,
(2.13) h(y) = hawa(y) aee..

From (2.1), (2.2) it then follows that

(2.14)  fou(=,y) = foua(z,y) ae,  gau(z) = guma(z) = g(z) ae,
which implies

(2.15) foi1 (2, ) = fou(2,y) a6, heaa(y) = haa(y) = h(y) a.e.

and

(2.16) I(f*; fana) = I(f%; fn),
and so on, that is, equality thereafter, hence
(2.17) gy(z) = g(x) ae.,  hv(y) = h(y) ae,

fN(xy y) = an(x)bn(y)’lr(x, y), N = 2n — 1.

It will now be shown that fy(z, y) = f*(z, y) a.e. (Note the last sentence of
Section 1.) Since f*(z, y) minimizes (1.1) for all densities with marginals g(z)
and h(y),

[ [ fx(z, y) mfn(z, v)lx(z, y)| " da dy

(2.18) 2 [ [ =, ) In (=, y)lr(z, )] dedy
= [ [ v) In ¥z, y)fx(z, v)] " dzdy
+ [ [, y) In fx(z, y)lr(z, )] dz dy.

But Infy(z, y)[r(z, )] = In a,(z) + In b,(y), so that

[ iz, v) In fu(z, PIr(z, y)] " dedy
(2.19) - = [g(@) In au(z) dz + [k(y) In ba(y) dy
= [ [, v) In fx(z, yr(z, y)] " do dy,
and (2.18) then implies ,
(220) 0= [ [f* =z, y) Inf* (@, )fn(z, v)] " dedy = I(F*; fw).
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Since I(f*; fv) is a discrimination information value [Kullback, (1959), pp.
14-18],

(2.21) I(f*; fx) 2 0;

hence,

(2.22) J 17, 9) Inf* (e, y)fw(z, y)] " dzdy = 0

and

(2.23) @, y) = fu(z,y) ae, Nzon— L

Note that (2.22) implies that the sequence (2.11) reaches a zero value and
stays at that value thereafter.

Now let us consider the case when there is no equality in (2.11). Since (2.11)
is a monotonic decreasing sequence of nonnegative numbers bounded below it
converges to a finite value asn — «, hence

(2:24) I(f*; fan1) — I(f*5 fon) = I(; hans) — 0,
(2.25) IG5 fan) — I(f*; fonsa) = 1(g; g2a) — 0.
It may be shown [Kullback, (1967)] that (2.24) and (2.25) imply
(2.26) [ lhana(y) — R dy—0, [ lgm(z) — g(a)|dz—0
asm — o, or using (2.2),
(2.27) [ |hw(y) — R(¥)|dy — 0,  [lgn(zx) — g(x)|dz — 0, N — =.
Hence, using (2.1), as n — o,
I [ fon(@, ¥) = fonca(z, 9)| da dy
(2.28) = [ [ fona(z, ¥)|R(y) — han-1(y) |[han-1(y)] " da dy
= [1h(y) — hana(y)|dy — O,
J S fonia(, y) — fon(z, )| dz dy
(2.29) = [ [ fan(@, 9)lg(2) — gan(@)lg20(2)] " d ly
= [lg(z) = ga(@)|dz — 0,
and for any m, as N — «,
J S fwin(z, 9) — fr(z, y)| dady
(2.30) < [ [ fwin(@, 9) = frima(z, y)| dedy
+ S S fwina(®, y) = frana(z, y)|dedy + -
+ [ J (@ y) — fule, y)| dedy — 0,

so that there exists a function which we write as f.(z, ) defined uniquely a.e.
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such that [Titchmarsh, (1939), pp. 386-389]
(2.31) J vz, y) = fulz, p)|dzdy — 0, N — w.
Since, as N — o,
(232) [lg(e) — gu(@)|dz = [lg(z) — gn(z)|da
+ Jlgw(@) — gu(2) |dz — 0,
and
(233) [I(y) — ha(y)ldy < [|h(y) — hu(y)|dy
+ [ 1h(y) = ha(y) | dy — 0;
it follows that [Titchmarsh, (1939), pp. 386-389]

(2.34) Jlo@) = gu(@)| dz = 0,  g(z) = gulz) ae,
(2.35) JIh(@) = ha(®)|dy = 0,  h(y) = ha(y) ace..
It may be shown as before that f,.(z, y) = f*(z, y) a.e..

3. Remarks. It should be clear that the formulation and discussion in terms of
bivariate probability densities was a matter of convenience rather than of a
limitation imposed by the techniques. To avoid a possible cumbersome nota-
tional problem for the general case, results will be stated for four-variate prob-
ability densities assuming different marginals given, and which illustrate the
general results. Although the same symbol will be used for the probability den-
sity and its marginals, this does not imply a common functional form and a
single integral sign will be used for multiple integrals.

Let w(21, 22, 25, x4) be some four-variate probability density and required
the four-variate probability density f(x:, =2, 5, 4) with given marginal prob-
ability densities

(31) f(xl)7f(x2),f(x3),f(x4)y
such that
(32) I(f;m) = [f(z1, 2, x5, x4) In f(z1, Ty, %3, Ta)[m (@1, @2, T3, 24)]7

-dxy dzy dxs day

is a minimum for all four-variate probability densities with the given marginals.
The minimum is attained for

It

fl*(ﬂh , La, T3, L) r(xl)s(x2)t(x3)u(x4)1r(x1 , Ta, Tz, Xa),

(3.3) f(x) = r(x) fs(xg)t(xg)u(x4)7r(x1 , T2, X3, T4) dxadasday,

,

Ff(@s) = u(@s) [ r(z:)s(ae)t(zs)w(ay, 2a , T3, T4) dxy das dacs .
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The iterative solution of the system (3.3) cycles through
(84) funn(@1, 22,3, 24) = F@) fan(x)] fan(2r, T2, T3, T4), + -,

Fonia(@1, Ta, T3, Ta) = [(2a) [fants(@a)] Fansa(@1, T2, 73, @),

and the proof of the convergence follows as in the bivariate case.
If the given marginals are

(35) f(xly x2)7 f(xl, x3)7 f(xly x4)) f(x2y x3)) f(x27 .’134), f(x37 x‘i),
then

f2*(xl y X2y XT3, x4)
= r(xy,2:)8(x1, 23)t (21, T)U (T2, T3)
(22, Ta)w(@s , Ta)w (21, Ta, T3, Ta),

r(xy, o) fs(xl , z3)t(x1, za)u(ze, 23)

(3.6) f(z1, 72)

I

(2, T)W(Tz, To)T(L1, T2, Tz, Ta) dTs dy,

f(xs, 24) = w(xs, xa) fr(xl , %) -+ 0(x2, )T (21, T2, Tz, Ts) dryds.
The iterative solution of the system (3.6) cycles through
(37)  forr(@, B, 3, 3) = fl@r, 22)[fon(@r, 22)] fonlz1, 22, 25, @), -+
Jonro(21, T2, T3, 26) = F(2s, 2) fonss (@5, )] fonss (@1, T2, s, T4).
If the given marginals are
(3.8) f(xy, @2, 23), f(@1, T2, Ta), f(@1, T3, Ta), f(22, X5, Ta)
then
fo¥ (@1, 22, T3, 0) = 1(21, T2, 3)s(x1, 22, T)t(21, T3, T4)
~u(y, T3, za)w(21, T2, T3, Xa),
flzy, 22, 23) = 7(x1, X2, X3) fs(xl, 22, To)bt(21, T3, T4)

(3.9) cu(xy, x5, 2)w(21, T2, T3, Ty) A2,

F(@a, x5, %) = (@, x5, 2a) [ (21, 22, Ts)8(21, T2, T4)
t(x1, 23, o) (X1, T2, XT3, T4) ATy .

The iterative solution of the system (3.9) cycles through
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Sin1(21, T2, T3, 7)) = f(21, 22, 23) [fin (21, 2, xa)]—lfm(xx , T2, T3, Ta),
(3.10) Tty
Jinta(®1, 32, %3, 7)) = f(@2, 23, T4)[finss(2, 25, 334)]-1
Sanga(21, T2, s, T4).

The results for other possible combinations of given marginals are left to the
reader.
Since (3.8) = (3.5) = (3.1), it is clear that

(3.11) IS m) =z Ih% =) 2 IG™ =) 2 0.
Applying the relation (1.10), it follows that
I ) = IR" =) + IS LY,
(3.12) IGR* m) = IR o) + IR" A%),
I(fs*; @) = IS5 ) + IG5 A5),
If*5 A% = IS £Y) + TGS /).

If in (1.7) w(x,y) = w(x)w(y) and in (3.3) w(x1, 22, 23, 24) = w(x1)7(T2) -
w(xs)m(24), then it readily follows that in (1.7) f*(z, y) = g(z)h(y) and in
(3.3) fi* (1, @2, 3, x4) = f(21)f(22)f (25)f (z4), that is, if the 7 density is a prod-
uct of its marginals (independence) the value of the f;* density does not depend
on the 7 density and is the product of the given marginals.
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