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Probability distribution of distance in a uniform ellipsoid:
Theory and applications to physics

Michelle Parrya)

Department of Natural Sciences, Longwood College, Farmville, Virginia 23909

Ephraim Fischbachb)

Department of Physics, Purdue University, West Lafayette, Indiana 47907

~Received 4 November 1999; accepted for publication 24 November 1999!

A number of authors have previously found the probabilityPn(r ) that two points
uniformly distributed in ann-dimensional sphere are separated by a distancer .
This result greatly facilitates the calculation of self-energies of spherically symmet-
ric matter distributions interacting by means of an arbitrary radially symmetric
two-body potential. We present here the analogous results forP2(r ;e) andP3(r ;e)
which respectively describe an ellipse and an ellipsoid whose major and minor axes
are 2a and 2b. It is shown that fore5(12b2/a2)1/2<1, P2(r ;e) andP3(r ;e) can
be obtained as an expansion in powers ofe, and our results are valid through order
e4. As an application of these results we calculate the Coulomb energy of an
ellipsoidal nucleus, and compare our result to an earlier result quoted in the litera-
ture. © 2000 American Institute of Physics.@S0022-2488~00!04304-8#

I. INTRODUCTION AND SUMMARY

It is well known that the exchange of fields with appropriate quantum numbers gives rise to
two-body potentialsV(ur12r2u)[V(r ) between particles 1 and 2, which contribute in turn to the
self-energies of many-body systems such as nuclei and neutron stars. In typical applications of
interest these potentials are often of the Yukawa form,

V~r !5CY

e2r /l

r
, ~1.1!

whereCY andl are constants, or are inverse powers

V~r !5
Cn

r n ~n51,2,3, . . .!, ~1.2!

where Cn is a constant. The most familiar example is the self-energy of a spherical charge
distribution ~e.g., a spherically symmetric nucleus! arising from the Coulomb potential

VC~r !5
e2

ur12r2u
[

e2

r
. ~1.3!

As we discuss in Sec. IV, the average interaction energyUC[^VC(r )& of a single pair of charges
having a uniform probability distribution in a sphere of radiusR is given by

UC5
6

5

e2

R
. ~1.4!

For a nucleus containingZ charges, and henceZ(Z21)/2 pairs, the total Coulomb energy is1
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WC5
1

2
Z~Z21!UC5

3

5
Z~Z21!

e2

R
. ~1.5!

The conventional way of obtainingUC is to integrateVC(ur12r2u) over r1 and r2 which
requires evaluating a six-dimensional integral. For the Coulomb potential this is relatively straight-
forward, but for other potentials evaluatingUC is considerably more difficult, particularly for the
inverse power potentials in Eq.~1.2!. These typically arise from the simultaneous exchange of two
quanta: For example, the exchange of two pseudoscalars produces a 1/r 3 potential,2–6 while the
exchange of a neutrino–antineutrino pair leads to a 1/r 5 potential.7–10 Evaluation ofU for these
potentials in nuclei or neutron stars would lead to formally divergent integrals, but finite results are
obtained by introducing the hard-core radiusr c , which cuts off the lower limit of integration.
When the hard-core restrictionur12r2u,r c is incorporated into the conventional evaluation ofU,
as in Eq.~4.3! below, it leads to complicated constraints on the six-dimensional integration region.
By contrast, the same constraint can be expressed trivially in terms of the functionP3(r ) in Eq.
~1.6!, which gives the probability that two points in a sphere of radiusR are separated by a
distancer<2R. The utility of this geometric probability approach lies not only in its ability to
deal with the hard core constraint, but also in its universal applicability to any potentialV(r ), as
we discuss later.

The object of the present paper is to extend the above formalism to ellipsoids and ellipses,
which would allow geometric probability techniques to be applied to systems in which there were
deviations from exact spherical or circular symmetry. As in the case of the functionP3(r ), once
the corresponding functions are determined for an ellipsoid or an ellipse, the evaluation of the
self-energyU for an arbitrary two-body potential becomes trivial.

To set the stage for the ensuing discussion, we begin by reviewing earlier results for the
probability distributions in spherically symmetric geometries. Consider two points 1 and 2 located
at coordinatesr1 and r2 in a uniformly distributedn-dimensional sphere of radiusR, and letr
5ur12r2u. The normalized probabilityPn(r ) that 1 and 2 are separated by a distancer , 0<r
<2R, has been treated by Deltheil,11 Hammersley,12 Overhauser,13 Lord,14 and Parry15 ~see also
Kendall, and Moran16 and Santalo´17!. It is convenient to introduce the variables5r /2R, 0<s
<1, and to then definePn(s) as the normalized probability thats be in the interval (s,s1ds).
Pn(s) is given by17

Pn~s!52nnsn21I 12s2S ~n11!

2
,
1

2D , ~1.6!

whereI x(p,q) is the incomplete beta function,

I x~p,q!5
G~p1q!

G~p!G~q!
E

0

x

dt tp21~12t !q21. ~1.7!

As discussed here earlier and in Ref. 10, the results forn51,2,3 are of interest in physics when
calculating the self-energies of various configurations of charges, and hence we exhibit the explicit
functional forms forP1(s), P2(s), andP3(s) below:

P1~s!52~12s!,

P2~s!5
16

p
s@cos21 s2s~12s2!1/2#, ~1.8!

P3~s!512s2~12s!2~21s!.

In terms ofPn(s) the self-energyU of a one-, two-, or three-dimensional configuration of charges
interacting via an arbitrary potentialV(s) is given by
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U5E
0

1

ds Pn~s!V~s!. ~1.9!

The effects of the hard-core radiusr c can be included trivially by replacing the lower limit in Eq.
~1.9! by sc5r c/2R.

For some applications where symmetry conditions are important, it is essential to know how
the results in Eqs.~1.8! change in the presence of deviations from exact circular or spherical
symmetry, characterized by a nonvanishing eccentricitye. In what follows we derive the appro-
priate generalizations ofP2(r ) andP3(r ) for an ellipse and an oblate spheroid, which we denote
by P2(r ;e) andP3(r ;e), respectively. The outline of our paper is as follows. In Sec. II we present
the ~unpublished! Overhauser method for derivingP3(r ), which we then generalize in Sec. III to
obtainP3(r ;e). The expression forP3(r ;e) for an oblate spheroid is given in Eqs.~3.31!–~3.34!,
and analogous results for a prolate spheroid can then be obtained trivially. As an illustrative
example, we use the results of Sec. III to calculate the Coulomb energy of an ellipsoidal nucleus
in Sec. IV, and we compare our results to those obtained earlier by Feenberg.18 In the Appendix
we present the results forP2(r ;e), which can be derived in analogy toP3(r ;e), as discussed in
Ref. 15.

II. THE METHOD OF OVERHAUSER

The results forP2(r ;e) and P3(r ;e) can be obtained using either the Hammersley12 or
Overhauser13 method. The latter has a simple geometric interpretation which is discussed in
greater detail in Ref. 15, and which we summarize below.

In a uniform three-dimensional sphere of radiusR suppose that point 1 is located a distancer
from the center of the sphere and that point 2 is located a distancer from point 1. The conditional
probability that point 2 is located a distancer from point 1, given that point 1 is located a distance
r from the origin of the sphere, is defined to bef (r ur). Similarly, f (r) is the probability that point
1 is located a distancer from the origin, wherer and r are continuous random variables. Then,

P3~r ![ f ~r !5E
0

R

f ~r ur! f ~r! dr, ~2.1!

where f (r ) is the sought-after probability that the two points are separated by a distancer .
Evidently,

f ~r!dr5
4pr2dr

4
3 pR3

5
3r2dr

R3 ~2.2!

for 0<r<R. Since point 1 is required to be inside the sphere,f (r) must be normalized such that

E
0

R

f ~r! dr5E
0

R 3r2

R3 dr51. ~2.3!

It is convenient to calculatef (r ) separately for the two cases, 0<r<R andR<r<2R. We show,
however, thatf (r ) has the same functional form for both regions.

When 0<r<R, there are two regions ofr in which f (r ur) has different functional forms.
From Fig. 1~a! it follows that when 0<r<R2r ,

f ~r ur!dr5
4pr 2dr

4
3 pR3

5
3r 2dr

R3 . ~2.4!

However, whenR2r<r<R, the shell intersects the sphere as in Fig. 1~b!. In this case the
enclosed surface area (S) is no longer 4pr 2, but is given by
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Senclosed5r 2E
0

2p

df8E
0

u

sinu8 du852pr 2~12cosu!52pr 2F12
r21r 22R2

2rr G , ~2.5!

where the law of cosines has been used to replace cosu. Hence,

f ~r ur!dr5
3

2

r 2

R3 S 12
r21r 22R2

2rr Ddr, ~2.6!

for R2r<r<R. Combining Eqs.~2.1!, ~2.2!, ~2.4!, and~2.6! yields

P3~r ![ f ~r !5E
0

R2r S 3r2

R3 D S 3r 2

R3 D dr1E
R2r

R S 3r2

R3 D F3

2

r 2

R3 S 12
r21r 22R2

2rr D G dr

5
3r 2

R3 2
9

4

r 3

R4 1
3

16

r 5

R6 . ~2.7!

FIG. 1. ~a! ~top! Geometry for the Overhauser method when 0<r<R and 0<r<R2r . Point 2 is constrained to lie on the
surface of a spherical shell of radiusr centered at point 1. Note that the spherical shell is totally enclosed in the sphere.~b!
~bottom! Geometry for the case 0<r<R andR2r<r<R. The spherical shell made by point 2 intersects the sphere at an
angleu. The dashed line represents the portion of the spherical shell that lies outside the sphere.
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When R<r<2R there are also two regions ofr in which f (r ur) has different functional
forms. The spherical shell lies outside the given sphere when 0<r<r 2R as seen in Fig. 2~a!, and
hence

f ~r ur!50. ~2.8!

Whenr 2R<r<R the spherical shell intersects the sphere as in Fig. 2~b!. The discussion leading
to Eq. ~2.6! can be taken over immediately and we find forr 2R<r<R,

f ~r ur! dr5
3

2

r 2

R3 S 12
r21r 22R2

2rr D dr. ~2.9!

Combining Eqs.~2.1!, ~2.2!, ~2.8!, and~2.9! yields

P3~r ![ f ~r !5E
0

r 2RS 3r2

R3 D ~0! dr1E
r 2R

R S 3r2

R3 D F3

2

r 2

R3 S 12
r21r 22R2

2rr D G dr

5
3r 2

R3 2
9

4

r 3

R4 1
3

16

r 5

R6 ~2.10!

FIG. 2. ~a! ~top! Geometry for the caseR<r<2R and 0<r<r 2R. The spherical shell is always outside the sphere when
0<r<r 2R. The dashed line~only part of which is shown! represents the portion of the spherical shell that lies outside
the sphere.~b! ~bottom! Geometry for the case whenR<r<2R and r 2R<r<R. The spherical shell made by point 2
intersects the sphere at an angleu.
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for R<r<2R. We observe from Eqs.~2.7! and ~2.10! that the probability functionP3(r )[ f (r )
has the same functional form over the entire region ofr , and agrees with the results obtained
previously by Deltheil,11 Hammersley,12 and Lord.14 P3(r )dr in Eq. ~2.10! reproduces the expres-
sion for P3(s)ds in Eq. ~1.8! usings5r /2R. We note in passing that

E
0

2R

f ~r ! dr51, ~2.11!

which is the required normalization condition.

III. DISTRIBUTION OF DISTANCE IN AN OBLATE SPHEROID

A. General considerations

The equation for an oblate spheroid in Cartesian coordinates is

x2

a2 1
y2

a2 1
z2

b2 51, ~3.1!

wherea andb are the major and minor semi-axes, respectively. It is more convenient to describe
the oblate spheroid in spherical coordinates~R,Q,F! so that the equation for the oblate spheroid
may be written as

R~Q,F!5
aA12e2

A12e2 sin2 Q
, ~3.2!

where the eccentricity,e, is defined to be

e5A12
b2

a2. ~3.3!

It should be noted thatR(Q,F) is independent of the azimuthal angleF, and henceR(Q,F)
5R(Q). Although the oblate spheroid can be described using any two of the three variablesa, b,
and e, it is most convenient to usea and e, since the maximum possible distance between two
points in the oblate spheroid is 2a.

Suppose that point 1 is located at a position~r,u!, wherer is the distance from the origin of
the oblate spheroid andu is the angle with respect to thez axis. If point 2 is a distancer from
point 1 as in Fig. 3~a!, then it is constrained to lie on the surface of a sphere with radiusr . The
probability that point 1 is located at~r,u! is defined asP(r,u), and the conditional probability that
point 2 is located a distancer from point 1, given that point 1 is located at a position~r,u!, is
P(r ur,u). P(r ;e) is then given by

P~r ;e!5E
0

p

duE
0

R(u)

dr P~r ur,u!P~r,u!, ~3.4!

where P(r ;e)[P3(r ;e) is the probability that two points are separated by a distancer in a
uniformly distributed oblate spheroid with eccentricitye. Since point 1 is constrained to lie on the
circumference of a circle of radiusr sinu, as shown in Fig. 3~b!, it follows that

P~r,u!dr du5
3

2

r sinu

a3A12e2
dr r du ~3.5!

for 0<r<R(u). The conditional probabilityP(r ur,u) is proportional to the surface area~en-
closed in the oblate spheroid! of the spherical shell made by point 2 as it rotates about point 1. It

2422 J. Math. Phys., Vol. 41, No. 4, April 2000 M. Parry and E. Fischbach



follows thatP(r ur,u) has a different functional form in each of four regions ofr ~i.e., ranges of
values of r !. When 0<r<b, the spherical shell can either be totally enclosed in the oblate
spheroid or can intersect it. Whenb<r<a, the spherical shell always intersects the oblate spher-
oid. Whena<r<2b, the spherical shell can either be outside the oblate spheroid or can intersect
it. Finally, when 2b<r<2a, the spherical shell can either be totally outside the oblate spheroid or
it can intersect the oblate spheroid only over a certain region ofu. P(r ;e) cannot be expecteda
priori to have the same functional form over the entire range of values ofr , and for this reason
each of the above cases must be considered separately. We illustrate our formalism by considering
the region 0<r<b.

B. The intersection of a sphere and an oblate spheroid

Since the probability functionP(r ur,u) is proportional to the surface area of the sphere of
radiusr enclosed in the oblate spheroid, one must determine how an oblate spheroid and a sphere
intersect. The surface area of the sphere enclosed in the ellipsoid can be determined by introducing
a new coordinate system (x8,y8,z8) centered at point 1. Thex8 axis points in the same direction
as thex axis, out of the page. Thez8 axis points toward the origin of the original coordinate
system alongr. Finally, they8 axis is perpendicular to thex8 andz8 axes. Associated with this
new coordinate system are the spherical coordinates (r ,u8,f8). The surface area of the sphere
enclosed in the oblate spheroid is then determined by

Senclosed5r 2E df8E d~cosu8!, ~3.6!

where the limits of integration depend on how the sphere and the oblate spheroid intersect.

FIG. 3. ~a! ~top! Geometry of an oblate spheroid. Point 1 is at a distancer from the origin and located at an angleu as
shown. Point 2 is a distancer from 1. ~b! ~bottom! Constraint forP(r,u) in an oblate spheroid. Point 1 is constrained to
lie on a circle of radiusr sinu.

2423J. Math. Phys., Vol. 41, No. 4, April 2000 Distribution of distance in ellipsoids



Consider the case 0<r<b, for which there are two subcases. In the first subcase the sphere
intersects the oblate spheroid as in Fig. 4 which, for simplicity, depicts only one quadrant of the
oblate spheroid. In this figure,R15R(a1) describes the position of point 2 on the surface of the
oblate spheroid and is given by

R15R~a1!5
aA12e2

A12e2 sin2 a1

. ~3.7!

The surface area of the sphere enclosed in the oblate spheroid for this subcase is

Senclosed5r 2E
0

2p

df8E
cosq1

1

d~cosu8!5E
0

2p

r 2~12cosq1! df8. ~3.8!

The integration overf8 is nontrivial sinceq15q1(f8), and will be discussed below.
In the second subcaseR25R(a2) andR35R(a3) represent the positions of intersection and

are defined in the same manner as above. In this case the surface area of the sphere enclosed in the
oblate spheroid is

Senclosed5r 2E
0

2p

df8E
21

cosq3
d~cosu8!1r 2E

0

2p

df8E
cosq2

1

d~cosu8!

54pr 21r 2E
0

2p

~cosq32cosq2! df8. ~3.9!

To determineP(r ;e), cosqi ( i 51,2,3) must be expressed in terms of the positions of intersection
Ri which depend on the anglesa i explicitly as in Fig. 4. cosqi can be expressed in terms ofRi

using the law of cosines,

cosq i5
r21r 22R i

2

2rr
. ~3.10!

Equation~3.10! does not give a total representation of the angleq i sinceRi itself depends on the
unknown anglea i . This makes it necessary to find a second relationship between the anglesq i

anda i .
Consider the triangle formed byr, r , andRi and its relationship to thez axis of the defined

coordinate system. From Fig. 5,

FIG. 4. One configuration illustrating the intersection of a sphere and an oblate spheroid. The dotted line represents the
portion of the spherical shell that lies outside of the oblate spheroid.R1 is the distance from the origin to the surface of the
oblate spheroid at the location of the intersection, and is described by an anglea1 according to Eq.~3.7!. The angleq1

represents the position of intersection.
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Ri cosa i5r cosu1r z5r cosu1r sinf8 sinq i sinu2r cosq i cosu. ~3.11!

Combining Eqs.~3.10! and ~3.11! gives a quartic equation in cosqi whose solution can be ex-
pressed as a series in powers ofe:

cosq i5Y1
e2

2rr
@a2 cos2 u1r 2~12Y2!~sin2 f8 sin2 u2cos2 u!#

1
e4

4r2r 2 @2rra2 cos2 u sin2 u12r 2a2Y~cos4 u23 sin2 f8 sin2 u cos2 u!

12rr 3~12Y2!~sin2 f8 sin4 u2sin2 u cos2 u22 sin2 f8 sin2 u cos2 u!

12r 4Y~12Y2!~6 sin2 f8 sin2 u cos2 u2sin4 f8 sin4 u2cos4 u!#10~e6!

1•••, ~3.12!

Y5
r21r 22a2

2rr
, ~3.13!

where ... denotes terms of ordere2 ande4 which do not contribute to the surface area. Note that
cosqi has the same functional form fori 51,2,3, and hence we drop the subscripti .

For 0<r<b there are thus two possibilities for the intersection of the sphere and the ellipsoid.
For the purpose of calculating the surface area, the sphere is effectively~i.e., to ordere4! totally
enclosed in the oblate spheroid for 0<r<R2r , which gives

Senclosed54pr 2. ~3.14!

However, whenR2r<r<R the sphere intersects the oblate spheroid and produces a surface area
equal to

Senclosed5E
0

2p

r 2~12cosq! df8. ~3.15!

When the expression for cosq in Eq. ~3.12! is substituted into the above result and the integration
is carried out, we find

FIG. 5. Enlargement of Fig. 4 showing the primed coordinate system used to calculate the enclosed surface area. See text
for further details.
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Senclosed52pr 2H ~12Y!2
e2

2rr Fa2 cos2 u1r 2~12Y2!S 1

2
sin2 u2cos2 u D G

2
e4

4r2r 2 F2rra2 sin2 u cos2 u12r 2a2YS 2
3

2
cos2 u1

5

2
cos4 u D12rr 3~12Y2!

3S 5

2
cos4 u23 cos2 u1

1

2D12r 4Y~12Y2!S 2
35

8
cos4 u1

15

4
cos2 u2

3

8D G J . ~3.16!

The calculation of the intersection of a sphere and an oblate spheroid for the case in whichb
<r<2a can be carried out in an analogous manner, and leads to the same result as in Eq.~3.16!
above. It follows that when the spherical shell and the oblate spheroid intersect, the surface area is
independent of the regions ofr and is always given by Eq.~3.16!. The conditional probability
P(r ur,u) is then given by

P~r ur,u!5
Senclosed

~4/3!pa3A12e2
, ~3.17!

where the denominator is the volume of the ellipsoid.P(r ur,u) is explicitly given in Eqs.~3.18!–
~3.20! below.

C. The determination of P„r ; e…

We begin by summarizing the three possible functional forms forP(r ur,u). When 0<r<b
and 0<r<R2r , the sphere is effectively totally enclosed in the oblate spheroid, and hence the
contribution toP(r ur,u) is

P~r ur,u!5
3r 2

a3A12e2
. ~3.18!

When the sphere intersects the oblate spheroid for 0<r<b, R2r<r<R, and a<r<2b,
r 2R<r<R, the contribution toP(r ur,u) is

P~r ur,u!5
3

2

r 2

a3A12e2 H ~12Y!2
e2

2rr Fa2 cos2 u1r 2~12Y2!S 1

2
2

3

2
cos2 u D G

2
e4

4r2r 2 F2rra2 sin2 u cos2 u1r 2a2Y~23 cos2 u15 cos4 u!

1rr 3~12Y2!~5 cos4 u26 cos2 u11!

1
1

4
r 4Y~12Y2!~235 cos4 u130 cos2 u23!G J . ~3.19!

Finally, whena<r<2b, and 0<r<r 2R, the sphere is effectively totally outside the oblate
spheroid, and hence the contribution toP(r ur,u) is

P~r ur,u!50. ~3.20!

The functional forms ofP(r ur,u) and P(r,u) can be used to determineP(r ;e). Since
P(r ur,u) has only been determined for the upper half of the oblate spheroid, which is specified by
point 1 in the the range 0<u<p/2, the corresponding contribution toP(r ;e) for point 1 lying in
the upper half of the oblate spheroid is given by
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P~r ;e!upper5E
0

p/2

duE
0

R
dr P~r ur,u!P~r,u!. ~3.21!

Similarly, the contribution from the lower half of the oblate spheroid is given by

P~r ;e! lower5E
p/2

p

duE
0

R
dr P~r ur,u!P~r,u!, ~3.22!

so that

P~r ;e!5P~r ;e!upper1P~r ;e! lower. ~3.23!

On symmetry grounds it follows that

P~r ;e!upper5P~r ;e! lower, ~3.24!

which implies that

P~r ;e!52P~r ;e!upper. ~3.25!

In analogy to the case of the sphere treated in Sec. II,P(r ;e) can be obtained by evaluating it
separately in each of four regions of the variabler . For 0<r<b the sphere is effectively totally
enclosed in the oblate spheroid in a region where 0<r<R2r , and it intersects the oblate spher-
oid in a region whereR2r<r<R. Using the results of Eqs.~3.5!, ~3.18!, ~3.19!, ~3.21!, and
~3.25!,

P~r ;e!upper5
1

2
P~r ;e!5E

0

p/2E
0

R2r

dr duS 3r2 sinu

2a3A12e2D S 3r 2

a3A12e2D
1E

0

p/2E
R2r

R
dr duS 3r2 sinu

2a3A12e2D S 3r 2

2a3A12e2D H ~12Y!2
e2

2rr Fa2 cos2 u

1r 2~12Y2!S 1

2
2

3

2
cos2 u D G2

e4

4r2r 2 F2rra2 sin2 u cos2 u

1r 2a2Y~23 cos2 u15 cos4u!1rr 3~12Y2!~5 cos4 u26 cos2 u11!

1
1

4
r 4Y~12Y2!~235 cos4 u130 cos2 u23!G J , ~3.26!

where

R5R~u!5
aA12e2

A12e2 sin2 u
. ~3.27!

Among the terms appearing in Eq.~3.26!, several do not contribute to ordere4. These are given
by
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E
0

1E
a2r

a

dr d~cosu!S 3r2

2a3A12e2D S 3r 2

2a3A12e2D S 2e4

4r2r 2D
3H r 2a2Y~23 cos2 u15 cos4u!1rr 3~12Y2!~5 cos4 u26 cos2 u11!

1
1

4
r 4Y~12Y2!~235 cos4 u130 cos2 u23!J . ~3.28!

Notice that to ordere4, the limits on ther integration can be replaced bya2r anda, respectively.
From Eq.~3.26!,

P~r ;e!upper5
1

2
P~r ;e!5E

0

1

d~cosu!
9r 2

4a6~12e2! H 1

6
R 32

1

4
R 2r 1

1

24
r 31

1

2
Ra22

1

4
ra2

1e2S 2
1

2
a2R1

1

4
ra2 cos2 u D1e2S 1

4
2

3

4
cos2 u D

3F1

4
R 31

3

16
r 32

1

4
Rr 22

3

8
R 2r 2

1

2
Ra21

1

4
ra2

2
1

4

~r 22a2!2

r
lnS 12

r

RD G1e4 sin2 u cos2 uS 2
1

2
Ra21

1

4
ra2D J .

~3.29!

The integration over cosu can be carried out by combining Eq.~3.27! and the results for
various useful integrals which are tabulated in Ref. 15. We find to ordere4,

P~r ;e!5S 3
r 2

a3 2
9

4

r 3

a4 1
3

16

r 5

a6D1e2S 3

2

r 2

a3 2
3

2

r 3

a4 1
3

16

r 5

a6D
1e4S 9

8

r 2

a3 2
27

20

r 3

a4 1
9

40

r 5

a6D1O~e6!. ~3.30!

Although this probability function is valid for only one region ofr (0<r<b), the analogous
results for the other three regions can be obtained in a similar manner.15

D. Final results

Although we have argued that the functional form ofP(r ;e) could be different in each of the
four regions 0<r<b, b<r<a, a<r<2b, and 2b<r<2a, it turns out that the first three regions
are in fact described by the expression given in Eq.~3.30!. Hence the final expression forP(r ;e)
is

P~r ;e!5H PI~r ;e!, 0<r<2b,

PII~r ;e!, 2b<r<2a,
~3.31!

where

PI~r ;e!5S 3
r 2

a3 2
9

4

r 3

a4 1
3

16

r 5

a6D1e2S 3

2

r 2

a3 2
3

2

r 3

a4 1
3

16

r 5

a6D
1e4S 9

8

r 2

a3 2
27

20

r 3

a4 1
9

40

r 5

a6D1O~e6! ~3.32!

and
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PII~r ;e!5XH S 3
r 2

a3 2
9

4

r 3

a4 1
3

16

r 5

a6D1e2S 3

2

r 2

a3 2
3

2

r 3

a4 1
3

16

r 5

a6D1e4S 9

8

r 2

a3 2
27

20

r 3

a4 1
9

40

r 5

a6D J
1e2X~12X2!H 117

96

r 2

a3 2
171

192

r 3

a4 2
9

32

r 4

a5 1
27

128

r 5

a6 2
9

32

r ~r 22a2!2

a6 ln S r

a
21D J

1e4X~12X2!H 1251

768

r 2

a3 2
2619

2560

r 3

a4 2
171

256

r 4

a5 1
2259

15360

r 5

a6 1
27

512

r 7

a8

2
171

256

r 3~r 22a2!

a6 ln S r

a
21D1

63

256

r ~r 22a2!

a4 ln S r

a
21D J

1e4X3~12X2!H 2
261

256

r 2

a3 1
711

2560

r 3

a4 1
135

256

r 4

a5 1
1323

5120

r 5

a6 2
63

512

r 7

a8

1
135

256

r 3~r 22a2!

a6 ln S r

a
21D2

27

256

r ~r 22a2!

a4 ln S r

a
21D J 1O~e6!, ~3.33!

X[
A12e2

e
A4a2

r 2 21. ~3.34!

Although the functional form ofP(r ;e) is different in the region 2b<r<2a from what it is in the
other regions, it can be shown that at the boundary of these two regions,

PI~2b;e!5PII~2b;e!1O~e6!,
~3.35!

PI8~2b;e!5PII8~2b;e!1O~e4!,

where the primes denote differentiation with respect tor . It is also straightforward to show that
the expression forP(r ;e) given Eqs.~3.31!–~3.34! is appropriately normalized,

E
0

2b

PI~r ;e! dr1E
2b

2a

PII~r ;e! dr511O~e6!. ~3.36!

Figures 6 and 7 compare the analytic expressions found in Eqs.~3.31!–~3.34! to the results of

FIG. 6. A plot of probability functionP3(r ;e) as a function ofr for an ellipsoid witha51.0 ande50.3. The solid line
is the analytic function in Eqs.~3.31!–~3.34!. Also shown~but not visible! is a Monte Carlo simulation ofP3(r ;e) which
is indistinguishable from the analytic result. Note that the result for the ellipsoid differs from that for a sphere with radius
a51.0, which is shown by the dotted line.
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a Monte Carlo simulation for different values ofe. For these simulations we have generated 109

random points in an oblate spheroid in whicha51.0 so that the largest possible distance between
two points is 2.0. In addition the figures compare the results forP3(r ;e) to those of a sphere with
radiusa51.0. We see from these figures that the probability functions for an oblate spheroid are
clearly different from those for a sphere. Moreover, the analytic results are seen to agree with
those of the Monte Carlo simulation fore&0.6. For larger values ofe higher powers ofe2 would
necessarily have to be included in our expansions.

IV. APPLICATIONS

We illustrate the application of our results in Eqs.~3.31!–~3.34!, by using them to calculate
the Coulomb energy of a charged ellipsoid. As noted in Sec. I, the significance of these results is
that they allow^V(r )&[U to be computed for an arbitrary two-body potentialV(r ) in terms of a
simple one-dimensional integral over the ellipsoidal matter or charge distribution. The Coulomb
energy of an ellipsoidal nucleus has been found previously by Feenberg18 using a different
method, and we will show that our result agrees with that obtained in Ref. 18 to ordere4. We find
the Coulomb energy of a charged ellipsoid following the same procedure discussed in Sec. I. The
potential energy of two charges,e15e25e, separated by a distancer is

V~r !5
e2

ur12r2u
5

e2

r
, ~4.1!

and the probabilities of finding these charges atr1 and r2 arer1d3r 1 andr2d3r 2 , respectively,
where

r15r25r05
1

4
3 pa3A12e2

. ~4.2!

It follows that the potential energy between two such charges in an ellipsoid of uniform charge
density is

dU5~r0d3r 1!~r0d3r 2!V~ ur12r2u!. ~4.3!

As in the case of a spherical matter or charge distribution, the average potential energy is found by
integrating over all possibler1 and r2 in the ellipsoid, which necessitates the evaluation of a

FIG. 7. A plot of the probability functionP3(r ;e) as a function ofr for an ellipsoid witha51.0 ande50.6. Note that
P3(r ;e) in Eqs.~3.31!–~3.34! deviates slightly from the Monte Carlo simulation, shown by the dashed line, and that both
of these curves differ from that for a sphere, shown by the dotted line.
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nontrivial six-dimensional integral. By contrast, the present formalism allows the same calculation
to be carried out as a one-dimensional integral using the ellipsoid probability function. SinceU is
the average electrostatic energy, it may be written as

U5^V~r !&ellipsoid5E
0

2a

P~r !V~r ! dr5E
0

2b

PI~r !V~r ! dr1E
2b

2a

PII~r !V~r ! dr, ~4.4!

wherePI(r ) and PII(r ) are the probability functions for each region ofr and are given by Eqs.
~3.32! and ~3.33!, respectively. The integrals in Eq.~4.4! can be evaluated in a straightforward
manner and, after expanding the results in powers ofe, we find to ordere4

U5
6

5

e2

a H 11
1

6
e21

3

40
e41O~e6!J . ~4.5!

Equation~4.5! gives the energyU for a single pair of charges. Since a nucleus which containsZ
charges can formZ(Z21)/2 pairs, it follows that the Coulomb energyWC of a charged ellipsoid
to ordere4 is

WC5
3

5

Z2e2

a H 11
1

6
e21

3

40
e41O~e6!J , ~4.6!

whereZ(Z21) has been approximated byZ2. The result of Eq.~4.6! can be compared to Feen-
berg’s calculation18 of the Coulomb energy of a perturbed nucleus. Feenberg assumes that the
nucleus is perturbed from its original spherical shape to an ellipsoid defined by

x21y21S z

ā
D 2

5
R2

ā2/3, ~4.7!

whereR is the radius of the unperturbed nucleus. Note that in the above parametrization of an
ellipsoid the volume of the nucleus is always 4pR3/3 independent ofā. When the nucleus is
perturbed, Feenberg finds for the Coulomb energy

WC5
3

5

Z2e2

R H 12
4

45
~ ā21!21¯J . ~4.8!

To compare Eqs.~4.6! and ~4.8! we note that the equation for the ellipsoid in Eq.~3.1!,

x2

a2 1
y2

a2 1
z2

b2 51, ~4.9!

can be written as

x21y21S z

A12e2D 2

5a2, ~4.10!

where we have replacedb with aA12e2. Comparing Eqs.~4.10! and ~4.7!, we see that

ā5A12e2, ~4.11!

R5a~12e2!1/6. ~4.12!

Combining Eqs.~4.8!, ~4.11!, and~4.12!, we find
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WC5
3

5

Z2e2

a~12e2!1/6H 12
4

45
~A12e221!21¯J . ~4.13!

Expanding Eq.~4.13! in a Taylor series aboute50, we find

WC5
3

5

Z2e2

a H 11
1

6
e21

3

40
e41O~e6!J . ~4.14!

This is exactly the same result that was found in Eq.~4.6! by using the ellipsoid probability
function.

We note in passing that although it may appear from Eq.~4.14! that the Coulomb energy of
the ellipsoid is larger than that of the original sphere, this is not the case. Recall that the unper-
turbed nucleus has a Coulomb energy given by

WC
sphere5

3

5

Z2e2

R
. ~4.15!

When this is compared to the leading term in Eq.~4.14!, we observe that

3

5

Z2e2

R
.

3

5

Z2e2

a
~4.16!

sinceR,a. Even though it seems as though more terms are being added to the original energy,
this is not the case since the leading term in Eq.~4.14! is not the original energy. In fact, if we
replacea with R(12e2)21/6 in Eq. ~4.14!, and then expand the result in a Taylor series, we find
that the Coulomb energydecreasesas a result of perturbing the nucleus from its original spherical
shape.
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APPENDIX: DISTRIBUTION OF DISTANCE IN A ELLIPSE

We present in this Appendix the probability distribution of distance in an ellipse. The previous
formalism can be taken over immediately to obtainP2(r ;e) for an ellipse, as discussed in Ref. 15,
and hence only the final results are presented here. We find

P2~r ;e!5H P2I~r ;e!, 0<r<2b,

P2II~r ;e!, 2b<r<2a,
~A1!

P2I~r ;e!5
1

pa H 8F S r

2aD cos21 S r

2aD2S r

2aD 2A12S r

2aD 2G14e2F S r

2aD cos21 S r

2aD
22S r

2aD 2A12S r

2aD 2G13e4F S r

2aD cos21 S r

2aD23S r

2aD 2A12S r

2aD 2

1
1

4 S r

2aD 2X12S r

2aD 2C21/2G J , ~A2!
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P2II~r ;e!5
4

p2a S r

2aD HFcos21S r

2aD2S r

2aDA12S r

2aD 2G4 cos21 ~X!

1e2F2 cos21 S r

2aD $cos21 ~X!1XA12X2%22S r

2aDA12S r

2aD 2

^ $2 cos21 ~X!1XA12X2%22S r

2aD 2Fcos21 S r

2aD2cos21 S r 423r 2a2

2ra3 D G
^ $XA12X2%2

1

2 Fcos21S r

2aD1cos21S r 423r 2a2

2ra3 D G$XA12X2%G
1e4Fcos21S r

2aD H 3

2
cos21 ~X!1

3

2
XA12X21X3A12X2J

2
r

2a
A12S r

2aD 2H 9

2
cos21 ~X!12XA12X2J 1S r

2aD 3A12S r

2aD 2

$3XA12X2

26X3A12X2%1S r

2aD 1

A12~r /2a!2 H 3

8
cos21 ~X!2

5

8
XA12X21

1

4
X3A12X2J

22S r

2aD 2Fcos21 S r

2aD2cos21 S r 423r 2a2

2ra3 D G ^ $XA12X21X3A12X2%
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2 Fcos21 S r
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2ra3 D G H 3
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where

X5
1

e
A12

4a2

r 2 ~12e2!. ~A4!
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