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Abstract

The primary goal of multivariate statistical process peréoroe
monitoring is to identify deviations from normal operation within

a manufacturing process. The basis of the monitoring schemes is
historical data that has been collected when the process is running
under normal operating conditions. This data is then used to
establish confidence bounds to detect the onset of process
deviations. In contrast to the traditional approaches that are based
on the Gaussian assumption, this paper proposes the application of
the infinite Gaussian mixture model (GMM) for the calculation of
the confidence bounds thereby relaxing the previous restrictive
assumption. The infinite GMM is a special case of Dirichlet
process mixtures, and is introduced as the limit of the finite GMM
that is when the number of mixtures tends to infinity. Based on the
estimation of the probability density function, via the infinite
GMM, the confidence bounds are calculated using the bootstrap
algorithm. The proposed methodology is demonstrated through its
application to a simulated continuous chemical process, and a
batch semiconductor manufacturing process.

Key words:. Dirichlet process mixtures, Infinite Gaussian mixture madekkov chain
Monte Carlo, Probability density estimation, Multivariate sta@giprocess monitoring.

1 Introduction

The on-line monitoring of the performance of a manufacturing presesssential for

ensuring process safety and the delivery of high quality, constedtict. With the

rapid development of automatic data collection systems, thetieffeand efficient

utilisation of the large amount of data to characterise the gsobas become of
increasing importance to a wide range of manufacturing indsstin recent years,
multivariate statistical projection approaches, such as princgraponent analysis
(PCA) and partial least squares (PLS), have been adoptedractexievant process
information, and to attain an enhanced understanding of process behaviour ¢virt

1999; Qin, 2003).



The advantage of PCA and PLS is that as a consequence of the high correlation present
between a number of the process measurements, the dimensiohahtey original
problem can be reduced whilst retaining the information inhereminvihe data.
Statistical process monitoring representations built on the lowler tatent variables
are observed to be more reliable and robust (Martin et al.,1999; Qin BD@aylition,
by removing those latent variables which only explain a smaikepésige of the process
variability, PCA and PLS can effectively remove the procesasurement noise. In
practice PLS is a more appropriate tool for describing theepsooutputs whilst PCA is
applicable where it is the process itself, and its behaviour, ishatf interest.
Additionally, in practice, response variables are usually medsuff-line and thus a
time delay is incurred before they become available for irausi the monitoring
scheme, and thus, unless inferential measurement is implement8dis Riot an
appropriate tool for process performance monitoring. For the two staskes
described in this paper, the response variables are not availaltierarg] the focus of
this paper is PCA.

Consider the case whexdata points{z,,n=1---,N }are collected when the process
IS running under normal operating conditions (NOC) ana |elbe a vector consisting

of D-dimensional process variables. Typically the data will be pregssed to zero
mean and unit standard deviation on each dimension. The first step iNsPGA
compute the sample covariance matfx,of orderDxD. The eigenvectors; and
eigenvaluesy; of S are then calculated € 1, ...,D). By retaining those eigenvectors
corresponding to theg largest eigenvalues, tlgedimensional PCA score vectorts,,
are calculated through the linear projection of the original datatbe space spanned
by theq eigenvectorst, = U;zn, whereU, =(u,,...,u,). Therefore the original data
can be represented as a linear combination of the scores plus a residuakyector,

z,=U,t, +e, 1)

Consequently normal process behaviour can be characterised by ttloepfinscipal
components, which capture the main sources of data variability.

In process performance monitoring, the next step is to definetfiedence bounds, i.e.
the thresholds that determine the normal operating region for tAeréjftesentation
determined from the process data. Traditionally two metricsaoeilated to monitor

the behaviour of a process, Hotelling$and the squared prediction error (SPE).
Hotelling’s T? is defined as the sum of the normalized squared scatesitTA™t |
where A is a diagonal matrix comprising théargest eigenvalues. The SPE is given by
r. =ele, . Assuming the PCA scores follow a Gaussian distribution, the conéidenc

bounds can be established for Hotellinf’s(Hotelling, 1947), and the SPE (Jackson
and Mudholkar 1979).

However the assumption that the scores are Gaussian distributedaltidating the
confidence bounds may be an invalid assumption particularly wheathésdollected



from a complex manufacturing process. For example, when non-linegacton
techniques are used to characterise the process (Shao et al\Wil968;et al., 1999),
the resulting distribution of the latent variables will typicaligt be multivariate
Gaussian. To address this issue, a number of techniques have been propstsedti®
the probability distribution function (pdf) of the PCA scores diggétlr example kernel
density estimation (KDE) (Martin and Morris, 1996), where it wlaarly shown that
the PCA scores did not follow a Gaussian distribution. Martin and M¢t996)
focussed on bivariate monitoring plots since KDE is more chahgrtgiimplement in
higher dimensional space due to the so-cati@de of dimensionality phenomenon.
That is, with increasing dimensionality, the data points become rspaesely
distributed in the data space. A nhumber of semi-parametric models have beendoropose
to alleviate this problem, for example, wavelet based densitmastn (Safavi et al.,
1997), and the Gaussian mixture model (GMM) (Choi et al., 2004; Thisaenz005).

A second issue is that two separate metrics, Hotelliffgad SPE, are required to
monitor the performance of a process. In practice a heuristiboohds adopted,
whereby the operation of the process is observed to have changed from noresd proc
operation if either Hotelling’sT? or the SPE metric moves outside the confidence
bounds. A number of techniques have been proposed to combine the two metrics into a
unified statistic, for example through a weighted sum of the tetoics (Al-Alawi et al.,

2005), and through kernel density estimation (Chen et al., 2004). More impgritant
practice a single monitoring metric will reduce the work load of plant opsrasathey

will only be exposed to one monitoring chart. This is crucial fewtfder acceptance of
statistical process monitoring techniques in industry.

This paper proposes the application of the infinite Gaussian mixagelfiGMM) for

the estimation of the probability density function for Hotellintfsand the SPE. By
increasing the number of mixtures in the GMM to infinity, t@MM removes the
obstacle of selecting the number of mixtures, which is a seakiwith respect to the
applicability of the methodology. In addition, rather than summarishe PCA
representation through two metrics, Hotelling?sand the SPE, the IGMM is capable of
estimating the joint probability distribution of the PCA scores hrddg-SPE (i.e. the

pdf of ag+1 dimensional vectoft,,log(r,))". By adopting this approach, a unified

likelihood based statistic can be constructed for process perfoentaonitoring.
Finally after the probability density function has been estim#ted;onfidence bounds
for the unified likelihood based statistic are identified usindptastrap. The proposed
approach is demonstrated through its application for the monitoringsohaated
continuous chemical process, and a batch semiconductor manufacturing process.

2 Infinite Gaussian mixture model

This section introduces the infinite Gaussian mixture model whisthisequently used
as a tool to estimate the joint pdf of the PCA scores antb¢a8PE, that have been
calculated from normal process operating data. The inf@l®1 belongs to the family

1 IGMM is not suitable to estimate the pdf of norgative random variables directly, such as the SPE.
Hence the logarithm operator is used to transféwenIPE onto the whole real axis.



of Dirichlet process mixtures (Blackwell and MacQueen, 19&8g#son, 1973), and
can be derived in a number of different ways. A comprehensive disco$sibernative
perspectives on the Dirichlet process mixtures can be found int &&H2004). Within
this paper, the concept is introduced through the finite Gaussian enmtwdel, whose
mixing weight is given by a Dirichlet process prior. The inénGaussian mixture
model is then derived by demonstrating that it is basicallysthetion where the
number of mixtures tends to infinity. The inference of the infiGitdM parameters is
implemented using Markov chain Monte Carlo (MCMC) methods.

2.1 Finite Gaussian mixture model

The probability distribution function of the datacan be modelled by a finite mixture
of Gaussian distributions withcomponents:

k
p(x|p,t,m) = 2 TGy, 1) @

=

wherep ={z,,---, 14 } t={r,,---,1,} andn ={rm,---, 77, } are the means, precisions
(inverse variances) and mixing weights (which must be positive andtswnity),
respectively. For notational simplicity, the data are assumeddodb&. The extension
to the multivariate case is presented in Appendix B.

Given a set of training data withobservationsx ={x,,---, X, jthe classical approach

to estimating the Gaussian mixture model parametprs, ), is to maximize the
likelihood using the expectation-maximization (EM) algorithm ([pster et al., 1977).
The EM algorithm guarantees convergence to a local maximum, with thy gfidhe
maximum being heavily dependant on the random initialization of theritéig.
Alternatively, a Bayesian approach can be used to combine theligtrdvution for the
parameters and the likelihood, resulting in a joint posterior distribution:

(e, 7,7 | x) U p(p,7,7) p(X | 1, 7, 7) (3)

However the joint posterior takes a highly complicated form. Thissgenerally not
feasible to perform any analytical inference based on the gimsterior distribution.
MCMC approaches have typically been used to calculate thepjostérior and of the
approaches proposed in the literature, Gibbs sampling is suitablextorermodels. To
generate samples from the posterior distributions, Gibbs sampfidgtas each
parameter (or a group of parameters) in turn from its conditional posteritodtisin.

The rest of this section focuses on the definition of the priors ardkthetion of the
conditional posteriors for the GMM parameters. To facilitatedégrevation, the latent
indicator variablec ={c,,---,c, }is introduced to identify that a specific data point,

belongs to mixture componemt, The approach is based primarily on the formulation
proposed in Rasmussen (2000).



Conditional posterior distribution of the component means

The mean of each mixture component is given a Gaussian prior:
p(u; 1A, y) ~G(4 y™), whereX and y are hyper-parameters that are common to all

components. The conditional posterior distribution /4 is calculated by multiplying
the prior, p(4; | A,y), by the likelihood (Eqg. (2)), resulting in a Gaassdistribution:

XN.7.+Ay 1
J ] ] (4)

lex,t A py)~G ,
P(4; e X7, A4 )) [ N7 +y Nz +y
wherex; andN; are the mean and number of data points belongingtponent,

respectively. The selection and updating of theemgarameters, including those
defined in the subsequent sub-sections for the ocaemt precisions and the mixing
weights, is discussed in Appendix A.

Conditional posterior distribution of the component precisions

Each component precision (inverse variance) is rgive Gamma prior with
hyper-parameters 3 and w: p(7;|B,w)~Ga(s, w0 rj/”z_l exptr,afB12) .
Similarly the conditional posterior fa is attained by taking the product of the prior,
p(7; | B,w), and the likelihood, resulting in a Gamma distribuot

(Y, 06— )]
| | (5)
|_ B+N; _| J

p(rj |C’Xnujaﬁ,a))~Gatﬁ+Nj’

Conditional posterior distribution of the mixing weights

The inference of the mixing weights is more complean the other two parameters.
The mixing weights are given symmetric Dirichleiops with concentration parameter
a/k:

o(7%,,+-, 71, | @) ~ Dirichlet(a /K,---,a k) (6)

Utilising the definition of the indicator variabléne inference of the mixing weights can
be indirectly realized through the inference of ih@cators, whose joint conditional
distribution is given by:

k
P, .Cy | 7L ) =[] 77} (7)
j=1



By integrating out the mixing weights as a resdltle properties of the Dirichlet
integral (Ferguson, 1973), the prior for the intlica is only dependent an

kK T(N, 1k
B(G, onrcy @) =@ TN +alk)

=T (8)
(N+a) L) r(ark)

wherel (.) is the standard Gamma function. The conditiqgmalr for a single indicator,
given all the other indicators, is obtained asofol:

N, +alk
c,=jlc,a)=—"1—— 9
P, =l @)= )

wherec_, ={c,,*--,C,,Cp.1,,Cy 1 @and N_ ;is the number of data points, excluding
Xn, Which belongs to mixtur¢. The likelihood ofx, belonging to componertis:
p(X, 1Cy=J, 4, 7,)=G(u;, 7Y 01 expt1,(x, - 4;)*/2) . Calculating the
product of the prior and the likelihood, the coraitl posterior for eacty, is given by:

N_,; +alk .

P(C, = J1C, Ty ) U= 7 T exPET (% = H;)? 12) (10)

2.2 Infinite Gaussian mixture model

The previous discussions have been restricted finita number of mixtures. The
selection of the appropriate number of mixtures ieal issue in practical applications.
The likelihood of the data will be a maximum whée humber of mixtures is equal to
the number of training data points, which resuitSaver-fitting". One solution is to
utilise validation or cross-validation, which sdfedhe number of mixtures by
simultaneously maximizing the likelihood over thraiting and validation data sets.
Other well-known model selection criteria includekadke information criterion
(Akaike, 1973) and Bayesian information criteri@i) (Schwarz, 1978).

Bayesian methodology addresses the over-fittingblpro by assigning a prior
distribution over the number of mixtures, or ashis paper, through the placement of a
Dirichlet prior over the mixing weights, this issitncombined with the likelihood to give
the posterior distribution for inference. In theyBaian statistics literature, the selection
of the number of mixtures has been addressed thraugumber of different MCMC
strategies, including reversible jump MCMC (Richardsand Green, 1997) and
birth-death MCMC (Stephens, 2000). This paper adoptrspective from the Dirichlet
process whereby an infinite number of mixtures tiised. When the number of
mixtures tends to infinity, there must be an inBmumber of mixtures with no training
data associated with them. These are termed “ussepted” mixtures.
Correspondingly, “represented mixtures” are thdee have training data associated
with them.



Let kep denote the number of represented mixtures. Faresepted mixtures, the
previously derived conditional posteriorspand 7; still hold (Eqg. (4) and (5)). On the

other hand, in the absence of training data, thapeters in unrepresented mixtures are
solely determined by their priorp(; | A, y) and p(7; | B,4)). Thus the inference

of the indicatorsg, has to incorporate the effect of infinite mixtsireTherefore letting
k- oo in EQ. (9), the conditional prior @f, will give the limits:

N—n,j ..
' ——— jisrepresente
p(cy = jlc-n.@) = N-1*a (12)

——— jisunrepreseted
N-1+a

To obtain the posterior probability of the indicatothe likelihood must be calculated.
The likelihood ofx, belonging to a represented comporjetdkes the same form as for
the finite Gaussian mixture model. Since the indmumber of unrepresented mixtures
are determined by the prior, the likelihoodkgbeing associated with them is an integral
over the prior: _[ PO, | 4y, 1) p(u; A Y)P(T; | B,@)du;dr; . In summary, the

conditional posteriors of the indicator variables as follows:

p(c, = jlc,.a)0
( N

J N-lra _'1': po 7/ expet (%, — 4;)*12) jisrepresen  (12)

a .
L—N—1+aJ‘p(X” | 1, 7)p(; 1A Y)P(T; | B,a)du,dr;  jisunrepreseted

The above equation states that the training dasaahaertain probability of being
associated with (an infinite number of) unrepresénnixtures and each represented
mixture. If, in one sampling iteration, some dataings are associated with
unrepresented mixtures, new represented mixtulesmwerge. On the other hand, if all
the data points pertaining to a represented mixdueeassociated with other mixtures,
this mixture will become unrepresented. By adoptthgs approachkep will be
determined according to the posterior distributibthe parameters.

2.3 Monte Carlo sampling

Based on the conditional posteriors developed & pheceding sub-sections, one
iteration of Gibbs sampling is executed as follows:

1. Forn=1N
Sample indicatocs, are generated according to Eq. (12).
End.
2. Updatekep, the number of represented mixtures.
3. Forj = 1 :Keep
Updatd\;, the number of data points belonging to mixture



Update mixing weightsz, = N; /(N +a).

End.
Update the overall mixing weight of unrepresemnixtures:zr =a/(N+a).
4. Forj = 1 :Keep

Sampley ~p(x; [¢.x,7;,4,y ) (EQ. (4)).
Sampler; ~ p(7; |c,X, 4;, B,@) (Eq. (5)).
End.

5. Update hyper-parameters (Appendix A):
Samplel Up(4 | W, y ) (Eq. (14)).
Sampley Up(y |u, 4) (Eq. (15)).
SamplewOp(w| T, P) (EQ. (16)).
Samplgg Op(A | T, o) (EQ. (17)).
Samplex Op(a | kep N) (Eq. (18)).

The conditional posteriors ofy and r; are Gaussian and Gamma distributions
respectively, from which samples can be generas#dgustandard procedures. The

sampling of the indicators requires the evaluatbthe integral in Eq. (12), which is
only analytically feasible if the conjugate prios iused (for example, the

Gaussian-Inverse-Gamma prior for the joint distiitu of 44 and rj'l). This paper

follows the approach proposed by Rasmussen (2088)eby independent priors are
assigned tgy and rj‘l respectively, and these are not conjugate toikedHood. To

approximate this integral using a Monte Carlo apghnpaNeal (1998) proposed
generating samples of4( 7,) from their prior. This strategy is adopted instipaper.

Further details are given in Algorithm 8 of Nea®98). Alternative sampling methods
have also been proposed in the literature (MacEached Muller, 1998; Walker and
Damien, 1998).

2.4 Prediction

The calculation of the predictive probability ofmdata will be averaged over a number
of MCMC samples, which are selected from those wteralgorithm tends to stabilize.
Stabilization will be assessed heuristically basadthe value of the log-likelihood.
Additionally to eliminate the auto-correlation, osample will be selected from each
consecutive set of 10 iterations.

For a particular MCMC sample, the predictive probgbils attained from two
components: the represented and the unrepresentedes. In a similar manner to that
adopted in the sampling stage, the probability fnremnepresented mixtures will be

approximated by a finite mixture of Gaussians, vehparameters/{, r,), are drawn
from the prior.



3 Confidence bounds

Once the probability distribution has been derithed reflects normal process operation,
confidence bounds, i.e. action and warning lin@its, required to identify any departure
of the process from nominal behaviour. For examalepnfidence bound of 16%
(O<b<1) defines a region that encompasseb¥®0f the nominal process data as the
sample size tends to infinity. A process is clasdifas statistically deviating from
normal behaviour when new data, superimposed omadn@nal representation, lies
outside the nominal region. Dependent on the cenfid levelp, two types of errors
are potentially present: false alarms (a normah ghatint is classified as faulty) and
missing errors (failure to observe a non-conformilaga point). A small value dj
would result in an unacceptable number of falsenaawhilst a confidence level close
to one would fail to identify the onset of procdaslts in a timely and acceptable
manner. In practice in process performance monigothe confidence level is normally
assumed to be 0.99 for the action limit and 0.93He warning limit.

Based on the probability distributiop(x | n, T,#) , the 100% confidence bound can be
defined as a likelihood threshold, that satisfies the following integral:

J

x:p(x)>h

p(X|p,T,m)dx=Db (13)

Hence a new data poimn, is identified as non-conforming (X" | p,t,x) < h. For the

infinite Gaussian mixture model, the above integsahot analytically tractable and
therefore it is not possible to obtain the thredditectly. One possible solution is to
approximate this integral by generating Monte Cadonples from the probability
distribution function:

1. Generat® samplesy, i =1, ...,M, from p(X|pn,T,7).

2. Calculate the likelihood of these samplepés |p,T,m . )

3. Sort p(x |p, 7,7 )in descending order.

4. The confidence bound is given by= p(X;, |n,T,7), where limMb.

The issue with this approach is that as the maaleimeters are averaged over a number
of MCMC iterations, the resultant probability degss relatively smooth with a heavy
tail. Therefore the confidence bound may be smatlanagnitude than required, and
thus will fail to identify non-conforming processliaviour. A more robust approach is
to use the bootstrap (Efron, 1981). First a langalmer of samples, say 1000, are drawn
with replacement from nominal process data. Thesdlsamples are used to calculate a
confidence bound following the algorithm descriladove. The procedure is repeated a
number of times (e.g. 100) and an averaged valabt&éned for the confidence bound.

4 Casestudies



This section applies the proposed approach to theitoring of two manufacturing
processes. The first example is that of the siredldtennessee Eastman continuous
stirred tank reactor which was presented in Dowras\éogel (1993) as a benchmark for
testing new methodologies in advanced process aoatrd process performance
monitoring. The second process is a batch semiadodetch process that comprised
three modes of operation (Wise et al., 1999). Haita set is publicly available from
Eigenvector Research, Inc. (http://software.eigetorecom/Data/Etch/index.html).

4.1 Tennessee Eastman continuous process

The Tennessee Eastman process comprises a set f aperations
(reactor/separator/stripper/compressor) with twousianeous exothermic reactions
and two by-product reactions. In this study, theuation software is run with a
decentralized control strategy (Ricker, 1996). pracess has 12 manipulated variables
and 41 measurements. However a number of the guadihsurements, such as product
concentration, are only available infrequentlyndustrial scale plant and hence were
removed from the analysis. Thus the final datatis&t was used to build the model
comprised 22 measurements, plus 12 manipulatedbles. The details of these 34
variables can be found in Downs and Vogel (1998 3ampling interval was 0.02 hrs.

The process was initially run for 20 hours undemmad operating conditions, giving
1000 data points. The first 500 points were setetbedefine the nominal operating
region, and the remaining 500 data points werevedeo assess the false alarm rate.
The process was then run under process conditi@simulated faulty behaviour. A
total of four faults were considered. In all cagesfaults were introduced by adding a
disturbance to the process manipulated variabled/oa by simulating a device
malfunction (Table 1). The specific details of fla@lts are discussed in Downs and
Vogel (1993). For each fault scenario the processnn under abnormal behaviour for
a further 6 hours, giving 300 faulty data pointsor& previous analysis that have been
reported in the literature, it is acknowledged flaalt “IDV(1)” results in a direct step
change in two process measurements, and thusais/edy easy to detect. In contrast
fault “IDV(14)” is more subtle as it disturbs theactant temperature which was not
directly measured. Finally “IDV(12+15)” is the mosbmplicated, as it reflects the
simultaneous onset of two faults, a disturbancniminmeasured variable and a device
failure and thus it is extremely challenging toedt

(Table 1 about here.)

PCA was performed on the nominal data set (500plztds) and the dimensionality of
the problem was reduced to 12 principal componemitsch explained 70.2% of the
total variance. One thousand iterations were perwor from which the infinite
Gaussian mixture model parameters were sampledith@mnabling the estimation of
the joint pdf of the PCA scores and the log-SPEaexéd from the nominal data. Based
on the log-likelihood, the algorithm tended to #iab after the first 500 iterations.
Figure 1 (a) shows the number of represented na@gtite,) versus the number of
MCMC iterations. The frequency &, computed from the final 500 iterations, is
illustrated in Figure 1(b). Both figures show thaproximately 15 to 30 mixtures were
automatically inferred from the data. Of the fir#00 iterations, one sample was
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selected from each consecutive set of 10 iteratieslting in a total of 50 samples
being selected. The probability of the data poimgs then calculated based on an
average over these 50 samples. The bootstrap teehdescribed in Section 3 was then
used to determine the 99% confidence bound.

(Figure 1 about here.)

The process monitoring charts for fault IDV(12+1B)yoduced at time point 20 hrs, are
shown in Figures 2 and 3. Figure 2 illustrates uke of the traditional confidence

bounds for Hotelling’s™ and SPE. It can be seen that HotellirEf$s not sensitive to
this fault in the initial stage with the processnigeidentified as normal prior to 22 hrs,
that is a detection delay of 2 hrs. The SPE siatist Figure 2(b), is capable of
identifying this fault at approximately 20.8 hrdglire 3 shows the case where the
confidence bounds using the infinite GMM approach @nsidered. To ensure a fair
comparison with Hotelling'd?, Figure 3(a) was obtained by only estimating ttieqgs
the PCA scores when calculating the confidence thoum this case, the process
abnormality is detected at approximately 21 higniicantly more rapidly than when
Hotelling’s T? was applied. When the joint pdf of the PCA scanes the log-SPE was
estimated using the infinite GMM (Figure 3(b)), tlmbtained confidence bound
provides the best result, detecting the onsetefahlt at around 20.4 hrs.

(Figure 2 and Figure 3 about here.)

Table 2 examines two types of potential errorssefahlarm and missing error, and
summarizes the results in terms of error rates faurof errors divided by number of
test data points), for different fault scenariogst the traditional confidence bound, the
data is classified as faulty if it exceeds the wbaither for Hotelling'sT? or the SPE.
The false alarm rate for both the traditional apptoand the infinite Gaussian mixture
model are close to 1%. This is consistent withcthrecept of the 99% confidence bound,
which states that statistically 1% of normal opetata will fall outside this bound.
Since fault IDV(1) results in a dramatic changehiemagnitude of the process variables,
it is relatively easy to identify and thus has & lmissing error rate for both methods.
For the other three faults, the infinite Gaussiaxtume model is consistently superior to

Hotelling’s T? and the SPE, in terms of lower missing error rates
(Table 2 about here.)

Figure 4 shows the quantile-quantile (Q-Q) plotstfee PCA scores of the nominal
process data versus the standard Gaussian digiriblithe PCA scores are distributed
as univariate Gaussian, the Q-Q plots would betfinEhis is not the case, especially for
the scores corresponding to the largest two eideasalt is known that if the data is not
normal in a univariate sense, it will also not leenmally distributed in the multivariate
case. Therefore the Gaussian assumption that undetpe construction of the
confidence bounds for Hotelling® and SPE is indeed problematic and needs to be
addressed to ensure effective process performaonéaring.

(Figure 4 about here.)
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4.2 A batch semiconductor process

The manufacture of semiconductors is introducedraexample of the monitoring of
batch processes. Although there are many stepkisnptocess, this study focuses
specifically on an Al-stack etch process perforraedhe commercially available Lam
9600 plasma etch tool (Wise et al., 1999). Datenfi@ process sensors, listed in Table
3, was collected during the wafer processing stagelwwias of 80 second duration. A
sampling interval of 1 second was used in the @malyhus for each batch, the data is
of the order (80 x 12). A series of three experitaeresulting in three distinct data
groups, were performed where faults were intentipmaroduced by changing specific
manipulated variables (TCP power, RF power, presqlasma flow rate and Helium
chunk pressure). There are 107 normal operatirghbatand 20 faulty batches. Twenty
one batches, seven from each group, were selecbted the normal batches to
investigate the false alarm rate. The remaining@&®inal batches were used to build
the nominal PCA representations.

(Table 3 about here.)

To analyse three dimensional daté,afcn X Nvariabe X Nime), “Multi-way” analysis
methods have been proposed to “unfold” the thresedsional array into a
two-dimensional matrix and conventional PCA is tlaaplied to the unfolded data
matrix (Nomikos and MacGregor, 1994). This studyolds the data arrayNgaich %
Nyarianie X Nime) INt0 a large two-dimensional matriffich X Nvarianie Niime) 0N Which
PCA is performed. It was observed that the initiaee principal components explain
32.8%, 12.9%, and 2.7% of the total variance, respay, which supports the selection
of only 2 principal components. In a similar mantethe previous example, MCMC
sampling was performed for one thousand iteratamusagain it tended to stabilize after
500 iterations. The probability of the data wasaole#d based on an average being
calculated over 50 samples selected from the i0@literations, with one sample being
selected from each consecutive set of 10 iteratibhs bootstrap technique was again
used to calculate the 99% confidence bound.

The PCA scores plot of the process data is showargure 5, where the contours of the
99% confidence bounds were defined using the tefi@aussian mixture model and the
standard Gaussian based approach of Hotelliffg’$he multi-modal property in this
data set invalidates the underlying Gaussian assomyith respect to the traditional
confidence bounds. Therefore the global Hotellifig snetric fails to identify many of
the non-conforming data points. On the other hmainfinite Gaussian mixture model
approach provides a more appropriate confidencendothat identifies the
non-conforming batches, and effectively recognthesdistinct clusters in the data.

(Figure 5 about here.)

It could be argued that the “local” modelling stigy of Wise et al., (1999), which

calculates Hotelling'd? for each local group, can address the multi-mqdablem.
However the determination of the number of clusterstill an issue. An alternative
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approach would be to utilise a finite GMM using &#® algorithm to estimate the joint
pdf of the PCA scores and the log-SPE. Againriisessary to identify the appropriate
number of mixtures. For comparison, both Bayesmarmation criterion (BIC) and
cross validation were used to determine the numbeixtures in the Gaussian mixture
model. Figure 6 shows the BIC value and the loglillood of 5-fold cross validation
with different numbers of mixtures, where bothemid indicate that a Gaussian mixture
model with 3 mixtures achieves the largest likebtioUsing 3 mixtures appears to be an
optimal choice as there are 3 distinct groups endita. However, Table 4 shows that a
Gaussian mixture model with 3 mixtures results fal8e alarms and 5 missing errors.
In contrast, the infinite Gaussian mixture modeLirs only 1 false alarm and 2 missing
errors. This result implies that, even if the itigly ‘correct’ number of mixtures
(clusters) is determined, each local cluster mayhb®oadequately modelled by one
Gaussian distribution. This result justifies thagplécation of the infinite Gaussian
mixture model which automatically selects approxehat to 9 represented mixtures
during the MCMC iterations, in this example.

(Table 4 about here.) (Figure 6 about here.)

5 Conclusions and discussions

This paper introduces the infinite Gaussian mixtnedel as a tool for calculating
confidence bounds for statistical process perfoogeanonitoring. Although previous
research has focused on extracting information frooitivariate process data for
monitoring process performance, many algorithnmisrety on the Gaussian assumption

to build the confidence bounds for both Hotelling'sand SPE for the calculated
principal components. The infinite Gaussian mixtunedel provides a Bayesian
approach to estimating the probability density fiorcof the nominal process data, and
therefore enables the more accurate calculatidheotonfidence bounds.

Furthermore, the infinite Gaussian mixture modelpable of combining the principal
component scores and the log-SPE into a unifieglifikod based statistic to provide
improved and more simplistic process monitoringiitss The proposed framework was
evaluated on a simulation of an industrial contimuprocess and a batch manufacturing
process of semiconductors. Promising results weneeaed. The proposed approach
can be applied to other multivariate statisticaljgetion techniques, by estimating the
joint probability distribution of all possible sa of information.
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Appendix A: Updating hyper-parameters

The selection of the hyper-parameters that deterrttie prior distributions of the
infinite GMM parameters has an important impactl@inference of these parameters.
Given hyper-priors, the hyper-parameters can alsoupdated. This hierarchical
structure tends to be more robust than the appraheheby the hyper-parameters are
simply selected. The updating of the hyper-pararaetxjuires the derivation of their
conditional posterior distributions. This aspegbriesented below.

The hyper-parameters for the component meams\d y, are given vague Gaussian
and Gamma hyper-priofs p(J) ~G(u,a’), wherey, anda)z( are the mean and

variance of the training data respectively. Thepsh@arameter of the Gamma
hyper-prior is set to unity, corresponding to a waglistribution. The conditional
posterior forA and y are obtained by calculating the product of thedmygriors and

|_|J p(4; | A,r), and can be simplified to give:

(wo?+yXou 1)

p(AIu,y)~GL iiky  ol+ky J (14)
oy [, ) - Ga[mmzl(”' MJ (15)
L k+1 J

The hyper-parameters for component precisioisand « are given Gamma
hyper-priors: p(8™") ~Ga (1) p(w) ~Ga(L,o?’). Similarly, the conditional posterior

for fandware obtained by multiplying the hyper-priors WI[TI I,(ji p(7; |w, £, and
can be simplified giving:

a'2+,82_1, *)

p(w|t, B) ~ G{kﬁﬂ

kG +1 J J (16)
(8120 0T (2) " expC Yo ) e glk'e'lr(r w72 | )
p o pzlg 2 J—lt j p 2 J

p(AT,a is not in the form of a simple probability diswition function but as it is
log-concave, the samples can be generated usipg\aaeejection sampling (Gilks and
Wild, 1992).

2 In a strict Bayesian hierarchical analysis, tHersrshould not depend on the training data. Theeot
specification of priors is essentially a empiriBalyesian hierarchical approach. Other reasonammespr
will result in similar results.
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Finally the concentration parameter for Dirichléstdbution, a, is given an inverse
Gamma prior,p(a™) ~Ga (1) The posterior ofx given the number of represented
mixtures,krep, and the number of data point,is:

a"=? exp1/(2a))I (@)
M(N+a)

P(a [Kieps N) (18)

p(alkiep,N) is log-concave, and can be sampled using thetiadaggjection sampling
method as above.

Appendix B Multivariate generalization

The extension to multivariate observations is gtréiorward. The component means
and precisions become vectors and matrices respbgtand their prior and posterior
distributions become multivariate Gaussian and Mafishrespectively. Similar
modifications apply to the hyper-parameters and fhréors.

Alternatively diagonal covariance matrices for thaussian mixtures can be selected.
This strategy ignores the correlation between tmgables, but this limitation can be
largely overcome by using more mixtures than rexglif the full covariance matrices
had been utilised. The use of diagonal covarianagices considerably simplifies the
inference of the mixture models, and reduces thenbau of parameters. For
D-dimensional data, a full covariance matrix introesiD(D+1)/2 free parameters,
whereas a diagonal matrix only requii2parameters. Since selecting the appropriate
number of mixtures is not an issue in infinite Gaals mixtures, diagonal covariance
matrices were utilised in this paper.

References
Akaike, H. (1973). Information theory and an exten®f the maximum likelihood
principle.2nd International Symposium on Information Theory, 1973.

Al-Alawi, A., Morris, A. J., and Martin, E. B. (2&). Enhanced fault detection
using canonical variate analysisith World Congress of Chemical
Engineering, Glasgow, Scotland, July 2005.

Blackwell, D. and MacQueen, J. B. (1973). Fergudistributions via polya urn
schemesAnnals of Satistics, 1, 353-355.

Chen, Q., Kruger, U., Meronk, M., and Leung, A.TY.(2004). Synthesis of

T2andq statistics for process monitoringontrol Engineering Practice, 12,
745-755.

Choi, S. W., Park, J. H., and Lee, I.-B. (2004hd&ss monitoring using a gaussian
mixture model via principal component analysis @mtriminant analysis.
Computers and Chemical Engineering, 28, 1377-1387.

15



Dempster, A. P., Laird, N. M., and Rubin, D. B. 729 Maximum likelihood from
incomplete data via the EM algorithrdournal of Royal Statistical Society
B, 39, 1-38.

Downs, J.J. and Vogel, E. F. (1993). A plant-widdustrial process control
problem.Computers and Chemical Engineering, 17, 245-255.

Efron, B. (1981). Nonparametric estimates of stashdaror: the jackknife, the
bootstrap and other method@ometrika, 68, 589-599.

Ferguson, T. S. (1973). A Bayesian analysis of sommparametric problems.
Annals of Satistics, 1, 209-230.

Gilks, W. R. and Wild, P. (1992). Adaptive rejectisampling for gibbs sampling.
Applied Satistics, 41, 337—-348.

Hotelling, H. (1947). Multivariate quality contrdh C. Eisenhart, M. W. Hastay,
and W. A. Wallis (Eds.),Techniques of Satistical Analysis. New York:
McGraw-Hill.

Jackson, J. E. and Mudholkar, G. S. (1979). Controcedures for residuals
associated with principal component analySesehnometrics, 21, 341-349.
MacEachern, S. N. and Muller, P. (1998). Estimatimigture of Dirichlet process

models.Journal of Computational and Graphical Satistics, 7, 223—-238.

Martin, E. B. and Morris, A. J. (1996). Non-paranmetconfidence bounds for
process performance monitoring charfleurnal of Process Control, 6,
349-358.

Martin, E.B., Morris, A. J., and Kiparrisides, C1909) Manufacturing
performance enhancement through multivariate $talsprocess control,
Annual Reviewsin Control, 23, 35-44.

Neal, R. M. (1998). Markov chain sampling methaatsDirichlet process mixture
models. Technical Report No. 9815, Department afiSics, University of
Toronto, Canada.

Nomikos, P. and MacGregor, J. F. (1994). Monitorlvatfch processes using
multiway principal component analysi&l.ChE Journal, 40, 1361-1375.

Qin, S. J. (2003) Statistical process monitoringsibs and beyondlournal of
Chemometrics, 17, 480-502.

Rasmussen, C. E. (2000). The infinite Gaussianurexnodel. In S. A. Solla, T. K.
Leen, and K.-R. Miller (Eds.Advances in Neural Information Processing
Systems 12. MIT Press.

Richardson, S. and Green, P. J. (1997). On Bayesialysis of mixtures with an
unknown number of components (with discussialournal of the Royal
Satistical Society B, 39, 731-792.

Ricker, N. L. (1996). Decentralized control of thennessee Eastman challenge
processJournal of Process Control, 6, 205-221.

Safavi, A. A., Chen, J, and Romagnoli, J. A. (199%avelet-based density
estimation and application to process monitoriddChE Journal, 43,
1227-1241.

Schwarz, G. (1978). Estimating the dimension ofcleh, Annals of Satistics, 6,
461-464.

16



Shao, R., Jia, F., Martin, E. B., and Morris, A(1R99). Wavelets and non-linear
principal components analysis for process monitpritontrol Engineering
Practice, 7, 865-879.

Stephens, M (2000) Bayesian analysis of mixtureetsoaith an unknown number
of components — An alternative to reversible jumpthods. Annals of
Satistics, 28, 40-74.

Teh, Y.W., Jordan, M. |, Beal, M. J., and Blei,N0. (2004) Hierarchical Dirichlet
processeslechnical Report 653, UC Berkeley Statistics, 2004.

Thissen, U., Swierenga, H., de Weijer, A. P., Webr&R., Melssen, W. J., and
Buydens, L. M. C. (2005). Multivariate statisticatocess control using
mixture modellingJournal of Chemometrics, 19, 23-31.

Walker, S. and Damien, P. (1998). Sampling metliodBayesian nonparametric
inference involving stochastic processes. In D.,0RyMuller, and D. Sinha
(Eds.), Practical Nonparametric and Semiparametric Bayesian Statistics,
243-254. New York: Springer.

Wilson, D. J. H., Irwin, G. W., and Lightbody, G.999). RBF principal manifolds
for process monitoring.IEEE Transactions on Neural Networks, 10,
1424-1434.

Wise, B. M., Gallagher, N. B., Butler, S. W., Whii D., and Barna, G. G. (1999).
A comparison of principal component analysis, mudiy principal component
analysis, trilinear decomposition and paralleldaetnalysis for fault detection
in a semiconductor etch procedsurnal of Chemometrics, 13, 379-396.

17



@

w
a

w
o
T
|

25—
20 =
15+ =

10 e

Number of Represented Mixtures (krep)

0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

MCMC iterations

(b)
80 ‘

70~ =

60— =

50— =

40 e

Frequency

30 =

0
14 16 18 20 22 24 26 28 30 32 34

Number of Represented Mixtures (krep)

Figure 1: (a): Number of represented mixturesu@MCMC iterations; (b): Frequency
of number of represented mixtures, after 500 ienat

18



@)

150

=

Q

=]
T

Hotelling's 7

50 99% Confidence Bound

10 12 14 16 18 20 22 24 26

80

70

60 -

40

SPE

T
|
|
|
|
|
50 : B
|
|
|
|
|

30 99% Confidence Bound ﬂ
04— -—pF————— — — — — — 4 -4 | ”\, |' il _ Il [ I |

10 M —

Time (h)

Figure 2: Process monitoring with (a): Hotelling‘% and (b): SPE. Fault was
introduced at 20rs.

19



(@)

-}
S

o
=}
T

&
T

W
S
T

99% Confidence Bound

Negative Log Likelihood

N
S

i
15}

i
o
B
N
=
I
=
o
=
©
N
S
N
N
N
EN

26

(b)

80

60

50

99% Confidence Bound

Negative Log Likelihood

10 12 14 16 18 20 22 24 26

Figure 3: Process monitoring using IGMM. (a): pfithe PCA scores is estimated to
calculate the confidence bound; (b): estimatiothefjoint pdf of the PCA scores and
log-SPE. Fault was introduced at 2G.

20



++ #F
+
6 P .
ol 4 fw/
4t .
2l
2+
0 0
21
# ol
4 A
++ 4 S
6 B
e
8 6
4 2 0 2 4 4 2 0 2 4
(©) 4
6 6
o+
++
4 4t .
+
2+
2l
0oF
0oF
21
4 2f P
+
6 + . 4 Zal
4 2 0 2 4 4 2 0 2 4

Figure 4. Quantile-quantile plots. The horizortads are the quantiles of a standard Gaussian
distribution and the vertical axes are the quasitdéthe PCA scores corresponding to the
largest four eigenvalues (1-4).

21



-+ Nominal
O Normal
A Faulty

2nd Principal Component
o
T
iy, +
>
|

5 \ \ \ \ \
-6 -4 -2 0 2 4 6

1st Principal Component

Figure 5. Bivariate scores plot for principal campnt 1 and 2 with 99% confidence
bounds defined by the infinite GMM (solid line) aHotelling’s T? (dotted line).

22



-100 / T~
A= A —-— —A - —

-150 ° . = A

h e-— - A=-—-—-a
—/’
/
-200 +—"
/ --&--BIC

£ —s— Cross Validation
'250 T T T T T T 1

2 3 4 5 6 7 8 9

Number of Mixtures

Figure 6: Selection of the number of mixtures MI@. The vertical axis represents the
BIC value, and the log-likelihood for 5-fold crogalidation, respectively.

23



Table 1: Process faults

Case Disturbance
IDV(1) A/C feed ratio (step change)

IDV(10) C Feed Temperature (random variation)
IDV(14) Reactor cooling water valve (sticking)
IDV(12+15)

Condenser cooling water inlet tempertirandom variation)
and valve (sticking)
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Table 2: Error rates (%) for false alarm and migsrror, under different process

faults.
Model False AlarnMissing Error
IDV(1) IDV(10) IDV(14) IDV(12+15)
Hote"ing’s T2 1.2 1.3 9.7 3.0 26.3
& SPE
IGMM 1.4 0.3 6.0 0.7 14.3
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Table 3: Variables used for monitoring of semicartduprocess.

Endpoint A detector 5 RF Phase error 9 TCP pbase
Helium pressure 6 RF power 10CP reflected power
RF tuner 7 RF impedance 1TCP Load

RF load 8 TCP tuner 12Vat valve
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Table 4: Summary of errors. The number of mixtumeSMM was selected to be 3,
based on both BIC and cross validation.

Model False Alarm Missing Error
GMM 3 5
IGMM 1 2
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