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Probability distribution of distance in a uniform ellipsoid:
Theory and applications to physics

Michelle Parry?
Department of Natural Sciences, Longwood College, Farmville, Virginia 23909

Ephraim Fischbach®
Department of Physics, Purdue University, West Lafayette, Indiana 47907

(Received 4 November 1999; accepted for publication 24 November) 1999

A number of authors have previously found the probabifity(r) that two points
uniformly distributed in am-dimensional sphere are separated by a distance
This result greatly facilitates the calculation of self-energies of spherically symmet-
ric matter distributions interacting by means of an arbitrary radially symmetric
two-body potential. We present here the analogous resul3for, €) andP3(r;€)

which respectively describe an ellipse and an ellipsoid whose major and minor axes
are 2a and 2. It is shown that fore= (1—b?/a?)?<1, P,(r;€) andP5(r;e€) can

be obtained as an expansion in powerg,adnd our results are valid through order

e*. As an application of these results we calculate the Coulomb energy of an
ellipsoidal nucleus, and compare our result to an earlier result quoted in the litera-
ture. © 2000 American Institute of Physid$S0022-2488)0)04304-§

I. INTRODUCTION AND SUMMARY

It is well known that the exchange of fields with appropriate quantum numbers gives rise to
two-body potentials/(|r;—r,|)=V(r) between particles 1 and 2, which contribute in turn to the
self-energies of many-body systems such as nuclei and neutron stars. In typical applications of
interest these potentials are often of the Yukawa form,

efr/A

V(r)=Cy T (1.9

whereCy and\ are constants, or are inverse powers

Cn
V(n=— (n=123,..), (1.2

where C,, is a constant. The most familiar example is the self-energy of a spherical charge
distribution (e.g., a spherically symmetric nuclgwising from the Coulomb potential

eZ

[ri—ryl

eZ
Ve(r)= =— (1.3
As we discuss in Sec. IV, the average interaction enetgss(V(r)) of a single pair of charges

having a uniform probability distribution in a sphere of radRiss given by

6 ?
UC=§ E (1-4)

For a nucleus containing charges, and hené&Z—1)/2 pairs, the total Coulomb energy is
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1 3 e?
WC=§Z(Z—1)UC=§Z(Z—1)E. (1.5

The conventional way of obtaining ¢ is to integrateV(|r,—r,|) overr, andr, which
requires evaluating a six-dimensional integral. For the Coulomb potential this is relatively straight-
forward, but for other potentials evaluatitdy is considerably more difficult, particularly for the
inverse power potentials in E¢L.2). These typically arise from the simultaneous exchange of two
quanta: For example, the exchange of two pseudoscalars produces gotehtial?—® while the
exchange of a neutrino—antineutrino pair leads tora fibtential’~° Evaluation ofU for these
potentials in nuclei or neutron stars would lead to formally divergent integrals, but finite results are
obtained by introducing the hard-core radiys which cuts off the lower limit of integration.
When the hard-core restrictign, —r,| <r is incorporated into the conventional evaluatiorlf
as in Eq.(4.3 below, it leads to complicated constraints on the six-dimensional integration region.
By contrast, the same constraint can be expressed trivially in terms of the fulRgifopin Eq.

(1.6), which gives the probability that two points in a sphere of radusre separated by a
distancer <2R. The utility of this geometric probability approach lies not only in its ability to
deal with the hard core constraint, but also in its universal applicability to any pot#fftial as
we discuss later.

The object of the present paper is to extend the above formalism to ellipsoids and ellipses,
which would allow geometric probability techniques to be applied to systems in which there were
deviations from exact spherical or circular symmetry. As in the case of the furietigr), once
the corresponding functions are determined for an ellipsoid or an ellipse, the evaluation of the
self-energyU for an arbitrary two-body potential becomes trivial.

To set the stage for the ensuing discussion, we begin by reviewing earlier results for the
probability distributions in spherically symmetric geometries. Consider two points 1 and 2 located
at coordinates, andr, in a uniformly distributedn-dimensional sphere of radid®, and letr
=|r,—r,|. The normalized probability?,(r) that 1 and 2 are separated by a distanc@®=<r
<2R, has been treated by DelthéliHammersley? Overhauset?® Lord,** and Parry® (see also
Kendall, and Moratf and Santalty). It is convenient to introduce the variabde=r/2R, 0<s
<1, and to then defin®,(s) as the normalized probability thatbe in the interval §,s+ds).

P.(s) is given by’

o a1 (n+1) 1
P.(s)=2"ns""'l, ¢ % 5 (1.6
wherel,(p,q) is the incomplete beta function,
I'(p+a) jx _ _
I(p,Q)=5—=— | dttP~i(1—-t)9 L 1.

As discussed here earlier and in Ref. 10, the resultsfol,2,3 are of interest in physics when
calculating the self-energies of various configurations of charges, and hence we exhibit the explicit
functional forms forP4(s), P,(s), andP5(s) below:

Pi(s)=2(1-s),
16
P,(s)= ?s[cosfls— s(1-s)%2], (1.9

P3(s)=125%(1—s)%(2+s).

In terms ofP,(s) the self-energyJ of a one-, two-, or three-dimensional configuration of charges
interacting via an arbitrary potenti&l(s) is given by
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1
U=J ds P,(s)V(s). (1.9
0

The effects of the hard-core radiugcan be included trivially by replacing the lower limit in Eq.
(1.9 by s.=r/2R.

For some applications where symmetry conditions are important, it is essential to know how
the results in Eqs(1.8) change in the presence of deviations from exact circular or spherical
symmetry, characterized by a nonvanishing eccentricityn what follows we derive the appro-
priate generalizations d?,(r) andP5(r) for an ellipse and an oblate spheroid, which we denote
by P5(r;e) andP3(r;e), respectively. The outline of our paper is as follows. In Sec. Il we present
the (unpublished Overhauser method for derivirigz(r), which we then generalize in Sec. Ill to
obtainP;(r;€). The expression foP5(r;e) for an oblate spheroid is given in E¢8.31)—(3.34),
and analogous results for a prolate spheroid can then be obtained trivially. As an illustrative
example, we use the results of Sec. Ill to calculate the Coulomb energy of an ellipsoidal nucleus
in Sec. IV, and we compare our results to those obtained earlier by Feéfiherthe Appendix
we present the results fét,(r;€), which can be derived in analogy ®;(r;€), as discussed in
Ref. 15.

II. THE METHOD OF OVERHAUSER

The results forP,(r;e) and P5(r;e) can be obtained using either the HammerSieyr
Overhausérf method. The latter has a simple geometric interpretation which is discussed in
greater detail in Ref. 15, and which we summarize below.

In a uniform three-dimensional sphere of radRisuppose that point 1 is located a distapce
from the center of the sphere and that point 2 is located a distafioen point 1. The conditional
probability that point 2 is located a distancérom point 1, given that point 1 is located a distance
p from the origin of the sphere, is defined tofde|p). Similarly, f(p) is the probability that point
1 is located a distance from the origin, wherep andr are continuous random variables. Then,

R
Ps(r>sf<r>=fo 1(rlp)(p) dp, 2.1

where f(r) is the sought-after probability that the two points are separated by a distance
Evidently,

4mp2dp 3p2dp
fp)dp=— = 22

for 0<p=<R. Since point 1 is required to be inside the sphé&fp) must be normalized such that

R R 3p?
f f(p) dpzf ?dpzl. (2.3
0 0

It is convenient to calculaté(r) separately for the two casess0<R andR=<r=2R. We show,
however, thaff (r) has the same functional form for both regions.

When O<r<R, there are two regions qf in which f(r|p) has different functional forms.
From Fig. 1a) it follows that when Gsp<R-—r,

Amr2dr  3rédr
f(r|p)dr= = .

However, whenR—r<p=<R, the shell intersects the sphere as in Fi¢y)lIn this case the
enclosed surface are8)(is no longer 4rr?, but is given by
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(b)

FIG. 1. (a) (top) Geometry for the Overhauser method whearB<R and O0<p<R-—r. Point 2 is constrained to lie on the
surface of a spherical shell of radiugentered at point 1. Note that the spherical shell is totally enclosed in the sfif)ere.
(bottom Geometry for the caseOr <R andR—r<p<R. The spherical shell made by point 2 intersects the sphere at an
angle 6. The dashed line represents the portion of the spherical shell that lies outside the sphere.

p2+r2—R2

o } 2.5

2 0
Senc,osedtrzfo d¢’fo sing’ d0’—277r2(1—c030)—27rr2{1—

where the law of cosines has been used to replacé.ddsnce,

. g _3r? p?+r2—R? g )
(rlp)dr=3 = 1= |an, (2.6
for R—r<p<R. Combining Egs(2.1), (2.2), (2.4), and(2.6) yields
P 3p2) 3r2)d R (3p2 3r%(  p*+r’-R g
T A e B I e P [
3r2 9r3 3¢5
= 2.7

"R 4R R
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(b)

FIG. 2. (a) (top) Geometry for the cas@<r<2R and O<p=<r —R. The spherical shell is always outside the sphere when
0<p=<r—R. The dashed linéonly part of which is shownrepresents the portion of the spherical shell that lies outside

the sphere(b) (bottom) Geometry for the case wheR<r<2R andr —R<p=<R. The spherical shell made by point 2
intersects the sphere at an angle

When R<r<2R there are also two regions @f in which f(r|p) has different functional

forms. The spherical shell lies outside the given sphere whep8r —R as seen in Fig. (), and
hence

f(r|p)=0. (2.9

Whenr — R< p=<R the spherical shell intersects the sphere as in Fly. Zhe discussion leading
to Eq. (2.6) can be taken over immediately and we find for R<p<R,

N W
Py}
W

f(r|p)dr=

r2 p2+r2—R2
1-————|dr. (2.9

R? 2pr

Combining Eqs(2.1), (2.2), (2.8), and(2.9) yields

r-rR( 3 2
P3<r>zf<r>=f ( P

0

3r2 9r3 37r°

“RIR IR (2.19
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for R<r=<2R. We observe from Eqg$2.7) and(2.10 that the probability functioP;(r)=f(r)
has the same functional form over the entire regiomr,0bind agrees with the results obtained
previously by Deltheil! Hammersley? and Lord** P5(r)dr in Eq. (2.10 reproduces the expres-
sion for P5(s)ds in Eq. (1.8) usings=r/2R. We note in passing that

2R
f f(r)dr=1, (2.11)
0
which is the required normalization condition.

lll. DISTRIBUTION OF DISTANCE IN AN OBLATE SPHEROID

A. General considerations

The equation for an oblate spheroid in Cartesian coordinates is

N
N
N

+ =1, (3.1)

SJJN|~<
O‘l N
Nl

QJml x

wherea andb are the major and minor semi-axes, respectively. It is more convenient to describe
the oblate spheroid in spherical coordinat®s®,®P) so that the equation for the oblate spheroid
may be written as

2

ayl—e
RO T aate’ °2
where the eccentricityg, is defined to be
b2
e=1\/1- 22 (3.3

It should be noted thaR(®,d) is independent of the azimuthal angle and henceR(0,d)
=7R(0). Although the oblate spheroid can be described using any two of the three vagables
and e, it is most convenient to usa and e, since the maximum possible distance between two
points in the oblate spheroid isa2

Suppose that point 1 is located at a positipr9), wherep is the distance from the origin of
the oblate spheroid andis the angle with respect to theaxis. If point 2 is a distance from
point 1 as in Fig. 83), then it is constrained to lie on the surface of a sphere with radidhe
probability that point 1 is located &p,6) is defined a$(p, ), and the conditional probability that
point 2 is located a distanaefrom point 1, given that point 1 is located at a positigné), is
P(r|p,6). P(r;e€) is then given by

T R(6)
P(r;e)zfo dﬂjo dp P(r|p,0)P(p,0), (3.9

where P(r;e)=P;(r;€) is the probability that two points are separated by a distanae a
uniformly distributed oblate spheroid with eccentriciySince point 1 is constrained to lie on the
circumference of a circle of radiyssin 6, as shown in Fig. @), it follows that

2 22 dppde (3.5
a

for 0<p=<R(6). The conditional probability?(r|p,6) is proportional to the surface aréan-
closed in the oblate sphergidf the spherical shell made by point 2 as it rotates about point 1. It
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(b) X

FIG. 3. (a) (top) Geometry of an oblate spheroid. Point 1 is at a distgné®m the origin and located at an angleas
shown. Point 2 is a distaneefrom 1. (b) (bottom) Constraint forP(p, #) in an oblate spheroid. Point 1 is constrained to
lie on a circle of radiug sin 6.

follows thatP(r|p,6) has a different functional form in each of four regionsrdfi.e., ranges of

values ofr). When O<r=<b, the spherical shell can either be totally enclosed in the oblate
spheroid or can intersect it. Whér=r<a, the spherical shell always intersects the oblate spher-
oid. Whena=<r=2b, the spherical shell can either be outside the oblate spheroid or can intersect
it. Finally, when D=<r=2a, the spherical shell can either be totally outside the oblate spheroid or

it can intersect the oblate spheroid only over a certain regiof &f(r;e) cannot be expectea

priori to have the same functional form over the entire range of values ahd for this reason

each of the above cases must be considered separately. We illustrate our formalism by considering
the region Gsr=b.

B. The intersection of a sphere and an oblate spheroid

Since the probability functiodP(r|p,#) is proportional to the surface area of the sphere of
radiusr enclosed in the oblate spheroid, one must determine how an oblate spheroid and a sphere
intersect. The surface area of the sphere enclosed in the ellipsoid can be determined by introducing
a new coordinate systenx'(;y’,z’) centered at point 1. The' axis points in the same direction
as thex axis, out of the page. The' axis points toward the origin of the original coordinate
system along. Finally, they’ axis is perpendicular to the’ andz’ axes. Associated with this
new coordinate system are the spherical coordinate® (¢'). The surface area of the sphere
enclosed in the oblate spheroid is then determined by

Sendosefrzf d¢’f d(cosé’), (3.6)

where the limits of integration depend on how the sphere and the oblate spheroid intersect.
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VA
f \\\\
Rj Yy 1
!
. p
()

y

FIG. 4. One configuration illustrating the intersection of a sphere and an oblate spheroid. The dotted line represents the
portion of the spherical shell that lies outside of the oblate spheRjids the distance from the origin to the surface of the
oblate spheroid at the location of the intersection, and is described by an@ngtxording to Eq(3.7). The angled,
represents the position of intersection.

Consider the case<Or<b, for which there are two subcases. In the first subcase the sphere
intersects the oblate spheroid as in Fig. 4 which, for simplicity, depicts only one quadrant of the
oblate spheroid. In this figuré&y, =R («4) describes the position of point 2 on the surface of the
oblate spheroid and is given by

ayl—e€?

Ri=R(ay) = ————. 3.
R e et e 37
The surface area of the sphere enclosed in the oblate spheroid for this subcase is
2w 1 2
senclosefrzf dqs'f d(cosa')zf r2(1—cosd;) de'. (3.9
0 cos 0

The integration ovegp’ is nontrivial sinced;=9,(¢'), and will be discussed below.

In the second subcag®,=R(a,) andR;=TR(a3) represent the positions of intersection and
are defined in the same manner as above. In this case the surface area of the sphere enclosed in the
oblate spheroid is

2 cosd 2 1
Senclosed™ rzf dcb’f Sd(cosﬁ’)+r2f de’ d(cosh’)
0 -1 0

cosd,
2
=47-rr2+rzf (costt;—cosd,) de' . (3.9
0

To determineP(r;€), cost; (i =1,2,3) must be expressed in terms of the positions of intersection
R; which depend on the angleg explicitly as in Fig. 4. cos); can be expressed in terms &Bf
using the law of cosines,

_p2+l’2—7?,i2
costj=——F—. (3.10
2pr

Equation(3.10 does not give a total representation of the anjlsinceR; itself depends on the
unknown anglex; . This makes it necessary to find a second relationship between the ahgles
and «; .

Consider the triangle formed lyy r, andR; and its relationship to the axis of the defined
coordinate system. From Fig. 5,
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pcos 0

FIG. 5. Enlargement of Fig. 4 showing the primed coordinate system used to calculate the enclosed surface area. See text
for further details.

Ri COSa;= p COSA+T,=p COSH+T Sing’ sind; sinf—r cosd; cosé. (3.11

Combining Egs(3.10 and(3.11) gives a quartic equation in cds whose solution can be ex-
pressed as a series in powerseof

2
cosd =Y+ ;—pr[a2 cog 0+r?(1—Y?)(sir? ¢’ sirf 6—cos 6)]

64

4p2r2
+2pr3(1—Y?)(sir? ¢’ sirt 6—sir? 6 cos 6— 2 sir? ¢’ sir? 6 cos 6)
+2r4Y(1—Y?)(6 sirf ¢’ sir? 6 cos 6—sirt* ¢’ sin® 6—cos' 6)]+0(€°)

+--, (3.12

+

[2pra?cog 6 sir? 6+ 2r2a?Y(cos 6— 3 sir? ¢’ sir? 6 cos 6)

p2+r2_a2

Y= (3.13

where ... denotes terms of ordetr and €* which do not contribute to the surface area. Note that
cosd; has the same functional form for1,2,3, and hence we drop the subscript

For O<r=b there are thus two possibilities for the intersection of the sphere and the ellipsoid.
For the purpose of calculating the surface area, the sphere is effediiee)yto ordere?) totally
enclosed in the oblate spheroid fo@<7R—r, which gives

Senclosed™ 4mr2, (3.149

However, wherR —r < p<'TR the sphere intersects the oblate spheroid and produces a surface area
equal to

2
Senclosed JO rz(l_COSQ) de'. (3.15

When the expression for cdsin Eq. (3.12) is substituted into the above result and the integration
is carried out, we find
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2
€
Senclosed™ Zﬂrz[ (1-Y)— m

a’cog ¢9+r2(1—Y2)(%sin2 6— cos 6”

4

€
- —TZ[Zpra2 sir? 6 cos 6+ 2r2a?Y

31 _v2
o +2pr3(1-Y?)

3 5
_ECO§ 0+ Eco§0

5 1
Ecoé‘ 0—3cod 6+ =

X
2

8

+2r4Y(1—Y2)< - 3—5co.<:‘ 6+ ?co§ 60— g)“ (3.16

The calculation of the intersection of a sphere and an oblate spheroid for the case inbwhich
<r=<2a can be carried out in an analogous manner, and leads to the same result as3ii@q.
above. It follows that when the spherical shell and the oblate spheroid intersect, the surface area is
independent of the regions ofand is always given by Ed3.16). The conditional probability
P(r|p,6) is then given by

Senclos;(—:‘d

(413) wady1— €2’

where the denominator is the volume of the ellips@c|p, 6) is explicitly given in Eqs(3.18—
(3.20 below.

P(r|p.6)= (3.17

C. The determination of P(r;e€)

We begin by summarizing the three possible functional formsPfar p, ). When O<r<b
and Osp<R-—r, the sphere is effectively totally enclosed in the oblate spheroid, and hence the
contribution toP(r|p,0) is

3r?
ad\J1- e’

When the sphere intersects the oblate spheroid fer€b, R—r<p<R, and asr<2b,
r—R<p<R, the contribution taP(r|p,d) is

P(r|p,0)= (3.18

2 2

3 r €
P03 | 1 2

64

B 4p°r?

1
2

a’cog 0+r2(1—Y2)( - ;cos2 0”

2pra?sir? 6 cos 0+r2a?Y(—3 cog 6+5 coé 0)

+pr3(1—Y?)(5 cod 6—6 cog 6+1)

+%r4Y(1—Y2)(—3500§ 6+30cog §—3) ] (3.19

Finally, whena<r=2b, and Osp=<r—7R, the sphere is effectively totally outside the oblate
spheroid, and hence the contributionRér |p, 0) is

P(r|p,0)=0. (3.20

The functional forms ofP(r|p,#) and P(p,6) can be used to determin@(r;e). Since
P(r|p,6) has only been determined for the upper half of the oblate spheroid, which is specified by
point 1 in the the range 8 < x/2, the corresponding contribution R(r;€) for point 1 lying in
the upper half of the oblate spheroid is given by
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72 R
P(r;f)upper: JO defo dp P(I’|p,9)P(p,9). (3.2

Similarly, the contribution from the lower half of the oblate spheroid is given by

T R
P(riower= | 06 [ " dp Pl11p,0)P(.0) (322

so that
P(r;€)=P(r;€)uppert P('; €)iower- (3.23
On symmetry grounds it follows that
P(r; €)upper P(T'; €)iower: (3.29
which implies that
P(r;€)=2P(r;€)ypper (3.29

In analogy to the case of the sphere treated in Sed®(il; €) can be obtained by evaluating it
separately in each of four regions of the variabld=or O<r=<b the sphere is effectively totally
enclosed in the oblate spheroid in a region whesep@<R—r, and it intersects the oblate spher-
oid in a region whereR—r<p<7R. Using the results of Eq43.5), (3.18, (3.19, (3.2, and
(3.29,

3p?sing ) 3r?
2a%\1-¢€?) |\ a®y1—¢€?

1 w2 (R—r
P(r;e)uppeszP(r;e):f0 fo dpde

a%cod 0

+fm2fR o do 3p?sing 3r2 [(1 v) €2
o Jrr P\ 228 1= )| 2231 & 2pr
+r2(1-Y?) 1—§c05267 - ¢ 2pra?sirf 6 cos 0

2 2 4p2r2| P

+r2a?Y(—3cog 0+5cod )+ pr3(1—Y?)(5 cod 6—6 cog 6+1)

+ £1—1r4v(1—Y2)(—35 coé 9+30cog 0—3)H , (3.26
where
M_ 2
R=R(g)— 7€ (3.27

Ji—€Zsit o

Among the terms appearing in E(.26), several do not contribute to ordet. These are given
by
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flfa dp d(cost) 3p? 3r? ( —64)
cos
0Jai? 2a3\1—€2) | 2a%1— €2 \ 4p°r*

X1 r2a?Y(—3 cog 0+5codh)+pr3(1—Y?)(5 coé 6—6 cog 6+1)

+‘1—1r4Y(1—Y2)(—3500§ 6+ 30 cog 0—3)}. (3.28

Notice that to ordee?, the limits on thep integration can be replaced by-r anda, respectively.
From Eq.(3.26),

P(r; ~2p(r; —jld 0 or Lralray oy Trar tige
(rae)upper_i (I’,E)— o (cos )m g Z r ﬂl’ z a Zra
1 1 1 3
2| T Q2 - 2 2( - _ —
+e 52 R+4ra c0§0)+e(4 4c0§0
1 3 1 3 1 1
W 2R3+ 3 T2 D2 a2y g2
4R 16r 4Rr 8R r 2Ra 4ra
1 (r?—a?? r 1 1
——gln 1— —||+€*sirP fcos 6| — =Ra’+ -ra?||.
4 r 2 4

(3.29

The integration over co8 can be carried out by combining E.27) and the results for
various useful integrals which are tabulated in Ref. 15. We find to arfler

31?2 3r3+3r5
2a% 2a* 16a°

r2 9r3 37r°
33— 7t a5 TE
a> 4a 16 a

P(r;e)= +e€

J9r% 271 9 _r 23
——3—2—0¥+IO¥+ (E) (Q

Although this probability function is valid for only one region of(0<r<b), the analogous
results for the other three regions can be obtained in a similar m&hner.

D. Final results

Although we have argued that the functional formR{fr;€) could be different in each of the
four regions Gsr<b, b<r=a, asr=<2b, and b=<r=<2a, it turns out that the first three regions
are in fact described by the expression given in BgB0. Hence the final expression f&((r;€)
is

P\(r;e), 0=r=2b, 33
P(rie)= .
(rie) Pu(r;e), 2b<r<2a, (3.33
where
or- _3r2 9r3+3r5Jr 3r2 3r3 37r°
(HO=132" 223" 162°) "€\ 22 2a% " 16a°
+49r2 27r3+9r5 O 23
“lga 202 "a0a) TOE) (3.32

and
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Probability Distribution in an Ellipsoid

0.8

0.6 4§

eccentticity = 0.3
Probability Function
————— Monte Carlo simulation
---------- Sphere probability function

probability

0.4 §

0.2 4§

] 05 1.0 1.5 20
r

FIG. 6. A plot of probability functionP;(r;e) as a function of for an ellipsoid witha=1.0 ande=0.3. The solid line

is the analytic function in Eq$3.31)—(3.34). Also shown(but not visiblg is a Monte Carlo simulation dP5(r;e) which

is indistinguishable from the analytic result. Note that the result for the ellipsoid differs from that for a sphere with radius
a=1.0, which is shown by the dotted line.
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(O=X|133" 22" 1628 "€ |23 22 " 1625 T \8a° 20a° ' 40a°
X1 X? 117r% 171r% 9 r4+27 r° 9 r(rz—az)zl r L
eX( )96 23 192a% 3225 1288° 32 & Ma
(1 x? 1251r2 2619r8 171r4+ 2259 r5+ 27 r’
€X(1=X%)| 768 a3~ 2560a°  256a° | 153602° ' 512a°
171r‘°’(r2—a2)I r 63 r(rz—az)I r L
256  a® la 256 a* la
31— 2 261r%2 711 r%® 135r* 1323r°> 63 r’
FEXA=XN) ~ 2562° T 25602 T 25625 | 5120a°  512a°
Jr135r3(r2—a2) r L 27 r(rz—az)I r s ores 23
56 a8 "la 6 o "la (€7, (333
1-€% [4a°
X= c I'T_l (334}

Although the functional form oP(r;€) is different in the region B<r<2a from what it is in the
other regions, it can be shown that at the boundary of these two regions,

Pi(2b;€)=Py(2b;e) +O(€°),
(3.39
P/(2b;e)=P|(2b;e)+O(€%),
where the primes denote differentiation with respect.tdt is also straightforward to show that
the expression foP(r;e) given Eqs.(3.3)—(3.34) is appropriately normalized,

2b 2a
f P,(r;e)dr+f Pu(r;e)dr=1+0(€°). (3.36
0 2b

Figures 6 and 7 compare the analytic expressions found in(BE@d)—(3.34) to the results of
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Probability Distribution in an Ellipsoid
125

1.00 1
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probability
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eccentricity = 0.6
Probability Function

————— Monte Carlo Simulation
---------- Sphere Probability Function

0.25

0 0.5 1.0 15 2.0
r

FIG. 7. A plot of the probability functiorP5(r;e€) as a function of for an ellipsoid witha=1.0 ande=0.6. Note that
P3(r;e) in Egs.(3.3)—(3.34) deviates slightly from the Monte Carlo simulation, shown by the dashed line, and that both
of these curves differ from that for a sphere, shown by the dotted line.

a Monte Carlo simulation for different values ef For these simulations we have generatedl 10
random points in an oblate spheroid in whizk 1.0 so that the largest possible distance between
two points is 2.0. In addition the figures compare the result®fdr ; €) to those of a sphere with
radiusa=1.0. We see from these figures that the probability functions for an oblate spheroid are
clearly different from those for a sphere. Moreover, the analytic results are seen to agree with
those of the Monte Carlo simulation fer<0.6. For larger values of higher powers o&? would
necessarily have to be included in our expansions.

IV. APPLICATIONS

We illustrate the application of our results in E¢3.31)—(3.34), by using them to calculate
the Coulomb energy of a charged ellipsoid. As noted in Sec. I, the significance of these results is
that they allowV(r))=U to be computed for an arbitrary two-body potentigl) in terms of a
simple one-dimensional integral over the ellipsoidal matter or charge distribution. The Coulomb
energy of an ellipsoidal nucleus has been found previously by Feéfibesing a different
method, and we will show that our result agrees with that obtained in Ref. 18 todrdéfe find
the Coulomb energy of a charged ellipsoid following the same procedure discussed in Sec. |. The
potential energy of two charges; =e,=e, separated by a distancds

e? e?

-, 4.7

vin= [ri—ryl T

and the probabilities of finding these charges aandr, are p,d®; andp,d®r,, respectively,
where

1
P1=P2=Po=, 1 ——-
tmrad\1- €

It follows that the potential energy between two such charges in an ellipsoid of uniform charge
density is

4.2

dU=(pod®r1)(ped®)V(|ri—r|). 4.3

As in the case of a spherical matter or charge distribution, the average potential energy is found by
integrating over all possible; andr, in the ellipsoid, which necessitates the evaluation of a
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nontrivial six-dimensional integral. By contrast, the present formalism allows the same calculation
to be carried out as a one-dimensional integral using the ellipsoid probability function.$iisce
the average electrostatic energy, it may be written as

2a 2b 2a
U=<V<r>>emp30id=f0 P(r)vmolr:f0 F>|<r>V<r>o|r+Lh PuV(dr, (4.4

whereP,(r) and P, (r) are the probability functions for each regionrofind are given by Egs.
(3.32 and (3.33), respectively. The integrals in E¢4.4) can be evaluated in a straightforward
manner and, after expanding the results in powers, @fe find to ordere*

U_Ge2
"5a

1+£62+364+O(66) (4.9
6 40 ' '

Equation(4.5) gives the energy for a single pair of charges. Since a nucleus which contains

charges can forniZ(Z—1)/2 pairs, it follows that the Coulomb eneryjy: of a charged ellipsoid
to ordere? is

3 Z7%e?
€5 a 6° ' 40

3
1+—62+—e4+0(e6)], (4.6)

whereZ(Z—1) has been approximated B?. The result of Eq(4.6) can be compared to Feen-
berg’s calculatioff of the Coulomb energy of a perturbed nucleus. Feenberg assumes that the
nucleus is perturbed from its original spherical shape to an ellipsoid defined by

5 ) z 2 R2
X+yo | =| ==, 4.7
a a

whereR is the radius of the unperturbed nucleus. Note that in the above parametrization of an
ellipsoid the volume of the nucleus is alwaysrR%/3 independent of. When the nucleus is
perturbed, Feenberg finds for the Coulomb energy

WC:§E{1—i(E—1)2+--- . (4.9
5 R 45
To compare Eqsi4.6) and (4.8 we note that the equation for the ellipsoid in E§.1),
X2 y? 7
?+¥+F:1’ (4.9
can be written as
2
x2+y2+ 1_62) =a?, (4.10
where we have replacdad with aJl— €. Comparing Eqgs(4.10 and(4.7), we see that
a=.\1-¢, (4.1
R=a(1-€?)'5 (4.12

Combining Egs(4.9), (4.1, and(4.12, we find
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W 3z 1 4 Vi-€2—1)%+ 4.1
C=5 a(l—e)T® —s(V1-e -1 (4.13
Expanding Eq(4.13 in a Taylor series about=0, we find
We=s 2% z’el 1 S éio(e 4.1
<=5 3 +€e+%e+ (). (4.149

This is exactly the same result that was found in Eg6) by using the ellipsoid probability
function.

We note in passing that although it may appear from BdL4) that the Coulomb energy of
the ellipsoid is larger than that of the original sphere, this is not the case. Recall that the unper-
turbed nucleus has a Coulomb energy given by

3 7%?
phere_ —
W 5 R (4.15

When this is compared to the leading term in E414), we observe that
- — (4.1

sinceR<a. Even though it seems as though more terms are being added to the original energy,
this is not the case since the leading term in &gl4) is not the original energy. In fact, if we
replacea with R(1— €%) "¢ in Eq. (4.14, and then expand the result in a Taylor series, we find
that the Coulomb energyecreasess a result of perturbing the nucleus from its original spherical
shape.
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APPENDIX: DISTRIBUTION OF DISTANCE IN A ELLIPSE

We present in this Appendix the probability distribution of distance in an ellipse. The previous
formalism can be taken over immediately to obtRi{r;e€) for an ellipse, as discussed in Ref. 15,
and hence only the final results are presented here. We find

P2|(I’;E), OSr$2b,

PZ(r;E):[PZ,,(r;e), ob<r<2a, (AD)

P g~ 11 2 1-|—| |+4€ |~ S
a(rie)= 2a) % "\ 2a) "\ 2a 2a €1\2a) ©%° " 2a
r 3t r 3 r\2 L r
—a + 3¢ COS 26. — Z — E
2( r 2)—1/2
1- E ”, (A2)
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where

1 [ 4a? 5
X:Z 1—r—2(1—6 ) (A4)

1A. Bohr and B. R. MottelsonNuclear StructurgBenjamin, New York, 1969 Vol. 1.

2F. Ferrer and J. A. Grifols, Phys. Rev. 38, 096006(1998.

3V. M. Mostepanenko and I. Yu. Sokolov, Sov. J. Nucl. P&, 685 (1987).

4s. D. Drell and K. Huang, Phys. Re91, 1527(1953.

SE. Fischbach and D. Krause, Phys. Rev. L8%.4753(1999; 83, 3593(1999.

D. Sudarsky, C. Talmadge, and E. Fischb&shpublishedl

’G. Feinberg and J. Sucher, Phys. R&66, 1638(1968; G. Feinberg, J. Sucher, and C.-K. Au, Phys. RER0, 83
(1989.

8J. B. Hartle, Phys. Rev. D, 394 (1970.

9S. D. H. Hsu and P. Sikivie, Phys. Rev.49, 495 (1994).

10E. Fischbach, Ann. PhygN.Y.) 247, 213 (1996; E. Fischbach and C. Talmadg&he Search for Non-Newtonian
Gravity (AIP/Springer, New York, 1999

1R, Deltheil, Ann. Fac. Sci. Univ. Toulouskl (3), 1 (1919.

123, M. Hammersley, Ann. Math. Sta1, 447 (1950.

1A, Overhause(1950, unpublished.

R. D. Lord, Ann. Math. Stat25, 794 (1954.

5M. Parry, “Application of Geometric Probability Techniques to Elementary Particle and Nuclear Physics,” Ph.D. thesis,
Purdue University, 1998unpublishegl

16M. G. Kendall and P. A. P. MorarGeometric ProbabilityHafner, New York, 1968

L. A. Santalq Integral Geometry and Geometric Probabilitddison-Wesley, Reading, MA, 1976

18E. Feenberg, Phys. Re§5, 504 (1939.



	Longwood University
	Digital Commons @ Longwood University
	4-2000

	Probability Distribution of Distance in a Uniform Ellipsoid: Theory and Applications to Physics
	Michelle Parry
	Ephraim Fischbach
	Recommended Citation


	Using JMP format

