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Abstract 

 
The primary goal of multivariate statistical process performance 
monitoring is to identify deviations from normal operation within 
a manufacturing process.  The basis of the monitoring schemes is 
historical data that has been collected when the process is running 
under normal operating conditions. This data is then used to 
establish confidence bounds to detect the onset of process 
deviations. In contrast to the traditional approaches that are based 
on the Gaussian assumption, this paper proposes the application of 
the infinite Gaussian mixture model (GMM) for the calculation of 
the confidence bounds thereby relaxing the previous restrictive 
assumption. The infinite GMM is a special case of Dirichlet 
process mixtures, and is introduced as the limit of the finite GMM, 
that is when the number of mixtures tends to infinity. Based on the 
estimation of the probability density function, via the infinite 
GMM, the confidence bounds are calculated using the bootstrap 
algorithm. The proposed methodology is demonstrated through its 
application to a simulated continuous chemical process, and a 
batch semiconductor manufacturing process. 
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1  Introduction  
 

The on-line monitoring of the performance of a manufacturing process is essential for 
ensuring process safety and the delivery of high quality, consistent product. With the 
rapid development of automatic data collection systems, the effective and efficient 
utilisation of the large amount of data to characterise the process has become of 
increasing importance to a wide range of manufacturing industries. In recent years, 
multivariate statistical projection approaches, such as principal component analysis 
(PCA) and partial least squares (PLS), have been adopted to extract relevant process 
information, and to attain an enhanced understanding of process behaviour (Martin et al., 
1999; Qin, 2003).  
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The advantage of PCA and PLS is that as a consequence of the high correlation present 
between a number of the process measurements, the dimensionality of the original 
problem can be reduced whilst retaining the information inherent within the data. 
Statistical process monitoring representations built on the lower order latent variables 
are observed to be more reliable and robust (Martin et al.,1999; Qin 2003). In addition, 
by removing those latent variables which only explain a small percentage of the process 
variability, PCA and PLS can effectively remove the process measurement noise. In 
practice PLS is a more appropriate tool for describing the process outputs whilst PCA is 
applicable where it is the process itself, and its behaviour, that is of interest. 
Additionally, in practice, response variables are usually measured off-line and thus a 
time delay is incurred before they become available for inclusion in the monitoring 
scheme, and thus, unless inferential measurement is implemented, PLS is not an 
appropriate tool for process performance monitoring.  For the two case studies 
described in this paper, the response variables are not available and hence, the focus of 
this paper is PCA. 

 

Consider the case where N data points, },,1,{ Nnn L=z , are collected when the process 

is running under normal operating conditions (NOC) and let nz  be a vector consisting 

of D-dimensional process variables. Typically the data will be pre-processed to zero 
mean and unit standard deviation on each dimension. The first step in PCA is to 
compute the sample covariance matrix, S, of order D× D. The eigenvectors iu  and 

eigenvalues ig  of S are then calculated (i = 1, …, D). By retaining those eigenvectors 

corresponding to the q largest eigenvalues, the q-dimensional PCA score vectors, nt , 

are calculated through the linear projection of the original data onto the space spanned 
by the q eigenvectors: nqn zUt T= , where ),,( 1 qq uuU K= . Therefore the original data 

can be represented as a linear combination of the scores plus a residual vector, ne : 

 

nnqn etUz +=       (1) 

 

Consequently normal process behaviour can be characterised by the first q principal 
components, which capture the main sources of data variability.  

 

In process performance monitoring, the next step is to define the confidence bounds, i.e. 
the thresholds that determine the normal operating region for the PCA representation 
determined from the process data. Traditionally two metrics are calculated to monitor 
the behaviour of a process, Hotelling’s T2 and the squared prediction error (SPE). 
Hotelling’s T2 is defined as the sum of the normalized squared scores:  nnnT t

Λ
t 1T2 −= , 

where Λ  is a diagonal matrix comprising the q largest eigenvalues. The SPE is given by 

n
T
nnr ee= . Assuming the PCA scores follow a Gaussian distribution, the confidence 

bounds can be established for Hotelling’s T2 (Hotelling, 1947), and the SPE (Jackson 
and Mudholkar 1979). 

 
However the assumption that the scores are Gaussian distributed when calculating the 
confidence bounds may be an invalid assumption particularly when the data is collected 
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from a complex manufacturing process. For example, when non-linear projection 
techniques are used to characterise the process (Shao et al., 1999; Wilson et al., 1999), 
the resulting distribution of the latent variables will typically not be multivariate 
Gaussian. To address this issue, a number of techniques have been proposed to estimate 
the probability distribution function (pdf) of the PCA scores directly, for example kernel 
density estimation (KDE) (Martin and Morris, 1996), where it was clearly shown that 
the PCA scores did not follow a Gaussian distribution. Martin and Morris (1996) 
focussed on bivariate monitoring plots since KDE is more challenging to implement in 
higher dimensional space due to the so-called curse of dimensionality phenomenon. 
That is, with increasing dimensionality, the data points become more sparsely 
distributed in the data space. A number of semi-parametric models have been proposed 
to alleviate this problem, for example, wavelet based density estimation (Safavi et al., 
1997), and the Gaussian mixture model (GMM) (Choi et al., 2004; Thissen et al., 2005). 

 

A second issue is that two separate metrics, Hotelling’s T2 and SPE, are required to 
monitor the performance of a process. In practice a heuristic method is adopted, 
whereby the operation of the process is observed to have changed from normal process 
operation if either Hotelling’s T2 or the SPE metric moves outside the confidence 
bounds. A number of techniques have been proposed to combine the two metrics into a 
unified statistic, for example through a weighted sum of the two metrics (Al-Alawi et al., 
2005), and through kernel density estimation (Chen et al., 2004). More importantly, in 
practice a single monitoring metric will reduce the work load of plant operators as they 
will only be exposed to one monitoring chart. This is crucial for the wider acceptance of 
statistical process monitoring techniques in industry. 

 

This paper proposes the application of the infinite Gaussian mixture model (IGMM) for 
the estimation of the probability density function for Hotelling’s T2 and the SPE. By 
increasing the number of mixtures in the GMM to infinity, the IGMM removes the 
obstacle of selecting the number of mixtures, which is a real issue with respect to the 
applicability of the methodology. In addition, rather than summarising the PCA 
representation through two metrics, Hotelling’s T2 and the SPE, the IGMM is capable of 
estimating the joint probability distribution of the PCA scores and the log-SPE1 (i.e. the 
pdf of a q+1 dimensional vector T))log(,( nn rt . By adopting this approach, a unified 

likelihood based statistic can be constructed for process performance monitoring. 
Finally after the probability density function has been estimated, the confidence bounds 
for the unified likelihood based statistic are identified using the bootstrap.  The proposed 
approach is demonstrated through its application for the monitoring of a simulated 
continuous chemical process, and a batch semiconductor manufacturing process. 

 

2  Infinite Gaussian mixture model 
 

This section introduces the infinite Gaussian mixture model which is subsequently used 
as a tool to estimate the joint pdf of the PCA scores and the log-SPE, that have been 
calculated from normal process operating data. The infinite GMM belongs to the family 

                                                      
1 IGMM is not suitable to estimate the pdf of non-negative random variables directly, such as the SPE. 
Hence the logarithm operator is used to transform the SPE onto the whole real axis. 
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of Dirichlet process mixtures (Blackwell and MacQueen, 1973; Ferguson, 1973), and 
can be derived in a number of different ways. A comprehensive discussion of alternative 
perspectives on the Dirichlet process mixtures can be found in Teh et al. (2004). Within 
this paper, the concept is introduced through the finite Gaussian mixture model, whose 
mixing weight is given by a Dirichlet process prior. The infinite Gaussian mixture 
model is then derived by demonstrating that it is basically the situation where the 
number of mixtures tends to infinity. The inference of the infinite GMM parameters is 
implemented using Markov chain Monte Carlo (MCMC) methods. 

 

2.1  Finite Gaussian mixture model 
The probability distribution function of the data, x, can be modelled by a finite mixture 
of Gaussian distributions with k components:  

 

∑
=

−=
k

j
jjjGxp

1

1),()|( τµπ,,     (2) 

 

where },,{ 1 kµµ L=� , },,{ 1 kττ L=τ  and },,{ 1 kππ L=π  are the means, precisions 

(inverse variances) and mixing weights (which must be positive and sum to unity), 
respectively. For notational simplicity, the data are assumed to be scalar. The extension 
to the multivariate case is presented in Appendix B. 

 

Given a set of training data with N observations, },,{ 1 Nxx L=x , the classical approach 

to estimating the Gaussian mixture model parameters, (µµµµ, τ ,π), is to maximize the 
likelihood using the expectation-maximization (EM) algorithm (Dempster et al., 1977). 
The EM algorithm guarantees convergence to a local maximum, with the quality of the 
maximum being heavily dependant on the random initialization of the algorithm. 
Alternatively, a Bayesian approach can be used to combine the prior distribution for the 
parameters and the likelihood, resulting in a joint posterior distribution: 

 

)|()()( ,,x,,x|,, ppp ∝    (3) 

 

However the joint posterior takes a highly complicated form. Thus it is generally not 
feasible to perform any analytical inference based on the above posterior distribution. 
MCMC approaches have typically been used to calculate the joint posterior and of the 
approaches proposed in the literature, Gibbs sampling is suitable for mixture models. To 
generate samples from the posterior distributions, Gibbs sampling updates each 
parameter (or a group of parameters) in turn from its conditional posterior distribution.  
 

The rest of this section focuses on the definition of the priors and the derivation of the 
conditional posteriors for the GMM parameters. To facilitate the derivation, the latent 
indicator variable, },,{ 1 Ncc L=c , is introduced to identify that a specific data point, xn, 

belongs to mixture component, cn. The approach is based primarily on the formulation 
proposed in Rasmussen (2000).  
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Conditional posterior distribution of the component means 
The mean of each mixture component is given a Gaussian prior: 

),(~),|( 1−γλγλµ Gp j , where λ and γ  are hyper-parameters that are common to all 

components. The conditional posterior distribution for µj is calculated by multiplying 
the prior, ),|( γλµ jp , by the likelihood (Eq. (2)), resulting in a Gaussian distribution: 

 



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,~),,|( x,c,    (4) 

 

where jx  and Nj are the mean and number of data points belonging to component j, 

respectively. The selection and updating of the hyper-parameters, including those 
defined in the subsequent sub-sections for the component precisions and the mixing 
weights, is discussed in Appendix A. 

 

Conditional posterior distribution of the component precisions 
Each component precision (inverse variance) is given a Gamma prior with 

hyper-parameters β and ω : )2/exp(),(~),|( 12/1 ωβττωβωβτ β
jjj Gap −∝ −− . 

Similarly the conditional posterior for sj is attained by taking the product of the prior, 
),|( ωβτ jp , and the likelihood, resulting in a Gamma distribution: 
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Conditional posterior distribution of the mixing weights 
The inference of the mixing weights is more complex than the other two parameters. 
The mixing weights are given symmetric Dirichlet priors with concentration parameter 
α/k: 

 
 )/,,/(Dirichlet~)|,,( 1 kkp k αααππ LL    (6) 

 

Utilising the definition of the indicator variable, the inference of the mixing weights can 
be indirectly realized through the inference of the indicators, whose joint conditional 
distribution is given by: 

 

∏
=

=
k

j

N
jkN

jccp
1

11 ),,|,,( πππ LL     (7) 
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By integrating out the mixing weights as a result of the properties of the Dirichlet 
integral (Ferguson, 1973), the prior for the indicators is only dependent on α: 
 

∏
= Γ
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where Γ(.) is the standard Gamma function. The conditional prior for a single indicator, 
given all the other indicators, is obtained as follows: 

 

 
α
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where },,,,,{ 111 Nnnn cccc LL +−− =c , and jnN ,− is the number of data points, excluding 

xn, which belongs to mixture j. The likelihood of xn belonging to component j is: 
)2/)(exp(),(),,|x( 22/11

n jnjjjjjjn xGjcp µτττµτµ −−∝== − . Calculating the 

product of the prior and the likelihood, the conditional posterior for each cn is given by: 

 

)2/)(exp(
1

/
),,,|( 22/1,
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α
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+
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−c   (10) 

 

2.2  Infinite Gaussian mixture model 
The previous discussions have been restricted to a finite number of mixtures. The 
selection of the appropriate number of mixtures is a real issue in practical applications. 
The likelihood of the data will be a maximum when the number of mixtures is equal to 
the number of training data points, which results in “over-fitting". One solution is to 
utilise validation or cross-validation, which selects the number of mixtures by 
simultaneously maximizing the likelihood over the training and validation data sets. 
Other well-known model selection criteria include Akaike information criterion 
(Akaike, 1973) and Bayesian information criterion (BIC) (Schwarz, 1978). 

 

Bayesian methodology addresses the over-fitting problem by assigning a prior 
distribution over the number of mixtures, or as in this paper, through the placement of a 
Dirichlet prior over the mixing weights, this is then combined with the likelihood to give 
the posterior distribution for inference. In the Bayesian statistics literature, the selection 
of the number of mixtures has been addressed through a number of different MCMC 
strategies, including reversible jump MCMC (Richardson and Green, 1997) and 
birth-death MCMC (Stephens, 2000). This paper adopts a perspective from the Dirichlet 
process whereby an infinite number of mixtures is utilised. When the number of 
mixtures tends to infinity, there must be an infinite number of mixtures with no training 
data associated with them. These are termed “unrepresented” mixtures. 
Correspondingly, “represented mixtures” are those that have training data associated 
with them.  
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Let krep denote the number of represented mixtures. For represented mixtures, the 
previously derived conditional posteriors of � j and jτ  still hold (Eq. (4) and (5)). On the 

other hand, in the absence of training data, the parameters in unrepresented mixtures are 
solely determined by their priors ( ),|( γλµ jp  and ),|( ωβτ jp ).  Thus the inference 

of the indicators, c, has to incorporate the effect of infinite mixtures.  Therefore letting 
k→∞ in Eq. (9), the conditional prior of cn will give the limits: 
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To obtain the posterior probability of the indicators, the likelihood must be calculated. 
The likelihood of xn belonging to a represented component j, takes the same form as for 
the finite Gaussian mixture model. Since the infinite number of unrepresented mixtures 
are determined by the prior, the likelihood of xn being associated with them is an integral 

over the prior: ∫ jjjjjjn ddppxp τµωβτγλµτµ ),|(),|(),|( . In summary, the 

conditional posteriors of the indicator variables are as follows: 
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The above equation states that the training data has a certain probability of being 
associated with (an infinite number of) unrepresented mixtures and each represented 
mixture. If, in one sampling iteration, some data points are associated with 
unrepresented mixtures, new represented mixtures will emerge. On the other hand, if all 
the data points pertaining to a represented mixture are associated with other mixtures, 
this mixture will become unrepresented. By adopting this approach, krep will be 
determined according to the posterior distribution of the parameters. 

 

2.3  Monte Carlo sampling 

Based on the conditional posteriors developed in the preceding sub-sections, one 
iteration of Gibbs sampling is executed as follows: 

 
1. For n = 1:N 
           Sample indicators cn, are generated according to Eq. (12). 
    End. 
2. Update krep, the number of represented mixtures. 
3. For j = 1 : krep  
           Update Nj, the number of data points belonging to mixture j. 
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      Update mixing weights: )( απ += NN jj . 

    End. 

    Update the overall mixing weight of unrepresented mixtures: )( ααπ += N . 

4. For j = 1 : krep  

   Sample � j  ~ )  ,,,,|( γλτµ jjp xc  (Eq. (4)). 

   Sample jτ  ~ ),,,,|( ωβµτ jjp xc  (Eq. (5)). 

     End. 
5.  Update hyper-parameters (Appendix A): 

      Sample λ ∼ p(λ | µµµµ, γ  ) (Eq. (14)). 

      Sample γ  ∼ p( γ  | µµµµ, λ) (Eq. (15)). 

      Sample ω ∼ p(ω | τ , β) (Eq. (16)). 

      Sample β ∼ p(λ | τ , ω) (Eq. (17)). 

    Sample α ∼ p(α | krep, N) (Eq. (18)). 
  

The conditional posteriors of � j and jτ  are Gaussian and Gamma distributions 

respectively, from which samples can be generated using standard procedures. The 
sampling of the indicators requires the evaluation of the integral in Eq. (12), which is 
only analytically feasible if the conjugate prior is used (for example, the 
Gaussian-Inverse-Gamma prior for the joint distribution of � j and 1−

jτ ). This paper 

follows the approach proposed by Rasmussen (2000) whereby independent priors are 
assigned to � j and 1−

jτ  respectively, and these are not conjugate to the likelihood. To 

approximate this integral using a Monte Carlo approach, Neal (1998) proposed 
generating samples of (µj, jτ ) from their prior. This strategy is adopted in this paper. 

Further details are given in Algorithm 8 of Neal (1998). Alternative sampling methods 
have also been proposed in the literature (MacEachern and Muller, 1998; Walker and 
Damien, 1998). 

 

2.4 Prediction 
The calculation of the predictive probability of new data will be averaged over a number 
of MCMC samples, which are selected from those where the algorithm tends to stabilize. 
Stabilization will be assessed heuristically based on the value of the log-likelihood. 
Additionally to eliminate the auto-correlation, one sample will be selected from each 
consecutive set of 10 iterations. 

 

For a particular MCMC sample, the predictive probability is attained from two 
components: the represented and the unrepresented mixtures. In a similar manner to that 
adopted in the sampling stage, the probability from unrepresented mixtures will be 
approximated by a finite mixture of Gaussians, whose parameters, (µj, jτ ), are drawn 

from the prior.  
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3  Confidence bounds 
 

Once the probability distribution has been derived that reflects normal process operation, 
confidence bounds, i.e. action and warning limits, are required to identify any departure 
of the process from nominal behaviour. For example, a confidence bound of 100b% 
(0<b<1) defines a region that encompasses 100b% of the nominal process data as the 
sample size tends to infinity. A process is classified as statistically deviating from 
normal behaviour when new data, superimposed on the nominal representation, lies 
outside the nominal region. Dependent on the confidence level, b, two types of errors 
are potentially present: false alarms (a normal data point is classified as faulty) and 
missing errors (failure to observe a non-conforming data point). A small value of b 
would result in an unacceptable number of false alarms, whilst a confidence level close 
to one would fail to identify the onset of process faults in a timely and acceptable 
manner. In practice in process performance monitoring, the confidence level is normally 
assumed to be 0.99 for the action limit and 0.95 for the warning limit.  

 

Based on the probability distribution )|( πτ,�,xp , the 100b% confidence bound can be 
defined as a likelihood threshold, h, that satisfies the following integral: 
 

∫
>

=
hxpx

bdxxp
)(:

)|( πτ,�,     (13) 

 

Hence a new data point, x*, is identified as non-conforming if hxp <)|( * πτ,�, . For the 
infinite Gaussian mixture model, the above integral is not analytically tractable and 
therefore it is not possible to obtain the threshold directly. One possible solution is to 
approximate this integral by generating Monte Carlo samples from the probability 
distribution function: 

 
1. Generate M samples, xi, i = 1, …, M, from )|( πτ,�,xp . 

2. Calculate the likelihood of these samples as )|( πτ,�,ixp . 

3. Sort )|( πτ,�,ixp  in descending order.  

4. The confidence bound is given by  h = )|( lim πτ,	,xp , where lim=Mb.  

 
The issue with this approach is that as the model parameters are averaged over a number 
of MCMC iterations, the resultant probability density is relatively smooth with a heavy 
tail. Therefore the confidence bound may be smaller in magnitude than required, and 
thus will fail to identify non-conforming process behaviour. A more robust approach is 
to use the bootstrap (Efron, 1981). First a large number of samples, say 1000, are drawn 
with replacement from nominal process data. Then these samples are used to calculate a 
confidence bound following the algorithm described above. The procedure is repeated a 
number of times (e.g. 100) and an averaged value is obtained for the confidence bound. 

 

4  Case studies 
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This section applies the proposed approach to the monitoring of two manufacturing 
processes. The first example is that of the simulated Tennessee Eastman continuous 
stirred tank reactor which was presented in Downs and Vogel (1993) as a benchmark for 
testing new methodologies in advanced process control and process performance 
monitoring. The second process is a batch semiconductor etch process that comprised 
three modes of operation (Wise et al., 1999). This data set is publicly available from 
Eigenvector Research, Inc. (http://software.eigenvector.com/Data/Etch/index.html).  

 

4.1  Tennessee Eastman continuous process 
The Tennessee Eastman process comprises a set of unit operations 
(reactor/separator/stripper/compressor) with two simultaneous exothermic reactions 
and two by-product reactions. In this study, the simulation software is run with a 
decentralized control strategy (Ricker, 1996). The process has 12 manipulated variables 
and 41 measurements. However a number of the quality measurements, such as product 
concentration, are only available infrequently in industrial scale plant and hence were 
removed from the analysis. Thus the final data set that was used to build the model 
comprised 22 measurements, plus 12 manipulated variables. The details of these 34 
variables can be found in Downs and Vogel (1993). The sampling interval was 0.02 hrs. 

 
The process was initially run for 20 hours under normal operating conditions, giving 
1000 data points. The first 500 points were selected to define the nominal operating 
region, and the remaining 500 data points were reserved to assess the false alarm rate. 
The process was then run under process conditions that simulated faulty behaviour. A 
total of four faults were considered.  In all cases the faults were introduced by adding a 
disturbance to the process manipulated variables, and/or by simulating a device 
malfunction (Table 1). The specific details of the faults are discussed in Downs and 
Vogel (1993). For each fault scenario the process was run under abnormal behaviour for 
a further 6 hours, giving 300 faulty data points. From previous analysis that have been 
reported in the literature, it is acknowledged that fault “IDV(1)” results in a direct step 
change in two process measurements, and thus is relatively easy to detect. In contrast 
fault “IDV(14)” is more subtle as it disturbs the reactant temperature which was not 
directly measured. Finally “IDV(12+15)” is the most complicated, as it reflects the 
simultaneous onset of two faults, a disturbance in an unmeasured variable and a device 
failure and thus it is extremely challenging to detect. 

 

(Table 1 about here.) 

 

PCA was performed on the nominal data set (500 data points) and the dimensionality of 
the problem was reduced to 12 principal components, which explained 70.2% of the 
total variance. One thousand iterations were performed from which the infinite 
Gaussian mixture model parameters were sampled thereby enabling the estimation of 
the joint pdf of the PCA scores and the log-SPE extracted from the nominal data. Based 
on the log-likelihood, the algorithm tended to stabilize after the first 500 iterations. 
Figure 1 (a) shows the number of represented mixtures (krep) versus the number of 
MCMC iterations. The frequency of krep, computed from the final 500 iterations, is 
illustrated in Figure 1(b). Both figures show that approximately 15 to 30 mixtures were 
automatically inferred from the data. Of the final 500 iterations, one sample was 
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selected from each consecutive set of 10 iterations, resulting in a total of 50 samples 
being selected. The probability of the data points was then calculated based on an 
average over these 50 samples. The bootstrap technique described in Section 3 was then 
used to determine the 99% confidence bound. 

 

(Figure 1 about here.) 
 

The process monitoring charts for fault IDV(12+15), introduced at time point 20 hrs, are 
shown in Figures 2 and 3. Figure 2 illustrates the use of the traditional confidence 
bounds for Hotelling’s T2 and SPE. It can be seen that Hotelling’s T2 is not sensitive to 
this fault in the initial stage with the process being identified as normal prior to 22 hrs, 
that is a detection delay of 2 hrs. The SPE statistic, in Figure 2(b), is capable of 
identifying this fault at approximately 20.8 hrs. Figure 3 shows the case where the 
confidence bounds using the infinite GMM approach are considered. To ensure a fair 
comparison with Hotelling’s T2, Figure 3(a) was obtained by only estimating the pdf of 
the PCA scores when calculating the confidence bound. In this case, the process 
abnormality is detected at approximately 21 hrs, significantly more rapidly than when 
Hotelling’s T2 was applied. When the joint pdf of the PCA scores and the log-SPE was 
estimated using the infinite GMM (Figure 3(b)), the obtained confidence bound 
provides the best result, detecting the onset of the fault at around 20.4 hrs. 

 

(Figure 2 and Figure 3 about here.) 

 

Table 2 examines two types of potential errors: false alarm and missing error, and 
summarizes the results in terms of error rates (number of errors divided by number of 
test data points), for different fault scenarios. For the traditional confidence bound, the 
data is classified as faulty if it exceeds the bound either for Hotelling’s T2 or the SPE. 
The false alarm rate for both the traditional approach and the infinite Gaussian mixture 
model are close to 1%. This is consistent with the concept of the 99% confidence bound, 
which states that statistically 1% of normal operating data will fall outside this bound. 
Since fault IDV(1) results in a dramatic change in the magnitude of the process variables, 
it is relatively easy to identify and thus has a low missing error rate for both methods. 
For the other three faults, the infinite Gaussian mixture model is consistently superior to 
Hotelling’s T2 and the SPE, in terms of lower missing error rates. 
 

(Table 2 about here.) 

 

Figure 4 shows the quantile-quantile (Q-Q) plots for the PCA scores of the nominal 
process data versus the standard Gaussian distribution. If the PCA scores are distributed 
as univariate Gaussian, the Q-Q plots would be linear. This is not the case, especially for 
the scores corresponding to the largest two eigenvalues. It is known that if the data is not 
normal in a univariate sense, it will also not be normally distributed in the multivariate 
case. Therefore the Gaussian assumption that underpins the construction of the 
confidence bounds for Hotelling’s T2 and SPE is indeed problematic and needs to be 
addressed to ensure effective process performance monitoring. 

 

(Figure 4 about here.) 
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4.2  A batch semiconductor process   
The manufacture of semiconductors is introduced as an example of the monitoring of 
batch processes. Although there are many steps in this process, this study focuses 
specifically on an Al-stack etch process performed on the commercially available Lam 
9600 plasma etch tool (Wise et al., 1999). Data from 12 process sensors, listed in Table 
3, was collected during the wafer processing stage which was of 80 second duration. A 
sampling interval of 1 second was used in the analysis. Thus for each batch, the data is 
of the order (80 x 12). A series of three experiments, resulting in three distinct data 
groups, were performed where faults were intentionally introduced by changing specific 
manipulated variables (TCP power, RF power, pressure, plasma flow rate and Helium 
chunk pressure). There are 107 normal operating batches and 20 faulty batches. Twenty 
one batches, seven from each group, were selected from the normal batches to 
investigate the false alarm rate. The remaining 86 nominal batches were used to build 
the nominal PCA representations. 

 

(Table 3 about here.) 

 

To analyse three dimensional data (Nbatch ×  Nvariable ×  Ntime), “multi-way” analysis 
methods have been proposed to “unfold” the three-dimensional array into a 
two-dimensional matrix and conventional PCA is then applied to the unfolded data 
matrix (Nomikos and MacGregor, 1994). This study unfolds the data array (Nbatch ×  
Nvariable ×  Ntime) into a large two-dimensional matrix (Nbatch ×  Nvariable Ntime) on which 
PCA is performed. It was observed that the initial three principal components explain 
32.8%, 12.9%, and 2.7% of the total variance, respectively, which supports the selection 
of only 2 principal components. In a similar manner to the previous example, MCMC 
sampling was performed for one thousand iterations and again it tended to stabilize after 
500 iterations. The probability of the data was obtained based on an average being 
calculated over 50 samples selected from the final 500 iterations, with one sample being 
selected from each consecutive set of 10 iterations. The bootstrap technique was again 
used to calculate the 99% confidence bound. 

 

The PCA scores plot of the process data is shown in Figure 5, where the contours of the 
99% confidence bounds were defined using the infinite Gaussian mixture model and the 
standard Gaussian based approach of Hotelling’s T2. The multi-modal property in this 
data set invalidates the underlying Gaussian assumption with respect to the traditional 
confidence bounds. Therefore the global Hotelling’s T2 metric fails to identify many of 
the non-conforming data points. On the other hand, the infinite Gaussian mixture model 
approach provides a more appropriate confidence bound that identifies the 
non-conforming batches, and effectively recognizes the distinct clusters in the data. 

 

(Figure 5 about here.) 
 

It could be argued that the “local” modelling strategy of Wise et al., (1999), which 
calculates Hotelling’s T2 for each local group, can address the multi-modal problem.  
However the determination of the number of clusters is still an issue.  An alternative 
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approach would be to utilise a finite GMM using the EM algorithm to estimate the joint 
pdf of the PCA scores and the log-SPE. Again it is necessary to identify the appropriate 
number of mixtures. For comparison, both Bayesian information criterion (BIC) and 
cross validation were used to determine the number of mixtures in the Gaussian mixture 
model. Figure 6 shows the BIC value and the log likelihood of 5-fold cross validation 
with different numbers of mixtures, where both criteria indicate that a Gaussian mixture 
model with 3 mixtures achieves the largest likelihood. Using 3 mixtures appears to be an 
optimal choice as there are 3 distinct groups in the data. However, Table 4 shows that a 
Gaussian mixture model with 3 mixtures results in 3 false alarms and 5 missing errors. 
In contrast, the infinite Gaussian mixture model incurs only 1 false alarm and 2 missing 
errors. This result implies that, even if the intuitively ‘correct’ number of mixtures 
(clusters) is determined, each local cluster may not be adequately modelled by one 
Gaussian distribution.  This result justifies the application of the infinite Gaussian 
mixture model which automatically selects approximately 6 to 9 represented mixtures 
during the MCMC iterations, in this example. 

 
(Table 4 about here.) (Figure 6 about here.) 

 

5  Conclusions and discussions 
 

This paper introduces the infinite Gaussian mixture model as a tool for calculating 
confidence bounds for statistical process performance monitoring. Although previous 
research has focused on extracting information from multivariate process data for 
monitoring process performance, many algorithms still rely on the Gaussian assumption 
to build the confidence bounds for both Hotelling’s T2 and SPE for the calculated 
principal components. The infinite Gaussian mixture model provides a Bayesian 
approach to estimating the probability density function of the nominal process data, and 
therefore enables the more accurate calculation of the confidence bounds.  

 

Furthermore, the infinite Gaussian mixture model is capable of combining the principal 
component scores and the log-SPE into a unified likelihood based statistic to provide 
improved and more simplistic process monitoring results. The proposed framework was 
evaluated on a simulation of an industrial continuous process and a batch manufacturing 
process of semiconductors. Promising results were achieved. The proposed approach 
can be applied to other multivariate statistical projection techniques, by estimating the 
joint probability distribution of all possible source of information.  
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Appendix A:  Updating hyper-parameters 
 

The selection of the hyper-parameters that determine the prior distributions of the 
infinite GMM parameters has an important impact on the inference of these parameters. 
Given hyper-priors, the hyper-parameters can also be updated. This hierarchical 
structure tends to be more robust than the approach whereby the hyper-parameters are 
simply selected. The updating of the hyper-parameters requires the derivation of their 
conditional posterior distributions. This aspect is presented below. 

 

The hyper-parameters for the component means, λ and γ , are given vague Gaussian 

and Gamma hyper-priors2: ),(~)( 2
xxGp σµλ , where µ

x
 and σ2

x  are the mean and 

variance of the training data respectively. The shape parameter of the Gamma 
hyper-prior is set to unity, corresponding to a vague distribution. The conditional 
posterior for λ and γ  are obtained by calculating the product of the hyper-priors and 

∏ =
repk

j j rp
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),|( λµ , and can be simplified to give: 
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The hyper-parameters for component precisions, β and ω, are given Gamma 
hyper-priors: )1,1(~)( 1 Gap −β , ),1(~)( 2

xGap σω . Similarly, the conditional posterior 

for β and ω are obtained by multiplying the hyper-priors with ∏ =
−repk

j jp
1

1),|( βωτ , and 

can be simplified giving: 
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p(β|τ ,ω) is not in the form of a simple probability distribution function but as it is 
log-concave, the samples can be generated using adaptive rejection sampling (Gilks and 
Wild, 1992). 

                                                      
2 In a strict Bayesian hierarchical analysis, the priors should not depend on the training data. The current 
specification of priors is essentially a empirical Bayesian hierarchical approach. Other reasonable priors 
will result in similar results. 
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Finally the concentration parameter for Dirichlet distribution, α, is given an inverse 
Gamma prior, )1,1(~)( 1 Gap −α . The posterior of α given the number of represented 
mixtures, k

rep
, and the number of data points, N, is: 
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2/3

rep

rep

α
αααα
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−

N
Nkp

k

   (18) 

 

p(α|krep,N) is log-concave, and can be sampled using the adaptive rejection sampling 
method as above. 

 

Appendix B  Multivariate generalization 
 

The extension to multivariate observations is straightforward. The component means 
and precisions become vectors and matrices respectively, and their prior and posterior 
distributions become multivariate Gaussian and Wishart respectively. Similar 
modifications apply to the hyper-parameters and their priors.  

 

Alternatively diagonal covariance matrices for the Gaussian mixtures can be selected. 
This strategy ignores the correlation between the variables, but this limitation can be 
largely overcome by using more mixtures than required if the full covariance matrices 
had been utilised. The use of diagonal covariance matrices considerably simplifies the 
inference of the mixture models, and reduces the number of parameters. For 
D-dimensional data, a full covariance matrix introduces D(D+1)/2 free parameters, 
whereas a diagonal matrix only requires D parameters. Since selecting the appropriate 
number of mixtures is not an issue in infinite Gaussian mixtures, diagonal covariance 
matrices were utilised in this paper. 
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Figure 1:  (a): Number of represented mixtures versus MCMC iterations; (b): Frequency 
of number of represented mixtures, after 500 iterations. 
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Figure 2:  Process monitoring with (a): Hotelling’s T2  and (b): SPE. Fault was 
introduced at 20 hrs. 
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Figure 3:  Process monitoring using IGMM. (a): pdf of the PCA scores is estimated to 
calculate the confidence bound; (b): estimation of the joint pdf of the PCA scores and 
log-SPE. Fault was introduced at 20 hrs. 
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Figure 4:  Quantile-quantile plots. The horizontal axes are the quantiles of a standard Gaussian 
distribution and the vertical axes are the quantiles of the PCA scores corresponding to the 
largest four eigenvalues (1-4). 
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Figure 5:  Bivariate scores plot for principal component 1 and 2 with 99% confidence 
bounds defined by the infinite GMM (solid line) and Hotelling’s T2 (dotted line). 



 23 

  

-250

-200

-150

-100

-50

2 3 4 5 6 7 8 9

Number of Mixtures

BIC

Cross Validation

 
 

Figure 6:  Selection of the number of mixtures in GMM. The vertical axis represents the 
BIC value, and the log-likelihood for 5-fold cross validation, respectively. 
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Table 1:  Process faults 

 
Case Disturbance 
IDV(1) A/C feed ratio (step change) 
IDV(10) C Feed Temperature (random variation) 
IDV(14) Reactor cooling water valve (sticking) 
IDV(12+15) Condenser cooling water inlet temperature (random variation) 

and valve (sticking) 
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Table 2:  Error rates (%) for false alarm and missing error, under different process 
faults. 

 
Model False Alarm Missing Error 
  IDV(1) IDV(10) IDV(14) IDV(12+15) 

Hotelling’s T2 
& SPE 

1.2 1.3 9.7 3.0 26.3 

IGMM 1.4 0.3 6.0 0.7 14.3 
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Table 3: Variables used for monitoring of semiconductor process. 

 

1 Endpoint A detector 5 RF Phase error 9 TCP phase error 

2 Helium pressure 6 RF power 10 TCP reflected power 

3 RF tuner 7 RF impedance 11 TCP Load 

4 RF load 8 TCP tuner 12 Vat valve 
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Table 4:  Summary of errors. The number of mixtures in GMM was selected to be 3, 
based on both BIC and cross validation. 

 
Model False Alarm Missing Error 
GMM  3 5 
IGMM  1 2 

  

 


