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Abstract A probability density function (PDF) based approach is employed to model

multi-phase flow with interfacial mass transfer (dissolution) in porous media. The joint flow

statistics is represented by a mass density function (MDF), which is transported in the physical

and probability spaces via Fokker–Planck equation. This MDF-equation requires Lagrangian

evolutions of the random flow variables; these evolutions are stochastic processes honoring

the micro-scale flow physics. To demonstrate the concept, we consider an example of immis-

cible two-phase flow with the non-equilibrium dissolution of single component from one

phase into the other-a model for solubility trapping during CO2 storage in brine aquifer.

Since CO2-rich brine is denser than pure brine, density-driven countercurrent flow is set up

in the brine phase. The stochastic models mimicking the physics of countercurrent flow lead

to a modeled MDF-equation, which is solved using our recently developed stochastic particle

method for multi-phase flow (Tyagi et al. J Comput Phys 227:6696–6714, 2008). In addi-

tion, we derive Eulerian equations for stochastic moments (mean, variance, etc.) and show

that unlike the MDF-equation the system of moment equations is not closed. In classical

Darcy formulation, for example, the mean concentration equation is closed by neglecting

variance. However, with several one- and two-dimensional simulations, it is demonstrated

that the PDF and Darcy modeling approaches give significantly different results. While the

PDF-approach properly accounts for the long correlation length scales and the concentration

variance in density-driven countercurrent flow, the same phenomenon cannot be captured

accurately with a standard Darcy model.
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604 M. Tyagi, P. Jenny

1 Introduction

A continuum description of multi-phase flow in porous media can be provided by Navier–

Stokes equations that are complemented by interfacial and boundary conditions. Typical flow

velocities in subsurface formations are of the order of few centimeters per day and the pore

space size less than a millimeter. Under these conditions, the flow Reynolds number (Re)

is much less than one; consequently, the nonlinear Navier–Stokes equations further reduce

to the linear Stokes equations (Whitaker 1986a). However, based on this mathematically

rigorous description, a full pore-scale simulation of multi-phase multi-component flow in

a real porous medium geometry is computationally difficult to tackle; therefore, the real

porous medium is often substituted by a network of pores and throats (Blunt et al. 1992).

Pore-network simulations can be performed with simplified pore and throat filling rules that

are derived by solving Stokes equations in the individual phases and using capillary pressure

jump condition across the interface (Lenormand et al. 1988). Significant amount of work

has been reported on pore-network simulations over the last three decades. This ranges from

the use of simple invasion percolation theory based simulators first developed in early 1980s

(Chandler et al. 1982) to the use of complex pore-networks constructed from porous matrix

morphology (Blunt et al. 2002; Okabe and Blunt 2004). However, in spite of great progress in

computational resources, to date pore-network simulations are feasible only for sample sizes

of few centimeters. This limits the application of pore-network simulators to predict flows

in subsurface formations, which typically vary from hundreds of meters to few kilometers

(Bear 1979).

To be able to simulate subsurface flows in reasonable time, one, therefore, employs large-

scale (up-scaled) flow models. These models predict average flow quantities, which are

defined over a representative elementary volume (REV) containing large number of pores

(Bear 1972). Currently, most of them employ Darcy’s law that was initially proposed for

single phase flow, and that later was extended to multi-phase flow, however, in a very ad hoc

way (Muskat 1949). Darcy’s law is essentially an equation for momentum balance relating

the volume flux to the viscous pressure gradient and the gravitational head. For multi-phase

flow it is often written as

Fa = −
kra k

µa

(∇ pa + ρa gez) (1)

for the phase a, where Fa is the phase volume flux, pa the phase pressure, g the acceleration

due to gravity, ρa the phase density, k the rock permeability, kra the relative permeability

and µa the phase viscosity. The phase pressures are usually related by the capillary pressure

relations, for example, in case of two-phase flow, one uses the relationship p1 − p2 = Pc,

where Pc is known as the macroscopic capillary pressure. Classically, both relative perme-

ability and macroscopic capillary pressure are assumed to be functions of phase saturation

and usually obtained from small scale experiments or pore-network simulation studies (Aziz

and Settari 2002).

At its core, Darcy-approach assumes that one can provide a full macroscopic description

of flow by knowing only the average flow quantities; the microscopic effects are lumped into

empirical coefficients (e.g. the shapes of relative permeability curves depend on pore-scale

dynamics (Blunt and King 1990, 1991)). However, for flows with microscopic nonlineari-

ties this is true only if correlations are much shorter than the scales of interest. Otherwise,

in general, all statistical moments are needed to provide a complete flow description. The

derivations of mean equations from a micro-scale description have clearly pointed out this

issue (Whitaker 1986a,b), where one encounters several unclosed terms consisting of higher
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Probability Density Function Modeling of Multi-Phase Flow 605

moments. Note that equations governing these higher moments would have unclosed terms

containing even higher moments and so on. Thus, such a statistical description of macro-

scopic multiphase flow in porous media suffers from the closure problem, i.e. there exist

more unknowns than equations.

The closure problem can be avoided by adopting a probability density function (PDF)—

approach in which a joint PDF or a mass density function (MDF) of the flow variables is

modeled. This MDF is transported in a high dimensional space (physical plus composi-

tional) via Fokker–Planck equation (Gardiner 2004). This MDF-equation is modeled by the

Lagrangian evolutions of random variables; these evolutions can be derived from the fine

scale flow physics. As such PDF-approach considers an ensemble of several independent

realizations at a fixed point in space at a given time. However, if one could invoke ergodicity

such that this ensemble at a point in space can be approximated by an ensemble of spatially

distributed realizations over an REV in the neighborhood of the point, the PDF-approach can

also provide a up-scaled large-scale flow model. Note that in this case the information about

the size of REV would be hidden in the stochastic model.1

Although an MDF-equation, in principle, can be solved numerically, e.g., by employing a

finite volume method (FVM), owing to its high-dimensionality (3+ dimensions of composi-

tion vector) the required computational effort would be tremendous. Alternatively, a Monte

Carlo-based solution method can be employed-by generating a large number of flow real-

izations by evolving the model stochastic processes. In order to do this, we introduce the

notion of computational particle, which represents a flow realization and carries properties

such as phase, position, velocity, mobility, composition, density, mass, etc. As particles are

transported through the computational domain (physical space), their properties evolve in the

compositional space. Note that the particle statistics represent the statistics of the physical

fluid volumes; the particle ensemble at a point represents the MDF at that location. Tyagi et al.

(2008) developed the stochastic particle method (SPM) for simulating multi-phase flow in

porous media, which is an extension of the particle method for single phase flows (Ahlstrom

et al. 1977; Prickett et al. 1981; Kinzelbach 1992), and demonstrated its consistency and

convergence. Below we list some important properties of the SPM that distinguish it from

the other particle methods, which are mainly based on the method of characteristics (Dahle

et al. 1990, 1995; Hewett and Yamada 1997):

• A particle belongs to a phase, i.e. in a simulation of n-phase flow, there are n-kinds

of particles.

• Saturation is defined over an ensemble of particles and is not a particle property.

• A particle moves in physical space with a velocity such that the phase mass flux is equal

to the conditional mass weighted expectation of the particle velocity times the particle

mass density.

• Particle properties evolve in their respective sample spaces.

As a proof-of-concept, Tyagi et al. (2008) selected mobility as a particle property and mod-

eled its evolution by a Langevin equation. The presence of finite correlation time in the

mobility model gives rise to non-equilibrium fluxes that relax towards the equilibrium values

at a rate equal to the inverse of the correlation time scale. Note that the SPM not only serves

as a numerical method to solve MDF-equations but also provides a natural link between the

Lagrangian evolution of the actual fluid volumes and the evolution of stochastic particles.

Hence, stochastic models can easily be implemented into SPM codes.

1 One should not confuse a grid cell with an REV when numerical simulation are performed within the

PDF-framework.
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606 M. Tyagi, P. Jenny

It has to be mentioned here that being a particle-based stochastic method SPM is computa-

tionally expensive compared to standard Darcy based FVM implementations. For a detailed

discussion on numerical and computational issues, interested readers are referred to our

previous paper (Tyagi et al. 2008). SPM is not intended to solve those problems, where

standard Eulerian FVM models give sufficiently accurate results. The potential of this new

approach lies in modeling non-equilibrium phenomena and unstable scenarios. Moreover,

based on SPM simulations one can derive closure models for the otherwise unclosed moment

transport equations. Finally, these closed Eulerian moment equations can be implemented in

standard FVM based simulators.

One of the possible applications of the PDF-approach is the modeling of density-driven

countercurrent flow, which results as a consequence of the dissolution of one phase into other

in a two-phase flow. Such density-driven flows play a crucial role during the post-injection

phase of CO2 storage in brine aquifers (Bachu 2003). After the injection of supercritical

CO2 at the bottom of a brine aquifer, the CO2 plume migrates upwards due to buoyancy and

slowly dissolves into the surrounding brine. The CO2-rich brine is denser than the pure brine;

consequently, the former sinks down and the latter rises up. Thus, the convective currents con-

tinuously bring fresh brine close to the dissolving CO2 phase (Pruess and Garcia 2002; Riaz

et al. 2006). To model this scenario within the PDF-approach, we consider particles represent-

ing CO2 and brine phases, where each particle represents a physical fluid mass. Dissolution is

modeled by exchanging mass among CO2 and brine particles; a brine particle receives mass

(at a certain rate) from the neighboring CO2 particles till the concentration of dissolved CO2

in it reaches the equilibrium concentration. As a brine particle gains some CO2, it becomes

denser compared to the pure brine particle; therefore, it sinks down. Accordingly, the lighter

brine particles move up to fulfill the continuity requirement. The resulting particle movement

indeed mimics the dynamics of countercurrent flow (fingers) due to the density gradient. The

dependence of dissolved CO2 concentration on brine particle vertical velocity, which in turn

influences the transport of CO2 in the brine phase, actually makes the flow nonlinear.

The paper is organized as follows. In Sect. 2, a general Lagrangian stochastic framework,

which is essentially an extension of our previous method for incompressible flows (Tyagi

et al. 2008), for compressible multi-phase flows is presented. The extended framework con-

siders particles with varying mass and volume (or density) and is suitable for modeling

interfacial mass transfer and mixing. In Sect. 3, we model the Lagrangian particle dynamics

and the dissolution process. In Sect. 4, the MDF for multiphase flow is introduced and the

Fokker–Planck equation governing its evolution in physical and compositional spaces—the

MDF-equation—is derived. Furthermore, it is shown how this MDF-equation can be used

to derive Eulerian equations for stochastic moments. Section 5 describes the simplifying

assumptions used for the numerical simulation. In Sect. 6, some one- and two-dimensional

numerical simulation results are presented. Finally, conclusions are drawn in Sect. 7.

2 Stochastic Particle Framework

Flow in porous media can be regarded as the irregular motion of infinitesimal fluid volumes,

which may or may not be physically connected in the pore space. If an ensemble of large

number of independent realizations of such a flow is considered, the irregular motion of infin-

itesimal fluid volumes can be modeled by randomly moving stochastic particles. The joint

flow statistics is contained among the particles, whose properties as random variables evolve

according to specified stochastic rules. For example, a simple, yet quite general stochastic

rule for particle displacement in physical space is
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Probability Density Function Modeling of Multi-Phase Flow 607

dX (t) = U (t)dt +
√

2Ŵ|U (t)|dW (t), (2)

where X (t) is the particle position, U (t) the particle velocity, Ŵ a constant, and W (t) a Wie-

ner process with dW (t) = W (t + dt) − W (t), 〈dWi 〉 = 0, 〈dWi W j 〉 = δi j dt . Here δi j is the

Kronecker delta, which is equal to 1 if i = j and 0 otherwise. On the right hand side in Eq. 2,

while the first term accounts for the displacement due to the instantaneous particle velocity,

the second term models the pore scale dispersion with a dispersion coefficient proportional

to the magnitude of instantaneous particle velocity. In its current form, however, Eq. 2 is

unclosed and requires a model for particle velocity; this will be described in Sect. 3. Particles

may carry additional flow properties and let all the relevant particle properties be contained

in the composition vector �. Here, a set of Lagrangian equations of the form.2

d�(t) = αdt +
√

βdW(t), (3)

where the vectors coefficients α and β are functions of �, is considered. Equation 3 is nor-

mally characterized by the correlation times and the variances, which can be, for instance,

obtained from micro-scale studies.

In SPM, saturation is defined as an average quantity over an ensemble of particles (Tyagi

et al. 2008). If fluid densities vary spatially, in addition to saturation, one also needs to define

mean phase density. Let M, V , and ρ (= M/V ) be the particle mass, volume, and den-

sity, respectively. Then, the saturation, Sa , and the mean phase density, ρa , of phase a are

defined by

Sα =
〈V δAa〉

〈V 〉
and ρa =

〈MδAa〉

〈V δAa〉
=

〈ρV δAa〉

〈V δAa〉
, (4)

where the random variable A ∈ {1, 2 . . . n} indicates the phase represented by the particle

and δAa is the Kronecker delta. The operator 〈·〉 represents ensemble averaging and is defined

by

〈·〉 = lim
Np→∞

1

Np

i=Np
∑

i=1

. (5)

Combining the two expressions in Eq. 4 gives

〈MδAa〉 = ρa Sa〈V 〉. (6)

In order to be consistent with the definitions of mean phase density and saturation, mass

weighted averaging (also known as Favre averaging) must be employed. The Favre average

of a random variable � conditioned on A = a is defined by

�|a =
〈MδAa�〉

〈MδAa〉
=

〈M�|a〉

〈M |a〉
, (7)

where the operator . represents Favre averaging. Mass weighted averaging is indeed a natu-

ral choice while dealing with non-constant density flow; this fact will become apparent from

the mean moment transport equations presented later in Sect. 4.

3 Stochastic Models

Here, we describe the particle velocity evolution and develop a particle model for interfa-

cial mass transfer for a system of two phases (denoted by a = 1 and a = 2). While the

2 In this paper, only continuous stochastic processes are considered.
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608 M. Tyagi, P. Jenny

phase-1 (CO2 phase) always remains in its pure state, its only component (component-1, i.e.

CO2) dissolves into phase-2 (brine phase). The phase-1 density is constant and the density

of phase-2 weakly depends on the concentration of component-1.

3.1 Particle Velocity

A model for particle velocity has to mimic the micro-scale physics of unstable density-driven

flow. Dissolution leads to fine-scale variations of the phase-2 density, i.e. the density ρ of a

phase-2 particle varies as a function of component-1 concentration; consequently, buoyancy

forces within phase-2 are introduced. If it is assumed that particle mobility depends only on

saturation and that fine-scale pressure fluctuations are negligible, the particle velocity, U , can

be expressed as

U = −
kra k

φSaµa

(∇ pa + ρgez) (8)

for phase a ∈ {1, 2}. Furthermore, it is assumed that the density ρ of the phase-1 particles

remains constant, i.e. ρ = ρ1 and that the phase pressures are related by the macroscopic

capillary pressure relation

p1 − p2 = Pc(S2). (9)

Note that the mean phase volume fluxes based on the rule (8) for Ŵ = 0 are

F1 = φS1U |a = 1 = −
kr1 k

µ1
(∇ p1 + ρ1gez) and

F2 = φS2U |a = 2 = −
kr2 k

µ2

(

∇ p2 + ρ|a = 2 gez

)

, (10)

which are consistent with classical two-phase Darcy formulations. Although more general

rules can be derived, however, since the focus of this paper is to demonstrate the concept, the

particle velocity model (8) will be used.

3.2 Dissolution and Mixing

We consider mass transfer from phase-1 particles to phase-2 particles with finite rate kinetics.

For this purpose a concentration, C , of component-1, which is defined as

C =
Mc

M
, (11)

where Mc is the mass of component-1 carried by the particle, is introduced. Note that since

phase-1 always remains in the pure state, C = 1 for all phase-1 particles. To model dissolu-

tion a particle ensemble with spatial ergodicity is considered, in which during an infinitesimal

time interval, first the mass of all phase-2 particles is evolved according to a linear relaxation

equation, and then the mass of the phase-1 particles is consistently computed to guarantee

mass balance of all components.

3.2.1 Phase-2 Particles

Concentration of a phase-2 particle can be altered either by mass transfer from the phase-

1 particles (dissolution) or by mass exchange with the other phase-2 particles (molecular
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Probability Density Function Modeling of Multi-Phase Flow 609

mixing). Dissolution is modeled by a first order rate law

rd = −
M

τd
(C − Ceq), (12)

where τd is the characteristic dissolution time and Ceq the equilibrium concentration of com-

ponent-1 in phase-2. The molecular mixing rate of component-1 in phase-2 is modeled by a

concentration drift towards the conditional Favre mean concentration C |a = 2, i.e.

rm = −
M

τm
(C − C |a = 2), (13)

where τm is the characteristic mixing time. Combining Eqs. 12 and 13 gives the evolution

dM

dt
= −

M

τd
(C − Ceq) −

M

τm
(C − C |a = 2) (14)

for the phase-2 particle mass. Since the brine mass of a phase-2 particle does not change, the

following mass balance must hold

dM

dt
=

d(MC)

dt
, (15)

which leads to

1

M

dM

dt
=

1

1 − C

dC

dt
. (16)

After the substitution of Eq. 16 into Eq. 14, the evolution equation

1

1 − C

dC

dt
= −

1

τd
(C − Ceq) −

1

τm
(C − C |a = 2) (17)

for component-1 concentration in a phase-2 particle is obtained.

3.2.2 Phase-1 Particles

In an ensemble, the mass gained by phase-2 particles must be equal to the mass lost by

phase-1 particles, i.e.
〈

δA1
dM

dt

〉

= −

〈

δA2
dM

dt

〉

(18)

In order to distribute the lost mass among the individual phase-1 particles, it is assumed that

a phase-1 particle in the ensemble looses mass at a rate proportional to its own mass, i.e.

dM

dt
= −

M

〈MδA1〉

〈

δA2
dM

dt

〉

. (19)

Substituting for 〈δA2dM/dt〉 using Eq. 14 gives the mass evolution

dM

dt
= M

〈MδA2〉

〈MδA1〉

(C |a = 2 − Ceq)

τd
(20)

for a phase-1 particle. Further, with 〈MδA2〉/〈MδA1〉 = (ρ2S2)/(ρ1S1) from Eq. 6 one can

rewrite Eq. 20

dM

dt
= M

ρ2S2

ρ1S1

(C |a = 2 − Ceq)

τd
(21)
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610 M. Tyagi, P. Jenny

for a phase-1 particle.

The dissolution time, τd, introduced above would require further modeling. In general, τd

itself could be a random quantity that would evolve according to some stochastic process.

In the present paper, however, we limit ourselves to a simple model, which is sufficient to

demonstrate the concept, for τd. This model is based on the physics that in an ensemble, the

average mass transfer rate to a phase-2 particle depends on the probability of finding phase-1

particles. Assuming this dependency follows a linear relationship, one can write

1

τd
=

S1

τ0
, (22)

where τ0 is the dissolution time in the limit of unit phase-1 saturation (S1 → 1). This rela-

tionship is in the agreement with the fact that when S1 = 0, the dissolution ceases as there is

no more phase-1 to dissolve.

3.3 Particle Densities

Dissolution and mixing alter the phase-2 particle mass and volume; hence the phase-2 parti-

cle density. A complete closure of the problem would require the relations connecting phase

densities with other thermodynamics variables. In this paper, it is assumed that the phase-2

particle density is a linear function of component-1 concentration (Riaz et al. 2006). Thus,

the density of a particle can be expressed as

ρ = ρ0
a + δa2

(ρ
eq
2 − ρ2)

Ceq
C, a ∈ {1, 2} (23)

where ρ0
1 and ρ0

2 are the phase densities in the pure states and ρ
eq
2 is the equilibrium density

(corresponding to C = Ceq in phase-2). Note that the phase-1 density remains constant-an

approximation that is valid in Boussinesq limit (shown later).

4 MDF-Equation

In this section, we show how the particle properties evolutions described before lead to

transporting a MDF in physical and compositional spaces. This equivalence between the

particle evolution and the MDF evolution is widely used in many fields of science and

engineering, for example, in modeling turbulent reactive flows (Pope 1985; Heinz 2003). If

f a(c; x, t) is the mass weighted conditional PDF of C for phase a, the MDF of the entire

multi-phase system can be expressed as F(a, c, x; t) = φρa(x, t)Sa(x, t) f a(c; x, t). By

definition, F(a, c, x; t)dxdc is the mass of phase-a in an infinitesimal volume dxdc in x − c

space at time t . Any stochastic moment of C can be obtained once the MDF is known:

∫

R2

cn
F(c, a, x; t)dc = φρa(x, t)Sa(x, t)Cn |a (x, t), n ∈ {0, 1, 2 . . .}, (24)

where Cn |a is the nth conditional mass weighted moment of C . As shown in Appendix, a

transport equation for F can be derived by balancing mass in x −c−a space. For the present
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Probability Density Function Modeling of Multi-Phase Flow 611

case, this is

∂F

∂t
+ ∇ ·

{(

−
kr1 k

S1φµ1
(∇ p1 + ρ1gez)δa1 −

kr2 k

S2φµ2
(∇ p2 + ρgez)δa2

)

F

}

+
∂

∂c

{(

−
(1 − c)(c − Ceq)δa2

τd
−

(1 − c)(c − C |a = 2)δa2

τm

)

F

}

=

{

−
δa2(c − Ceq)

τd
−

δa2(c − C |a = 2)

τm
+

δa1ρ2S2

ρ1S1

(C |a = 2 − Ceq)

τd

}

F

+∇2 {〈Ŵ|U || x, a, c; t〉 F} , (25)

which is a Fokker–Planck equation (with source term) describing the evolution of the MDF

in x − c − a space.

4.1 Moment Equations and Closure Problem

Equation 25 can be used to derive Eulerian transport equations for expectations, variances,

and other stochastic moments. For example, the integration of Eq. 25 over the entire c-space

yields the saturation equations

∂(φρ1S1)

∂t
− ∇ ·

{

ρ1kr1 k

µ1
(∇ p1 + ρ1gez)

}

= ∇2
{

φρ1S1Ŵ|U ||a = 1
}

+φρ2S2
(C |a = 2 − Ceq)

τd
(26)

for a = 1 and

∂(φρ2S2)

∂t
− ∇ ·

{

ρ2kr2 k

µ2

(

∇ p2 + ρ|a = 2 gez

)

}

= ∇2
{

φρ2S2Ŵ|U ||a = 2
}

−φρ2S2
(C |a = 2 − Ceq)

τd
(27)

for a = 2. An equation for conditional Favre mean concentration can be obtained by multi-

plying Eq. 25 at a = 2 by c, and subsequently integrating over the entire c-space:

∂(φρ2S2C |a = 2)

∂t
− ∇ ·

{

ρ2kr2 k

µ2

(

∇ p2C |a = 2 + ρC |a = 2gez

)

}

= ∇2
{

φρ2S2Ŵ(|U |C)|a = 2
}

−
φρ2S2(C |a = 2 − Ceq)

τd
. (28)

As ρ is a function of C , it is evident that even if only the mean quantities are of interest,

Eqs. 26–28 are not sufficient to determine them, since ρC |a = 2 is not closed in the second

term on the left hand side of Eq. 28. Indeed, it can be shown that a system of equations derived

from Eq. 25 for the first n-moments would have at least n + 1 unknowns. Thus, an Eulerian

approach with a system of finite moment equations is subjected to closure problems, which

do not arise in the PDF-approach. In the classical Darcy-approach, dissolution process is

modeled using only mean quantities, i.e. the approximation

C2|a = 2 = C |a = 2
2

(29)

is made in Eq. 28; thus, the influence of higher stochastic moments is neglected.
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5 Boussinesq Flow

In many scenarios, one can greatly simplify the full compressible flow model by making a

Boussinesq approximation, which implies that density variations are only important in the

gravity term; otherwise,

ρ2 = constant (30)

is used. Here, we further simplify the problem by assuming

ρ1 = ρ2 = constant (31)

everywhere except in the gravity term. Moreover, any macroscopic capillary pressure effect

is ignored, i.e. Pc is set to zero in Eq. 9 leading to p1 = p2 = p.

5.1 Pressure Equation

With the assumption (31) and the relation (9) the summation of Eqs. 26 and 27 leads to the

elliptic equation

− ∇ · {kλ∇ p} = gez · ∇
{

kλ1ρ1 + kλ2ρ|a = 2
}

+∇2
{

φ (S1 Ŵ|U || a = 1 + S2 Ŵ|U || a = 2)
}

, (32)

for the pressure p, where λ1 = kr1/µ1 and λ2 = kr1/µ2 are the mobilities of phase-1 and

phase-2, respectively, and λ = λ1 + λ2 is the total mobility.

5.2 Fractional Flow Formulation

Form Eq. 32 we can define a total volume flux

F = −kλ∇ p − k
(

λ1ρ1 + λ2ρ|a = 2
)

gez (33)

−∇
{

φ (S1Ŵ|U ||a = 1 + S2Ŵ|U ||a = 2)
}

that fulfills the conservation law

∇ · F = 0. (34)

The particle velocities are expressed in fractional flow formulation:

U =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
φS1λ

[

λ1 F + kλ1λ2(ρ|a = 2 − ρ1)gez + λ1∇{φ(S1 Ŵ|U || a = 1

+S2 Ŵ|U || a = 2)}
]

, if a = 1,

1
φS2λ

[

λ2 F + kλ1λ2(ρ1 − ρ)gez − kλ2
2(ρ − ρ|a = 2)gez

+λ2∇{φ(S1 Ŵ|U || a = 1 + S2 Ŵ|U || a = 2)}
]

, if a = 2,

(35)

which are obtained by eliminating the pressure gradient in Eq. 8 using Eq. 33.

5.3 Multi-Phase Flow Parameters and Important Scales

For numerical simulations, quadratic relative permeabilities, i.e.

kr1 = S2
1 and kr2 = S2

2 (36)

are chosen. Note that in principle, any general shape of relative permeability–saturation

curves can be employed, however, since the choice of a specific relative permeability curve
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would not alter the concept, which is the focus of this paper, simulations are performed only

using Eq. 36. Molecular mixing is assumed to be a very slow process compared to dissolution

and convection; therefore, it is neglected here.

Note that, in the present case, there exist two kind of buoyant forces: one due to the phase

density difference, ρ2 − ρ1 and the other due to the density fluctuations within phase-2. An

estimate for the average buoyancy induced phase-2 velocity is

Ug =
kg(ρ2 − ρ1)

µ2φ
. (37)

If H is chosen as the characteristic height of the problem, the time scale

τg =
µ2φH

kg(ρ2 − ρ1)
(38)

can be associated to the downward motion of phase-2. In similar way, an estimate for the

average buoyancy induced velocity within phase-2 is

Uρ =
kg

(

ρ
eq
2 − ρ2

)

µ2φ
, (39)

which leads to the time scale

τρ =
µ2φH

kg
(

ρ
eq
2 − ρ2

) (40)

for the density-driven currents within phase-2. The relative importance of the two buoyancy

mechanisms can be estimated by the ratio τg/τρ =
(

ρ
eq
2 − ρ2

)

/(ρ2 − ρ1).

6 Numerical Simulation Results

Here, some one- and two-dimensional results with the focus on demonstrating differences

between PDF and Darcy modeling approaches are presented. In the PDF-approach, SPM

is employed, i.e. the computational particles are moved in the computational domain using

Eq. 2, where the velocities are given by (35), and their properties are evolved according

Eqs. 14, 17, and 21. The pressure equation (32) is solved on an FVM grid at every time step

to obtain the total volume flux (33), which is then used to compute the particle velocities

(35). In the Darcy-approach, one could solve the mean Eqs. 26–28 together with the closure

assumption (29) by employing FVM. However, in order to avoid numerical discrepancy due to

different solution methods, and since the goal here is to demonstrate differences between the

two approaches, an FVM-based implementation in the Darcy-approach is avoided. Instead,

the same is achieved by decorrelating the particle properties, i.e. ρ in Eq. 35 is replaced

by ρ|a = 2 in SPM simulations. This would be equivalent to having a closed set of equa-

tions for saturations and mean concentration. The Boussinesq approximation as described

in Sect. 5 is made in both cases. Since the focus of this paper is the modeling aspect of

the PDF-approach, numerical and computational details/issues related to particle tracking,

pressure-transport coupling, interpolation schemes, accuracy, etc. are not given here. Inter-

ested readers may refer to the numerical schemes those presented in Tyagi et al. (2008),

Jenny et al. (2001), Rembold and Jenny (2006). The simulation test cases are constructed by

idealizing the dynamics observed during the post-injection phase of CO2 storage. After the

injection of CO2 near the bottom of saline aquifer, a plume of lighter CO2 (phase-1) migrates

upwards in the aquifer, which is otherwise filled with the denser brine (phase-2). As the
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Fig. 1 Geometry and initial

distribution of phases in the

1D test case

phase-2

z

phase-1

no flow BC

no flow BC

H

h

h0

g

plume rises, some CO2 dissolves into the surrounding brine phase leading to local increase

in the brine density. This density stratification drives additional gravity currents within the

brine phase.

It has to be emphasized that the model presented in this paper comprises several param-

aters, which control the flow dynamics. A detailed investigation of the flow dynamics in the

entire parameter space would be impossible to cover in a single paper. Moreover, the goal

here is to demonstrate the concept but to present a systematic parametric study. Therefore,

for all simulations, Ceq = 0.1 is chosen in the dissolution model and both the parameters

τg/τρ and the viscosity ratio µ2/µ1 are equal to one. A unity value of τg/τρ means that the

upward migration of CO2 and the density-driven currents in brine have the same time scale.

A unity value of µ2/µ1 insures that there is no viscous instability, presence of which would

further complicate the flow physics.

6.1 One-Dimensional Numerical Results

First, a one-dimensional (1D) test case, which represents a simple model of rising CO2 plume

in brine aquifer, is considered. The geometrical details and initial distribution of phases are

shown in Fig. 1, where h0 = 0.1H and h = 0.2H . At t = 0, particles of equal mass and

volume such that A = 1 and C = 1, if 0.1H ≤ z ≤ 0.3H and A = 2 and C = 0 elsewhere,

are uniformly distributed in the domain. Total volume flux is zero at boundaries implying

Fz = 0 everywhere. The gravitational acceleration is directed along the decreasing z-axis.

A grid with 100 equally spaced finite volumes (grid cells), i.e. �z = 0.01H , is employed to

discretize the domain and a time step size of �t = 5 × 10−3τg is used during the simula-

tions (the maximum CFL3 number in the domain is less than 0.5). In order to obtain smooth

stochastic moments, an average of 50,000 particles per cell are employed.

Figure 2a, b depicts a comparison of the spatial phase-2 saturation profiles at t = τg and

t = 2τg , respectively, obtained with the PDF and Darcy approaches for τ0 = 0.1τg . The

difference between the saturations from the two approaches is negligible; thus, for the present

test case the Darcy-approach provides a sufficiently accurate description of the average phase

distribution. Figure 3a, b depicts the corresponding spatial profiles for the conditional Favre

mean concentration C |a = 2. In the trailing region of the plume, a significant difference

between the mean concentrations obtained from the two approaches can be observed. The

non-monotonic mean concentration profile predicted by the PDF-approach is due to unsta-

ble density-driven countercurrents in the phase-2. In the PDF-approach, this phenomenon

3 If |U | is the magnitude of particle velocity, the CFL number is defined as
|U |�t

min{�xi }
.
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(a) (b)

Fig. 2 Phase-1 saturation profiles obtained with the PDF-approach and the Darcy-model for τ0 = 0.1τg at: a

t = τg ; b t = 2τg

is modeled by the stochastic formulation of phase-2 particle velocities (see Eq. 35), i.e. the

term

−
kλ2

2(ρ − ρ|a = 2)gez

S2φλ
, (41)

which is absent in the Darcy model (see Sect. 4). According to this term, in phase-2,

a particle with higher density than the local mean density sinks and a particle with lower

density than the local mean density rises. Thus, density-driven countercurrent miscible flow

is very naturally mimicked by the movement of particles. In a one-dimensional Darcy-mod-

eling framework, these unstable miscible currents, which have their origin at the micro-scale,

cannot be accounted. It should be noted, however, that if one performs a well-resolved two-

(or three-) dimensional simulation with Darcy’s model, it is possible to capture these unstable

miscible currents as gravity fingers. However, such a fine-scale simulation would demand

tremendous computational resources, and thereby is not suited for most subsurface flows. The

PDF-approach, on the other hand, provides a computationally inexpensive way to capture

such phenomena; the average flow field can be described without resolving the finest scale.

In the present example, this could, for instance, imply averaging of a two- (x − z) or three-

(x − y − z) dimensional flow on the vertical line (z-axis).

Statistically, the magnitude of countercurrent flow can be measured by the concentration

variance (σ 2 = C2|a = 2 − C |a = 2
2
). Figure 4a, b depicts the time evolutions of σ for

τ0 = 0.1τg and τ0 = τg , respectively. Variance, in general, is larger where (and when)

the mean concentration profile has a dip (Fig. 3a, b). Indeed, variance, which represents the

unstable countercurrent flow, drives the transport of mean concentration in the PDF-approach.

This, however, is not the case with the Darcy’s approach, which neglects variance.

At any point on z-axis, the concentration distribution (PDF) estimated over a parti-

cle ensemble represents the concentration variation due to fine scale countercurrent flows.

Figure 5 depicts the time evolution of the mass weighted conditional PDF of C − C |a = 2

at x = 0.5H . Its shape changes form uni-modal to bi-modal and then changes back to

uni-modal. At early times, the component-1 concentration of the phase-2 particles increases

due to dissolution; therefore, the PDF is uni-modal. Meanwhile, also due to dissolution, the

phase-2 particles become denser and begin to sink. To satisfy mass conservation, the lighter

phase-2 particles rise; this leads to a bi-modal PDF, where one mode represents the denser
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(a) (b)

Fig. 3 Favre mean component-1 concentration in phase-2 obtained with the PDF-approach and the Darcy-

model for τ0 = 0.1τg at: a t = τg ; b t = 2τg

(a) (b)

Fig. 4 Standard deviation (σ ) of component-1 concentration in phase-2 at three different times for: a τ0 =

0.1τg ; b τ0 = τg

particles and the other one the lighter particles. The bi-modal shape of the PDF is essentially

due to the countercurrent miscible flow; the denser particles sink and the lighter particles

rise. At later times, the initially lighter particles eventually gain enough component-1 mass

leading again to a uni-modal PDF. The non-monotonic mean concentration profiles shown in

Fig. 3a, b are actually due to the bi-modal shape of the PDF. Thus, we notice that the details

of complex PDF-evolutions strongly determine the mean concentration distribution; this is

indeed the best motivation for using PDF-approach.

6.2 Two-Dimensional Numerical Results

Although the basic differences between the PDF and Darcy approaches are clear from the

1D results presented above, more interesting cases involve two and three spatial dimen-

sions. For this purpose, a two-dimensional (2D) simulation test case in which a plume of the

lighter phase-1 rises upwards in a porous medium filled with the denser phase-2 is consid-

ered. The geometrical details and initial configuration of phases are shown in Fig. 6, where

l = 0.5L , h = 0.25H , and r = 0.2L . At t = 0, particles of equal mass and volume such
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(a) (b)

Fig. 5 Time evolution of the mass weighted conditional PDF f (ψ) of fluctuating component-1 concentration

in phase-2 at z = 0.5H for τ0 = 0.1τg , where ψ = c − C |a = 2

that A = 1 and C = 1, if (x − l)2 + (z − h)2 ≤ r2, and A = 2 and C = 0 elsewhere,

are uniformly distributed in the domain. The domain is a square (H/L = 1) homogeneous

porous medium with no-flow conditions at all boundaries. A uniform orthogonal finite vol-

ume grid with 100 × 100 grid cells is employed to discretize the computational domain. The

time step size is chosen such that CFL condition is satisfied everywhere. In order to obtain

smooth stochastic moments, an average of 4,000 particles per cell are employed.

First, some results to show the general multi-phase flow dynamics are presented; τ0 =

0.1τg is chosen for the simulation. Figure 7 depicts the time evolution of the phase-1 particle

distribution, where for the sake of clarity only a random subset of all particles is depicted.

As the plume migrates upwards, a trail of phase-1 is left behind; this represents the imbibi-

tion expansion fan. Upon reaching the ceiling, the phase-1 particles begin to move laterally.

Figure 8 depicts the corresponding time evolution of the total volume flux F , which is given
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Fig. 6 Geometry and initial

distribution of the phases in the

2D test case

Fig. 7 Time evolution of phase-1 particles with τ0 = 0.1τg . Only a fraction of all particles are shown

Fig. 8 Time evolution of the total volume flux vectors for τ0 = 0.1τg

by Eq. 33. While the plume migrates upwards, phase-2 is entrained from the side leading

to a prime recirculation. These recirculation zones are clearly visible at t/τg = 0.5 and

also, though weaker in strength, at later times. As the flow evolves, some mass from phase-1

dissolves into phase-2; consequently, the denser phase-2 particles sink (and the lighter rise)

resulting in additional (density-driven) secondary recirculation zones, which grow in size

with time.

Next, similar to the 1D case, a comparison between the results obtained from the two dif-

ferent modeling approaches is presented. Figure 9a, b depicts the total volume flux vectors

at t = 2τg obtained from the PDF- and Darcy-approaches, respectively. A visible difference

between the density-driven (secondary) recirculation zones can be clearly noticed. Note that

the PDF-approach predicts more lateral convection in the trailing region. The difference in
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Fig. 9 Total volume flux vectors at t = 2τg for τ0 = 0.1τg obtained with: a the PDF-approach; b the

Darcy-model

the results from the two approaches is even more pronounced in the concentration fields,

which are shown in Fig. 10a, b obtained from the PDF- and Darcy-approaches, respectively.

Here, the isolines of the Favre mean dissolved component-1 concentration are plotted at

four different times. Note that the observed difference, which is primarily due to the stron-

ger lateral convection as predicted by the PDF-approach, increases with time. The effect of

convection on concentration field is clearly visible in the iso-concentration contours shown

at t = 2τg as these counters align themselves with the secondary recirculation zones (see

Fig. 9a, b). To further demonstrate the difference between the results obtained from the two

approaches, phase-2 particle distributions with C > 0.5Ceq at t = 10τg are shown in Fig. 11a,

b. Again a drastic difference between the two particle distributions can be observed. Unlike

the Darcy-approach the PDF-approach accounts for the influence of fine-scale countercurrent

flow on large-scale dynamics. Therefore, the denser phase-2 particles in the simulation with

the PDF-approach reach the bottom of the aquifer much quicker than that in the simulation

with the Darcy-approach. For practical applications, one is often interested in knowing the

total amount of CO2 that has dissolved in brine as a function of time. This is shown in Fig. 12,

where the dimensionless dissolved component-1 masses in phase-2 obtained with the PDF-

and Darcy-approaches are plotted as functions of time. Opposed to the Darcy-simulation, in

the PDF-simulation, due to density-driven enhanced advective transport, fresh phase-2 par-

ticles are continuously made available to phase-1 particles, thereby leading to a significantly

higher dissolution rate.

7 Conclusions

Modeling of small-scale flow features is crucial for unstable porous media flows, if long

range correlations, e.g., gravity or viscous fingers, are present. In order to obtain an accu-

rate macroscopic flow description, large-scale flow models must account for such correla-

tions. The PDF-approach provides a statistical framework to consistently model the influ-

ence of microscopic dynamics on macroscopic flow. In this paper, the PDF-approach is used

to model dissolution (one-way), and the resulting unstable density-driven currents in two-

phase flow through porous media. Mathematically, the modeling approach is described by

a high dimensional MDF-equation in physical and concentration spaces. Using this equa-

tion it can be shown that irrespective of the number of moments considered, a system of

123



620 M. Tyagi, P. Jenny

(a) (b)

Fig. 10 Time evolution of the Favre mean concentration of component-1 in phase-2 for τ0 = 0.1τg obtained

with: a the PDF-approach; b the Darcy-model

Eulerian equations for stochastic moments remains unclosed. In the Darcy-modeling ap-

proach, the effect of higher moments is ignored, i.e. flow and transport are completely

described by average quantities. With several one- and two-dimensional simulations it is

shown that the results, particularly the CO2 concentration in brine phase, obtained with the

PDF-approach significantly differ from those obtained with the Darcy-approach. However,

for the test cases considered in this paper, the choice of simulation approach does not have

a visible influence on saturation field. The density-driven countercurrents simulated with

the two models are significantly different; this in turn, leads to drastic differences in the

concentration distributions of dissolved CO2 in brine. The reason for this difference is the

123



Probability Density Function Modeling of Multi-Phase Flow 621

Fig. 11 Phase-2 particle distribution with C > 0.5Ceq at t = 10τg for τ0 = 0.1τg obtained with: a the

PDF-approach; b the Darcy-model. Only a fraction of all particles are shown

Fig. 12 Fraction of global

component-1 mass in phase-2 as

function of dimensionless time

for τ0 = 0.1τg

lack of information about the microscopic density-driven dynamics in the Darcy-model. This

information, on the other hand, is very naturally captured in the PDF-approach.
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Appendix: Fokker–Planck Equation

A conservation law for F can be derived by considering mass balance of phase-a in an

infinitesimal control volume of size (dxdc), which leads to the MDF-transport equation

∂F

∂t
+

∂

∂xi

{

Dx

i F
}

+
∂

∂c

{

Dc
F

}

=
∂2

∂xi∂x j

{

D
x,x
i j F

}

+
∂2

∂c∂c

{

Dc,c
F

}

+
∂2

∂xi∂c

{

D
x,c
i F

}

+ QF . (42)
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This is a Fokker–Planck equation (Gardiner 2004) with the coefficients defined by

Dx
i = lim

�t→0

1

�t
〈{X i (t + �t) − X i (t)}| x, a, c〉 ,

Dc = lim
�t→0

1

�t
〈{C(t + �t) − C(t)}| x, a, c〉 , (43)

D
x,x
i j = lim

�t→0

1

2�t

〈

{X i (t + �t) − X i (t)}
{

X j (t + �t) − X j (t)
}∣

∣ x, a, c
〉

,

Dc,c = lim
�t→0

1

2�t

〈

{C(t + �t) − C(t)}2
∣

∣ x, a, c
〉

,

D
x,c
i = lim

�t→0

1

2�t
〈{X i (t + �t) − X i (t)} {C(t + �t) − C(t)}| x, a, c〉 (44)

and

Q =
1

M(t)
lim

�t→0

1

�t
〈{M(t + �t) − M(t)}| x, a, c〉 . (45)

To evaluate these coefficients, we need the Lagrangian evolutions of the stochastic variables

X(t), C(t) and M(t). For X(t) and C(t), these are given by Eq. 2 and Eq. 17, respectively:

dX (t) = U (t)dt +
√

2Ŵ|U (t)|dW (t) and (46)

dC(t) = −

{

(1 − C)(C − Ceq)

τd
dt +

(1 − C)(C − C |a = 2)

τm
dt

}

δA(t)2. (47)

The evolution for M can be obtained by combining Eqs. 14 and 21:

1

M(t)

dM(t)

dt
= −δA2

(C(t) − Ceq)

τd
− δA2

(C(t) − C(t)|a = 2)

τm

+δA1
ρ2S2

ρ1S1

(C |a = 2 − Ceq)

τd
. (48)

Using Eqs. 46, 47, and 48 we obtain

Dx
i = −

kr1 k

S1φµ1

(

∂p1

∂xi

+ ρ1gezi

)

δa1 −
kr2 k

S2φµ2

(

∂p2

∂xi

+ ρgezi

)

δa2, (49)

Dc = −
(1 − c)(c − Ceq)δa2

τd
−

(1 − c)(c − C |a = 2)δa2

τm
, (50)

D
x,x
i j = 〈Ŵ|U || x, a, c〉 δi j , Dc,c = D

x,c
i = 0 (51)

and

Q = −δa2
(c − Ceq)

τd
− δa2

(c − C |a = 2)

τm
+ δa1

ρ2S2

ρ1S1

(C |a = 2 − Ceq)

τd
. (52)
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