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Abstract. We consider the solution of the stochastic heat equation

∂TZ =
1

2
∂

2
XZ − ZẆ (1)

with delta function initial condition
Z(T = 0) = δ0 (2)

whose logarithm, with appropriate normalizations, is the free energy of the continuum directed
polymer, or the Hopf-Cole solution of the Kardar-Parisi-Zhang equation with narrow wedge initial
conditions.

We obtain explicit formulas for the one-dimensional marginal distributions, the crossover dis-

tributions, which interpolate between a standard Gaussian distribution (small time) and the GUE
Tracy-Widom distribution (large time).

The proof is via a rigorous steepest descent analysis of the Tracy-Widom formula for the asym-
metric simple exclusion with anti-shock initial data, which is shown to converge to the continuum
equations in an appropriate weakly asymmetric limit. The limit also describes the crossover be-
haviour between the symmetric and asymmetric exclusion processes.

1. Introduction

1.1. KPZ/Stochastic Heat Equation/Continuum Directed Random Polymer. Despite its
popularity as perhaps the default model of stochastic growth of a one dimensional interface, we are
still far from a satisfactory theory of the Kardar-Parisi-Zhang (KPZ) equation

∂Th = −1

2
(∂Xh)

2 +
1

2
∂2

Xh+ Ẇ (3)

where Ẇ (T,X)1 is space-time white noise

E[Ẇ (T,X)Ẇ (S, Y )] = δ(T − S)δ(Y −X). (4)

The reason is that even for nice initial data, the solution at a later time T > 0 will look locally
like a Brownian motion in X. Hence the nonlinear term is ill-defined. Naturally one expects that
an appropriate Wick ordering of the non-linearity can lead to well defined solutions. However,
numerous attempts have led to non-physical answers [14]. By a physical answer one means that
for a large class of initial data, the solution h(T,X) looks like

h(T,X) ∼ C(T ) + T 1/3ζ(X) (5)
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where C(T ) is deterministic and where the statistics of ζ fits into various universality classes
depending on the regime of initial data one is looking at. The correct interpretation appears to be
that of [3] where h(T,X) is simply defined by the Hopf-Cole transform:

h(T,X) = − logZ(T,X) (6)

where Z(T,X) is the well-defined [35] solution of the stochastic heat equation,

∂TZ =
1

2
∂2

XZ − ZẆ . (7)

Recently [1] proved the T 1/3 scaling for this Hopf-Cole solution h of KPZ defined through (6) in
the equilibrium regime, corresponding to starting (3) with a two sided Brownian motion. Strictly
speaking, this is not an equilibrium solution for KPZ, but for the stochastic Burgers equation

∂Tu = −1

2
∂Xu

2 +
1

2
∂2

Xu+ ∂XẆ , (8)

formally satisfied by its derivative u(T,X) = ∂Xh(T,X).

In this article, we will be interested in a very different regime, far from equilibrium. It is most
convenient to state in terms of the stochastic heat equation (7) for which we will have as initial
condition a delta function,

Z(T = 0) = δ0. (9)

This initial condition is natural for the interpretation in terms of random polymers, where it
corresponds to the point-to-point free energy. The free energy of the continuum directed random
polymer in 1 + 1 dimensions is

F(T,X) = logET,X

[

:exp:

{

−
∫ T

0
Ẇ (t, b(t))dt

}]

(10)

where ET,X denotes expectation over the Brownian bridge b(t), 0 ≤ t ≤ T with b(0) = 0 and
b(T ) = X. The expectation of the Wick ordered exponential : exp : is defined using the n step
probability densities pt1,...,tn(x1, . . . , xn) of the bridge in terms of a series of multiple Itô integrals;

ET,X

[

:exp :

{

−
∫ T

0
Ẇ (t, b(t))dt

}]

(11)

=

∞
∑

n=0

∫

∆n(T )

∫

Rn

(−1)npt1,...,tn(x1, . . . , xn)W (dt1dx1) · · ·W (dtndxn),

where ∆n(T ) = {(t1, . . . , tn) : 0 ≤ t1 ≤ · · · ≤ tn ≤ T}. Note that the series is convergent in L 2(W )
as one can check that

∫

∆n(T )

∫

Rn

p2
t1,...,tn(x1, . . . , xn)dt1dx1 · · · dtndxn ≤ C(n!)−1/2 (12)

and hence the square of the norm,
∑∞

n=0

∫

∆n(T )

∫

Rn p
2
t1,...,tn(x1, . . . , xn)dt1dx1 · · · dtndxn, is finite.

Let

p(T,X) =
1√
2πT

e−X2/2T (13)

denote the heat kernel. Then we have

Z(T,X) = p(T,X) exp{F(T,X)} (14)

as can be seen by writing the integral equation for Z(T,X);

Z(T,X) = p(T,X) +

∫ T

0

∫ ∞

−∞
p(T − S,X − Y )Z(S, Y )W (dY, dS) (15)
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and iterating. The factor p(T,X) in (14) represents the difference between conditioning on the
bridge going to X, as in (11), and having a delta function initial condition, as in (9). The initial
condition corresponds to

F(0,X) = 0, X ∈ R. (16)

In terms of KPZ (3), there is no precise mathematical statement of the initial conditions; what one
sees as T ց 0 is a narrowing parabola. In the physics literature this is referred as the narrow wedge
initial conditions.

We can now state our main result which is an exact formula for the probability distribution for the
free energy of the continuum directed random polymer in 1 + 1 dimensions, or, equivalently, the
one-point distributions of the stochastic heat equation with delta initial condition, or KPZ with
narrow wedge initial conditions.

Theorem 1. The crossover distributions defined by

FT (s)
def
= P (F(T,X) + T

4! ≤ s) (17)

are given explicitly by any of the following equivalent formulas where, for a function σ(t), the
operator Kσ is defined by its kernel

Kσ(x, y) =

∫ ∞

−∞
σ(t)Ai(x+ t)Ai(y + t)dt, (18)

where Ai(x) = 1
π

∫∞
0 cos

(

1
3t

3 + xt
)

dt is the Airy function, and where

a = a(s) = s− log
√

2πT , and κT = 2−1/3T 1/3. (19)

(1) The crossover Airy kernel formula,

FT (s) =

∫

C̃

dµ̃

µ̃
e−µ̃ det(I −KσT,µ̃

)L2(κ−1
T a,∞), (20)

where C̃ is defined in Definition 9, and KσT,µ̃
is as above with

σT,µ̃(t) =
µ̃

µ̃− e−κT t
. (21)

Alternatively

FT (s) =

∫

C̃

dµ̃

µ̃
e−µ̃ det(I − K̂σT,µ̃

)L2(−∞,∞) (22)

K̂σT,µ̃
(x, y) =

√

σT,µ̃(x− s)KAi

√

σT,µ̃(y − s) (23)

where KAi(x, y) is the Airy kernel, ie. KAi = Kσ with σ(t) = 1[0,∞)(t).

(2) The Gumbel convolution formula,

FT (s) = 1 −
∫ ∞

−∞
G(r)f(a− r)dr, (24)

with G(r) is given by G(r) = e−e−r
and where

f(r) = κ−1
T det(I −KσT

)tr
(

(I −KσT
)−1PAi

)

, (25)

where the operators KσT
and PAi act on L2(κ−1

T r,∞) and are given by their kernels with

PAi(x, y) = Ai(x)Ai(y), (26)

σT (t) =
1

1 − e−κT t
.
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For σT above, the integral in (18) should be intepreted as a principal value integral. The
operator KσT

contains a Hilbert transform of the product of Airy functions which can be
partially computed showing that

KσT
(x, y) =

∫ ∞

−∞
σ̃T (t)Ai(x+ t)Ai(y + t)dt+ κ−1

T πGx−y
2

(
x+ y

2
) (27)

where

σ̃T (t) =
1

1 − e−κT t
− 1

κT t
(28)

Ga(x) =
1

2π3/2

∫ ∞

0

sin(xξ + ξ3

12 − a2

ξ + π
4 )

√
ξ

dξ.

(3) The cosecant kernel formula,

FT (s) =

∫

C̃
e−µ̃ det(I −Kcsc

a )L2(Γ̃η)

dµ̃

µ̃
, (29)

where the contour C̃, the contour Γ̃η and the operator Kcsc
a is defined in Definition 9.

The proof of the theorem relies on the explicit limit calculation for the weakly asymmetric simple
exclusion process (WASEP) contained in Theorem 8 as well as the relationship between WASEP
and the stochastic heat equation stated in Theorem 10. Combining those two theorems proves the
cosecant kernel formula. The other, alternative formulas are proved in Section 4

We also have the following representation for the Fredholm determinant involved in the above
theorem. One should compare this result to the formula for the GUE Tracy-Widom distribution
given in terms of the Painlevé II equation (see [28, 29] or the discussion of Section 5.2).

Proposition 2. Let σT,µ̃ be as in (21). Then

d2

dr2
log det(I −KσT,µ̃

)L2(r,∞) = −
∫ ∞

−∞
σ′T,µ̃(t)q2t (r)dt (30)

det(I −KσT,µ̃
)L2(r,∞) = exp

(

−
∫ ∞

r
(x− r)

∫ ∞

−∞
σ′T,µ̃(t)q2t (x)dtdx

)

where
d2

dr2
qt(r) =

(

r + t+ 2

∫ ∞

−∞
σ′T,µ̃(t)q2t (r)dt

)

qt(r) (31)

with qt(r) ∼ Ai(t+ r) as r → ∞ and where σ′T,µ̃(t) is the derivative of the function in (21).

This proposition is proved in Section 5.2 and follows from a more general theory developed in
Section 5 about a class of generalized integrable integral operators.

It is not hard to show from the formulas in Theorem 1 that lims→∞ FT (s) = 1, but we do not
at the present time know how to show from the determinental formulas that lims→−∞ FT (s) = 0,
or even that FT is non-decreasing in s. However, for each T , F(T,X) is an almost surely finite
random variable, and hence we know from the definition (17) that FT is indeed a non-degenerate
distribution function.
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The formulas in Theorem 1 suggest that in the limit as T goes to infinity, under T 1/3 scaling,
we recover the celebrated FGUE distribution (sometimes written as F2) which is the GUE Tracy-
Widom distribution, i.e., the limiting distribution of the scaled and centered largest eigenvalue in
the Gaussian unitary ensemble.

Corollary 3. As T ր ∞,

FT

(

T 1/3s
)

→ FGUE(21/3s) (32)

In particular, scaling X as T 2/3X,

lim
Tր∞

P

(

F(T, T 2/3X) + T
4!

T 1/3
≤ s

)

= FGUE(21/3s) (33)

This is most easily seen from the cosecant kernel formula for FT (s). Formally, as T goes to infinity
the kernel Kcsc

a behaves as Kcsc
T 1/3s

and making a change of variables to remove the T from the
exponential argument of the kernel, this approaches the Airy kernel on a complex contour, as given
in [32] equation (33). The full proof is given in Section 6.1.

It is elementary to add a temperature β−1 into the model. Let

Fβ(T,X) = logET,X

[

:exp:

{

−β
∫ T

0
Ẇ (t, b(t))dt

}]

. (34)

The corresponding Zβ(T,X) = p(T,X) exp{Fβ(T,X)} is the solution of ∂TZβ = 1
2∂

2
XZβ − βẆ Zβ

with Zβ(0,X) = δ0(X) and hence

Zβ(T,X)
distr.
= β2Z(β4T, β2X) (35)

giving the relationship

β ∼ T 1/4 (36)

From this we see also that

Fβ(T,X)
distr.
= F(β4T, β2X). (37)

Hence the following result about the low temperature limit is, just like Corollary 3, a consequence
of Theorem 1:

Corollary 4. For each fixed X ∈ R and T > 0,

lim
β→∞

P

(

F(β4T, β2X) + β4T
4!

β4/3T 1/3
≤ s

)

= FGUE(21/3s). (38)

Now we turn to the behavior as T or β ց 0.

Proposition 5. As Tβ4 ց 0,

21/2π−1/4β−1T−1/4Fβ(T,X) (39)

converges in distribution to a standard Gaussian.

This proposition is proved in Section 6.2.

For example with β = 1 the above theorem shows that limTց0 FT (2−1/2π1/4T 1/4s)=
∫ s
−∞

e−x2/2√
2π

dx.

Proposition 5 and Corollary 3 show that, under appropriate scalings, the family of distributions FT
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cross over from the Gaussian distribution for small T to the GUE Tracy-Widom distribution for
large T .

An inspection the formula for FT given above in Theorem 1 immediately reveals that there is no
dependence on X in the formula. In fact, one can check directly from (11) that

Proposition 6. For each T ≥ 0, F(T,X) is stationary in X.

This is simply because the Brownian bridge transition probabilities are affine transformations of
each other. Performing the change of variables, the white noise remains invariant in distribution.
The following conjecture is thus natural:

Conjecture 7. For each fixed T > 0, as T ր ∞,

T−1/3

(

F(T, T 2/3X) +
T

4!

)

(40)

converges to the Airy2 process in X.

Unfortunately, the very recent extensions of the Tracy-Widom formula for ASEP (74) to multipoint
distributions [33] appear not to be conducive to the asymptotic analysis necessary to obtain this
conjecture following the program of this article.

The main physical prediction (5) is based on the exact computation

lim
T→∞

T−1 logE[Zn(T, 0)] = − 1

4!
n(n2 − 1), (41)

which can be performed rigorously [2] by expanding the Feynman-Kac formula (10) for Z(T, 0)
into an expectation over n independent copies (replicas) of the Brownian bridge. In the physics
literature, the computation is done by noting that the correlation functions

E[Z(T,X1) · · · Z(T,Xn)] (42)

can be computed [17] using the Bethe ansatz [20] for a system of particles on the line interacting
via an attractive delta function potential. (41) suggests the scaling (5) and is consistent with, but
does not imply (3). Note the key point that the moments in (41) grow far too quickly to uniquely
determine the underlying distribution. It is very interesting to note that the Tracy-Widom formula
for ASEP (74), which is our main tool, is also based on the same idea that hard core interacting
systems in one dimension can be rigorously solved via the Bethe ansatz, although, as H. Spohn
has pointed out, the analogy is very unclear because the interaction is attractive in the case of the
Bose gas.

The probability distribution for the free energy of the continuum directed random polymer, as well
as for the solution to the stochastic heat equation and the KPZ equation has been a subject of
interest for many years. The reason why we can now compute the distribution is because of the
exact formula of Tracy and Widom for the asymmetric simple exclusion process (ASEP) with step
initial condition. Once we observe that the weakly asymmetric simple exlusion process (WASEP)
with these initial conditions converges to the solution of the stochastic heat equation with delta
initial conditions, the calculation of the probability distribution boils down to a careful asymptotic
analysis of the Tracy-Widom ASEP formula. This connection is made in Theorem 10 and the
WASEP asymptotic analysis is recorded by Theorem 8.
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1.1.1. Outline. There are three main results in this paper. The first pertains to the KPZ/ stochastic
heat equation / continuum directed polymer and is contained in the theorems and corollaries above
in Section 1.1. The proof of the equivalence of the formulas of Theorem 1 is given in Section 4.
The Painlevé II like formula of Proposition 2 is proved in Section 5.2 along with the formulation of
a general theory about a class of generalized integrable integral operators. The other results of the
above section are proved in Section 6. The second result is about the WASEP. In Section 1.2 we
introduce the fluctuation scaling theory of the ASEP and motivate the second main result which
is contained in Section 1.3. The Tracy-Widom ASEP formula is reviewed in Section 1.5 and then
a formal explanation of the result is given in Section 1.6. A full proof of this result is contained in
Section 2 and its various subsections. The third result is about the connection between the first
(stochastic heat equation, etc.) and second (WASEP). The result is stated in Section 1.4 and is
proved in Section 3.

1.2. ASEP scaling theory. The simple exclusion process with parameters p, q ≥ 0 (such that
p + q = 1) is a continuous time Markov process on the discrete lattice Z with state space {0, 1}Z

(the 1’s are thought of as particles and the 0’s as holes). The dynamics for this process are given as
follows: Each particle has an independent exponential alarmclock which rings at rate one. When
the alarm goes off the particle flips a coin and with probability p attempts to jump one site to
the right and with probability q attempts to jump one site to the left. If there is a particle at the
destination, the jump is suppressed and the alarm is reset (see [21] for a rigorous construction of this
process). If q = 1, p = 0 this process is the totally asymmetric simple exclusion process (TASEP);
if q > p it is the asymmetric simple exclusion process (ASEP); if q = p it is the symmetric simple
exclusion process (SSEP). Finally, if we introduce a parameter into the model, we can let q − p go
to zero with that parameter, and then this class of processes are known as the weakly asymmetric
simple exclusion process (WASEP). It is the WASEP that is of central interest to us. ASEP is
often thought of as a discretization of KPZ (for the height function) or stochastic Burgers (for the
particle density). For WASEP the connection can be made precise (see Sections 1.4 and 3).

There are many ways to initialize these exclusion processes (such as stationary, flat, two-sided
Bernoulli, etc.) analogous to the various initial conditions for KPZ/Stochastic Burgers. We consider
a very simple initial condition known as step initial condition where every positive integer lattice
site (i.e. {1, 2, 3, . . .}) is initially occupied by a particle and every other site is empty. Associated to
the ASEP are occupation variables η(t, x) which equal 1 if there is a particle at position x at time
t and 0 otherwise. From these we define η̂ = 2η − 1 which take values ±1 and define the height
function for WASEP with asymmetry γ = q − p by

hγ(t, x) =











2N(t) +
∑

0<y≤x η̂(t, y), x > 0,

2N(t), x = 0,

2N(t) −∑x<y≤0 η̂(t, y), x < 0,

(43)

where N(t) is equal to the net number of particles which crossed from the site 1 to the site 0 in
time t. Since we are dealing with step initial conditions hγ is initially given by (connecting the
points with slope ±1 lines) hγ(0, x) = |x|. It is easy to show that because of step initial conditions,
the following three events are equivalent:

{hγ(t, x) ≥ 2m− x} = {Jγ(t, x) ≥ m} = {xγ(t,m) ≤ x) (44)

where xγ(t,m) is the location at time t of the particle which started at m > 0 and where Jγ(t, x)
is a random variable known as the current. Jγ(t, x) is defined to be the number of particles which
started to the right of the origin at time 0 and ended to the left or at x at time t. The γ emphasizes
the strength of the asymmetry.
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In the case of the ASEP (q > p, γ ∈ (0, 1)) and the TASEP (q = 1, p = 0, γ = 1) there is a
well developed fluctuation theory for the height function. We briefly review this now since it both
motivates the time/space/fluctuation scale we will use throughout this paper, and also since we are
ultimately interested in understanding the transition in behaviour from WASEP to ASEP.

The following result was proved for γ = 1 (TASEP) by Johansson [15] and for 0 < γ < 1 (ASEP)
by Tracy and Widom [32]:

lim
t→∞

P

(

hγ( t
γ , 0) − 1

2t

t1/3
≥ −s

)

= FGUE(21/3s). (45)

In the case of TASEP, the one point distribution limit has been extended to a process level limit.
Consider a time t, a space scale of order t2/3 and a fluctuation scale of order t1/3. Then, as t goes
to infinity, the spatial fluctuation process, scaled by t1/3 converges to the Airy2 process (see [6, 9]
for this result for TASEP, [16] for DTASEP and [22] for the closely related PNG model). Precisely,
for m ≥ 1 and real numbers x1, . . . , xm and s1, . . . , sm:

lim
t→∞

P

(

hγ(t, xkt
2/3) ≥ 1

2
t+ (

x2
k

2
− sk)t

1/3, k = 1, . . . ,m

)

= P
(

A2(xk) ≤ 21/3sk, k = 1, . . . ,m
)

(46)
where A2 is known as the Airy2 process (see, for example,[6, 9]) and has one-point marginals FGUE.
Notice that in order to get this process limit, we needed to deal with the parabolic curvature of the

height function above the origin by including (
x2

k
2 − sk) rather than just −sk. In fact, if one were

to replace t by tT for some fixed T , then the parabola would become
x2

k
2T . We shall see that this

parabola comes up again soon.

An important take away from the result above is the relationship between the exponents for time,
space and fluctuations — their 3 : 2 : 1 ratio. It is only with this ratio that we encounter a
non-trivial limiting spatial process. For the purposes of this paper, it is more convenient for us to
introduce a parameter ǫ which goes to zero, instead of the parameter t which goes to infinity.

Keeping in mind the 3 : 2 : 1 ratio of time, space and fluctuations we define scaling variables

t = ǫ−3/2T, x = ǫ−1X, (47)

where T > 0 and X ∈ R. With these variables the height function fluctuations around the origin
are written as

ǫ1/2
(

hγ( t
γ , x) − 1

2 t
)

. (48)

Motivated by the relationship we will establish in Section 1.4, we are interested in studying the
Hopf-Cole transformation of the height function fluctuations given by

exp
{

−ǫ1/2
(

hγ( t
γ , x) − 1

2t
)}

. (49)

When T = 0 we would like this transformed object to become, in some sense, a delta function at
X = 0. Plugging in T = 0 we see that the height function is given by |ǫ−1X| and so the exponential

becomes exp{−ǫ−1/2|X|}. If we introduce a factor of ǫ−1/2/2 in front of this, then the total integral
in X is 1 and this does approach a delta function as ǫ goes to zero. Thus we consider

ǫ−1/2

2
exp

{

−ǫ1/2
(

hγ( t
γ , x) − 1

2t
)}

. (50)
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As we shall explain in Section 1.3, the correct scaling for γ to see different behavior than the ASEP
or SSEP (i.e., the crossover behavior) is when γ = bǫ1/2. We fix b = 1, as scaling can give us other
values of b. This corresponds with setting

γ = ǫ1/2, p =
1

2
− 1

2
ǫ1/2, q =

1

2
+

1

2
ǫ1/2. (51)

Under this scaling the WASEP is related to the KPZ equation and stochastic heat equation. To
help facilitate this connection define

νǫ = p+ q − 2
√
qp =

1

2
ǫ+

1

8
ǫ2 + O(ǫ3), (52)

λǫ = 1
2 log(q/p) = ǫ1/2 +

1

3
ǫ3/2 + O(ǫ5/2),

and define

Zǫ(T,X) = 1
2
ǫ−1/2 exp

{

−λǫhγ( t
γ , x) + νǫǫ

−1/2t
}

. (53)

Observe that this differs from the expression in (50) only to second order in ǫ. This second order
difference, however, introduces a shift of T/4! which we will see now. With the connection to the
polymer free energy in mind write

Zǫ(T,X) = p(T,X) exp{Fǫ(T,X)}. (54)

where p(T,X) is the heat kernel defined in (13). This implies that the field is defined by

Fǫ(T,X) = log(ǫ−1/2/2) − λǫhγ( t
γ , x) + νǫǫ

−1/2t+
X2

2T
+ log

√
2πT . (55)

We are interested in understanding the behavior of P (Fǫ(T,X) ≤ s) as ǫ goes to zero. This
probability can be translated into a probability for the height function, the current and finally the
position of a tagged particle:

P (Fǫ(T,X) + T
4! ≤ s) = P

(

log(ǫ−1/2/2) − λǫhγ( t
γ , x) + νǫǫ

−1/2t+
X2

2T
+ log

√
2πT ≤ s

)

= P

(

hγ( t
γ , x) ≥ λ−1

ǫ [−s+ log
√

2πT + log(ǫ−1/2/2) +
X2

2T
+ νǫǫ

−1/2t]

)

= P

(

hγ( t
γ , x) ≥ ǫ−1/2

[

−a+ log(ǫ−1/2/2) +
X2

2T

]

+
t

2

)

= P (Jγ( t
γ , x) ≥ m) (56)

= P (xγ( t
γ ,m) ≤ x),

where m is defined as

m =
1

2

[

ǫ−1/2

(

−a+ log(ǫ−1/2/2) +
X2

2T

)

+
1

2
t+ x

]

(57)

a = s− log
√

2πT .

The T
4! added to Fǫ(T,X) comes from taking into account the second order corrections to νǫ and

λǫ. It is interesting to note that the same factor appears in [3].

1.3. WASEP crossover regime. We now turn to the question of how γ should vary with ǫ. The
simplest heuristic argument is to use the KPZ equation

∂Thγ = −γ
2
(∂Xhγ)2 +

1

2
∂2

Xhγ + Ẇ . (58)
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as a proxy for its discretization ASEP, and rescale

hǫ,γ(t, x) = ǫ1/2hγ(t/γ, x) (59)

to obtain

∂thǫ,γ = −1

2
(∂xhǫ,γ)2 +

ǫ1/2γ−1

2
∂2

xhǫ,γ + ǫ1/4γ−1/2
Ẇ (60)

from which we conclude that we want γ = bǫ1/2 for some b ∈ (0,∞). We expect Gaussian behavior
as bց 0 and FGUE behavior as bր ∞. On the other hand, a simple rescaling reduces everything
to the case b = 1. Thus it suffices to consider

γ := ǫ1/2. (61)

From now on we will assume that γ = ǫ1/2 unless we state explicitly otherwise. In particular,
Fǫ(T,X) now should be considered with respect to γ as defined above.

The following theorem is proved in Section 2 though an informative though non-rigorous derivation
is given in Section 1.6.

Theorem 8. For all s ∈ R, T > 0 and X ∈ R we have the following convergence:

FT (s) := lim
ǫ→0

P (Fǫ(T,X) + T
4! ≤ s) =

∫

C̃
e−µ̃ det(I −Kcsc

a )L2(Γ̃η)

dµ̃

µ̃
, (62)

where a = a(s) is given as in the statement of Theorem 1 and where the contour C̃, the contour Γ̃η

and the operator Kcsc
a is defined below in Definition 9.

Definition 9. The contour C̃ is defined as

C̃ = {eiθ}π/2≤θ≤3π/2 ∪ {x± i}x>0 (63)

The contours Γ̃η, Γ̃ζ are defined as

Γ̃η = {c3
2

+ c3ir : r ∈ (−∞,∞)} (64)

Γ̃ζ = {−c3
2

+ c3ir : r ∈ (−∞,∞)}, (65)

where the constant c3 is defined henceforth as

c3 = 2−4/3. (66)

The kernel Kcsc
a acts on the function space L2(Γ̃η) through its kernel:

Kcsc
a (η̃, η̃′) =

∫

Γ̃ζ

exp{−T
3

(ζ̃3 − η̃′3) + 21/3a(ζ̃ − η̃′)}21/3

(

∫ ∞

−∞

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃
dt

)

dζ̃

ζ̃ − η̃
. (67)

or, evaluating the inner integral, equivalently:

Kcsc
a (η̃, η̃′) =

∫

Γ̃ζ

exp{−T
3

(ζ̃3 − η̃′3) + 21/3a(ζ̃ − η̃′)}21/3(−µ̃)−21/3(ζ̃−η̃′)π csc(π21/3(ζ̃ − η̃′))
dζ̃

ζ̃ − η̃
.

(68)
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1.4. The connection between WASEP and the stochastic heat equation. We now state
the result about the convergence of the Zǫ(T,X) from (53) to the solution Z(T,X) of the stochastic
heat equation (7) with delta initial data (9).

First we take the opportunity to state (7) precisely: W (T ), T ≥ 0 is the cylindrical Wiener process,

i.e. the continuous Gaussian process taking values in H
−1/2−
loc (R) = ∩α<−1/2H

α
loc(R) with

E[〈ϕ,W (T )〉〈ψ,W (S)〉] = min(T, S)〈ϕ,ψ〉 (69)

for any ϕ,ψ ∈ C∞
c (R), the smooth functions with compact support in R. Here Hα

loc(R), α < 0,
consists of distributions f such that for any ϕ ∈ C∞

c (R), ϕf is in the standard Sobolev space
H−α(R), i.e. the dual of Hα(R) under the L2 pairing. H−α(R) is the closure of C∞

c (R) under

the norm
∫∞
−∞(1 + |t|−2α)|f̂(t)|2dt where f̂ denotes the Fourier transform. The distributional time

derivative Ẇ (T,X) is the space-time white noise

E[Ẇ (T,X)Ẇ (S, Y )] = δ(T − S)δ(Y −X). (70)

Note the mild abuse of notation for the sake of clarity, as we write Ẇ (T,X) even though it is a
distribution on (T,X) ∈ [0,∞)×R as opposed to a classical function of T and X. Let F (T ), T ≥ 0,
be the natural filtration, i.e. the smallest σ-field with respect to which W (S) are measurable for
all 0 ≤ S ≤ T .

The stochastic heat equation is then shorthand for its integrated version (15) where the stochastic
integral is interpreted in the Itô sense [35], so that, in particular, if f(T,X) is any non-anticipating
integrand,

E[(
∫ T
0

∫∞
−∞ f(S, Y )W (dY, dS))2] = E[(

∫ T
0

∫∞
−∞ f2(S, Y )dY dS]. (71)

The awkward notation is inherited from stochastic partial differential equations: W for (cylindrical)

Wiener process, Ẇ for white noise, and stochastic integrals are taken with respect to white noise
W (dY, dS).

Note that the solution can be written explicitly as a series of multiple Wiener integrals;

Z(T,X) =

∞
∑

n=0

∫

∆′

n(T )

∫

Rn

(−1)n
n
∏

i=1

p(Ti − Ti−1,Xi −Xi−1)W (dTidXi) (72)

where ∆′
n(T ) = {(t0, . . . , tn) : 0 ≤ t0 ≤ · · · ≤ tn = T}.

The random functions Zǫ(T,X) from (53) have discontinuities both in space and in time. If desired,
one can linearly interpolate in space so that they become a jump process taking values in the space
of continuous functions. But it does not really make things easier. The key point is that the jumps
are small, so we use instead the space Du([0,∞);Du(R)) where D refers to right continuous paths
with left limits and Du(R) indicates that in space these functions are equipped with the topology of
uniform convergence on compact sets. Let Pǫ denote the probability measure on Du([0,∞);Du(R))
corresponding to the process Zǫ(T,X).

Theorem 10. Pǫ, ǫ ∈ (0, 1/4) are a tight family of measures and the unique limit point is supported
on C([0,∞);C(R)) and corresponds to the solution (72) of (7) with initial conditions (9).

In particular, for each fixed X,T and s,

lim
ǫց0

P (Fǫ(T,X) ≤ s) = P (F(T,X) ≤ s). (73)
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The result is motivated by, but does not follow directly from, the results of [3]. This is because
of the delta function initial conditions, and the consequent difference in the scaling. It requires a
certain amount of work to show that their basic computations are applicable to the present case.
This is done in Section 3.

1.5. The Tracy-Widom Step Initial Condition ASEP formula. Due to the process level
convergence of WASEP to the stochastic heat equation, exact information about WASEP can be,
with care, translated into information about the stochastic heat equation. Until recently, very little
exact information was known about ASEP and WASEP. The work of Tracy and Widom in the
past few years, however, has changed that significantly. At the present their methods provide exact
formulas for the one-point distribution of the height function for ASEP.

As such, the key tool in determining the limit as ǫ goes to zero of P (Fǫ(T,X) + T
4! ≤ s) is the

following exact formula for the transition probability for a tagged particle in ASEP started from
step initial conditions. This formula was stated in [32] in the form below, and was developed in
the three papers [30, 31, 32]. We will apply it to the last line of (56) to give us an exact formula
for P (Fǫ(T,X) + T

4! ≤ s).

Consider q > p such that q + p = 1 and let γ = q − p and τ = p/q. For m > 0, t ≥ 0 and x ∈ Z,
[32] gives the following exact formula

P (x(γ−1t,m) ≤ x) =

∫

Sτ+

dµ

µ

∞
∏

k=0

(1 − µτk) det(I + µJt,m,x,µ)L2(Γη) (74)

where Sτ+ is a circle centered at zero of radius strictly between τ and 1, and where the kernel of
the determinant is given by

Jt,m,x,µ(η, η′) =

∫

Γζ

exp{Ψt,m,x(ζ) − Ψt,m,x(η′)}f(µ, ζ/η′)
η′(ζ − η)

dζ (75)

where η and η′ are on Γη, a circle centered at zero of radius ρ strictly between τ and 1, and the ζ
integral is on Γζ , a circle centered at zero of radius strictly between 1 and ρτ−1 (so as to ensure
that |ζ/η| ∈ (1, τ−1), and where

f(µ, z) =

∞
∑

k=−∞

τk

1 − τkµ
zk

Ψt,m,x(ζ) = Λt,m,x(ζ) − Λt,m,x(ξ) (76)

Λt,m,x(ζ) = −x log(1 − ζ) +
tζ

1 − ζ
+m log ζ.

Remark 11. Throughout the rest of the paper we will only include the subscripts on J , Ψ and Λ
when we want to emphasize the dependence of the kernel/functions on a given variable. Otherwise
they will just be notated as J,Ψ and Λ.

1.6. Weakly asymmetric limit of the Tracy-Widom ASEP formula. The Tracy and Widom
ASEP formula (74) provides an exact expression for the probability P (Fǫ(T,X) + T

4! ≤ s) by
interpreting this, as in (56) in terms of a probability of the location of a tagged particle. It is
of great interest to understand the limit of this probability as ǫ goes to zero, as it describes a
number of interesting limiting objects. We called this limiting probability FT (s). Presently we will
provide a purely formal explanation for the expression given in Theorem 8 (see Section 1.3) for this
limiting function FT (s). After presenting this formal argument we will stress the point that there
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are a number of very important technical points which arise during this argument, many of which
require serious work to resolve. In Section 2 we will provide a rigorous proof of Theorem 8 that
limǫ→0 P (Fǫ(T,X) + T

4! ≤ s) = FT (s) in which we deal with all of these possible pitfalls.

Definition 12. Recall the definitions for the relevant quantities in this limit:

p =
1

2
− 1

2
ǫ1/2, q =

1

2
+

1

2
ǫ1/2 (77)

γ = ǫ1/2, τ =
1 − ǫ1/2

1 + ǫ1/2

x = ǫ−1X, t = ǫ−3/2T

m =
1

2

[

ǫ−1/2

(

−a+ log(ǫ−1/2/2) +
X2

2T

)

+
1

2
t+ x

]

{Fǫ(T,X) + T
4! ≤ s} = {x(

t

γ
,m) ≤ x},

where a = a(s) is defined in the statement of Theorem 1. We also define the contours Γη and Γζ

to be

Γη = {z : |z| = 1 − 1
2ǫ

1/2} and Γζ = {z : |z| = 1 + 1
2ǫ

1/2} (78)

The first term in the integrand of (74) is the infinite product
∏∞

k=0(1 − µτk). Observe that τ ≈
1 − 2ǫ1/2 and that Sτ+ , the contour on which µ lies, is a circle centered at zero of radius between
τ and 1. The infinite product is not well behaved along most of this contour, so we will deform
the contour to one along which the product is not highly oscillatory. Care must be taken, however,
since the Fredholm determinant has poles at every µ = τk. The deformation must avoid passing
through them. Observe now that

∞
∏

k=0

(1 − µτk) = exp{
∞
∑

k=0

log(1 − µτk)} (79)

and that
∞
∑

k=0

log(1 − µ(1 − 2ǫ1/2)k) ≈ ǫ−1/2

∫ ∞

0
log(1 − µe−2r)dr ≈ ǫ−1/2µ

∫ ∞

0
e−2rdr = −ǫ

−1/2µ

2
. (80)

With this in mind define

µ̃ = ǫ−1/2µ (81)

from which we see that if the Riemann sum approximation is reasonable then the infinite product
converges to e−µ̃. We make the µ 7→ ǫ−1/2µ̃ change of variables and find that if we consider a µ̃
contour

C̃ǫ = {eiθ}π/2≤θ≤3π/2 ∪ {x± i}0<x<ǫ−1/2−1 (82)

then the above approximations are reasonable. Thus the infinite product goes to exp{−µ̃/2}.

Now we turn to the Fredholm determinant. We determine a candidate for the pointwise limit of
the kernel. That the combination of these two pointwise limits gives the actual limiting formula
as ǫ goes to zero is, of course, completely unjustified at this point. Also, the pointwise limits here
disregard the existence of a number of singularities encountered during the argument.

The kernel J(η, η′) is given by an integral and the integrand has three main components: An
exponential term

exp{Λ(ζ) − Λ(η′)}, (83)
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a rational function term (we include the differential with this term for scaling purposes)

dζ

η′(ζ − η)
, (84)

and the term

µf(µ, ζ/η′). (85)

We proceed by the method of steepest descent, so in order to determine the region along the ζ
and η contours which affects the asymptotics we must consider the exponential term first. The
argument of the exponential is given by Λ(ζ) − Λ(η′) where

Λ(ζ) = −x log(1 − ζ) +
tζ

1 − ζ
+m log(ζ), (86)

and where, for the moment we take m = 1
2

[

ǫ−1/2(−a+ X2

2T ) + 1
2t+ x

]

. The real expression for m

has a log(ǫ−1/2/2) term which we define in with the a for the moment (recall that a is defined in the
statement of Theorem 1). Recall that x, t and m all depend on ǫ. For small ǫ, Λ(ζ) has a critical

point in an ǫ1/2 neighborhood of -1. For purposes of having a nice ultimate answer we choose to
center in on the point

ξ = −1 − 2ǫ1/2X

T
(87)

We can rewrite the argument of the exponential as (Λ(ζ)−Λ(ξ))− (Λ(η′)−Λ(ξ)) = Ψ(ζ)−Ψ(η′).
The idea of extracting asymptotics for this term (which starts like those done in [32] but quickly
becomes more involved due to the fact that τ tends to 1 as ǫ goes to zero) is then to deform the ζ

and η contours to lie along curves such that outside the scale ǫ1/2 around ξ, Ψ(ζ) is very negative,
and Ψ(η′) is very positive (in real part). This is so that we can completely forget about that

part of the contours. Then, rescaling around ξ to blow up this ǫ1/2 scale, gives us the asymptotic
exponential term. This final change of variables then sets the scale at which we should analyze the
other two terms in the integrand for the J kernel.

Returning to Ψ(ζ), we make a Taylor expansion around ξ and find that in a neighborhood of ξ

Ψ(ζ) ≈ − T

48
ǫ−3/2(ζ − ξ)3 +

a

2
ǫ−1/2(ζ − ξ). (88)

This suggests the following change of variables

ζ̃ = 2−4/3ǫ−1/2(ζ − ξ) η̃ = 2−4/3ǫ−1/2(η − ξ) η̃′ = 2−4/3ǫ−1/2(η′ − ξ), (89)

after which our Taylor expansion takes the form

Ψ(ζ̃) ≈ −T
3
ζ̃3 + 21/3aζ̃. (90)

In the spirit of steepest descent analysis we would like the ζ contour to leave ξ in a direction where
this Taylor expansion is decreasing rapidly. This is accomplished by leaving at an angle ±2π/3.
Likewise since Ψ(η) should increase radidly, η should leave ξ at angle ±π/3. The ζ contour was

original centered at zero and of radius 1 + ǫ1/2/2 and the η contour of radius 1 − ǫ1/2/2. In order
to deform these contours without changing the value of the determinant care must be taken since
there are poles of f whenever ζ/η′ = τk, k ∈ Z. We ignore this issue for the formal calculation
(and deal with it carefully in Section 2.)

Let us now assume that we can deform our contours to curves along which Ψ rapidly decays in ζ
and increases in η, as we move along them away from ξ. If we apply the change of variables in (89)

the straight part of our contours become infinite at angles ±2π/3 and ±π/3 which we call Γ̃ζ and
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Γ̃η. Note that this is not the actual definition of these contours which we use in the statement and
proof of Theorem 1 because of the singularity problem mentioned above.

Applying this change of variables to the kernel of the Fredholm determinant changes the L2 space
and hence we must multiply the kernel by the Jacobian term 24/3ǫ1/2. We will include this term
with the µf(µ, z) term and take the ǫ→ 0 limit of that product.

As noted before, the term 21/3aζ̃ should actually have been 21/3(a − log(ǫ−1/2/2))ζ̃ in the Taylor
expansion above, giving

Ψ(ζ̃) ≈ −T
3
ζ̃3 + 21/3(a− log(ǫ−1/2/2))ζ̃ , (91)

which would appear to blow up as ǫ goes to zero. We will now show how that the extra log ǫ in the
exponent can be absorbed into the 24/3ǫ1/2µf(µ, ζ/η′) term.

Recall

µf(µ, z) =
∞
∑

k=−∞

µτk

1 − τkµ
zk. (92)

If we let n0 = ⌊log(ǫ−1/2)/ log(τ)⌋ then observe that

µf(µ, z) =

∞
∑

k=−∞

µτk+n0

1 − τk+n0µ
zk+n0 = zn0τn0µ

∞
∑

k=−∞

τk

1 − τkτn0µ
zk. (93)

By the choice of n0, τ
n0 ≈ ǫ−1/2 so

µf(µ, z) ≈ zn0 µ̃f(µ̃, z). (94)

The discussion on the exponential term indicates that it suffices to understand the behavior of this
function only in the region where ζ and η′ are within a neighborhood of ξ of order ǫ1/2. Equivalently,
letting z = ζ/η′ it suffices to understand µf(µ, z) ≈ zn0 µ̃f(µ̃, z) for

z =
ζ

η′
=

ξ + 24/3ǫ1/2ζ̃

ξ + 24/3ǫ1/2η̃′
≈ 1 − ǫ1/2z̃ (95)

where we set z̃ = 24/3(ζ̃ − η̃′).

Let us now consider zn0 using the fact that log(τ) ≈ −2ǫ1/2:

zn0 ≈ (1 − ǫ1/2z̃)ǫ
−1/2( 1

4
log ǫ) ≈ e−

1
4
z̃ log(ǫ). (96)

Plugging back in the value of z̃ in terms of ζ̃ and η̃′ we see that this prefactor of zn0 exactly cancels
the log ǫ term which accompanies a in the exponential.

What remains is to determine the limit of 24/3ǫ1/2µ̃f(µ̃, z) as ǫ goes to zero and for z ≈ 1 − ǫ1/2z̃.
This limit can be found by interpreting the infinite sum as a Reimann sum approximation for a
certain integral. Define t = kǫ1/2, then observe that

ǫ1/2µ̃f(µ̃, z) =

∞
∑

k=−∞

µ̃τ tǫ−1/2
ztǫ−1/2

1 − µ̃τ tǫ−1/2
ǫ1/2 →

∫ ∞

−∞

µ̃e−2te−z̃t

1 − µ̃e−2t
dt. (97)
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This used the fact that τ tǫ−1/2 → e−2t and that ztǫ−1/2 → e−z̃t, which hold at least pointwise in t.
If we change variables of t to t/2 and multiply the top and bottom by e−t then we find that

24/3ǫ1/2µf(µ, ζ/η′) → 21/3

∫ ∞

−∞

µ̃e−z̃t/2

et − µ̃
dt. (98)

As far as the final term, the rational expression, under the change of variables and zooming in on

ξ, the factor of 1/η′ goes to -1 and the dζ
ζ−η′ goes to dζ̃

ζ̃−η̃′
.

Therefore we formally find the following kernel: −Kcsc
a′ (η̃, η̃′) acting on L2(Γ̃η) where:

Kcsc
a′ (η̃, η̃′) =

∫

Γ̃ζ

exp{−T
3

(ζ̃3 − η̃′3) + 21/3a′(ζ̃ − η̃′)}21/3

(

∫ ∞

−∞

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃
dt

)

dζ̃

ζ̃ − η̃
, (99)

where a′ = a+ log 2. Recall that the log 2 came from the log(ǫ−1/2/2) term.

We have the identity
∫ ∞

−∞

µ̃e−z̃t/2

et − µ̃
dt = (−µ̃)−z̃/2π csc(πz̃/2), (100)

where the branch cut in µ̃ is along the positive real axis, hence (−µ̃)−z̃/2 = e− log(−µ̃)z̃/2 where log
is taken with the standard branch cut along the negative real axis. We may use the identity to
rewrite the kernel as

Kcsc
a′ (η̃, η̃′) =

∫

Γ̃ζ

exp{−T
3

(ζ̃3 − η̃′3) + 21/3a′(ζ̃ − η̃′)}21/3(−µ̃)−21/3(ζ̃−η̃′)π csc(π21/3(ζ̃ − η̃′))
dζ̃

ζ̃ − η̃
.

(101)
Therefore we have shown formally that

lim
ǫ→0

P (Fǫ(T,X) + T
4! ≤ s) := FT (s) =

∫

C̃
e−µ̃/2 dµ̃

µ̃
det(I −Kcsc

a′ )L2(Γ̃η), (102)

where a′ = a+ log 2. To make it cleaner we replace µ̃/2 with µ̃. This only affects the µ̃ term inside

of the kernel given now by (−2µ̃)−z̃/2=(−µ̃)−21/3(ζ̃−η̃′)e−21/3 log 2(ζ̃−η̃′). This can be absorbed and
cancels the log 2 in a′ and thus we obtain,

lim
ǫ→0

P (Fǫ(T,X) + T
4! ≤ s) = FT (s) =

∫

C̃
e−µ̃ dµ̃

µ̃
det(I −Kcsc

a )L2(Γ̃η), (103)

which, up to the definitions of the contours Γ̃η and Γ̃ζ is the desired limiting formula.

We now briefly note some of the potential pitfalls of the preceeding formal argument, all of which
will be addressed in the real proof of Section 2.

Firstly, the pointwise convergence of both the prefactor infinite product and the Fredholm deter-
minant is certainly not enough to prove convergence of the µ̃ integral. Estimates must be made to
control this convergence or to show that we can cut off the tails of the µ̃ contour at negligible cost
and then show uniform convergence on the trimmed contour.

Secondly, the deformations of the η and ζ contours to the steepest descent curves is entirely illegal,
as it involves passing through many poles of the kernel (coming from the f term). In the case of
[32] this problem could be dealt with rather simply by just slightly modifying the descent curves.

However, in our case, since τ tends to 1 like ǫ1/2, such a patch is much harder and involves very fine
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estimates to show that there exists suitable contours which stay close enough together, yet along
which Ψ displays the necessary descent and ascent required to make the argument work.

Finally, one must make precise tail estimates to show that the kernel convergence is in the sense
of trace-class norm. The Reimann sum approximation argument can in fact be made rigorous
(following the proof of Proposition 17). We choose, however, to give an alternative proof of the
validity of that limit in which we identify and prove the limit of f via analysis of singularities and
residues.

1.7. Remark. During the preparation of this article, we learned that T. Sasamoto and H. Spohn
[23, 24, 25] independently obtained a formula equivalent to (62) for the distribution function FT .
They also use a steepest descent analysis on the Tracy-Widom ASEP formula. Note that their
argument is at the level of formal asymptotics of operator kernels and they have not attempted
a mathematical proof. Very recently two groups of physicists ([8], [11, 12]) have successfully em-
ployed the Bethe Ansatz for the attractive Lieb-Liniger model and the replica trick to rederive the
distribution function FT . While this is rather far from rigorous mathematics, it is suggestive of a
deeper relationship between the work of Tracy and Widom for ASEP and the traditional study of
the Bethe Ansatz.
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2. Proof of the weakly asymmetric limit of the Tracy-Widom ASEP formula

In this section we give a proof of the ǫ to zero limit for the properly scaled and normalized WASEP
height function given in Section 1.3 as Theorem 8. In Section 1.6 we derived, at a formal level,
the desired limiting formula for the one-point function. The purpose of this section is to rigorously
prove this limiting formula. The heart of the argument is Proposition 16 which is proved in Section
2.1 and also relies on a number of technical lemmas. These lemmas as well as all of the other
propositions are proved in Section 2.2.

2.0.1. Proof of Theorem 8. We will now present the proof of Theorem 8. The more technical
computations and estimates are stated as lemmas and propositions and their proofs are relegated
to a latter part of this section (Section 2.2).
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Figure 1. The Sǫ contour is deformed to the Cǫ contour via Cauchy’s theorem and
then a change of variables leads to C̃ǫ, with its infinite extension C̃.

The expression given in equation (74) for P (Fǫ(T,X)+ T
4! ≤ s) contains an integral over a µ contour

of a product of a prefactor infinite product and a Fredholm determinant. The first step towards
taking the limit of this as ǫ goes to zero is to control the prefactor. Initially µ lies on a contour
Sτ+ which is centered at zero and of radius between τ and 1. Recall the prefactor is given by
∏∞

k=0(1 − µτk). Along this contour the partial products (i.e., product up to N) form a highly
oscillatory sequence and hence it is hard to control the convergence of the sequence.

Therefore the first step in our proof is to deform the µ contour Sτ+ to the contour Cǫ (a long, skinny
cigar shaped contour) where

Cǫ = {ǫ1/2eiθ} ∪ {x± iǫ1/2}0<x≤1−ǫ1/2 ∪ {1 − ǫ1/2 + ǫ1/2iy}−1<y<1 (104)

(see figure 2.0.1.) We orient Cǫ counter-clockwise. Notice that this new contour still includes all of
the poles at µ = τk associated with the f function in the J kernel.

In order to justify replacing Sτ+ by Cǫ we need the following (for the proof see Section 2.2.2):

Lemma 13. In equation (74) we can replace the contour Sǫ with Cǫ as the contour of integration
for µ without affecting the value of the integral.

Having made this deformation of the µ contour we now observe that the natural scale for µ is on
order ǫ1/2. With this in mind we make the following change of variables

µ = ǫ1/2µ̃. (105)

Remark 14. Throughout the proof of this theorem and its lemmas and propositions, we will use
the tilde to denote variables which are ǫ1/2 rescaled versions of the original, untilded variables.

The µ̃ variable now lives on the contour

C̃ǫ = {eiθ} ∪ {x± i}0<x≤ǫ−1/2−1 ∪ {ǫ−1/2 − 1 + iy}−1<y<1. (106)

Let us also define the increasing limit C̃ of these contours

C̃ = {eiθ} ∪ {x± i}x>0. (107)

The contour of integration for µ̃ keeps growing and ultimately approaches C̃. In order to show
convergence of the integral as ǫ goes to zero, we must consider two things: the convergence of
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the integrand for µ̃ in some compact region (near the origin) on C̃; and the controlled decay of

the integrand on C̃ǫ outside of that compact region. This second consideration will allow us to
approximate the integral by a finite integral in µ̃, while the first consideration will tell us what the
limit of that integral is. When all is said and done, we will paste back in the remaining part of the
µ̃ integral (which we will show has small effect on the value) and have our answer.

With this in mind we give the following convergence / tail control lemma for the prefactor product.
We define two regions (which depend on some parameter r ≥ 1). The first region R1 is compact,
while the second region R2 is infinite and contains the tail of the µ̃ contour. Together these two
regions cover the contour C̃ǫ. The point of r is that increasing it amounts to cutting the µ̃ contour
further out.

Lemma 15. Define two regions (which depend on a fixed parameter r ≥ 1)

R1 = {µ̃ : |µ̃| ≤ r

sin(π/10)
} (108)

R2 = {µ̃ : Re(µ̃) ∈ [
r

tan(π/10)
, ǫ−1/2], and Im(µ̃) ∈ [−2, 2]}. (109)

Furthermore define the function (the infinite product after the change of variables)

gǫ(µ̃) =

∞
∏

k=0

(1 − ǫ1/2µ̃τk). (110)

Then uniformly in µ̃ ∈ R1,

gǫ(µ) → e−µ̃/2 (111)

Also, for all ǫ < ǫ0 (some positive constant) there exists a constant c such that for all µ̃ ∈ R2 we
have the following tail bound:

|gǫ(µ̃)| ≤ |e−µ̃/2||e−cǫ1/2µ̃2 |. (112)

(By the choice of R2, for all µ̃ ∈ R2, Re(µ̃2) > δ > 0 for some fixed δ. The constant c can be taken
to be 1/8.)

This lemma is proved in Section 2.2.2.

We now turn our attention to the Fredholm determinant term in the integrand. Just as we did
for the prefactor infinite product in Lemma 15 we must establish uniform convergence of the
determinant for µ̃ in a fixed compact region (near the origin), and a suitable tail estimate valid
outside that compact region. The tail estimate must be such that for each finite ǫ, we can combine
the two tail estimates (from the prefactor and from the determinant) and show that their integral

over the tail part of C̃ǫ is small and goes to zero as we enlarge the original compact region. For this
we have the following two propositions (the first is the most substantial and is proved in Section
2.1, while the second is proved in Section 2.2.2).

Proposition 16. Fix s ∈ R, T > 0 and X ∈ R. Then for all compact subsets of C̃ we have that

det(I + ǫ1/2µ̃Jǫ1/2µ̃)L2(Γη) → det(I −Kcsc
a′ )L2(Γ̃η), (113)

uniformly over µ̃ in the compact subset, where a′ = a+log 2 and where Kcsc
a′ is defined in Definition

67 and depends implicitly on µ̃.

Proposition 17. There exists a constant c > 0 and ǫ0 > 0 such that for all ǫ < ǫ0 and all µ̃ on C̃ǫ,
∣

∣

∣
gǫ(µ̃) det(I + ǫ1/2µ̃Jǫ1/2µ̃)L2(Γη)

∣

∣

∣
≤ e−c|µ̃|. (114)
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This exponential decay bound on the integrand shows that that, by choosing a suitably large (fixed)

compact region around zero along the contour C̃ǫ, it is possible to make the µ̃ integral outside of
this region arbitrarily small, uniformly in ǫ (smaller than some fixed ǫ0). This means that we may

henceforth assume that µ̃ lies in a compact region along C̃.

Now that we are on a fixed compact set of µ̃, the first part of Lemma 15 and Proposition 16 combine
to show that the integrand converges uniformly to

e−µ̃/2

µ̃
det(I −Kcsc

a′ )L2(Γ̃η) (115)

and hence the integral converges to the integral with this integrand.

To finish the proof of the limit in Theorem 8 it is necessary that for any δ we can find a suitably
small ǫ0 such that the difference between the two sides of the limit differ by less than δ for all ǫ < ǫ0.
Technically we are in the position of a δ/3 argument. One portion of δ/3 goes to the cost of cutting
off the µ̃ contour outside of some compact set. Another δ/3 goes to the uniform convergence of
the integrand. The final portion goes to repairing the µ̃ contour. As δ gets smaller, the cut for the
µ̃ contour must occur further out. Therefore the limiting integral will be over the limit of the µ̃
contours, which we called C̃. The final δ/3 is spent on the following:

Proposition 18. There exists a constant c > 0 such that for all µ̃ with |µ̃| ≥ 1 along C̃, we have
∣

∣

∣

∣

∣

e−µ̃/2

µ̃
det(I −Kcsc

a )L2(Γ̃η)

∣

∣

∣

∣

∣

≤ |e−cµ̃|. (116)

This proposition is proved in Section 2.2.2. One should note also that the argument used to prove
this proposition immediately shows that Kcsc

a is, in fact, a trace class operator on L2(Γ̃η).

It is an immediate corollary of this exponential tail bound that for sufficiently large compact sets
of µ̃, the cost to include the rest of the µ̃ contour is less than δ/3. This, along with the change of
variables in µ̃ described at the end of Section 1.6 finishes the proof of Theorem 8.

2.1. Proof of Proposition 16. In this section we provide all of the steps necessary to prove
Proposition 16. To ease understanding of the argument we relegate more technical points to lemmas
whose proof we delay to Section 2.2.3.

For the entire proof of this proposition it is important that we keep in mind that at this point we
may assume that µ̃ lies on a fixed compact region of the curve C̃. Recall that µ̃ = ǫ−1/2µ. We
proceed via the following strategy to find the limit of the Fredholm determinant as ǫ goes to zero.
The first step is to deform the contours Γη and Γζ to suitable curves along which there exists a
small region outside of which the kernel of our operator is exponentially small. This justifies cutting
the contours off outside of this small region. We may then rescale everything so this small region
becomes order one in size. Then, for this compact region we must show uniform convergence of the
kernel, as ǫ goes to zero, to our desired limit kernel. Finally we must show that we can complete the
finite contour on which this limiting object is defined to an infinite contour without significantly
changing the value of the determinant. This idea of cutting, taking the limit and then pasting back
the remaining (limiting) contour is analogous to the idea behind the proof of Theorem 8.
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Figure 2. Γζ,l (the outer most curve) is composed of a small verticle section near
ξ labeled Γvert

ζ,l and a large almost circular (small modification due to the function

κ(θ)) section labeled Γcirc
ζ,l . Likewise Γη,l is the middle curve, and the inner curve

is the unit circle. These curves depend on ǫ in such a way that |ζ/η| is bounded
between 1 and τ−1 ≈ 1 + 2ǫ1/2.

Recall now that Γζ is defined to be a circle centered at zero of radius 1 + ǫ1/2/2 and Γη is a circle

centered at zero of radius 1 − ǫ1/2/2 (this implies that 1 < |ζ/η′| < τ−1) and that

ξ = −1 − 2ǫ1/2X

T
. (117)

The function f(µ, ζ/η′) which shows up in the definition of the kernel for J has poles as every point
ζ/η′ = z = τk for k ∈ Z. As long as we simultaneously deform the Γζ contour as we deform Γη so
as to keep ζ/η′ away from these poles, we may use Proposition 31 (Proposition 1 of [32]), to justify
the fact that the determinant does not change under this deformation. In this way we may deform
our contours to the following modified contours Γη,l,Γζ,l:

Definition 19. Let Γη,l and Γζ,l be two families (indexed by l > 0) of simple closed contours in C

defined as follows. Let

κ(θ) =
2X

T
tan2

(

θ

2

)

log

(

2

1 − cos θ

)

. (118)

Both Γη,l and Γζ,l will be symmetric across the real axis, so we need only define them on the top

half. Γη,l begins at ξ+ ǫ1/2/2 and moves along a straight vertical line for a distance lǫ1/2 and then
joins the curve (parametrized by the polar angle θ) given by

[

1 + ǫ1/2(κ(θ) + α)
]

eiθ (119)

where the value of θ ranges from θ ≈ π− lǫ1/2 +O(ǫ) to θ = 0 and where α = −1/2 +O(ǫ1/2) (see
figure 2.1 for an illustration of these contours). The small errors are necessary to make sure that
the curves join up at the end of the vertical section of the curve. As said before, we extend this to
a closed contour by reflection through the real axis. The orientation to this contour is clockwise.
We denote the first, vertical part, of the contour by Γvert

η,l and the second, roughly circular part by

Γcirc
η,l . This means that Γη,l = Γvert

η,l ∪ Γcirc
η,l , and along this contour we can think of parametring η

by θ ∈ [0, π].
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We define Γζ,l similarly except that it starts out at ξ− ǫ1/2/2 and joins the curve given by equation

(119) where the value of θ ranges from θ ≈ π− lǫ1/2 +O(ǫ) to θ = 0 and where α = 1/2 +O(ǫ1/2).
We similarly denote this contour by the union of Γvert

ζ,l and Γcirc
ζ,l .

By virtue of the above definitions it is clear that ǫ−1/2|ζ/η′ − τk| stays bounded from zero for all
k, and that |ζ/η′| is bounded in an open set contained in (1, τ−1) for all ζ ∈ Γζ,l and η ∈ Γη,l.
Therefore, for any l > 0 we may, by deforming both the η and ζ contours simultaneously, assume
that our operator acts on L2(Γη,l) and that its kernel is defined via an integral along Γζ,l. It is
critical that we now show that, due to our choice of contours, we are able to forget about everything
except for the vertical part of the contours. To formulate this we have the following:

Definition 20. Let χvert
l and χcirc

l be projection operators acting on L2(Γη,l) which project onto
L2(Γvert

η,l ) and L2(Γcirc
η,l ) respectively. Also define two operators Jvert

l and Jcirc
l which act on L2(Γη,l)

and have kernels identical to J (see equation (75)) except the ζ integral is over Γvert
ζ,l and Γcirc

ζ,l

respectively. Thus we have a family of decompositions of our operator J as follows:

J = Jvert
l χvert

l + Jvert
l χcirc

l + Jcirc
l χvert

l + Jcirc
l χcirc

l . (120)

We now show that it suffices to just consider the first part of this decomposition (Jvert
l χvert

l ).

Proposition 21. Assume that µ̃ is restricted to a bounded subset of the contour C̃. For all δ > 0
there exists an ǫ0 > 0 and l0 > 0 such that for all ǫ < ǫ0 and all l > l0

|det(I + µJ)L2(Γη,l) − det(I + Jvert
l )L2(Γvert

η,l )| < δ. (121)

Proof. As was explained in the introduction, if we let

n0 = ⌊log(ǫ−1/2)/ log(τ)⌋ (122)

then it follows from the invariance of the doubly infinite sum for f(µ, z) that

µf(µ, z) = zn0(µ̃f(µ̃, z) + O(ǫ1/2)). (123)

Note that the O(ǫ1/2) above does not play a significant role in what follows so we will drop it off.

Using the above argument and the following two lemmas (which are proved in Section 2.2.3) we
will be able to complete the proof of Proposition 21.

Lemma 22. There exists an l0 > 0 such that for all l > l0 there exists ǫ0 > 0 and a constant c > 0
such that for all ǫ < ǫ0 and all η ∈ Γcirc

η,l

Re(Ψ(η) + n0 log(η)) ≥ c|ξ − η|ǫ−1/2, (124)

where n0 is defined in (122). Likewise, for all ǫ < ǫ0 and ζ ∈ Γcirc
ζ,l

Re(Ψ(ζ) + n0 log(ζ)) ≤ −c|ξ − ζ|ǫ−1/2. (125)

Lemma 23. For all l > 0 there exists ǫ0 > 0 and a constant c > 0 such that for all ǫ < ǫ0

|µ̃f(µ̃, ζ/η′)| ≤ c

|ζ − η′| (126)

where η′ ∈ Γη,l and ζ ∈ Γζ,l.
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It now follows that for any δ > 0, we can find l0 large enough so that ||Jvert
l χcirc

l ||1, ||Jcirc
l χvert

l ||1
and ||Jcirc

l χcirc
l ||1 are all bounded by δ/3. This is because we may factor these various operators in

the product of Hilbert-Schmidt operators and then use the exponential decay of Lemma 22 along
with the polynomial control of Lemma 23 and the remaining term 1/(ζ − η) to prove that each of
the Hilbert-Schmidt norms goes to zero (see for instance the bottom of page 27 of [32]).

This estimate completes the proof of Proposition 21. �

We may now return to proving Proposition 16. We have successfully restricted ourselves to just
considering Jvert

l acting on L2(Γvert
η,l ). Having focused in on the region of asymptotically non-trivial

behavior, we can now rescale and show that the kernel uniformly converges on the compact contour
to the limit kernel.

Definition 24. Fix c3 = 2−4/3 and let

η = ξ + c−1
3 ǫ1/2η̃, η′ = ξ + c−1

3 ǫ1/2η̃′, ζ = ξ + c−1
3 ǫ1/2ζ̃. (127)

Under these change of variables the contours Γvert
η,l and Γvert

ζ,l become

Γ̃η,l = {c3/2 + c3ir : r ∈ (−l, l)} (128)

Γ̃ζ,l = {−c3/2 + c3ir : r ∈ (−l, l)}. (129)

As we increase l these contours approach the following infinite versions

Γ̃η = {c3/2 + c3ir : r ∈ (−∞,∞)} (130)

Γ̃ζ = {−c3/2 + c3ir : r ∈ (−∞,∞)}. (131)

With respect to the change of variables define an operator J̃ acting on L2(Γ̃η) via the kernel:

µJ̃l(η̃, η̃
′) = c−1

3 ǫ1/2

∫

Γ̃ζ,l

exp{Ψ(ξ + c−1
3 ǫ1/2ζ̃) − Ψ(ξ + c−1

3 ǫ1/2η̃′)}
µf(µ,

ξ+c−1
3 ǫ1/2ζ̃

ξ+c−1
3 ǫ1/2η̃′

)

(ξ + c−1
3 ǫ1/2η̃′)(ζ̃ − η̃)

dζ̃. (132)

Lastly, define the projection operator χ̃l which projects L2(Γ̃η) onto L2(Γ̃η,l).

It is clear that under the change of variables the Fredholm determinant det(I + Jvert
l )L2(Γvert

η,l )

becomes det(I + χ̃lµJ̃lχ̃l)L2(Γ̃η,l)
.

We now state a proposition which gives, with respect to these fixed contours Γ̃η,l and Γ̃ζ,l, the limit
of the determinant in terms of the uniform limit of the kernel. Since all contours in question are
finite, uniform convergence of the kernel suffices to show trace class convergence of the operators
and hence convergence of the determinant.

Recall the definition of the operator Kcsc
a given in Definition 9. For the purposes of this proposition,

modify the kernel so that the integration in ζ occurs now only over Γ̃ζ,l and not all of Γ̃ζ . Call this
modified operator Kcsc

a′,l.

Proposition 25. For all δ > 0 there exists ǫ0 > 0 and l0 > 0 such that for all ǫ < ǫ0 and l > l0 we
have (uniformly over the µ̃ in our fixed compact subset of C̃)

∣

∣

∣
det(I + χ̃lµJ̃lχ̃l)L2(Γ̃η,l)

− det(I − χ̃lK
csc
a′,lχ̃l)L2(Γ̃η,l)

∣

∣

∣
< δ, (133)

where a′ = a+ log 2.
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Proof. The proof of this proposition relies on showing the uniform convergence of the kernel of µJ̃
to the kernel of Kcsc

a′,l, which suffices because of the compact contour. Furthermore, since the ζ
integration is itself over a compact set, it suffices to show uniform convergence of this integrand.
The two lemmas stated below will imply such uniform convergence and hence complete this proof.

First, however, recall that µf(µ, z) = zn0(µ̃f(µ̃, z)+O(ǫ1/2)) where n0 is defined in equation (122).
We are interested in having z = ζ/η′, which, under the change of variables can be written as

z = 1 − ǫ1/2z̃ + O(ǫ), z̃ = c−1
3 (ζ̃ − η̃′) = 24/3(ζ̃ − η̃′). (134)

Therefore, since n0 = −1
2 log(ǫ−1/2)ǫ−1/2 + O(1) it follows that

zn0 = exp{−21/3(ζ̃ − η̃′) log(ǫ−1/2)}(1 + o(1)). (135)

This expansion still contains an ǫ and hence the argument blows up as ǫ goes to zero. However,
this exactly counteracts the log(ǫ−1/2) term in the definition of m which goes into the argument of
the exponential of the integrand. We make use of this cancellation in the proof of this first lemma
and hence include the n0 log(ζ/η′) term into the exponential argument.

Lemma 26. For all l > 0 and all δ > 0 there exists ǫ0 > 0 such that for all η̃′ ∈ Γ̃η,l and ζ̃ ∈ Γ̃ζ,l

we have for 0 < ǫ ≤ ǫ0,
∣

∣

∣

∣

(

Ψ(ζ̃) − Ψ(η̃′) + n0 log(ζ/η′)
)

−
(

−T
3

(ζ̃3 − η̃′3) + 21/3a′(ζ̃ − η̃)

)
∣

∣

∣

∣

< δ, (136)

where a = a′ + log 2. Similarly we have
∣

∣

∣

∣

exp
{

Ψ(ζ̃) − Ψ(η̃′) + n0 log(ζ/η′)
}

− exp

{

−T
3

(ζ̃3 − η̃′3) + 21/3a′(ζ̃ − η̃)

}∣

∣

∣

∣

< δ. (137)

Lemma 27. For all l > 0 and all δ > 0 there exists ǫ0 > 0 such that for all η̃′ ∈ Γ̃η,l and ζ̃ ∈ Γ̃ζ,l

we have for 0 < ǫ ≤ ǫ0,
∣

∣

∣

∣

∣

ǫ1/2µ̃f

(

µ̃,
ξ + c−1

3 ǫ1/2ζ̃

ξ + c−1
3 ǫ1/2η̃′

)

−
∫ ∞

−∞

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃
dt

∣

∣

∣

∣

∣

< δ. (138)

The above integral also has a representation (100) in terms of the csc function which in fact gives
the analytic continuation for the integral to all z /∈ Z. Finally, the sign change in front of the
kernel of the Fredholm determinant comes from the 1/η′ term which, under the change of variables
converges uniformly to −1. �

Having successfully taken the ǫ to zero limit, all that now remains is to paste the rest of the
contours Γ̃η and Γ̃ζ to their abbreviated versions Γ̃η,l and Γ̃ζ,l. To justify this we must show that
the inclusion of the rest of these contours does not significantly affect the Fredholm determinant.
Just as in the proof of Proposition 21 we have three operators which we must re-include at provably
small cost. Each of these operators, however, can be factored into the product of Hilbert Schmidt
operators and then an analysis similar to that done following Lemma 23 (see in particular page

27-28 of [32]) shows that because Re(ζ̃3) grows like |ζ̃|2 along Γ̃ζ (and likewise but opposite for
η′) we have sufficiently strong exponential decay to assure us that the trace norms of these three
additional kernels can be made arbitrarily small by taking l large enough.

This last estimate completes the proof of Proposition 16.
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2.2. Technical lemmas, propositions and proofs.

2.2.1. Preliminary lemmas and inequalities. Before delving into the proofs of the propositions and
lemmas, we state a few lemmas which will are useful in what follows. The first three lemmas
are basic facts about Fredholm determinants. For a full treatment of the theory of Fredholm
determinants, trace class operators and Hilbert-Schmidt operators see, for example, [26].

Lemma 28 (Pg. 40 of [7], from Theorem 2.20 from [26]). The following conditions are equivalent:

(1) ||Kn −K||1 → 0;
(2) trKn → trK and Kn → K in the weak operator topology.

Lemma 29 (Ch. 3 [26]). A 7→ det(I+A) is a continuous function on J1 (the trace class operators).
Explicitly,

|det(I +A) − det(I +B)| ≤ ||A−B||1 exp(||A||1 + ||B||1 + 1). (139)

If A ∈ J1 and A = BC with B,C ∈ J2 (Hilbert-Schmidt operators) then

||A||1 ≤ ||B||2||C||2. (140)

For A ∈ J1,

|det(I +A)| ≤ e||A||1. (141)

If A ∈ J2 with kernel A(x, y) then

||A||2 =

(
∫

|A(x, y)|2dxdy
)1/2

. (142)

Lemma 30. If K is an operator acting on a contour Σ and χ is a projection operator unto a
subinterval of Σ then

det(I +Kχ)L2(Σ,µ) = det(I + χKχ)L2(Σ,µ). (143)

In performing steepest descent analysis on Fredholm determinants, the following proposition allows
one to deform contours to descent curves.

Lemma 31 (Proposition 1 of [32]). Suppose s→ Γs is a deformation of closed curves and a kernel
L(η, η′) is analytic in a neighborhood of Γs × Γs ⊂ C

2 for each s. Then the Fredholm determinant
of L acting on Γs is independent of s.

The following lemma, provided to us by Percy Deift, with proof provided in Appendix 7, allows us
to use Cauchy’s theorem when manipulating integrals which involve Fredholm determinants in the
integrand.

Lemma 32. Suppose T (z) is an analytic map from a region D ∈ C into the trace-class operators
on a (separable) Hilbert space H. Then z 7→ det(I + T (z)) is analytic on D.

The following is our key lemma on the meromorphic extension of µf(µ, z). Recall that µf(µ, z)
has poles at µ = τ j, j ∈ Z.
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Lemma 33. For µ 6= τ j for j ∈ Z, the function µf(µ, z) is analytic in z for 1 < |z| < τ−1

and extends analytically to all z 6= 0 or τk for k ∈ Z. This extension is given by first writing
µf(µ, z) = g+(z) + g−(z) where

g+(z) =

∞
∑

k=0

µτkzk

1 − τkµ
g−(z) =

∞
∑

k=1

µτ−kz−k

1 − τ−kµ
, (144)

and where g+ is now defined for |z| < τ−1 and g− is defined for |z| > 1. These functions satisfy
the following two functional equations which imply the analytic continuation:

g+(z) =
µ

1 − τz
+ µg+(τz), g−(z) =

1

1 − z
+

1

µ
g−(z/τ). (145)

By repeating this functional equation we find that

g+(z) =

N
∑

k=1

µk

1 − τkz
+ µNg+(τNz), g−(z) =

N−1
∑

k=0

µ−k

1 − τ−kz
+ µ−Ng−(zτ−N ). (146)

Proof. We’ll prove the g+ functional equation, since the g− one follows similarly. Observe that

g+(z) =
∞
∑

k=0

µ(τz)k(1 +
1

1 − µτk
− 1) =

µ

1 − τz
+

∞
∑

k=0

µ2τk

1 − µτk
(τz)k =

µ

1 − τz
+ µg+(τz), (147)

which is the desired relation. �

2.2.2. Proofs from Section 2.0.1.

Proof of Lemma 13. The lemma follows from Cauchy’s theorem once we show that for fixed ǫ, the
integrand µ−1

∏∞
k=0(1 − µτk) det(I + µJµ) is analytic in µ between Sǫ and Cǫ (note that we now

include a subscript µ on J to emphasize the dependence of the kernel on µ). It is clear that the
infinite product and the µ−1 are analytic in this region. In order to show that det(I + µJµ) is
analytic in the desired region we may appeal to Lemma 32. Therefore it suffices to show that the
map J(µ) defined by µ 7→ Jµ is an analytic map from this region of µ between Sǫ and Cǫ into the
trace class operators (this suffices since the multiplication by µ is clearly analytic). The rest of this
proof is devoted to the proof of this fact.

In order to prove this, we need to show that Jh
µ =

Jµ+h−Jµ

h converges to some operator in the
trace class operators as h ∈ C goes to zero. By the criteria of Lemma 28 it suffices to prove that
the kernel associated to Jh

µ converges uniformly in η, η′ ∈ Γη to the kernel for some operator the

operator J ′
µ. This will prove both the convergence of traces as well as the weak convergence of

operators necessary to prove trace norm convergence and complete this proof. The operator J ′
µ

acts on Γη, the circle centered at zero and of radius 1 − 1
2ǫ

1/2, as

J ′
µ(η, η′) =

∫

Γζ

exp{Ψ(ζ) − Ψ(η′)}f
′(µ, ζ/η′)
η′(ζ − η)

dζ (148)

where

f ′(µ, z) =
∞
∑

k=−∞

τ2k

(1 − τkµ)2
zk. (149)

Our desired convergence will follow if we can show that
∣

∣h−1
(

f(µ+ h, ζ/η′) − f(µ, ζ/η′)
)

− f ′(µ, ζ/η′)
∣

∣ (150)
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goes to zero uniformly in ζ ∈ Γζ and η′ ∈ Γη as |h| goes to zero. Expanding this out and taking
the absolute value inside of the infinite sum we have

∞
∑

k=−∞

∣

∣

∣

∣

h−1

(

τk

1 − τk(µ+ h)
− τk

1 − τk(µ)

)

− τ2k

(1 − τk(µ))2

∣

∣

∣

∣

zk (151)

where z = |ζ/η′| ∈ (1, τ−1). For ǫ and µ fixed there is a k = k∗ at and above which
∣

∣

∣

∣

τkh

1 − τkµ

∣

∣

∣

∣

< 1. (152)

Furthermore, by choosing |h| small enough we can make sure that k∗ is negative. As a result we
also see that for small enough |h|, for all k < k∗

∣

∣

∣

∣

h

τ−1 − µ

∣

∣

∣

∣

< 1. (153)

Therefore splitting our sum into these two sets of k values and using the fact that 1/(1 − w) =
1 + w + O(w) for |w| < 1 we can Taylor expand as follows: For k ≥ k∗

τk

1 − τk(µ+ h)
=

τk

1 − τkµ

1

1 − τkh
1−τkµ

=

τk

(

1 + τkh
1−τkµ

+
(

τk

1−τkµ

)2
O(h2)

)

1 − τkµ
. (154)

Similarly expanding the second term inside the absolute value in equation (151) and canceling with
the third term we are left with ∞

∑

k=k∗

τ3k

(1 − τkµ)3
O(h)zk. (155)

The sum converges since τ3z < 1 and thus behaves like O(h) as desired. Likewise for k < k∗ by
multiplying the numerator and denominator by τ−k the same type of expansion works and we find
that the error is given by the same summand as above but over k from −∞ to k∗ − 1. Again,
however, the sum converges since the numerator and denominator cancel each other for k large
negative, and zk is a convegence series for k going to infinity. Thus this error series also behaves
like O(h) as desired. This shows the necessary uniform convergence and completes the proof. �

Proof of Lemma 15. We prove this with the scaling parameter r = 1 as the general case follows in
a similar way. Consider

log(gǫ(µ̃)) =

∞
∑

k=0

log(1 − ǫ1/2µ̃τk
ǫ ). (156)

For µ̃ ∈ R1 we have

| log(gǫ(µ̃)) + µ̃/2| =

∣

∣

∣

∣

∣

∞
∑

k=0

log(1 − ǫ1/2µ̃τk) + ǫ1/2µ̃τk

∣

∣

∣

∣

∣

(157)

≤
∞
∑

k=0

| log(1 − ǫ1/2µ̃τk) + ǫ1/2µ̃τk| (158)

≤
∞
∑

k=0

|ǫ1/2µ̃τk|2 =
ǫ|µ̃|2

1 − τ2
=

ǫ1/2|µ̃|2
4 − 4ǫ1/2

≤ cǫ1/2|µ̃|2 (159)

≤ c′ǫ1/2. (160)

where the first line comes from the fact that
∑∞

k=0 ǫ
1/2τk = 1/2. The second inequality uses the

fact that for all z ∈ C such that |z| ≤ 1/2, | log(1 − z) + z| ≤ |z|2. Since µ̃ ∈ R1 it follows that
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|z| = ǫ1/2|µ̃| is clearly bounded by 1/2 for small enough ǫ. The constants here are finite and do not
depend on any of the parameters. This proves equation (111) and shows that the convergence is
uniform in µ̃ on R1.

We now turn to the second inequality, equation (112). Consider a region D ⊂ C

D = {z : arg(z) ∈ [− π

10
,
π

10
]} ∩ {z : ℑ(z) ∈ (− 1

10
,

1

10
)} ∩ {z : Re(z) ≤ 1}. (161)

Then for all z ∈ D,

Re(log(1 − z)) ≤ Re(−z − z2/2). (162)

For µ̃ ∈ R2 it is clear that ǫ1/2µ̃ ∈ D. Therefore using (162),

Re(log(gǫ(µ̃))) =

∞
∑

k=0

Re[log(1 − ǫ1/2µ̃τk)] (163)

≤
∞
∑

k=0

(

−Re[ǫ1/2µ̃τk] − Re[(ǫ1/2µ̃τk)2/2]
)

(164)

≤ −Re(µ̃/2) − ǫ1/2

8 − 8ǫ1/2
Re(µ̃2) (165)

≤ −Re(µ̃/2) − 1

8
ǫ1/2Re(µ̃2). (166)

This proves equation (112). Note that given the definition of region R2 we can calculate the
argument of µ̃ and we see that | arg µ̃| ≤ arctan(2 tan(π/10)) < π/4 and |µ̃| ≥ r ≥ 1. Therefore
Re(µ̃2) is positive and bounded away from zero for all µ̃ ∈ R2. �

Proof of Proposition 17. This proof proceeds in a similar manner to the proof of Proposition 18,
however, since presently we have ǫ and changing contours, it is, by necessity, a little more com-
plicated. For this reason we encourage readers to first study the simpler proof of Proposition
18.

In that proof we factor our operator into two pieces. Then, using the decay of the exponential
term, and the control over the size of the csc term, we are able to show that the Hilbert-Schmidt
norm of the first factor is finite and that for the second factor it is bounded by |µ̃|α for α < 1 (we
show it for α = 1/2 though any α > 0 works, just with constant getting large as αց 0). This gives
an estimate on the trace norm of the operator, which, by exponentiating, gives an upper bound
exp{c|µ̃|α} on the size of the determinant. This upper bound is beat by the exponential decay in
µ̃ of the prefactor term gǫ.

For the proof of Proposition 17, we do the same sort of factorization of our operator into AB where
here

A(ζ, η) =
ec[Ψ(ζ)+n0 log(ζ)]

ζ − η
(167)

with n0 as explained before the statement of Lemma 22, and 0 < c < 1 fixed, and

B(η, ζ) = e−c[Ψ(ζ)+n0 log(ζ)] exp{Ψ(ζ) − Ψ(η)}µf(µ, ζ/η)
1

η
. (168)

We must be careful in keeping track of the contours on which these operators act. As we have seen
we may assume that the η variables are on Γη,l and the ζ variables on Γζ,l for any fixed choice
of l ≥ 0. Now using the estimates of Lemmas 22 and 26 we compute that ||A||2 < ∞ (uniformly
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in ǫ < ǫ0 and trivial also in µ̃). Here we calculate the Hilbert-Schmidt norm using Lemma 29.
Intuitively this norm is uniformly bounded as ǫ goes to zero because while the denominator blows
up as bad as ǫ−1/2, the numerator is roughly supported only on a region of measure ǫ1/2 (owing to

the exponential decay of the exponential when ζ differs from ξ by more than order ǫ1/2).

We wish to control ||B||2 now. Using the discussion before Lemma 22 we may rewrite B as

B(η, ζ) = e−c[Ψ(ζ)+n0 log(ζ)] exp{(Ψ(ζ) + n0 log(ζ)) − (Ψ(η) − n0 log(η))}µ̃f(µ̃, ζ/η)
1

η
(169)

Lemmas 22 and 26 apply and say that the exponentials decay as exp{−ǫ−1/2c′|ζ − η|}. Owing to
that decay estimate the final ingredient in proving our proposition comes in the form of control
over |µ̃f(µ̃, z)| for z = ζ/η′. There are two regions of η′, ζ we must consider: (1) when |η′ − ζ| ≤ c
for a very small constant c and (2) |η′ − ζ| > c. We will compute ||B||2 as the squareroot of

∫

η,ζ∈Case (1)
|B(η, ζ)|2dηdζ +

∫

η,ζ∈Case (2)
|B(η, ζ)|2dηdζ. (170)

We will show that the first term can be bounded by C|µ̃|2α for any α < 1, while the second term
can be bounded by a large constant. As a result ||B||2 ≤ C|µ̃|α which is exactly as desired since
then ||AB||1 ≤ exp{c|µ̃|α}.

Consider case (1) where |η′− ζ| ≤ c for a constant c which is positive but very small (depending on
how small T is). One may easily check then that due to the choices of the contours we have that

ǫ−1/2(|ζ/η| − 1) is contained in a compact subset of (0, 2). In fact, ζ/η′ almost exactly lies along

the curve |z| = 1+ ǫ1/2 and in particular (by taking ǫ0 small enough) we can assume that ζ/η never

leaves the region bounded by |z| = 1 + (1 ± r)ǫ1/2 for any fixed c < 1. Let us call this region Rǫ,r.
The we have the following important lemma:

Lemma 34. Fix ǫ0 and r < 0 then for all ǫ < ǫ0 and for all µ̃ on C̃ǫ and all z ∈ Rǫ,r,

|µ̃f(µ̃, z)| ≤ c|µ̃|α
|1 − z| (171)

for some α ∈ (0, 1) fixed with c = cα as constant independent of z, µ̃ and ǫ.

Remark 35. It is worth noting that by changing the value of α in the definition of κ(θ) (which then

goes into the definition of Γη,l and Γζ,l) and also focusing the region Rǫ,r around |z| = 1 + 2αǫ1/2

we can take α arbitrarily small in the above lemma at cost of increasing the constant cα (the same

also applies for Proposition 18. The |µ̃|α comes out of the fact that (1 + 2αǫ1/2)
1
2 ǫ−1/2 log |µ̃| ≈ |µ̃|α.

Another important remark is that the proof below can be used to provide an alternative proof of
Lemma 27 which is more direct and essentially just proves the convergence of the Riemann sum
directly rather than by using functional equation properties of f and the analytic continuations.

Case (1) is now done since we can estimate the first integral in equation (170) using Lemma 34 and

the exponential decay of the exponential term outside of |η′ − ζ| = ǫ∞/∈. Therefore, just as with

the A operator, the ǫ−1/2 blowup of |µ̃f(µ̃, ζ/η′)| is countered by the decay of the exponential and
we are just left with a large constant time |µ̃|α.

Turing to case (2) we need to show that the second integral in equation (170) is bounded uniformly

in ǫ and µ̃ ∈ C̃ǫ. This case corresponds to |η′ − ζ| > c for some fixed but small constant c. Since

ǫ−1/2(|ζ/η|−1) stays bounded in a compact set, using an argument almost identical to the proof of

Lemma 23 we can show that |µ̃f(µ̃, ζ/η)| can be bounded by C|µ̃|C′

for positive yet finite constants
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C and C ′. The important point is that there is only a finite power of |µ̃|. Since |µ̃| < ǫ−1/2 this

means that this term can blowup at most polynomially in ǫ−1/2. On the other hand we know
that the exponential term decays exponentially fast like exp{−e−1/2c} and hence second integral
in equation (170) in fact goes to zero.

Thus upon proving Lemma 34 we will have a complete proof of our desired result of Proposition 17.

Proof of Lemma 34. We will prove the desired estimate for z : |z| = 1 + ǫ1/2 and the proof for
general z ∈ Rǫ,r follows similarly.

Recall that

µ̃f(µ̃, z) =
∞
∑

k=−∞

µ̃τk

1 − µ̃τk
zk. (172)

Since µ̃ has imaginary part 1, the denominator is smallest when τk = 1/|µ̃|, corresponding to

k = k∗ = ⌊1
2ǫ

−1/2 log |µ|⌋. (173)

We start, therefore, by centering our doubly infinite sum at around this value,

µ̃f(µ̃, z) =

∞
∑

k=−∞

µ̃τk∗

τk

1 − µ̃τk∗τk
zk∗

zk. (174)

By the definition of k∗,

|z|k∗

= |µ̃|1/2(1 + O(ǫ1/2)) (175)

thus we find that

|µ̃f(µ̃, z)| = |µ̃|1/2

∣

∣

∣

∣

∣

∞
∑

k=−∞

ωτk

1 − ωτk
zk

∣

∣

∣

∣

∣

(176)

where

ω = µ̃τk∗

(177)

and is roughly on the unit circle except for a small dimple near 1. To be more precise, due to the
rounding in the definition of k∗ the ω is not exactly on the unit circle, however we do have the
following two properties:

|1 − ω| > ǫ1/2, |ω| − 1 = O(ǫ1/2). (178)

The section of C̃ǫ in which µ̃ = ǫ−1/2 − 1 + iy for y ∈ (−1, 1) corresponds to ω lieing along a small

dimple around 1 (and still respects |1 − ω| > ǫ1/2). We call the curve on which ω lies Ω.

We can bring the |µ̃|1/2 factor to the left and split the summation into three parts as

|µ̃|−1/2µ̃f(µ̃, z) =

∣

∣

∣

∣

∣

∣

−ǫ−1/2
∑

k=−∞

ωτk

1 − ωτk
zk +

ǫ−1/2
∑

k=−ǫ−1/2

ωτk

1 − ωτk
zk +

∞
∑

k=ǫ−1/2

ωτk

1 − ωτk
zk

∣

∣

∣

∣

∣

∣

. (179)

We will control each of these term separately. The first and the third are easiest. Consider
∣

∣

∣

∣

∣

∣

(z − 1)
−ǫ−1/2
∑

k=−∞

ωτk

1 − ωτk
zk

∣

∣

∣

∣

∣

∣

. (180)
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We wish to show this is bounded by a constant which is independent of µ̃ and ǫ. Summing by parts
the argument of the absolute value can be written as

ωτ−ǫ−1/2+1

1 − ωτ−ǫ−1/2+1
z−ǫ−1/2+1 + (1 − τ)

−ǫ−1/2
∑

k=−∞

ωτk

(1 − ωτk)(1 − ωτk+1)
zk. (181)

We have τ−ǫ−1/2+1 ≈ e2 and |z−ǫ−1/2+1| ≈ e−1 (where e ∼ 2.718). The denominator of the first
term is therefore bounded from zero. Thus the absolute value of this term is bounded by a constant.
For the second term of (181) we can bring the absolute value inside of the summation to get

(1 − τ)

−ǫ−1/2
∑

k=−∞

∣

∣

∣

∣

ωτk

(1 − ωτk)(1 − ωτk+1)

∣

∣

∣

∣

|z|k. (182)

The first term in absolute values stays bounded above by a constant times the value at k = −ǫ−1/2.

Therefore, replacing this by a constant, we can sum in |z| and we get |z|−ǫ−1/2

1−1/|z| . The numerator,

as noted before, is like e−1 but the denominator is like ǫ1/2/2. This is cancelled by the term

1 − τ = O(ǫ1/2) in front. Thus the absolute value is bounded.

The argument for the third term of equation (179) works in the same way, except rather than
multiplying by |1− z| and showing the result is constant, we multiply by |1− τz|. This is, however,
sufficient since |1 − τz| and |1 − z| are effectively the same for z near 1 which is where our desired
bound must be shown carefully.

We now turn to the middle term in equation (179) which is the more difficult term. We will show
that

∣

∣

∣

∣

∣

∣

(1 − z)

ǫ−1/2
∑

k=−ǫ−1/2

ωτk

1 − ωτk
zk

∣

∣

∣

∣

∣

∣

= O(log |µ̃|), (183)

(recall the ω is defined in terms of µ̃) This is of smaller order than |µ̃| raised to any positive real

power and thus finishes the proof. For the sake of simplicity we will first show this with z = 1+ǫ1/2.
The general argument for points z of the same radius and non-zero angle is very similar as we will
observe at the end of the proof. With the choice of z, observe that the (1− z) prefactor is just ǫ1/2.

The method of proof we employ is to prove that this sum is well approximated by a Riemann
sum and then that the Riemann sum is well approximated by a suitable integral. This idea was
mentioned in the formal proof of the ǫ goes to zero limit. In fact, the argument below can be used
to make that formal observation entirely rigorous and thus provides an alternative method to the
complex analytic approach we take in the proof of Lemma 27. The sum we have is given by

ǫ1/2
ǫ−1/2
∑

k=−ǫ−1/2

ωτk

1 − ωτk
zk = ǫ1/2

ǫ−1/2
∑

k=−ǫ−1/2

ω(1 − ǫ1/2 + O(ǫ))k

1 − ω(1 − 2ǫ1/2 + O(ǫ))k
(184)

where we have used the fact that τ = 1− 2ǫ1/2 +O(ǫ) and that τz = 1− ǫ1/2 +O(ǫ). Observe that

if k = tǫ−1/2 then this sum is close to a Riemann sum for
∫ 1

−1

ωe−t

1 − ωe−2t
dt. (185)

We use this formal relationship to prove that the sum in equation (184) is O(log |µ̃|). We do this
in a few steps. The first step is to consider the difference between each term in our sum and the
analogous term in a Riemann sum for the integral. After estimating the difference we show that
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this can be summed over k and gives us a finite error. The second step is to estimate the error of
this Riemann sum approximation to the actual integral. Finally, we estimate the size of the integral
for ω on the dimpled curve Ω.

A single term in the Riemann sum for the integral looks like ǫ1/2 ωe−kǫ1/2

1−ωe−2kǫ1/2 . Thus we are interested

in estimating

ǫ1/2

∣

∣

∣

∣

∣

ω(1 − ǫ1/2 + O(ǫ))k

1 − ω(1 − 2ǫ1/2 + O(ǫ))k
− ωe−kǫ1/2

1 − ωe−2kǫ1/2

∣

∣

∣

∣

∣

. (186)

We claim that there exists C < ∞, independent of ǫ and k satisfying kǫ1/2 ≤ 1, such that the
previous line is bounded above by

Ck2ǫ3/2

(1 − ω + ω2kǫ1/2)
+

Ck3ǫ2

(1 − ω + ω2kǫ1/2)2
. (187)

To prove that (186) ≤(187) we expand the powers of k and the exponentials. For the numerator

and denominator of the first term inside of the absolute value in (186) we have ω(1−ǫ1/2 +O(ǫ))k =
ω − ωkǫ1/2 + O(k2ǫ) and

1 − ω(1 − 2ǫ1/2 + O(ǫ))k = 1 − ω + ω2kǫ1/2 − ω2k2ǫ+ O(kǫ) + O(k3ǫ3/2) (188)

= (1 − ω + ω2kǫ1/2)(1 − ω2k2ǫ+ O(kǫ) + O(k3ǫ3/2)

1 − ω + ω2kǫ1/2
). (189)

Using 1/(1 − z) = 1 + z + O(z2) for |z| < 1 we see that

ω(1 − ǫ1/2 + O(ǫ))k

1 − ω(1 − 2ǫ1/2 + O(ǫ))k
=
ω − ωkǫ1/2 + O(k2ǫ)

1 − ω + ω2kǫ1/2

(

1 +
ω2k2ǫ+ O(kǫ) + O(k3ǫ3/2)

1 − ω + ω2kǫ1/2

)

(190)

=

(

ω − ωkǫ1/2 + O(k2ǫ)
) (

1 − ω + ω2kǫ1/2 + ω2k2ǫ+ O(kǫ) + O(k3ǫ3/2)
)

(1 − ω + ω2kǫ1/2)2
(191)

Likewise, the second term from equation (186) can be similarly estimated and shown to be

ωe−kǫ1/2

1 − ωe−2kǫ1/2
=

(

ω − ωkǫ1/2 + O(k2ǫ)
) (

1 − ω + ω2kǫ1/2 + ω2k2ǫ+ O(k3ǫ3/2)
)

(1 − ω + ω2kǫ1/2)2
. (192)

Taking the difference of these two terms, and noting the cancellation of a number of the terms in
the numerator, gives (187).

To see that the error in (187) is bounded after the summation over k ∈ {−ǫ−1/2, . . . , ǫ−1/2}, note
that this gives

ǫ1/2
ǫ1/2
∑

−ǫ−1/2

(2kǫ1/2)2

1 − ω + ω(2kǫ1/2)
+

(2kǫ1/2)3

(1 − ω + ω(2kǫ1/2))2
∼
∫ 1

−1

(2t)2

1 − ω + ω2t
+

(2t)3

(1 − ω + ω2t)2
dt. (193)

The Riemann sums and integrals are easily shown to be convergent for our ω which one recalls lies
on Ω which is roughly the unit circle, and avoids the point 1 by distance ǫ1/2.

Having completed this first step, we now must show that the Riemann sum for the integral in
equation (185) converges to the integral. This involves the following estimate,

ǫ−1/2
∑

k=−ǫ−1/2

ǫ1/2 max
(k−1/2)ǫ1/2≤t≤(k+1/2)ǫ1/2

∣

∣

∣

∣

∣

ωe−kǫ1/2

1 − ωe−2kǫ1/2
− ωe−t

1 − ωe−2t

∣

∣

∣

∣

∣

≤ C (194)
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To show this, observe that for t ∈ ǫ1/2[k − 1/2, k + 1/2] we can expand the second fraction as

ωe−kǫ1/2
(1 + O(ǫ1/2))

1 − ωe−2kǫ1/2
(1 − 2lǫ1/2 + O(ǫ))

(195)

where l ∈ [−1/2, 1/2]. Factoring the denominator as

(1 − ωe−2kǫ1/2
)(1 +

ωe−2kǫ1/2
(2lǫ1/2 + O(ǫ))

1 − ωe−2kǫ1/2
) (196)

we can use 1/(1 + z) = 1 − z + O(z2) (valid since |1 − ωe−2kǫ1/2| > ǫ1/2 and |l| ≤ 1) to rewrite
equation (195) as

ωe−kǫ1/2
(1 + O(ǫ1/2))

(

1 − ωe−2kǫ1/2
(2lǫ1/2+O(ǫ))

1−ωe−2kǫ1/2

)

1 − ωe−2kǫ1/2
. (197)

Canceling terms in this expression with the terms in the first part of equation (194) we find that
we are left with terms bounded by

O(ǫ1/2)

1 − ωe−2kǫ1/2
+

O(ǫ1/2)

(1 − ωe−2kǫ1/2
)2
. (198)

These must be summed over k and multiplied by the prefactor ǫ1/2. Summing over k we find that
these are approximated by the integrals

ǫ1/2

∫ 1

−1

1

1 − ω + ω2t
dt, ǫ1/2

∫ 1

−1

1

(1 − ω + ω2t)2
dt (199)

where |1−ω| > ǫ1/2. The first integral has a logarithmic singularity at t = 0 which gives | log(1−ω)|
which is clearly bounded by a constant time | log ǫ1/2| for ω ∈ Ω. When multiplied by ǫ1/2 this term
is clearly bounded in ǫ. Likewise, the second integral diverges like |1/(1 − ω)| which is bounded

by ǫ−1/2 and again multiplying by the ǫ1/2 factor in front shows that this term is bounded. This
proves the Riemann sum approximation.

The last steps is to control the behavior of
∫ 1

−1

ωe−t

1 − ωe−2t
dt (200)

for ω ∈ Ω (in particular where |1 − ω| > ǫ1/2). It is clear, however, that the divergence of this
integral in t near zero gives a logarithmic divergence of the integral, and so this integral behaves
like | log(1 − ω)| which behaves like log |µ̃| and is hence smaller than any power of |µ̃|.

This estimate completes the proof of the desired bound when z = 1 + ǫ1/2. The general case of
|z| = 1 + ǫ1/2 is proved along a similar line by letting z = 1 + ρǫ1/2 for ρ on a suitably defined

contour such that z lies on the circle of radius 1 + ǫ1/2. The prefactor is no longer ǫ1/2 but rather
now ρǫ1/2 and all estimates must take into account ρ. However, going through this carefully one
finds that the same sort of estimates as above hold and hence the theorem is proved in general. �

This lemma completes the proof of Proposition 17 �

Proof of Proposition 18. We will focus on the growth of the absolute value of the determinant.
Recall (see Lemma 29) that if K is trace class then |det(I + K)| ≤ e||K||1 where ||K||1 denotes
the trace norm. Furthermore, if K can be factored into the product K = AB where A and B are
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Hilbert-Schmidt, then ||K||1 ≤ ||A||2||B||2. We will demonstrate such a factorization and follow
this approach to control the size of the determinant.

Define A : L2(Γ̃ζ) → L2(Γ̃η) and B : L2(Γ̃η) → L2(Γ̃ζ) via the kernels

A(ζ̃ , η̃) =
e−|Im(ζ̃)|

ζ̃ − η̃
, B(η̃, ζ̃) = e|Im(ζ̃)| exp{−T

3
(ζ̃3 − η̃3) + az̃}21/3(−µ̃)z̃π csc(πz̃), (201)

where we let z̃ = 21/3(ζ̃ − η̃). Notice that we have put the factor e−|Im(ζ̃)| into the A kernel
and removed it from the B contour. The point of this is to help control the A kernel, without
significantly impacting the norm of the B kernel.

Consider first ||A||2 which is given by

||A||22 =

∫

Γ̃ζ

∫

Γ̃η

dζ̃dη̃
e−2|Im(ζ̃)|

|ζ̃ − η̃|2
. (202)

The integral in η̃ converges and is independent of ζ̃ (recall that |ζ̃ − η̃| is bounded away from zero)

while the remaining integral in ζ̃ is clearly convergence (its exponentially small as ζ̃ goes away from

zero along Γ̃ζ . Thus ||A||2 < c with no dependence on µ̃ at all.

We now turn to computing ||B||2. First consider the cubic term ζ̃3. The contour Γ̃ζ is parametrized
by − c3

2 + c3ir for r ∈ (−∞,∞) — that is, a straight up and down line just to the left of the y axis.

By plugging this parametrization in and cubing it, we see that, Re(ζ̃3) behaves like |Im(ζ̃)|2. This
is a critical fact — even though our contours are parallel and only differ horizontally by a small
distance, their relative location lead to very different behavior for the real part of their cube. For
η̃ on the right of the y axis, the real part still grows quadratically, however with a negative sign.
This is important because this implies that | exp{−T

3 (ζ̃3 − η̃3)}| behaves like the exponential of the
real part of the argument, which is to say, like

exp{−T
3

(|Im(ζ̃)|2 + |Im(η̃)|2)}. (203)

Turning to the µ̃ term, observe that

|(−µ̃)−z̃| = exp(Re [(log |µ̃| + i arg(−µ̃))(−Re(z̃) − iIm(z̃))]) (204)

= exp(− log |µ̃|Re(z̃) + arg(−µ̃)Im(z̃)). (205)

The csc term behaves, for large Im(z̃) like exp(−π|Im(z̃)|), and putting all these estimates together

gives that for ζ̃ and η̃ far from the origin on their respective contours, |B(η̃, ζ̃)| behaves like the
following product of exponentials:

exp{|Im(ζ̃)|} exp{−T
3

(|Im(ζ̃)|2 + |Im(η̃)|2)} exp{− log |µ̃|Re(z̃)+arg(−µ̃)Im(z̃)−π|Im(z̃)|}. (206)

Now observe that due to the location of the contours, −Re(z̃) is constant and less than one (in fact
equal to 1/2 by our choice of contours). Therefore we may factor out the term exp{− log |µ̃|Re(z̃)} =
|µ̃|α for α = 1/2 < 1.

The Hilbert-Schmidt norm of what remains is clearly finite and independent of µ̃ (this is just due
to the strong exponential decay from the quadratic terms −Im(ζ)2 and −Im(η)2 in the exponential.
Therefore we find that ||B||2 ≤ c|µ̃|α for some constant c.
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This shows that ||Kcsc
a ||1 behaves like |µ̃|α for α < 1. Using the bound |det(I + Kcsc

a )| ≤ e||K
csc
a ||

we find that |det(I +Kcsc
a )| ≤ e|µ̃|

α
. Comparing this to e−µ̃ we have our desired result. Note that

this proof also shows that Kcsc
a is trace class. �

2.2.3. Proofs from Section 2.1.

Proof of Lemma 22. Before starting this proof, we remark that the choice (118) of κ(θ) function
was specifically to make the calculations in this proof more tractable. Certainly other choices of
contours would do, however, the estimates would likely be harder in that case. As it is, we used
Mathematica as a preliminary tool to assist us in computing the series expansions and simplifying
the resulting expressions.

Now define the function g(η) = Ψ(η) + n0 log(η). We wish to control the real part of this function
for both the η contour and the ζ contour. Combining these estimates proves the lemma.

We may expand g(η) into powers of ǫ with the expression for η in terms of κ(θ) from (118) with
α = −1/2 (similarly 1/2 for the ζ expansion). Doing this we see that the n0 log(η) term plays an
important role in canceling the log(ǫ) term in the Ψ and we are left with

Re(g(η)) = −ǫ
−1

4
Tα cot2

(

θ

2

)

+
ǫ−1/2

8
T [α+ κ(θ)]2 cot2

(

θ

2

)

+ O(1). (207)

Plugging in the expression for κ(θ) and factoring out an ǫ−1/2 we find that

Re(g(η)) = ǫ−1/2

(

−ǫ
−1/2

4
Tα cot2

(

θ

2

)

+
1

8
T [α+ κ(θ)]2 cot2

(

θ

2

)

)

+ O(1). (208)

We must show that everything in the parenthesis above is bounded below by a positive constant
times |η − ξ| for all η which start at roughly angle lǫ1/2. Equivalently we can show that the terms
in the parenthesis behave bounded below by a positive constant times |π− θ|, where θ is the polar
angle of η.

The second part of this expression is clearly positive regardless of the value of α. What this suggests
is that we must show (in order to also be able to deal with α = 1/2 corresponding to the ζ estimate)

that for η starting at angle lǫ1/2 and going to zero, the first term dominates (if l is large enough).

To see this we first note that since α = −1/2, the first term is clearly positive and dominates for θ
bounded away from π. This proves the inequality for any range of η with θ bounded from π. Now
observe the following asymptotic behavior of the following three functions of θ as θ goes to π:

cot

(

θ

2

)2

≈ 1

4
(π − θ)2 (209)

tan

(

θ

2

)2

≈ 4

(π − θ)2
(210)

log

(

2

1 − cos(θ)

)2

≈ 1

16
(π − θ)4. (211)

The behavior expressed above is dominant for θ close to π. We may expand the square in the
second term in (208) and use the above expressions to find that for some suitable constant C > 0
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(which depends on X and T only), we have

Re(g(η)) = ǫ−1/2

(

−ǫ
−1/2

16
Tα(π − θ)2 + C(π − θ)2

)

+ O(1). (212)

Now use the fact that π − θ ≥ lǫ1/2 to give

Re(g(η)) = ǫ−1/2

(

− l

16
Tα(π − θ) +

X2

8T
(π − θ)2

)

+ O(1). (213)

Since π − θ is bounded by π, we see that taking l large enough, the first term always dominates
for the entire range of θ ∈ [0, π − lǫ1/2]. Therefore since α = −1/2, we find that we have have the

desired lower bound in ǫ−1/2 and |π − θ|.

Turn now to the bound for Re(g(ζ)). In the case of the η contour we took α = −1/2, however since
we now are dealing with the ζ contour we must take α = 1/2. This change in the sign of α and
the argument above shows that equation (213) implies the desired bound for Re(g(ζ)) (for l large
enough). �

Proof of Lemma 23. Recall that µ̃ lies on a compact set along C̃ and hence that |1 − µ̃τk| stays
bounded from below as k varies. Also observe that due to our choices of contours for η′ and ζ,
ǫ−1/2(|z| − 1) stays bounded in a compact set.

In Lemma 33 we write µ̃f(µ̃, z) = g+(z)+ g−(z) and give functional equations for g+ and g−. Here
we set z = ζ/η′. Lets just focus on g+(z) as the bound for g−(z) follows similarly. The function

g+(z) is initially only defined for |z| < τ−1. Due to the boundedness of ǫ−1/2(|z|−1) it follows that
there is a finite N such that |z| < τ−N . Thus if we apply the functional equation for g+ N times
we find that

g+(z) =
N
∑

k=1

µ̃k

1 − τkz
+ µ̃Ng+(τNz). (214)

Since µ̃ is bounded and since g+ is analytic for |τNz| < 1 we find that this term behaves like the
sum of the singularities. However, by the choice of our η′ and ζ contours, all of the singularities
have similar size to 1/|1 − z| and hence |g+(z)| is bounded by a constant times 1/|1 − z|. Likewise
for g−(z). �

Proof of Lemma 26. By the discussion preceding the statement of this lemma it suffices to consider
the expansion without n0 log(ζ/η′) and without the log(ǫ) term in m since, as we will see, they
exactly cancel out. Therefore, for the sake of this proof we modify the definition of m given in
equation (57) to be

m =
1

2

[

ǫ−1/2(−a′ + X2

2T
) +

1

2
t+ x

]

. (215)

where a′ = a+ log 2 where the log 2 came from the division by 2 in the log ǫ−1/2/2 term.
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The argument now amounts to a Taylor series expansion with control over the remainder term. Let
us start by recording the first four derivatives of Λ(ζ):

Λ(ζ) = −x log(1 − ζ) +
tζ

1 − ζ
+m log ζ (216)

Λ′(ζ) =
x

1 − ζ
+

t

(1 − ζ)2
+
m

ζ
(217)

Λ′′(ζ) =
x

(1 − ζ)2
+

2t

(1 − ζ)3
− m

ζ2
(218)

Λ′′′(ζ) =
2x

(1 − ζ)3
+

6t

(1 − ζ)4
+

2m

ζ3
(219)

Λ′′′′(ζ) =
6x

(1 − ζ)4
+

24t

(1 − ζ)5
− 6m

ζ4
. (220)

We Taylor expand Ψ(ζ) = Λ(ζ) − Λ(ξ) around ξ and then expand in ǫ as ǫ goes to zero and find
that

Λ′(ξ) =
a′ + 1

2 log ǫ

2
ǫ−1/2 + O(1) (221)

Λ′′(ξ) = O(ǫ−1/2) (222)

Λ′′′(ξ) =
−T
8
ǫ−3/2 + O(ǫ−1) (223)

Λ′′′′(ξ) = O(ǫ−3/2). (224)

A Taylor series remainder estimate shows then that
∣

∣

∣

∣

Ψ(ζ) −
[

Λ′(ξ)(ζ − ξ) +
Λ′′(ξ)

2!
(ζ − ξ)2 +

Λ′′′(ξ)
3!

(ζ − ξ)3
]∣

∣

∣

∣

≤ sup
t∈B(ξ,|ζ−ξ|)

|Λ′′′′(t)|
4!

|ζ − ξ|4, (225)

where B(ξ, |ζ− ξ|) denotes the ball around ξ of radius |ζ− ξ|. Now considering the scaling we have

that ζ − ξ = c−1
3 ǫ1/2ζ̃ so that when we plug this in along with the estimates on derivatives of Λ at

ξ, we find that the equation above becomes
∣

∣

∣

∣

Ψ(ζ) −
[

21/3a′ζ̃ − T

3
ζ̃3

]
∣

∣

∣

∣

= O(ǫ1/2). (226)

From this we see that if we included the log(ǫ) term in with m it would, as claimed, exactly cancel
the n0 log(ζ/η′) term. The above estimate therefore proves the desired first claimed result.

The second result follows readily from the inequality |ez −ew| ≤ |z−w|max{|ez |, |ew|} and the first
result, as well as the boundedness of the limiting integrand. �

Proof of Lemma 27. Expanding in ǫ we have that

z =
ξ + c−1

3 ǫ1/2ζ̃

ξ + c−1
3 ǫ1/2η̃′

= 1 − ǫ1/2z̃ + O(ǫ) (227)

where the error is uniform for our range of η̃′ and ζ̃ and where

z̃ = c−1
3 (ζ̃ − η̃′). (228)

We now appeal to the functional equation for f , explained in Lemma 33. Therefore we wish to
study ǫ1/2g+(z) and ǫ1/2g−(z) as ǫ goes to 0 and show that they converge uniformly to suitable
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integrals. First consider the g+ case. Let us, for the moment, assume that |µ̃| < 1. We know that
|τz| < 1, thus for any N ≥ 0, we have

ǫ1/2g+(z) = ǫ1/2
N
∑

k=1

µ̃k

1 − τkz
+ ǫ1/2µ̃Ng+(τNz). (229)

Since, by assumption, |µ̃| < 1, the first sum is the partial sum of a convergent series. Each term
may be expanded in ǫ. Noting that

1 − τkz = 1 − (1 − 2ǫ1/2 + O(ǫ))(1 − ǫ1/2z̃ + O(ǫ)) = (2k + z̃)ǫ1/2 + kO(ǫ), (230)

we find that

ǫ1/2 µ̃k

1 − τkz
=

µ̃k

2k + z̃
+ kO(ǫ1/2). (231)

The last part of the expression for g+ is bounded in ǫ, thus we end up with the following asymptotics

ǫ1/2g+(z) =
N
∑

k=1

µ̃k

2k + z̃
+N2O(ǫ1/2) + µ̃NO(1). (232)

It is possible to choose N(ǫ) which goes to infinity, such that N2O(ǫ1/2) = o(1). Then for any fixed
compact set contained in C \ 2Z

<0 (where Z
<0 = {−1,−2,−3, . . .}) we have uniform convergence

of this sequence of analytic functions to some function, which is necessarily analytic and equals
∞
∑

k=1

µ̃k

2k + z̃
. (233)

This expansion is valid for |µ̃| < 1 and for all z̃ ∈ C \ 2Z
<0.

Likewise for ǫ1/2g−(z), for |µ̃| > 1 and for z̃ ∈ C\Z
≥0, we have uniform convergence to the analytic

function
0
∑

k=−∞

µ̃k

2k + z̃
. (234)

We now introduce the Hurwitz Lerch transcendental function and relate some basic properties of
it which can be found in [27].

Φ(a, s, w) =
∞
∑

k=0

ak

(w + k)s
(235)

for w > 0 real and either |a| < 1 and s ∈ C or |a| = 1 and Re(s) > 1. For Re(s) > 0 it is possible
to analytically extend this function using the integral formula

Φ(a, s, w) =
1

Γ(s)

∫ ∞

0

e−(w−1)t

et − a
ts−1dt, (236)

where additionally a ∈ C \ [1,∞) and Re(w) > 0.

Observe that we can express our series in terms of this function as
∞
∑

k=1

µ̃k

2k + z̃
=

1

2
µ̃Φ(µ̃, 1, 1 + z̃/2), (237)

0
∑

k=−∞

µ̃k

2k − z̃
= −1

2
Φ(µ̃−1, 1,−z̃/2). (238)
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These two functions can be analytically continued using the integral formula onto the same region
where Re(1+ z̃/2) > 0 and Re(−z̃/2) > 0 – i.e. where Re(z̃/2) ∈ (−1, 0). Additionally the analytic
continuation is valid for all µ̃ not along R

+.

We wish now to use Vitali’s convergence theorem to conclude that µ̃f(µ̃, z) converges uniformly
for general µ̃ to the sum of these two analytic continuations. In order to do that we need a priori
boundedness of ǫ1/2g+ and ǫ1/2g− for compact regions of µ̃ away from R

+. This, however, can be
shown directly as follows. By assumption on µ̃ we have that |1 − τkµ̃| > c−1 for some positive

constant c. Consider ǫ1/2g+ first.

|ǫ1/2g+(z)| ≤ ǫ1/2µ̃
∞
∑

k=0

|τz|k
|1 − τkµ̃| ≤ cǫ1/2 1

1 − |τz| . (239)

We know that |τz| is bounded to order ǫ1/2 away from 1 and therefore this show that |ǫ1/2g+(z)|
has an upperbound uniform in µ̃. Likewise we can do a similar computation for ǫ1/2g−(z) and find

the same result, this time using that |z| is bounded to order ǫ1/2 away from 1.

As a result of this apriori boundedness, uniform in µ̃, we have that for compact sets of µ̃ away from
R

+, uniformly in ǫ, ǫ1/2g+ and ǫ1/2g− are uniformly bounded as ǫ goes to zero. Therefore Vitali’s
convergence theorem implies that they converge uniformly to their analytic continuation.

Now observe that
1

2
µ̃Φ(µ̃, 1, 1 + z̃/2) =

1

2

∫ ∞

0

µ̃e−z̃t/2

et − µ̃
dt, (240)

and

−1

2
Φ(µ̃−1, 1,−z̃/2) = −1

2

∫ ∞

0

e−(−z̃/2−1)t

et − 1/µ̃
dt =

1

2

∫ 0

−∞

µ̃e−z̃t/2

et − µ̃
dt. (241)

Therefore, by a simple change of variables in the second integral, we can combine these as a single
integral

1

2

∫ ∞

−∞

µ̃e−z̃t/2

et − µ̃
dt =

1

2

∫ ∞

0

µ̃s−z̃/2

s− µ̃

ds

s
. (242)

The first of the above equations proves the lemma, and for an alternative expression we use the
second of the integrals ( which followed from the change of variables et = s) and thus, on the region
where Re(z̃/2) ∈ (−1, 0) this integral converges and equals

1

2
π(−µ̃)−z̃ csc(πz̃/2). (243)

This function is, in fact, analytic for µ̃ ∈ C \ [0,∞) and for all z̃ ∈ C \ 2Z. Therefore it is the
analytic continuation of our asymptotic series. �

3. Weakly asymmetric limit of the corner growth model

Recall the definitions in Section 1.2 of WASEP and its height function (43). For ǫ ∈ (0, 1/4), let

p =
1

2
− 1

2
ǫ1/2, q =

1

2
+

1

2
ǫ1/2. (244)

For x ∈ R and t ≥ 0 let Zǫ(t, x) denote the rescaled height function;

Zǫ(T,X) =
1

2
ǫ−1/2 exp

{

−λǫhǫ1/2(ǫ−2T, [ǫ−1X]) + νǫǫ
−2T

}

(245)
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where

νǫ = p+ q − 2
√
qp =

1

2
ǫ+

1

8
ǫ2 + O(ǫ3), (246)

λǫ = 1
2 log(q/p) = ǫ1/2 +

1

3
ǫ3/2 + O(ǫ5/2),

and the closest integer [x] is given by
[x] = ⌊x+ 1

2 ⌋. (247)

First let us describe in simple terms the dynamics in T of Zǫ(T,X) defined in (245). It grows
continuously exponentially at rate ǫ−2νǫ and jumps at rates

r−(x) = ǫ−2q(1 − η(x))η(x + 1) =
1

4
ǫ−2q(1 − η̂(x))(1 + η̂(x+ 1)) (248)

to e−2λǫZǫ and

r+(x) = ǫ−2pη(x)(1 − η(x+ 1)) =
1

4
ǫ−2p(1 + η̂(x))(1 − η̂(x+ 1)) (249)

to e2λǫZǫ, independently at each site X ∈ ǫZ. We write this as follows,

dZǫ(X) =
{

ǫ−2νǫ + (e−2λǫ − 1)r−(X) + (e2λǫ − 1)r+(X)
}

Zǫ(X)dT

+(e−2λǫ − 1)Zǫ(X)dM−(X) + (e2λǫ − 1)Zǫ(X)dM+(X) (250)

where dM±(T,X) = dP±(T,X) − r±(X)dT where P−(T,X), P+(T,X), X ∈ ǫZ are independent
Poisson processes running at rates r−(T,X), r+(T,X). Let

γǫ = 2
√
pq = 1 − 1

2
ǫ+ O(ǫ2) (251)

and ∆ǫ be the ǫZ Laplacian, ∆f(x) = ǫ−2(f(x+ ǫ) − 2f(x) + f(x− ǫ)). We also have

1
2
γǫ∆ǫZǫ(X) = 1

2
ǫ−2γǫ(e

−λǫη̂(x+1) − 2 + eλǫη̂(x))Zǫ(X). (252)

The parameters have been carefully chosen so that

1
2
ǫ−2γǫ(e

−λǫη̂(X+1) − 2 + eλǫη̂(X)) = ǫ−2νǫ + (e−2λǫ − 1)r−(X) + (e2λǫ − 1)r+(X). (253)

Hence [13],[3],
dZǫ = 1

2
γǫ∆ǫZǫ + ZǫdMǫ (254)

where
dMǫ(X) = (e−2λǫ − 1)dM−(X) + (e2λǫ − 1)dM+(X) (255)

are martingales in T with

d〈Mǫ(X),Mǫ(Y )〉 = ǫ−11(X = Y )bǫ(τ−[ǫ−1X]η)dT (256)

where τxη(y) = η(y − x) and

bǫ(η) = 1 + η̂(1)η̂(0) + b̂ǫ(η) (257)

where

b̂ǫ(η) = ǫ−1{[p((e−2λǫ − 1)2 − 4ǫ) + q((e2λǫ − 1)2 − 4ǫ)]

+[q(e−2λǫ − 1)2 − p(e2λǫ − 1)2](η̂(1) − η̂(0)) (258)

−[q(e−2λǫ − 1)2 + p(e2λǫ − 1)2 − ǫ]η̂(1)η̂(0)}.
Clearly bǫ, b̂ǫ ≥ 0. It is easy to check that there is a C <∞ such that

b̂ǫ ≤ Cǫ1/2 (259)

and, for sufficiently small ǫ > 0,
bǫ ≤ 3. (260)
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Note that (254) is equivalent to the integral equation

Zǫ(T,X) = ǫ
∑

Y ∈ǫZ

pǫ(T,X − Y )Zǫ(0, Y ) (261)

+

∫ T

0
ǫ
∑

Y ∈ǫZ

pǫ(T − S,X − Y )Zǫ(S, Y )dMǫ(S, Y )

where pǫ(T,X) are the (normalized) transition probabilities for the continuous time random walk
with generator 1

2
γǫ∆ǫ. The normalization is multiplication of the actual transition probabilities by

ǫ−1 so that

pǫ(T,X) → p(T,X) =
e−X2/2T

√
2πT

. (262)

We need some apriori bounds.

Lemma 36. For 0 < T ≤ T0, and for each q = 1, 2, . . ., there is a Cq = Cq(T0) <∞ such that

i. E[Z2
ǫ (T,X)] ≤ C2p

2
ǫ(T,X);

ii. E
[

(

Zǫ(T,X) − ǫ
∑

Y ∈ǫZ pǫ(T,X − Y )Zǫ(0, Y )
)2
]

≤ C2tp
2
ǫ(T,X);

iii. E[Z2q
ǫ (T,X)] ≤ Cqp

2q
ǫ (T,X).

Proof. Within the proof, C will denote a finite number which does not depend on any other pa-
rameters except T and q, but may change from line to line. Also, for ease of notation, we identify
functions on ǫZ with those on R by f(x) = f([x]).

First, note that

Zǫ(0, Y ) = ǫ−1/2 exp{−ǫ−1λǫ|Y |} = ǫ−1/2 exp{−ǫ−1/2|Y | + O(ǫ1/2)} (263)

is an approximate delta function, from which we check that

ǫ
∑

Y ∈ǫZ

pǫ(T,X − Y )Zǫ(0, Y ) ≤ Cpǫ(T,X). (264)

Let

fǫ(T,X) = E[Z2
ǫ (T,X)]. (265)

From (264), (261) we get

fǫ(T,X) ≤ Cp2
ǫ(T,X) + C

∫ T

0

∫ ∞

−∞
p2

ǫ(T − S,X − Y )fǫ(S, Y )dSdY. (266)

Iterating we obtain,

fǫ(T,X) ≤
∞
∑

n=0

CnIn,ǫ(T,X) (267)

where, for ∆n = ∆n(T ) = {0 = t0 ≤ T1 < · · · < Tn < T},X0 = 0,

In,ǫ(T,X) =

∫

∆n

∫

Rn

n
∏

i=1

p2
ǫ (Ti − Ti−1,Xi −Xi−1)p

2
ǫ(T − Tn,X − xn)

n
∏

i=1

dXidTi. (268)

One readily checks that

In,ǫ(T,X) ≤ CnT n/2(n!)−1/2p2
ǫ(T,X). (269)



42 G. AMIR, I. CORWIN, AND J. QUASTEL

From which we obtain i,

fǫ(T,X) ≤ C
∞
∑

n=0

(CT )n/2(n!)−1/2p2
ǫ(T,X) ≤ C ′p2

ǫ(T,X). (270)

Now we turn to ii. From (261),

E





(

Zǫ(T,X) − ǫ
∑

Y ∈ǫZ

pǫ(T,X − Y )Zǫ(0, Y )

)2


 ≤ C

∫ T

0

∫ ∞

−∞
p2

ǫ(T −S,X −Y )E[Z2
ǫ (S, Y )]dY dS.

(271)
By i, we have
∫ T

0

∫ ∞

−∞
p2

ǫ(T − S,X − Y )E[Z2
ǫ (S, Y )]dY dS ≤ C

∫ T

0

∫ ∞

−∞
p2

ǫ (T − S,X − Y )p2
ǫ(S, Y )dyY dS

= C
√
Tp2

ǫ (T,X) (272)

which is ii.

Finally we prove iii. Fix a q ≥ 2. By standard methods of martingale analysis and (260), we have

E
[(

∫ T

0
ǫ
∑

Y ∈ǫZ

pǫ(T − S,X − Y )Zǫ(S, Y )dMǫ(S, Y )
)2q]

(273)

≤ CE
[(

∫ T

0
ǫ
∑

Y ∈ǫZ

p2
ǫ(T − S,X − Y )Z2

ǫ (S, Y )dS
)q]

.

Let
gǫ(T,X) = E[Z2q

ǫ (T,X)]/p2q
ǫ (T,X). (274)

From the last inequality, and Schwarz’s inequality, we have

gǫ(T,X) ≤ C(1 +

∫

∆′

q(T )

∫

Rq

q
∏

i=1

p2
ǫ (Si − Si−1,Xi −Xi−1)p

2
ǫ(Si, Yi)g

1/q
ǫ (Si, Yi)dYidSi). (275)

Now use the fact that
q
∏

i=1

g1/q
ǫ (Si, Yi) ≤ C

q
∑

i=1

∏

j 6=i p
2/(q−1)
ǫ (Sj , Yj)

p2
ǫ(Si, Yi)

gǫ(Si, Yi) (276)

and iterate the inequality to obtain iii. �

We now turn to the tightness. In fact, although we are in a different regime, the arguments
of [3] actually extend to our case. For each δ > 0, let Pδ

ǫ be the distributions of the processes
{Zǫ(T,X)}δ≤T onD([δ,∞);Du(R)) whereD refers to right continuous paths with left limits. Du(R)
indicates that in space these functions are equipped with the topology of uniform convergence on
compact sets. Because the discontinuities of Zǫ(T, ·) are restricted to ǫ(1/2 + Z), it is measurable
as a Du(R)-valued random function (see Sec. 18 of [4].) Since the jumps of Zǫ(T, ·) are uniformly
small, local uniform convergence works for us just as well the standard Skhorohod topology. The
following summarizes results which are contained [3] but not explicitly stated there in the form we
need.

Theorem 37. [3] There is an explicit p <∞ such that if there exist C, c <∞ for which
∫ ∞

−∞
Zp

ǫ (δ,X)dPδ
ǫ ≤ Cec|X|, X ∈ ǫZ, (277)
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Then {Pδ
ǫ }0≤ǫ≤1/4 is a tight family. Any limit point Pδ is supported C([δ,∞);C(R)) and solves

the martingale problem for the stochastic heat equation (7) after time δ.

It appears that p = 10 works in [3], though it almost certainly can be improved to p = 4. Note that
the process level convergence is more than we need for the one-point function. However, it could
be useful in the future. Although not explicitly stated there the theorem is proved in [3]. The key
point is that all computations in [3] after the initial time are done using the equation (254) for Zǫ,
which scales linearly in Zǫ. So the only input is a bound like (277) on the initial data. In [3], this
is made as an assumption, which can easily be checked for initial data close to equilibrium. In the
present case, it follows from iii of Lemma 36.

The measures Pδ1 and Pδ2 , δ1 < δ2 can be chosen to be consistent on C[[δ2,∞), C(R)] and
because of this there is an inverse limit measure P on C[(0,∞), C(R)] which is consistent with
any Pδ on C[[δ,∞), C(R)]. From the uniqueness of the martingale problem for t ≥ δ > 0 and the

corresponding martingale representation theorem [19] there is a space-time white noise Ẇ , on a
possibly enlarged probability space, (Ω̄, F̄T , P̄) such that under P̄, for any δ > 0,

Z(T,X) =

∫ ∞

−∞
p(T − δ,X − Y )Z(δ, Y )dY +

∫ T

δ

∫ ∞

−∞
p(T − S,X − Y )Z(S, Y )W(dY, dS). (278)

Finally ii of Lemma 36 shows that under P̄ ,
∫ ∞

−∞
p(T − δ,X − Y )Z(δ, Y )dY → p(T,X) (279)

as δ ց 0, which completes the proof.

4. Alternative forms of the crossover distribution function

We now demonstrate how the various alternative formulas for FT (s) given in Theorem 1 are derived
from the cosecant kernel formula of Theorem 8.

4.1. Proof of the crossover Airy kernel formula. We prove this by showing that

det(I −Kcsc
a )L2(Γ̃η) = det(I −KσT,µ̃

)L2(κ−1
T a,∞) (280)

where KσT,µ̃
and σT,µ̃ are given in the statement of Theorem 1 and where κT = 2−1/3T 1/3.

The kernel Kcsc
a (η̃, η̃′) is given by equation (67) as
∫

Γ̃ζ

exp

{

−T
3

(ζ̃3 − η̃′3) + 21/3a(ζ̃ − η̃′)

}

21/3

(
∫ ∞

−∞

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃
dt

)

dζ̃

ζ̃ − η̃
. (281)

For Re(z) > 0 we have the following nice identity:
∫ ∞

a
exzdx = −e

az

z
, (282)

which, noting that Re(ζ̃ − η̃) < 0, we may apply to the above kernel to get

−22/3

∫

Γ̃ζ

∫ ∞

−∞

∫ ∞

a
exp

{

−T
3

(ζ̃3 − η̃′3) − 21/3aη̃′
}

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃
e2

1/3(a−x)η̃e2
1/3xζ̃dxdtdζ̃. (283)
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This kernel can be factored as a product ABC where

A : L2(a,∞) → L2(Γ̃η), B : L2(Γ̃ζ) → L2(a,∞), C : L2(Γ̃η) → L2(Γ̃ζ), (284)

and the operators are given by their kernels

A(η̃, x) = e2
1/3(a−x)η̃ , B(x, ζ̃) = e2

1/3xζ̃ , (285)

C(ζ̃, η̃) = −22/3

∫ ∞

−∞
exp

{

−T
3

(ζ̃3 − η̃3) − 21/3aη̃

}

µ̃e−21/3t(ζ̃−η̃)

et − µ̃
dt.

Since det(I −ABC) = det(I −BCA) we consider BCA acting on L2(a,∞) with kernel

−22/3

∫ ∞

−∞

∫

Γζ̃

∫

Γη̃

exp

{

−T
3

(ζ̃3 − η̃′3) + 21/3(x− t)ζ̃ − 21/3(y − t)η̃

}

µ̃

et − µ̃
dη̃dζ̃dt. (286)

Using the formula for the Airy function given by

Ai(r) =

∫

Γ̃ζ

exp{−1

3
z3 + rz}dz (287)

and replacing t with −t we find that our kernel equals

22/3T−2/3

∫ ∞

−∞

µ̃

µ̃− e−t
Ai
(

T−1/321/3(x+ t)
)

Ai
(

T−1/321/3(y + t)
)

dt. (288)

We may now change variables in t as well as in x and y to absorb the factor of T−1/321/3. To
rescale x and y we use the fact that det(I − K(x, y))L2(ra,∞) = det(I − rK(rx, ry))L2(a,∞). This
completes the proof.

4.2. Proof of the Gumbel convolution formula. Before starting we remark that throughout
this proof we will dispense with the tilde with respect to µ̃ and C̃. We choose to prove this formula
directly from the form of the Fredholm determinant given in the crossover Airy kernel formula of
Theorem 1. However, we make note that it is possible, and in some ways simpler (though a little
messier) to prove this directly from the csc form of the kernel. Our starting point is the formula
for FT (s) given in equation (20). The integration in µ occurs along a complex contour and even
though we haven’t been writting it explicitly, the integral is divided by 2πi. We now demonstrate
how to squish this contour to the the positive real line (at which point we will start to write the
2πi). The pole in the term σT,µ(t) for µ along R

+ means that the integral along the positive real
axis from above will not exactly cancel the integral from below.

Define a family of contour Cδ1,δ2 parametrized by δ1, δ2 > 0 (small). The contours are defined in
terms of three sections

Cδ1,δ2 = C−
δ1,δ2

∪ Ccirc
δ1,δ2 ∪ C+

δ1,δ2
(289)

traversed counterclockwise, where

Ccirc
δ1,δ2 = {δ2eiθ : δ1 ≤ θ ≤ 2π − δ1} (290)

and where C±
δ1,δ2

are horizontal lines extending from δ1e
±iδ2 to +∞.

We can deform the original µ contour µ to any of these contours without changing the value of
the integral (and hence of FT (s)). To justify this we use Cauchy’s theorem. However this requires
the knowledge that the determinant is an analytic function of µ away from R

+. This may be
proved similarly to the proof of Lemma 13 and relies on Lemma 32. As such we do not include this
computation here.
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Fixing δ2 for the moment we wish to consider the limit of the integrals over these contours as δ1
goes to zero. The resulting integral be we written as Icirc

δ2
+ I line

δ2
where

Icirc
δ2 =

∮

|µ|=δ2

dµ

µ
e−µ det(I −KT,µ)L2(κ−1

T a,∞), (291)

I line
δ2 = − lim

δ1→0

∫ ∞

δ2

dµ

µ
e−µ[det(I −KT,µ+iδi

) − det(I −KT,µ−iδi
)] (292)

Claim 38. Icirc
δ2

exists and limδ2→0 I
circ
δ2

= 1.

Proof. It is easiest, in fact, to prove this claim by replacing the determinant by the csc determinant:
equation (67). From that perspective the µ at 0 and at 2π are on opposite sides of the branch cut
for log(−µ), but are still defined (hence the Icirc

δ2
is clearly defined). As far as computing the limit,

one can do the usual Hilbert-Schmidt estimate and show that, uniformly over the circle |µ| = δ2,
the trace norm goes to zero as δ2 goes to zero. Thus the determinant goes uniformly to 1 and the
claim follows. �

Turning now to I line
δ2

, that this limit exists can be seen by going to the equivalent csc kernel (where
this limit is trivially just the kernel on different levels of the log(−µ) branch cut). Notice now that
we can write the operator KT,µ+iδ1 = Ksym

δ1
+Kasym

δ1
and likewise KT,µ−iδ1 = Ksym

δ1
−Kasym

δ1
where

Ksym
δ1

and Kasym
δ1

also act on L2(κ−1
T a,∞) and are given by their kernels

Ksym
δ1

(x, y) =

∫ ∞

−∞

µ(µ− b) + δ21
(µ− b)2 + δ21

Ai(x+ t)Ai(y + t)dt (293)

Kasym
δ1

(x, y) =

∫ ∞

−∞

−iδ1b
(µ− b)2 + δ21

Ai(x+ t)Ai(y + t)dt, (294)

where b = b(t) = e−κT t.

From this it follows that

Ksym(x, y) := lim
δ1→0

Ksym
δ1

(x, y) = P.V.

∫

µ

µ− e−κT t
Ai(x+ t)Ai(y + t)dt. (295)

As far as Kasym
δ1

, since µ − b has a unique root at t0 = −κ−1
T log µ, it follows from the Plemelj

formula [10] that

lim
δ1→0

Kasym
δ1

(x, y) = − πi

κT
Ai(x+ t0)Ai(y + t0). (296)

With this in mind we define

Kasym(x, y) =
2πi

κT
Ai(x+ t0)Ai(y + t0). (297)

We see that Kasym is a multiple of the projection operator onto the shifted Airy functions.

We may now collect the calculations from above and we find that

I line
δ2 = − 1

2πi

∫ ∞

δ2

dµ

µ
e−µ[det(I −Ksym + 1

2K
asym) − det(I −Ksym − 1

2K
asym)] (298)

= − 1

2πi

∫ ∞

δ2

dµ

µ
e−µ det(I −Ksym)tr

(

(I −Ksym)−1Kasym
)
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where both Ksym and Kasym act on L2(κ−1
T a,∞) and where we have used the fact that K2 is rank

one, and if you have A and B, where B is rank one, then

det(I −A+B) = det(I −A) det(I + (I −A)−1B) = det(I −A)tr
(

(I −A)−1B
)

. (299)

As stated above we’ve only shown the pointwise convergence of the kernels to Ksym and K2.
However, using the decay properties of the Airy function and the exponential decay of σ this can
be strengthened to trace-class convergence.

We may now take δ2 to zero and find that

FT (s) = lim
δ2→0

(Icirc
δ2 + I line

δ2 ) = 1 − 1

2πi

∫ ∞

0

dµ

µ
e−µ det(I −K1)tr

(

(I −K1)−1Kasym
)

(300)

with Ksym and Kasym as above acting on L2(κ−1
T a,∞) and where the integral is improper at zero.

We can simplify our operators so that by changing variables and replacing x by x + t0 and y by
y + t0. We can also change variables from µ to e−r. With this in mind we redefine the operators
Ksym and Kasym to act on L2(κ−1

T (a− r),∞) with kernels

Ksym(x, y) = P.V.

∫

σ(t)Ai(x+ t)Ai(y + t)dt (301)

Kasym(x, y) = Ai(x)Ai(y),

where σ(t) = 1
1−e−κT t . In terms of these operators we have

FT (s) = 1 −
∫ ∞

−∞
e−e−r

f(a− r)dr (302)

where

f(r) = κ−1
T det(I −Ksym)L2(κ−1

T r,∞)tr
(

(I −Ksym)−1Kasym
)

L2(κ−1
T r,∞)

. (303)

Calling G(r) = e−e−r
and observing that Ksym = KσT

and Kasym = PAi this completes the proof
of the first part of the Gumbel convolution formula. Turning now to the Hilbert transform formula,
we may isolate the singularity of σT (t) from the above kernel Ksym (or KσT

) as follows. Observe
that we may write σT (t)as

σT (t) = σ̃T (t) +
1

κT t
(304)

where σ̃T (t) (given in equation (28)) is a smooth function, non-decreasing on the real line, with
σ̃T (−∞) = 0 and σ̃T (+∞) = 1. Moreover, σ̃′T is an approximate delta function with width

κ−1
T = 21/3T−1/3. The principle value integral of the σ̃T (t) term can be replaced by a simple

integral. The new term gives

P.V.

∫

1

κT t
Ai(x+ t)Ai(y + t). (305)

This is κ−1
T times the Hilbert transform of the product of Airy functions, which is explicitly com-

putable [34] with the result begin

P.V.

∫

1

κT t
Ai(x+ t)Ai(y + t) = κ−1

T πGx−y
2

(
x+ y

2
) (306)

where Ga(x) is given in equation (28).
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5. Formulas for a class of generalized integrable integral operators

Presently we will consider a certain class of Fredholm determinants and make two computations
involving these determinants. The second of these computations closely follows the work of Tracy
and Widom and is based on a similar calculation done in [29]. In that case the operator in question
is the Airy operator. We deal with the family of operators which arise in considering FT (s).

Consider the class of Fredholm determinants det(I−K)L2(s,∞) with operator K acting on L2(s,∞)
with kernel

K(x, y) =

∫ ∞

−∞
σ(t)Ai(x+ t)Ai(y + t)dt, (307)

where σ(t) is a function which is smooth except at a finite number of points at which it has bounded
jumps and which approaches 0 at −∞ and 1 at ∞, exponentially fast. These operators are, in a
certain sense, generalizations of the class of integrable integral operators (see [5]).

The kernel can be expressed alternatively as

K(x, y) =

∫ ∞

−∞
σ′(t)

ϕ(x+ t)ψ(y + t) − ψ(x+ t)ϕ(y + t)

x− y
dt, (308)

with ϕ(x) = Ai(x) and ψ(x) = Ai′(x) and Ai(x) the Airy function.

This, and the entire generalization we will now develop is analogous to what is known for the Airy
operator which is defined by its kernel KAi(x, y) on L2(−∞,∞) by

KAi(x, y) =

∫ ∞

−∞
χ(t)Ai(x+ t)Ai(y + t)dt =

Ai(x)Ai′(x) − Ai(y)Ai′(x)
x− y

, (309)

where presently χ(t) = 1{t≥0}.

Note that the σ(t) in our main result is not exactly of this type. However, one can smooth out the
σ, and apply the results of this section to obtain formulas, which then can be shown to converge to
the desired formulas as the smoothing is removed. It is straightforward to control the convergence
in terms of trace norms, so we will not provide further details here.

5.1. Symmetrized determinant expression. It is well known that

det(I −KAi)L2(s,∞) = det(I −√
χsKAi

√
χs)L2(−∞,∞) (310)

where χs is the multiplication operator by 1{•≥s} (i.e., (χsf)(x) = 1(x ≥ s)f(x)).

The following proposition shows that for our class of determinants the same relation holds, and
provides the proof of formula (22) of Theorem 1.

Proposition 39. For K in the class of operators with kernel as in (307),

det(I −K)L2(s,∞) = det(I − K̂s)L2(−∞,∞), (311)

where the kernel for K̂s is given by

K̂s(x, y) =
√

σ(x− s)K(x, y)
√

σ(y − s). (312)
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Proof. Define Ls : L2(s,∞) → L2(−∞,∞) by

(Lsf)(x) =

∫ ∞

s
Ai(x+ y)f(y)dy. (313)

Also define σ : L2(−∞,∞) → L2(−∞,∞) by

(σf)(x) = σ(x)f(x) (314)

and χs : L2(−∞,∞) → L2(s,∞) by

(χsf)(x) = 1(x ≥ s)f(x) (315)

Then
K = χsL−∞σLs. (316)

We have
det(I −K)L2(s,∞) = det(I − K̃s)L2(−∞,∞) (317)

where
K̃s =

√
σLsχsL−∞

√
σ. (318)

The key point is that
LsχsL−∞(x, y) = KAi(x+ s, y + s) (319)

where KAi is the Airy kernel. One can also see now that this operator is self-adjoint on the real
line. �

5.2. Painlevé II type integro-differential equation. We now develop an integro-differential
equation expression for det(I −K)L2(s,∞). This provides the proof of Proposition 2.

Recall that FGUE(s) = det(I − KAi)L2(s,∞) can be expressed in terms of a non-linear version of
the Airy function, known as Painlevé II as follows [29]. Let q be the unique (Hastings-McLeod)
solution to Painlevé II:

d2

ds2
q(s) = (s+ 2q2(s))q(s) (320)

subject to q(s) ∼ Ai(s) as s→ ∞. Then

d2

ds2
log det(I −KAi)L2(s,∞) = q2(s). (321)

From this one shows that

FGUE(s) = exp

(

−
∫ ∞

s
(x− s)q2(x)dx

)

. (322)

We now show that an analogous expression exists for the class of operators described in (307).

Proposition 40. For K in the class of operators with kernel as in (307), let q(t, s) be the solution
to

d2

ds2
qt(s) =

(

s+ t+ 2

∫ ∞

−∞
σ′(r)q2r(s)dr

)

qt(s) (323)

subject to qt(s) ∼ Ai(t+ s) as s→ ∞. Then we have

d2

ds2
log det(I −K)L2(s,∞) =

∫ ∞

−∞
σ′(t)q2t (s)dt, (324)

det(I −K)L2(s,∞) = exp

(

−
∫ ∞

s
(x− s)

∫ ∞

−∞
σ′(t)q2t (x)dtdx

)
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Proof. As already mentioned we follow the work of Tracy and Widom [29] very closely, and make
the necessary modifications to our present setting. Consider an operator K of the type described
in (307).

It will be convenient to think of our operator K as acting, not on (s,∞), but on (−∞,∞) and to
have kernel

K(x, y)χs(y) (325)

where χ is the characteristic function of (s,∞). Since the integral operator K is trace-class and
depends smoothly on the parameter s, we have the well known formula

d

ds
log det (I −K) = −tr

(

(I −K)−1 ∂K

∂s

)

. (326)

By calculus
∂K

∂s

.
= −K(x, s)δ(y − s). (327)

(If L is an operator with kernel L(x, y) we denote this by L
.
= L(x, y).) Substituting this into the

above expression gives
d

ds
log det (I −K) = −R(s, s) (328)

where R(x, y) is the resolvent kernel of K, i.e. R = (I − K)−1K
.
= R(x, y). The resolvent kernel

R(x, y) is smooth in x but discontinuous in y at y = s. The quantity R(s, s) is interpreted to mean
the limit of R(s, y) as y goes to s from above:

lim
y→s+

R(s, y). (329)

5.2.1. Representation for R(x, y). If M denotes the multiplication operator, (Mf)(x) = xf(x),
then

[M,K]
.
= xK(x, y)−K(x, y)y = (x−y)K(x, y) =

∫ ∞

−∞
σ′(t){ϕ(x+ t)ψ(y+ t)−ψ(x+ t)ϕ(y+ t)}dt.

(330)
As an operator equation this is

[M,K] =

∫ ∞

−∞
σ′(t){τtϕ⊗ τtψ − τtψ ⊗ τtϕ}dt. (331)

(We define a⊗ b .= a(x)b(y) and let [·, ·] denote the commutator. The operator τt acts as (τtf)(x) =
f(x+ t)) Thus

[

M, (I −K)−1
]

= (I −K)−1 [M,K] (I −K)−1

=

∫

σ′(t){(I −K)−1 (τtϕ⊗ τtψ − τtψ ⊗ τtϕ) (I −K)−1}dt

=

∫

σ′(t){Qt ⊗ Pt − Pt ⊗Qt}dt (332)

where we have introduced

Qt(x; s) = Qt(x) = (I −K)−1 τtϕ and Pt(x; s) = Pt(x) = (I −K)−1 τtψ. (333)

(Note an important point here that as K is self-adjoint we can use the transformation τtϕ⊗τtψ(I−
K)−1 = τtϕ⊗ (I −K)−1τtψ.)
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On the other hand since (I −K)−1 .
= ρ(x, y) = δ(x− y) +R(x, y),

[

M, (I −K)−1
]

.
= (x− y)ρ(x, y) = (x− y)R(x, y). (334)

Comparing (332) and (334) we see that

R(x, y) =

∫ ∞

−∞
σ′(t){Qt(x)Pt(y) − Pt(x)Qt(y)

x− y
}dt, x, y ∈ (s,∞). (335)

Taking y → x gives

R(x, x) =

∫ ∞

−∞
σ′(t){Q′

t(x)Pt(x) − P ′
t(x)Qt(x)}dt (336)

where the ′ denotes differentiation with respect to x.

Introducing

qt(s) = Qt(s; s) and pt(s) = Pt(s; s), (337)

we have

R(s, s) =

∫ ∞

−∞
σ′(t){Q′

t(s; s)pt(s) − P ′
t(s; s)qt(s)}dt, s < x, y <∞. (338)

5.2.2. Formulas for Q′
t(x) and P ′

t(x). As we just saw, we need expressions for Q′
t(x) and P ′

t(x). If
D denotes the differentiation operator, d/dx, then

Q′
t(x; s) = D (I −K)−1 τtϕ

= (I −K)−1Dτtϕ+
[

D, (I −K)−1
]

τtϕ

= (I −K)−1 τtψ +
[

D, (I −K)−1
]

τtϕ

= Pt(x) +
[

D, (I −K)−1
]

τtϕ. (339)

We need the commutator
[

D, (I −K)−1
]

= (I −K)−1 [D,K] (I −K)−1 . (340)

Integration by parts shows

[D,K]
.
=

(

∂K

∂x
+
∂K

∂y

)

+K(x, s)δ(y − s). (341)

(The δ function comes from differentiating the characteristic function χ.) Using the specific form
for ϕ and ψ (ϕ′ = ψ, ψ′ = xϕ) we compute:

(

∂K

∂x
+
∂K

∂y

)

=

∫ ∞

−∞
σ′(t)τtϕ(x)τtϕ(y)dt. (342)

Thus
[

D, (I −K)−1
]

.
= −

∫ ∞

−∞
σ′(t)Qt(x)Qt(y)dt +R(x, s)ρ(s, y). (343)

(Recall (I −K)−1 .
= ρ(x, y).) We now use this in (339)

Q′
t(x; s) = Pt(x) −

∫ ∞

−∞
σ′(t̃)Qt̃(x) (Qt̃, τtϕ) dt̃+R(x, s)qt(s) (344)

= Pt(x) −
∫ ∞

−∞
σ′(t̃)Qt̃(x)ut,t̃(s) +R(x, s)qt(s)
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where the inner product (Qt̃, τtϕ) is denoted by ut,t̃(s) and ut,t̃(s) = ut̃,t(s). Evaluating at x = s
gives

Q′
t(s; s) = pt(s) −

∫ ∞

−∞
σ′(t̃)qt̃(s)ut,t̃(s) +R(s, s)qt(s). (345)

We now apply the same procedure to compute P ′ encountering the one new feature that since
ψ′(x) = xϕ(x) we need to introduce an additional commutator term:

P ′
t(x; s) = D (I −K)−1 τtψ (346)

= (I −K)−1Dτtψ +
[

D, (I −K)−1
]

τtψ

= (M + t) (I −K)−1 τtϕ+
[

(I −K)−1 ,M
]

τtϕ+
[

D, (I −K)−1
]

τtψ

= (x+ t)Qt(x) +

∫ ∞

−∞
σ′(t̃) (Pt̃ ⊗Qt̃ −Qt̃ ⊗ Pt̃) τtϕdt̃−

∫ ∞

−∞
σ(t̃)(Qt̃ ⊗Qt̃)τtψdt̃+R(x, s)pt(s)

= (x+ t)Qt(x) +

∫ ∞

−∞
σ′(t̃) {Pt̃(x) (Qt̃, τtϕ) −Qt̃(x) (Pt̃, τtϕ) −Qt̃(x) (Qt̃, τtψ)} dt̃+R(x, s)pt(s)

= (x+ t)Qt(x) +

∫ ∞

−∞
σ′(t̃)

{

Pt̃(x)ut,t̃(s) −Qt̃(x)vt,t̃(s) −Qt̃(x)vt̃,t(s)
}

dt̃+R(x, s)pt(s).

Here vt,t̃(s) = (Pt̃, τtϕ) = (τt̃ψ,Qt). Evaluating at x = s gives

P ′(s; s) = (s+ t)qt(s)+

∫ ∞

−∞
σ′(t̃)

{

pt̃(s)ut,t̃(s) − qt̃(s)vt,t̃(s) − qt̃(s)vt̃,t(s)
}

dt̃+R(s, s)pt(s). (347)

Using this and the expression for Q′(s; s) in (338) gives

R(s, s) =

∫ ∞

−∞
σ′(t){p2

t (s)−sq2t (s)−
∫ ∞

−∞
σ′(t̃){[qt̃(s)pt(s)+pt̃(s)qt(s)]ut,t̃(s)−qt̃(s)qt(s)[vt,t̃(s)+vt̃,t(s)]}}dt̃dt.

(348)
Dropping the s to make it clearer:

R(s, s) =

∫ ∞

−∞
σ′(t){p2

t − sq2t −
∫ ∞

−∞
σ′(t̃){[qt̃pt + pt̃qt]ut,t̃ − qt̃qt[vt,t̃ + vt̃,t]}}dt̃dt. (349)

5.2.3. First order equations for q, p, u and v. By the chain rule

dqt
ds

=

(

∂

∂x
+

∂

∂s

)

Qt(x; s) |x=s. (350)

We have already computed the partial of Q(x; s) with respect to x. The partial with respect to s is

∂

∂s
Qt(x; s) = (I −K)−1 ∂K

∂s
(I −K)−1 τtϕ

= −R(x, s)qt(s)

where we used (327). Adding the two partial derivatives and evaluating at x = s gives

dqt
ds

= pt −
∫ ∞

−∞
σ′(t̃)qt̃ut,t̃dt̃. (351)

A similar calculation gives

dp

ds
= (s + t)qt +

∫ ∞

−∞
σ′(t̃)

{

pt̃ut,t̃ − qt̃[vt,t̃ + vt̃,t]
}

dt̃. (352)
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We derive first order differential equations for u and v by differentiating the inner products:

ut,t̃(s) =

∫ ∞

s
τtϕ(x)Qt̃(x; s) dx,

dut,t̃

ds
= −τtϕ(s)qt̃(s) +

∫ ∞

s
τtϕ(x)

∂Qt̃(x; s)

∂s
dx

= −
(

τtϕ(s) +

∫ ∞

s
R(s, x)τtϕ(x) dx

)

qt̃(s)

= − (I −K)−1 τtϕ(s) qt̃(s)

= −qtqt̃.
Similarly,

dvt,t̃

ds
= −qtpt̃. (353)

5.2.4. Integro-differential equation for qt. From the first order differential equations for qt, ut and
vt,t̃ it follows immediately that the derivative in s (these are all functions of s) of

∫ ∞

−∞
σ′(t′)ut,t′ut′,t̃dt

′ − [vt,t̃ + vt̃,t] − qtqt̃ (354)

is zero. Examining the behavior near s = ∞ to check that the constant of integration is zero then
gives

∫ ∞

−∞
σ′(t′)ut,t′ut′,t̃dt

′ − [vt,t̃ + vt̃,t] = qtqt̃, (355)

a first integral. We now differentiate (351) with respect to s, to get

q′′t = (s+ t)qt +

∫ ∞

−∞
σ′(t̃)

{

∫ ∞

−∞
σ′(t′)qt′ut̃,t′dt

′ut,t̃ − qt̃[vt,t̃ + vt̃,t] + qtq
2
t̃

}

dt̃ (356)

and then use the first integral to deduce that q satisfies

q′′t =
{

s+ t+ 2

∫ ∞

−∞
σ′(t̃)q2

t̃
dt̃
}

qt. (357)

Note the boundary condition is

qt(s) ∼ Ai(s + t) as s→ ∞ (358)

Since the kernel of [D, (I −K)−1] is (∂/∂x+ ∂/∂y)R(x, y), (343) says
(

∂

∂x
+

∂

∂y

)

R(x, y) = −
∫ ∞

−∞
σ′(t)Qt(x)Qt(y)dt +R(x, s)ρ(s, y). (359)

In computing ∂Q(x; s)/∂s we showed that

∂

∂s
(I −K)−1 .

=
∂

∂s
R(x, y) = −R(x, s)ρ(s, y). (360)

Adding these two expressions,
(

∂

∂x
+

∂

∂y
+

∂

∂s

)

R(x, y) = −
∫ ∞

−∞
σ′(t)Qt(x)Qt(y)dt, (361)

and then evaluating at x = y = s gives

d

ds
R(s, s) = −

∫ ∞

−∞
σ′(t)q2t (s)dt. (362)
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Hence

q′′t =
{

s+ t− 2R′
}

qt. (363)

Integration (and recalling (326)) gives,

d

ds
log det (I −K) = −

∫ ∞

s

∫ ∞

−∞
σ′(t)q2t (x)dt dx; (364)

and hence,

log det (I −K) = −
∫ ∞

s

(
∫ ∞

y

∫ ∞

−∞
σ′(t)q2t (x)dt dx

)

dy = −
∫ ∞

s
(x− s)

∫ ∞

−∞
σ′(t)q2t (x)dt dx.

(365)
so

det (I −K) = exp

(

−
∫ ∞

s
(x− s)

∫ ∞

−∞
σ′(t)q2t (x)dt dx

)

(366)

This completes the proof of Proposition 40. �

6. Proofs of Corollaries to Theorem 1

6.1. FGUE asymptotics as T ր ∞ (Proof of Corollary 3). We describe how to turn the idea
described after Corollary 3 into a rigorous proof. The first step is to cut the µ̃ contour off outside
of a compact region around the origin. Proposition 18 shows that for a fixed T , the tail of the µ̃
integrand is exponentially decaying in µ̃. A quick inspection of the proof shows that increasing T
only further speeds up the decay. Thus justifies our ability to cut the contour at minimal cost. Of
course, the larger the compact region, the smaller the cost (which goes to zero).

We may now assume that µ̃ is on a compact region. We will show the following critical point: that
det(I −Kcsc

a )L2(Γη) converges (uniformly in µ̃) to the Fredholm determinant with kernel
∫

Γζ̃

exp{−1

3
(ζ̃3 − η̃′3) + 21/3s(ζ̃ − η̃′)} dζ̃

(ζ − η′)(ζ − η)
. (367)

This claim shows that we approach, uniformly, a limit which is independent of µ̃. Therefore, for

large enough T we may make the integral arbitrarily close to the integral of e−µ̃

µ̃ times the above

determinant (which is independent of µ̃), over the cutoff µ̃ contour. The µ̃ integral approaches 1

as the contour cutoff moves towards infinity, and the determinant is equal to FGUE(21/3s) which
proves the corollary. A remark worth making is that the complex contours on which we are dealing
are not the same as those of [32], however, owing to the decay of the kernel and the integrand (in
the kernel definition), changing the contours to those of [32] has no effect on the determinant.

All that remains, then, is to prove the uniform convergence of the Fredholm determinant claimed
above.

The proof of the claim follows in a rather standard manner. We start by taking a change of variables
in the equation for Kcsc

a in which we replace ζ̃ by T−1/3ζ̃ and likewise for η̃ and η̃′. The resulting
kernel is then given by

T−1/3

∫

Γ̃ζ

exp{−1

3
(ζ̃3−η̃′3)+21/3(s+a′)(ζ̃−η̃′)}21/3(−µ̃)−21/3T−1/3(ζ̃−η̃′)π csc(π21/3T−1/3(ζ̃−η̃′)) dζ̃

ζ̃ − η̃
.

(368)
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Notice that the L2 space as well as the contour of ζ̃ integration should have been dilated by a factor
of T 1/3. However, it is possible (using Lemma 31) to show that we may deform these contours back
to their original positions without changing the value of the determinant. We have also used the
fact that a = T 1/3s− log

√
2πT and hence T−1/3a = s+ a′ where a′ = −T−1/3 log

√
2πT .

We may now factor this, just as in Proposition 18, as AB and likewise we may factor our limiting
kernel (367) as K ′ = A′B′ where

A(ζ̃ , η̃) =
e−|Im(ζ̃)|

ζ̃ − η̃
(369)

B(η̃, ζ̃) = e|Im(ζ̃)| exp{−1

3
(ζ̃3 − η̃3) + 21/3(s+ a′)(ζ̃ − η̃)}π21/3T−1/3(−µ̃)−21/3T−1/3(ζ̃−η̃)

sin(π21/3T−1/3(ζ̃ − η̃))

and similarly

A′(ζ̃ , η̃) =
e−|Im(ζ̃)|

ζ̃ − η̃
(370)

B′(η̃, ζ̃) = e|Im(ζ̃)| exp{−1

3
(ζ̃3 − η̃′3) + 21/3s)(ζ̃ − η̃′)} 1

ζ̃ − η̃

Notice that A = A′. Now we use the estimate

|det(I −Kcsc
a ) − det(I −K ′)| ≤ ||Kcsc

a −K ′||1 exp{1 + ||Kcsc
a ||1 + ||K ′||1}. (371)

Observe that ||Kcsc
a −K ′||1 ≤ ||AB −AB′||1 ≤ ||A||2||B −B′||2. Therefore it suffices to show that

||B − B′||2 goes to zero (the boundedness of the trace norms in the exponential also follows from
this). This is an explicit calculation and is easily made by taking into account the decay of the
exponential terms, and the fact that a′ goes to zero. The uniformness of this estimate for compact
sets of µ̃ follows as well. This completes the proof of Corollary 3.

6.2. Gaussian asymptotics as T ց 0.

Proposition 41. As Tβ4 ց 0, 21/2π−1/4β−1T−1/4Fβ(T,X) converges in distribution to a standard
Gaussian.

Proof. We have from (11),

Fβ(T,X) = log
(

1 + βT 1/4G(T,X) + β2T 1/2Ω(β, T,X)
)

(372)

where

G(T,X) = T−1/4

∫ T

0

∫ ∞

−∞

p(T − S,X − Y )p(S, Y )

p(T,X)
W (dY, dS) (373)

and

Ω(β, T,X) = T−1/2
∞
∑

n=2

∫

∆n(T )

∫

Rn

(−β)n−2pt1,...,tn(x1, . . . , xn)W (dt1dx1) · · ·W (dtndxn). (374)

It is elementary to show that for each T0 <∞ there is a C = C(T0) <∞ such that, for T < T0

E[Ω2(β, T,X)] ≤ C. (375)

G(T,X) is Gaussian and

E[G2(T,X)] = T−1/2

∫ T

0

∫ ∞

−∞

p2(T − S,X − Y )p2(S, Y )

p2(T,X)
dY dS =

1

2

√
π. (376)
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Hence by Chebyshev’s inequality,

FT (2−1/2π1/4βT 1/4s) = P (βT 1/4G(T,X) + β2T 1/2Ω(β, T,X) ≤ e2
−1/2π1/4βT 1/4s − 1)

=

∫ s

−∞

e−x2/2

√
2π

dx+ O(βT 1/4). (377)

�

7. Appendix: Analytic properties of Fredholm Determinants

The following appendix addresses the question of analytic properties of Fredholm Determinants
and is based on communications of Percy Deift to IC.

Suppose T (z) is an analytic map from the region D ∈ C into the trace-class operators on a (sepa-
rable) Hilbert space H. Then we have the following result.

Theorem 42. With T : D → B1(H) as above, the map

z 7→ det(1 + T (z)) = 1 +
∞
∑

k=1

tr(Γ(k)(T (z))) (378)

is analytic on D and

d

dz
det(1+T (z)) = trT ′+tr(T ′⊗T+T⊗T ′)+· · ·+tr(T ′⊗T⊗· · ·⊗T+T⊗T ′⊗· · ·⊗T+· · ·+T⊗T⊗· · ·⊗T ′)+· · · .

(379)

Remark 43. A word on multivariate algebra: Consider ui ∈ H and define the tensor product
u1 ⊗ · · · ⊗ un by its action on v1, . . . , vn ∈ H as

u1 ⊗ · · · ⊗ un(v1, . . . , vn) =
n
∏

i=1

(ui, vi). (380)

Then
⊗n

i=1 H is the span of all such tensor products. There is a vector subspace of this space which
is known as the alternating product:

n
∧

(H) = {h ∈
n
⊗

i=1

H : ∀σ ∈ Sn, σh = h}, (381)

where σu1 ⊗ · · · ⊗ un = uσ(1) ⊗ · · · ⊗ uσ(n). If e1, . . . , en is a basis for H then ei1 ∧ · · · ∧ eik for
1 ≤ i1 < . . . < ik ≤ n form a basis of

∧n(H).

Given an operator A ∈ L(H), define

Γn(A)(u1 ⊗ · · · ⊗ un) := Au1 ⊗ · · · ⊗Aun. (382)

Note that any element in
∧n(H) can be written as an antisymmetrization of tensor products. Then

it follows that Γn(A) restricts to an operator from
∧n(H) into

∧n(H). It is this restriction which
we will be using in the subsequent.

Now observe that in the case of finite dimensional H,

det(I +A) =
∏

(1 + λi) = 1 +
∑

i

λi +
∑

i<j

λiλj + · · · (383)

=1 + tr Γ1(A) + tr Γ2(A) + · · · .
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In the finite dimensional setting we will show the inequality tr Γ(n)(A) ≤ ||A||n1/n! and thus establish
that this series converges for trace class operators.

Returning to the question at hand, we wish to prove the theorem. In this direction we first prove
a very useful Lemma which actually also shows the inequality just previously stated.

Lemma 44. Suppose A1, . . . , Ak ∈ B1(H). Then

Γ(A1, . . . , Ak) =
∑

π∈Sk

Aπ(1) ⊗ · · · ⊗Aπ(k) (384)

maps
∧k(H) to

∧k(H) and Γ(A1, . . . , Ak) ∈ B1(
∧k(H)) with norm

||Γ(A1, . . . , Ak)||1 ≤ ||A1||1||A2||1 · · · ||Ak||1. (385)

Proof. Since Aj are trace class, they are also compact. Compact operators have singular value
decompositions, which is to say that for each j ∈ 1, . . . , k there exists a decomposition of Aj as

Aj =
∑

i≥1

aji(αji, •)α′
ji, (386)

where aji ≥ 0,
∑∞

i=1 aji < ∞, and {αji} as well as {α′
ji} are orthonormal. For u1, . . . , uk ∈ H, we

write

ui ∧ · · · ∧ uk =
1√
k!

∑

σ∈Sk

sgn(σ)uσ(1) ⊗ · · · ⊗ uσ(k) ∈
k
∧

(H). (387)
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Then

Γ(A1, . . . , Ak)u1 ∧ u2 ∧ · · · ∧ uk

=
1√
k!

∑

σ∈Sk

∑

π∈Sk

sgn(σ)(Aπ(1) ⊗ · · · ⊗Aπ(k))uσ(1) ⊗ · · · ⊗ uσ(k)

=
∑

i1,...,ik≥1

1√
k!

∑

σ,π∈Sk

sgn(σ)
k
∏

l=1

aπ(l),il

k
⊗

l=1

((απ(l),il , •)α′
pi(l),il

)
k
⊗

l=1

uσ(l)

=
∑

i1,...,ik≥1

1√
k!

∑

π∈Sk

k
∏

l=1

aπ(l),il

∑

σ∈Sk

sgn(σ)
k
∏

l=1

(απ(l),il , uσ(l))
k
⊗

l=1

α′
π(l),il

=
∑

i1,...,ik≥1

1√
k!

∑

π∈Sk

k
∏

l=1

aπ(l),il det
[

(απ(l),il , um)
]k

l,m=1

k
⊗

l=1

α′
π(l),il

=
∑

i1,...,ik≥1

1√
k!

∑

π∈Sk

sgn(π)

k
∏

l=1

al,iπ−1(l)
det
[

(αl,iπ−1(l)
, um)

]k

l,m=1

k
⊗

l=1

α′
π(l),il

=
1√
k!

∑

π∈Sk

sgn(π)
∑

i1,...,ik≥1

k
∏

l=1

al,iπ−1(l)
det
[

(αl,iπ−1(l)
, um)

]n

l,m=1

k
⊗

l=1

α′
π(l),il

=
1√
k!

∑

π∈Sk

sgn(π)
∑

î1,...,̂ik≥1

k
∏

l=1

al,̂il
det
[

(αl,̂il
, um)

]n

l,m=1

k
⊗

l=1

α′
π(l),̂iπ(l)

=
∑

i1,...,ik≥1

1√
k!

∑

π∈Sk

sgn(π)

k
∏

l=1

al,il det [(αl,il , um)]kl,m=1

k
⊗

l=1

α′
π(l),iπ(l)

=
∑

i1,...,ik≥1

k
∏

l=1

al,il

(

(
k
∧

l=1

αl,il), (
k
∧

l=1

ul)

)

1√
k!

∑

π∈Sk

sgn(π)
k
⊗

l=1

α′
π(l),iπ(l)

=
∑

i1,...,ik≥1

k
∏

l=1

al,il

(

(

k
∧

l=1

αl,il), (

k
∧

l=1

ul)

)

∧

α′
l,il
.

Hence, as linear combinations of u1 ∧ · · · ∧ uk are dense in
∧k(H), we have

Γ(A1, . . . , Ak) =
∑

i1,...,ik≥1

a1,i1 · · · ak,ik(α1,i1 ∧ · · · ∧ αk,ik , •)α′
1,i1 ∧ · · · ∧ α′

k,ik
, (388)

which is the generalization of the singular value decomposition to the alternating product of oper-
ators.

As ||(u, •)v||B1 = |(u, v)| ≤ ||u|| · ||v|| for any rank 1 operator in a Hilbert space, we see that

||Γ(A1, . . . , Ak)||B1(
Vk(H)) ≤

∑

i1,...,ik≥1

a1,i1 · · · ak,ik = ||A1||B1 · · · ||Ak||B1 , (389)

as

||(α1,i1∧· · ·∧αk,ik , •)α′
1,i1∧· · ·∧α

′
k,ik

||B1(
Vk(H)) ≤ ||α1,i1∧· · ·∧αk,ik ||·||α′

1,i1∧· · ·∧α
′
k,ik

|| ≤ 1. (390)

This proves equation (385). �
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Now let A,B ∈ B1(H). For l,m ≥ 0, k = l +m, define

Γ(l,m)(A,B) =
1

l!m!
Γ(A, . . . , A,B, . . . B), (391)

where there are l A’s and m B’s. Clearly Γ(l,m)(A,B) =
∑

c1 ⊗ · · · ⊗ ck where the sum is over all
(

m+l
m

)

ways of designating l of the ci’s as A and the other m as B. As an example, Γ(1,2)(A,B) =
A⊗B ⊗B +B ⊗A⊗B +B ⊗B ⊗A.

Corollary 45 (Corollary to Lemma 44).

||Γ(l,m)(A,B)||B1(
Vk(H)) ≤

||A||l1
l!

||B||m1
m!

. (392)

We can now proceed with:

Proof of Theorem 42. Fix z ∈ D and let T (z + h) = T (z) + δ = T + δ. For k ≥ 1,

T (z + h) ⊗ · · · ⊗ T (z + h)

= T + δ ⊗ · · · ⊗ T + δ (393)

= T ⊗ · · · ⊗ T + Γ(1,k−1)(δ, T ) + Γ(2,k−2)(δ, T ) + · · · + T (l,k−l)(δ, T ) + · · · + δ ⊗ · · · ⊗ δ.

Thus
T (z + h) ⊗ · · · ⊗ T (z + h) − T (z) ⊗ · · · ⊗ T (z)

h
= T (1,k−1)(

δ

h
, T ) + ∆(h), (394)

where by the Corollary,

||∆(h)||B1(
Vk(H)) ≤

1

|h|
||δ||21

2

||T ||k−2
1

(k − 2)!
+ · · · + 1

|h|
||δ||k1
k!

. (395)

Observe that ||δ||1 = ||T (z + h) − T (z)||1 = O(h). Write

T (1,k−1)(
δ

h
, T ) = Γ(1,k−1)(T ′, T ) + Γ(1,k−1)(

T (z + h) − T (z)

h
− T ′(z), T ), (396)

and then observe that by the Corollary

||Γ(1,k−1)(
T (z + h) − T (z)

h
− T ′(z), T (z))||B1(

Vk(H)) (397)

≤ ||T (z + h) − T (z)

h
− T ′(z)||B1

1

(k − 1)!
||T (z)||k−1

B1
= O(h).

Combining these observations shows that

T (z + h) ⊗ · · · ⊗ T (z + h) − T (z) ⊗ · · · ⊗ T (z)

h
= Γ(1,k−1)(T ′, T ) +O(h), (398)

and hence the function z 7→ T (z)⊗· · ·⊗T (z) = Γ(k)(T (z)) is an analytic map from D to B1(
∧k(H))

for all k ≥ 1 and

d

dz
T (z) ⊗ · · · ⊗ T (z) = Γ(1,k−1)(T ′, T ) = T ′ ⊗ T ⊗ · · · ⊗ T + · · · + T ⊗ · · · ⊗ T ⊗ T ′. (399)

It then follows that z 7→ tr Γ(k)(T (z)) is analytic for k ≥ 1 from D to C.

Hence for any n ≥ 1,

1 +

n
∑

k=1

tr Γ(k)(T (z)) (400)
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is analytic in D and

|1 +
n
∑

k=1

tr Γ(k)(T (z))| ≤ 1 +
n
∑

k=1

||Γ(k)(T (z))||B1(
Vk(H)) ≤ 1 +

n
∑

k=1

||T (z)||kB1(
Vk(H))

k!
≤ e||T (z)||, (401)

and so so for z in a compact subset ofD, the functions 1+
∑n

k=1 tr Γ(k)(T (z)) are uniformly bounded

in n. It follows by general theory that z 7→ det(I + T (z)) = limn→∞
∑n

k=0 tr Γ(k)(T(z)) is analytic
in D and

d

dz
det(I + T (z)) = lim

n→∞

n
∑

k=0

d

dz
tr Γ(k)(T (z))

=

∞
∑

k=1

tr(Γ(1,k−1)(T ′(z), T (z))) (402)

=

∞
∑

k=1

tr(T ′(z) ⊗ T (z) ⊗ · · · ⊗ T (z) + · · · + T (z) ⊗ · · · ⊗ T ′(z)).

�
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