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Probability distributions for locations of calling animals,
receivers, sound speeds, winds, and data from travel
time differences

John L. Spiesberger
Department of Earth and Environmental Science, 240 South 33rd Street, University of Pennsylvania,
Philadelphia, Pennsylvania 19104-6316

�Received 5 November 2004; revised 8 June 2005; accepted 8 June 2005�

A new nonlinear sequential Monte Carlo technique is used to estimate posterior probability
distributions for the location of a calling animal, the locations of acoustic receivers, sound speeds,
winds, and the differences in sonic travel time between pairs of receivers from measurements of
those differences, while adopting realistic prior distributions of the variables. Other algorithms in
the literature appear to be too inefficient to yield distributions for this large number of variables �up
to 41� without recourse to a linear approximation. The new technique overcomes the computational
inefficiency of other algorithms because it does not sequentially propagate the joint probability
distribution of the variables between adjacent data. Instead, the lower and upper bounds of the
distributions are propagated. The technique is applied to commonly encountered problems that were
previously intractable such as estimating how accurately sound speed and poorly known initial
locations of receivers can be estimated from the differences in sonic travel time from calling
animals, while explicitly modeling distributions of all the variables in the problem. In both cases,
the new technique yields one or two orders of magnitude improvements compared with initial
uncertainties. The technique is suitable for accurately estimating receiver locations from animal
calls. © 2005 Acoustical Society of America. �DOI: 10.1121/1.1992708�

PACS number�s�: 43.80.Ev �WA� Pages: 1790–1800

I. INTRODUCTION

Calling animals can be located by measuring the differ-
ences in sonic arrival times at pairs of receivers.1–8 When the
speed of sound is spatially homogeneous, the difference in
arrival time multiplied by the speed gives the difference in
distance of the animal from a pair of receivers. The locus of
points in space for which this difference is constant is a
hyperboloid. Given sufficient numbers of receivers, one in-
tersects the hyperboloid from each pair to yield location.
This so-called hyperbolic location technique has the property
that the location of the animal is nonlinearly related to some
of the relevant variables in the problem and there are typi-
cally many such variables such as the uncertain speed of
propagation and the locations of the animal and the receiv-
ers. The nonlinearity and, particularly, the large number of
variables has apparently made it computationally difficult for
any approach to yield probability distributions for all the
variables without making a linear approximation that is often
invalid.9 Since probability distributions are complete esti-
mates of variables, it is desirable to have a method that can
produce them in a computationally feasible manner. It would
be desirable to be able to update distributions for the loca-
tions of the receivers and the speed of propagation as each
new animal call is processed. The receivers could be station-
ary or mobile, and the speed of propagation could change
with time. It would be desirable to use any realistic prior
probability distributions for locations and speeds. A practical
method for accomplishing all these goals is given here with-
out using a linear approximation.

First consider the difficulties associated with nonlinear-
ity. For each pair of receivers at coordinates ri and r j, one
wants the possible locations of the animal, s, satisfying

�s − ri�
c

−
�s − r j�

c
= �ij , �1�

where the signal speed is c and the measured lag,

�ij = ti − tj , �2�

is the difference in the times for the call to reach receivers i
and j, respectively. Each Cartesian coordinate for the source,
�sx ,sy ,sz�, and receiver, �ri�x� ,ri�y� ,ri�z��, is nonlinearly re-
lated to the measured lag, �ij, because

�s − ri� = ��sx − ri�x��2 + �sy − ri�y��2 + �sz − ri�z��2.

There are three problems stemming from this nonlinearity.
First, the probability distribution for the animal’s location
has no known analytical solution given probability distribu-
tions for the lag, receiver locations, and the speed of sound
unless some of these distributions are set to an unwavering
value. Second, even when one linearizes the relationship be-
tween the coordinate of the animal and the other variables,
the distribution for its location can be in error by one or two
orders of magnitude.9 Third, a linear estimation scheme can
converge to an incorrect solution corresponding to a nonglo-
bal minimum.10 Thus linear estimation techniques such as
least squares, Wiener, and Kalman filters11 can provide un-
reliable and inaccurate results. We are thus faced with the
problem of how to obtain reliable and robust estimates of
probability distributions.
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Consider next the difficulties with the large number of
pertinent variables. It is assumed that estimated locations of
the receivers and the speed of propagation have errors, so
their values are to be improved in the light of data. For R
receivers, there are 3R−6 associated Cartesian coordinates
to estimate. The reduction by 6 merely means we are unin-
terested in the absolute location and rotation of the coordi-
nate system. Additionally, there are three unknown variables
for the animal’s location, and one unknown variable for the
speed of sound. Summing these there are

V = 3R − 2 �3�

variables of interest in hyperbolic location problems. For ex-
ample, there are 16 variables with six receivers. When the
effective speed of the acoustic signal between the animal and
each receiver is modified due to winds, refraction of the
acoustic path,12 or propagation through two different media
such as the air and water,13 the hyperbolic location problem
can be generalized to obtain locations, but one needs to in-
troduce a different effective speed, ci, along the acoustic path
between the animal and receiver i. This increases the number
of variables to be estimated by R−1. The number of relevant
variables increases further if the probability distributions of
the lags are estimated from the data.

Bayes theorem14 provides optimal probability distribu-
tions but is impractical. Suppose one wants the joint prob-
ability distribution, f�s ,r ,c ��ij�, of source location, receiver
locations, r, and speeds of propagation between the source
and each receiver, c, given a lag, �ij. Bayes theorem supplies
the desired result,

f�s,r,c��ij� =
f��ij�s,r,c���s,r,c�

� f��ij�s,r,c���s,r,c�ds dr dc
, �4�

in terms of the conditional joint distribution of the data on
the source, receivers, and speeds of propagation,
f��ij �s ,r ,c�, and the prior joint distribution of the source
location, receiver locations, and speeds, ��s ,r ,c�. If the dis-
tributions on the right side could be evaluated analytically,
then evaluating Eq. �4� would be the end of the problem. One
could introduce new data and keep finding better estimates
of the distribution on the left given updated distributions on
the right. Brute force evaluation of the distributions on the
right appears to be computationally difficult because there
are many variables. For hyperbolic location and six receiv-
ers, one needs to estimate the joint distributions of 16 vari-
ables for each introduced datum. Suppose each variable is
divided into ten bins. Accurate estimation of the joint distri-
bution requires a reliable probability of occurrence in 1016

bins. Instead of binning, one can estimate distributions
using Gibbs sampling or Markov Chain Monte Carlo
approaches,14,15 but they appear to be computationally im-
practical for a large number of variables such as 16. De-
spite the fact that this problem is commonly encountered
in the fields of acoustic and electromagnetic tracking, the
author is unaware of any publication where the distribu-
tions of all the variables �about 16 or more� are estimated
without making a linearizing approximation. Instead, the
literature appears to treat other problems with elegant ap-
proaches where some of the variables are known without
error �such as some or all of the receiver coordinates�
and/or some linear approximation is adopted.12,15–20

The approach taken here has its root in a method for
estimating the distribution of an animal’s location given re-

alistic a priori estimates for the distributions of sound speed,
receiver locations, and measurement error.9 We explain how
that approach can be generalized to estimate the distributions
of all the variables and how to include dynamical models for
the evolution of all variables between the receptions of dif-
ferent animal calls. The approach is more convenient to dis-
cuss when given the name “sequential bound estimation” for
reasons that are apparent after explaining how it works.

II. SEQUENTIAL BOUND ESTIMATION

Sequential bound estimation could be applied to many
problems that are amenable to solution using Bayes theorem.
The technique is demonstrated in the context of locating call-
ing animals in situations where one has more receivers than
needed to obtain a mathematical solution. The sequential na-
ture is evident because data are sequentially processed from
different subsets of the acoustic receivers. The idea of treat-
ing these data in subsets and transitioning estimated vari-
ables between one datum and the next is analogous to other
problems where data are sequentially processed. Section IV
explains how sequential bound estimation could be applied
in a different location problem.

A. Receiver constellation

We discuss how to treat situations where one has just the
right number of receivers to estimate location without math-
ematical ambiguity. In general, location problems in two spa-
tial dimensions require three or four receivers21 and three-
dimensional problems require four or five receivers.2 The
location of the animal with respect to the receivers dictates
the required number.2,21 A “receiver constellation” is the
minimum number of receivers required to obtain an unam-
biguous location. A systematic way of determining the nec-
essary number of receivers is to use an analytical solution of
location based on the lesser number, and use the datum from
an additional receiver if needed.

B. Analytical solution for location from each
constellation

When the speed of the signal varies between the animal
and each receiver, the general solution for the animal’s loca-
tion in three spatial dimensions from a group of four receiv-
ers is9

s� = R−1b�

2
− R−1f�t1 − R−1g�t1

2, �5�

where

R � 	r2�x� r2�y� r2�z�
r3�x� r3�y� r3�z�
r4�x� r4�y� r4�z�


 , b� � 	�r�2�2 − c2
2�21

2

�r�3�2 − c3
2�31

2

�r�4�2 − c4
2�41

2 
 ,

�6�

f� � 	c2
2�21

c3
2�31

c4
2�41


 ,
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and

g� �
1

2	c2
2 − c1

2

c3
2 − c1

2

c4
2 − c1

2
 , �7�

and t1 is the solution from the quartic equation,

a6t1
4 + 2a5t1

3 + �a3 − a4 − c1
2�t1

2 − a2t1 +
a1

4
= 0, �8�

where

a1 � �R−1b��T�R−1b��, a2 � �R−1b��T�R−1f�� ,

a3 � �R−1f��T�R−1f��, a4 � �R−1b��T�R−1g�� , �9�

a5 � �R−1f��T�R−1g��, a6 � �R−1g��T�R−1g�� ,

and R−1 is the inverse of R. Quartic equations have analyti-
cal solutions. When the speed is spatially homogeneous, i.e.,
ci=c1∀ i, the cubic and quartic terms in Eq. �8� vanish and
the resulting quadratic equation is that found before for hy-
perbolic location.3 The analytical solution for location in two
spatial dimensions has the same form as above except one
assumes the constellation has three receivers so one removes
the last rows in the expressions for R, b, f, and g.

The signal speed, ci, is more general than the speed ap-
pearing in the scalar wave equation for pressure perturba-
tions. Here, ci denotes the effective speed of sound between
the source and receiver, which is the distance divided by the
travel time. Effects of winds, currents, and nonstraight
propagation paths due to refraction and diffraction all affect
the time for sound to reach a receiver.

Ambiguous solutions for location occur when Eq. �8�
yields more than one nonnegative real solution. Such ambi-
guities occur in practice. For each ambiguity, one generates a
model for �51, which one can do because one knows where
receiver 5 is, and chooses the root of t1 that is closest to that
measured.

C. Probability distributions for all variables

We show how one generalizes the idea for obtaining the
probability distribution for animal location9 to obtain prob-
ability distributions for all variables including the lags. The
lags, �ij, are treated as random variables because they contain
errors, just like all the other variables in the problem such as
the locations of the receivers. We also consider situations
where there are more receivers than needed to obtain a math-
ematically unambiguous solution for location.

Since ri, �ij, and ci are random variables, then t1 and s
are random variables because of Eqs. �5� and �8�. One as-
signs realistic prior probability distributions to each of these
variables except t1, whose distribution depends deterministi-
cally on the other distributions. For example, in a case of
most ignorance, one can assign prior uniform distributions
such as intervals �−3000,3000�, �−3000,3000�, and �0,
−20� m for the �x ,y ,z� Cartesian coordinates of a snapping
shrimp where it is known that one cannot hear its sound at a

distance of 3000 m and it must be above a bottom depth of
20 m.

For three-dimensional problems, the number of ways of
choosing a four-receiver constellation among R receivers is

N =
R!

�R − 4�!4!
. �10�

A computer is used to draw a single configuration of random
variables for the first constellation. Each configuration con-
sists of the set �ri�x� ,ri�y� ,ri�z� ,�ij ,ci where i and j are
taken from the set of four of the R receivers for the chosen
constellation, and where i� j to avoid using redundant data
�e.g., �23=−�32�. For each configuration, an animal loca-
tion is computed from Eq. �5� if that equation yields a
unique location. If a configuration yields more than one
location, a location is chosen to be that yielding the clos-
est difference in travel time to a randomly chosen fifth
receiver and one of the receivers in the constellation.

A valid configuration must pass two criteria. First, the
animal’s location must lie within its a priori spatial limits.
Second, there must be a real-valued solution for location
from Eq. �5� since configurations can yield only complex-
valued roots. Configurations not passing these criteria are
discarded because they cannot occur in reality.

Valid configurations from a receiver constellation define
a cloud of animal locations, receiver locations, estimates for
the effective speeds of sound for each path, and the values of
each of the lags. Accurate probability distributions for each
require a sufficient number of valid configurations.

Some constellations yield better estimates of a variable
than others. For example, an animal surrounded by four re-
ceivers would be more accurately located than one where
four receivers were clumped together along a line at great
distance from an animal.

Since each receiver constellation individually yields lim-
its for the upper and lower values of each variable, one can
enforce these limits to constrain random selections for that
variable when seeking the valid configurations from the next
constellation. That is why this method is called sequential
bound estimation.

For example, suppose the prior distribution for variable
k has some shape within the interval �v̌�k�0 , v̂�k�0� with
v̌�k�0� v̂�k�0 and the subscript denotes the bound after using
constellation p with 0 denoting a priori values. After using
data from constellation p=1, its a posteriori distribution
must be contained in the interval, �max�v̌�k�0 , v̌�k�1 ,
min�v̂�k�0 , v̂�k�1�. In general, the interval following use of
constellation p is

�max�v̌�k�p−1, v̌�k�p,min�v̂�k�p−1, v̂�k�p� . �11�

Sequential bound estimation assigns a distribution for the
variable within these bounds. If one chooses a uniform dis-
tribution, then one is not overconstraining its distribution and
valid configurations for the next constellation are obtained
without prejudice. �In the parlance of information theory, the
maximum entropy principle is used to prove that the uniform
distribution contains the least information given only a vari-
able’s bounds.22� If one could implement Bayes theorem, the
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variable would be contained within the bounds given by Eq.
�11�, but the distribution would likely not be uniform. It is
the author’s opinion that it is better to underconstrain the
distribution of a variable than to overconstrain it in an incor-
rect manner, as might occur if one was to assign the variable
a narrow Gaussian distribution. Sequential bound estimation
could then assign a uniform distribution to each variable af-
ter assimilating data from all but the last constellation. After
the last constellation, one does not reassign a distribution to
the variable, but rather simply computes its probability dis-
tribution from its Monte Carlo samples. In fact, one can es-
timate the joint distribution of the variables from the output
of the last constellation. Any desired statistic can be esti-
mated from the final joint distribution such as a percent con-
fidence limit, the mean, and a maximum likelihood value.

A consistent estimator, such as Bayes theorem, tends
toward the true distribution as the number of samples goes to
infinity. Sequential bound estimation is not a consistent esti-
mator but it can provide distributions that bound the correct
distributions. This may not be such a great drawback for two
reasons. First, many, if not most, problems of interest are
ones where the prior distributions of the variables are un-
known and need to be guessed. So even if one could imple-
ment Bayes theorem, the resulting joint distribution would be
in error. When prior distributions are in error, methods that
work hard to maintain the mathematical rigidity of their as-
sumptions may yield results that are less accurate than se-
quential bound estimation where the bounds of the variables
are enforced with minimum �i.e., uniform� constraints on
their distributions at intermediate steps. Second, it is better to
have an algorithm that provides distributions of pertinent
variables than to have no means to compute them at all.

D. Transitioning variables from one animal call to the
next

Like a Kalman filter,11 sequential bound estimation can
incorporate a model to transition variables from one animal
call to the next. A few examples are given.

Suppose the speed of sound varies with time. Bounds for
the speed between times t1 and t2 relative to a reference
speed, cr�t1�, can be modeled as

�ĉr�t2� = min�+ ��cmax�, ĉr�t1� − cr�t1� + �t2 − t1��d�cr

dt
�� ,

�12�

�čr�t2� = max�− ��cmax�, čr�t1� − cr�t1� − �t2 − t1��d�cr

dt
�� ,

where the path-averaged deviation of speed between the
source and receiver r is �cr�t�, the maximum deviation is
��cmax�, and the maximum allowed rate of change of the fluc-
tuation is �d�cr /dt�. Equation �12� expresses a method to re-
lax prior constraints on bounds to maximum limits at a speci-
fied maximum rate of change. In the absence of further data,
the bounds expand to a priori values. Bounds for the winds
could obey similar relationships.

Similarly, we can transition probability distributions for
a mobile animal. Let the prior probability distribution for the
animal’s location be uniformly distributed in the �x ,y ,z� Car-

tesian intervals �šx�ti
−� , ŝx�ti

−��, �šy�ti
−� , ŝy�ti

−��, and
�šz�ti

−� , ŝz�ti
−�� for a call received at time ti. The � superscript

denotes the time just prior to assimilation of the data from
the call at time ti. After assimilating the data from time ti, we
have new lower and upper bounds for the animal at time ti

+

given by �šx�ti
+� , ŝx�ti

+��, �šy�ti
+� , ŝy�ti

+��, and �šz�ti
+� , ŝz�ti

+��
where the � denotes time just after the call. Assign lower

and upper bounds, denoted respectively by superscripts ˇ and
ˆ, for each component of the Cartesian velocity, �U ,V ,W�, of
the animal between calls. Then we know that

šx�ti+1
− � = šx�ti

−� + �ti+1 − ti�Ǔ ,

šy�ti+1
− � = šy�ti

−� + �ti+1 − ti�V̌ , �13�

šz�ti+1
− � = šz�ti

−� + �ti+1 − ti�W̌ ,

with analogous equations for the transition to the upper
bounds. There are numerous ways to transition such bounds.

E. Flow diagram

Figure 1 summarizes sequential bound estimation for lo-
cation problems. Step A assigns prior distributions and
bounds to each variable, e.g., x. Its prior bounds are indi-
cated by tic marks on its axis. For hyperbolic locations of
calling animals, x could be any Cartesian coordinate of a
receiver, an effective speed of propagation, etc. Also, one
assigns prior bounds �rectangle� for location of the desired
object.

In step B, one computes configurations of variables us-
ing the first set of data, where the variables are drawn from
their prior distributions. Each random configuration of vari-
ables associates a set of variables with a location. For ex-
ample, values of x indicated by the circle and asterisks lead
to locations given by the circle and asterisks, respectively.
All configurations define a cloud of locations in the ellipse.

Step C discards invalid configurations of random vari-
ables that are identified by locations outside prior bounds
�rectangle�. Valid configurations have bounds indicated by
the new tic marks on the x axis and by the intersection of the

FIG. 1. Flow diagram for sequential bound estimation where location of
some object is a function of a variable, x. Probability distribution function is
pdf.
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ellipse and the rectangle. The asterisk is contained in a set
with a valid configuration.

Bounds for the variables are transitioned to the next da-
tum in step D. The bounds for x do not change, but they
could in general. For example, if x was a coordinate of a
stationary �mobile� receiver, its bounds would not �would�
change in the transition.

Step E assigns new distributions to each variable. A uni-
form distribution is suggested to be the most appropriate to
use within the transitioned bounds.

Step F uses the next datum to generate configurations of
variables by drawing from the current distributions of vari-
ables. Two configurations are indicated by the circle and as-
terisks. The cloud of locations for the new random configu-
ration is a new ellipse.

Step G discards invalid configurations as in step C, leav-
ing only valid configurations. Not only does one have better
bounds for location, but one also has better bounds for each
variable. One can estimate distributions of variables from
valid configurations.

When variable X is a datum, bounds and probability
distributions are determined in a slightly different way. Sup-
pose the posterior bounds for X from a previous step are
transitioned to the time just before the next datum, X, is
assimilated �Fig. 2�a��. The next datum value for X �circle,
Fig. 2�b�� has some a priori probability distribution bounded
by the tic marks �Fig. 2�b��. Sequential bound estimation
assigns a probability distribution that is bounded by the in-
tersection of the bounds in panels �a� and �b�, i.e., panel �c�.
Then the distribution in �c� is drawn from to compute con-
figurations of random variables. If all assumptions and data
are handled properly, the bounds in �a� and �b� will overlap.
When they do not overlap, the algorithm can notify the user
that something is wrong. For example, one could have an
instrumental error or an incorrect assumption concerning a
probability distribution.

III. EXAMPLES

We provide simple examples to show how sequential
bound estimation may be used to solve problems of interest
that come up when locating calling animals from widely
separated receivers. Each example treats more variables than
dealt with in the literature. Convergence of distributions is
obtained in each example by increasing the number of valid
configurations until reaching 4000, at which point no signifi-
cant change is found.

A. Verifying sequential bound estimation with data

We show that probability distributions for location are
consistent with data. Previously, an undeveloped form of se-
quential bound estimation was used to locate a whale.23 The
only variable whose bounds were sequentially modified was
the whale’s location. Here, all variables are sequentially
modified except the distributions of the lags.

On 4 June 1995, five omni-directional microphones re-
corded sounds from a Red-winged Blackbird in Port Matilda,
PA �bird B1 in Fig. 3 of Ref. 24�. Isodiachronic location is
done using published differences in travel time �Table 2, Ref.
24�.

A priori distributions of the variables are uniform. Lags
have means as measured with intervals of ±0.000 067 s on
either side due to effects of noise and interference between
multipath.24 The speed of sound has a mean of 344 m/s and
an interval of ±2 m/s on either side. Cartesian components
of the wind have zero means with intervals of ±2, ±2, and
±0.5 m/s on each side for the two horizontal and vertical
components, respectively. Cartesian coordinates of the re-
ceivers have means given by measured values. The interval
on each side of the mean is ±0.05 m except as follows. Re-
ceiver 1 is defined to be at the origin of the coordinate sys-
tem. Receiver 2’s location is defined such that the y axis
passes through it and its z coordinate is zero. Receiver 3 is
defined such that its z coordinate is zero. These definitions
define the absolute location and rotation of the coordinate
system �Table I�. There are five receiver constellations �Eq.
�10��.

It is assumed that the location of the Red-winged Black-
bird is initially described as a uniform random variable in the
Cartesian x−y−z intervals �−30,30� m, �−30,30� m, and
�−5,10� m, respectively, where receiver one is about a meter
above the ground.

Following sequential bound estimation, Cartesian coor-
dinates of the Red-winged Blackbird have 95% and 100%
confidence limits of �9.7±0.1,7.7±1.1,0.4±5.2� m and
�9.7±0.2,7.9±1.6,0.9±5.9� m, respectively. These are con-
sistent with the optical/visual survey for its location which
has a 95% confidence limit of �9.8±0.5,6.8±0.5,2.3±1� m
�Table IV, Ref. 24�.

Twenty probability distributions are estimated in this ex-
ample �nine Cartesian receiver coordinates, three Cartesian
source coordinates, three Cartesian wind components, and
five variables for the speed of sound between the animal and
each receiver�.

FIG. 2. How sequential bound estimation derives new bounds and probabil-
ity distribution �pdf� when a variable X is a datum.

TABLE I. Cartesian �x ,y,z� coordinates for the five receivers shown in Fig.
3 of Ref. 24. Nonzero locations are measured within ±0.05 m.

Receiver

Cartesian coordinate �m�

x y z

R1 0 0 0
R2 19.76 0 0
R3 17.96 −18.80 0
R4 2.34 −29.92 −0.02
R5 −12.41 −14.35 −0.43
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B. Estimating speed of sound: Simulation

We find a probability distribution for the spatially homo-
geneous component of the sound speed field when the loca-
tions of receivers are accurately but imperfectly measured.
Six receivers are distributed in air over a region of about
30 m by 30 m �Fig. 3�. Their elevations are about 2 m, ex-
cept for receiver 6 which is at an elevation of 7 m. The
initially unknown locations for ten sources are chosen at ran-
dom �Fig. 3�. The sources are assumed to produce sound at
10-s intervals at elevations between between 3 and 6 m.

All random variables have a uniform distribution in the
intervals quoted below. Lags are distributed within
±0.000 05 s about their noiseless values.

The initial guesses for the Cartesian coordinates of the
receivers are drawn from a uniform distribution within
±0.05 m of their true values. Their initial distributions are
taken to have means about these values within an interval of
±0.1 m. An error of zero is assigned to the location of re-
ceiver 1 �defined to be the origin�, to the y and z coordinates
of receiver 2, and the z coordinate of receiver 3 because
these define the origin and orientation of the coordinate sys-
tem.

Mild winds are simulated to be spatially homogeneous
with a temporal scale of 5 s. The model assumes their initial
x, y, and z components are specified to fluctuate within ±1,
±1, and 0.5 m s−1 about a mean of 0. The maximum rate of
change of any component is 1 m s−2.

The actual speed of sound is composed of spatially ho-
mogeneous and inhomogeneous components. The homoge-
neous component is about 330 m s−1. It is allowed to vary at
a maximum rate of 0.01 m s−2, so in 10 s it can vary by
0.1 m s−1. The limits for the homogeneous component are

constrained to be within 330±0.5 m s−1. The inhomogeneous
component may vary from section to section within
±0.1 m s−1 at a maximum rate of 0.01 m s−2.

In order to test the ability of sequential bound estimation
to estimate the speed of sound, the algorithm is given a much
wider range of speeds than actually occur. The spatially ho-
mogeneous component of sound speed is assumed to have a
prior distribution that is uniformly distributed within
330±50 m s−1. After sequential bound estimation assimilates
simulated data from source 1, the lower and upper bounds
for the homogeneous component of sound speed are between
330−6.3 and 330+3.8 m s−1, respectively. Following the use
of source 7, these bounds are 330−2.1 and 330+1.3 m s−1,
which is equivalent to a variation of ±2.8 °C if due to tem-
perature. The bounds do not change significantly following
the use of sources 8–10. The correct value of the speed of
sound, about 330 m s−1, falls within the bounds provided by
sequential bound estimation. Sequential bound estimation re-
duces the initial uncertainty of ±50 by a factor of about 29.
The 95% confidence limits for the speed of sound along each
section are about ±1.3 m s−1, which is equivalent to ±2.1 °C.

Consider adding four additional receivers at Cartesian
coordinates �20, 0, 3�, �−20 ,22, 4�, �25, 21, 2�, and
�−5, 3 , 3� m. Ten new randomly chosen source locations
are different than above, but are similarly situated and not
chosen to optimize any measure of performance. When the
same statistics are assumed as above, it is found that the
homogeneous component of the sound speed field has 95%
and 100% confidence limits of ±0.6 and ±0.7 m/s, respec-
tively. Sequential bound estimation reduces the initial uncer-
tainty of ±50 m s−1 by a factor of about 71. If due to tem-
perature, the limits correspond to ±1.0 and ±1.1 °C,

FIG. 3. Horizontal locations of six re-
ceivers and ten sources �circles� used
to estimate the spatially homogeneous
component of sound speed. The re-
ceivers have elevations of 2, 2, 2, 1.98,
1.57, and 7.0 m, respectively.
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respectively. This is an accurate measurement of average air
temperature, and it is about twice as good as the case with
six receivers above.

The number of distributions estimated for the six- and
ten-receiver simulations are 25 and 41, respectively for each
animal. The number of Cartesian receiver coordinates are 12
and 24, respectively, for the six- and ten-receiver simula-
tions. Both simulations use three Cartesian source coordi-
nates, three Cartesian wind components, one homogeneous
component of speed, and six and ten variables for each in-
homogeneous component of speed corresponding to six and
ten receivers, respectively.

C. Estimating wind field: Simulation

Suppose an animal is located at Cartesian coordinate
�20,100,7� m and its signals are monitored at five micro-
phones at �0,0,0�, �25,0,3�, �50,3,5�, �30,40,9�, and
�1,30,4� m, respectively. Each coordinate is initially assumed
to be distributed uniformly within ±0.04 m about the true
values. This accuracy is typical of that obtained from optical
surveys. A priori errors are zero for receiver 1, the y and z
coordinates of receiver 2, and the z coordinate for receiver 3.
These coordinates define the origin and orientation of the
coordinate system.

For definiteness, assume the animal’s call has a rms
bandwidth of 1000 Hz and, following the cross correlation of
the signal between each pair of microphones, the peak
signal-to-noise ratio is 20 dB. The standard deviation of the
peak lag in the cross-correlation function has a standard de-
viation of 16 �s �Ref. 25�, an accuracy that is achieved in
practice. Initial errors of the lags are taken to be uniformly
distributed within ±32 �s of their noiseless values.

Simulated lags are computed for a speed of sound of
330 m/s and for a horizontal wind blowing at 10 m/s to-
ward the positive y Cartesian axis. The speed of sound has
zero variation about a mean of 330 m/s, and the y compo-
nent of the wind is initially assumed to be uniformly distrib-
uted in the interval 0 to +20 m/s. Winds along the x and z
axes are set to zero.

After the first constellation, the distributions of the vari-
ables �except the lags� are assumed to be uniformly distrib-
uted about the most recent values of their sample means
from the valid configurations. The limits of the uniform dis-
tribution are determined using sequential bound estimation.

With isodiachronic location, 95% confidence limits for
the animal are x : 16.6–20.4 m, y : 98.8–101.8 m, and
z : 3.3–40.3 m. These are statistically consistent with the
correct location at �20,100,7� m. The large variation in z
stems from the fact that the animal and receivers are nearly
coplanar.

Valid configurations of the y component of the wind
have 95% confidence limits of 8.9 and 19 m/s. This is con-
sistent with the true speed of 10 m/s.

The number of distributions estimated in this simulation
is 13 �nine Cartesian receiver coordinates, three Cartesian
animal coordinates, and one Cartesian wind component�.

D. Surveying locations of receivers

1. Simulation

Suppose the calls of 100 animals are used to survey the
locations of poorly positioned receivers. For simplicity, sup-
pose the calls occur at 10-s intervals at elevations between 0
and 3 m. These calls could be due to a person walking
around and blowing a whistle or due to animals who natu-
rally call within 3 m of the ground. The true locations of the
receivers are shown in Fig. 3. Horizontal locations of the
calls are chosen to be uniformly distributed within this plot-
ted domain �not shown�. A priori distributions of all vari-
ables are uniformly distributed in the intervals given below.

The x, y, and z components of the wind are distributed
within �−1, +1�, �−1, +1�, and �−0.5, +0.5� m s−1, respec-
tively. Without fluctuations, the mean speed of sound is
330 m s−1. The spatially homogeneous and inhomogeneous
fluctuations of sound speed are distributed in �−0.5, +0.5�
and �−0.2, +0.2� m s−1, respectively. The initial estimates of
the receiver locations are incorrect. Their initial locations are
chosen by drawing from a uniform distribution within ±2 m
of each of their true Cartesian coordinates. Their error distri-
butions are assumed to be within ±3.94 m of each of their
incorrect Cartesian coordinates except as follows. As before,
no error is assigned to the location of receiver 1 �defined to
be the origin�, to the y and z coordinates of receiver 2, and
the z coordinate of receiver 3 because these define the origin
and orientation of the coordinate system.

The spatially homogeneous and inhomogeneous fluctua-
tions of the sound speed are modeled as in Eq. �12�. For
homogeneous fluctuations, we take �cmax and d�cr /dt equal
to 0.5 m s−1 and 0.01 m s−2, respectively. The time series for
this component has a temporal scale of 500 s. For inhomo-
geneous fluctuations, we take �cmax and d�cr /dt equal to
0.2 m s−1 and 0.01 m s−2, respectively. The time series of
this component has a temporal scale of 10 s.

The Cartesian components of the wind have temporal
variations modeled in the same way as the speed of sound.
Maximum values of the x, y, and z components are within
the intervals stated above. The maximum rate of change of
each component is 1 m s−2. The time series of winds have a
temporal scale of 5 s.

Unlike previous examples, the probability distributions
of the lags are also updated using sequential bound estima-
tion. The lags are distributed in intervals of ±0.0001 s on
either side of their noiseless values.

The 100% confidence limits for the Cartesian x, y, and z
coordinates of each receiver are obtained from the lags �e.g.,
Figs. 4 and 5�. Locations improve significantly with the num-
ber of calls processed. A priori errors of ±3.94 m decrease to
values between 0.10 and 3.3 m �Table II�. Surveying accu-
racy is better for receivers 2 and 3. This may occur because
a priori errors are zero for receiver 2’s y and z components
and for receiver 3’s z component. Receiver 6 is less accu-
rately navigated, perhaps because it is higher, by at least
4 m, than any animals, and the other receivers are within
2 m of elevation of the calls. The animal calls contain some
information to locate the vertical coordinates �Table II�, but
because the geometry is mostly horizontal, vertical coordi-
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nates are not surveyed as accurately. The ratio of a priori to
final surveying accuracy varies from 39 to 5 for x and y
components �Table II�.

The number of distributions estimated from each call is

40 �12 Cartesian receiver coordinates, three Cartesian animal
coordinates, one homogeneous component of speed, six in-
homogeneous components of sound speed, three Cartesian
wind components, and 15 lags�.

FIG. 4. Example of surveying receiver
locations from animal calls at un-
known locations near the elevations of
the receivers. 100% confidence limits
�astericks� for the horizontal �x ,y� and
vertical z limits for receiver 4 in Fig. 3
are given as a function of the number
of calls used for surveying. Each Car-
tesian coordinate of a receiver is ini-
tially known within ±3.94 m. The cor-
rect Cartesian coordinates �solid line�
are bounded by the 100% limits. Re-
sults from the last four calls are shown
in the blow-up in the right-column.

FIG. 5. Same as Fig. 4 except this is
receiver 5.
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2. Experiment

Sequential bound estimation is used to provide informa-
tion about the location of the x coordinate of receiver 2 from
Sec. III A �Table I�. The information is provided only from a
single call of a Red-winged Blackbird recorded on five mi-
crophones.

A priori statistics are the same as Sec. III A for isodi-
achronic location except as follows. The reference location
of receiver 2 is changed from �19.76,0,0� to �21,0,0�. It’s a
a priori probability distribution is uniform within ±1.5 m of
its mean of 21 m. It is important that the algorithm does not
know that the x coordinate of receiver 2 is really
19.76±0.05 m.

We find that the 95% confidence limits for the x coordi-
nate of receiver 2 are 19.53 and 21.57 m. This is consistent
with the correct answer of 19.76±0.05 m. Its probability dis-
tribution is skewed toward the correct answer of 19.76 m
�Fig. 6�. Sequential bound estimation can estimate joint dis-
tributions. For example, the joint distribution of the x coor-
dinates of receiver 2 and the bird are highly correlated
�Fig. 7�.

IV. ANOTHER KIND OF LOCATION PROBLEM

To illustrate sequential bound estimation in another con-
text, we show a different way to locate a calling whale or
other source �Fig. 8�. An array is towed along course 	p at
time p when a calling whale is detected at bearing 
p at
sound pressure level Zp from a beamformer. With array cen-
ter at rp, the location of the whale is

sp = rp + �p sin�	p + 
p�î + �p cos�	p + 
p�ĵ , �14�

where the distance from the array center to the whale is �p,

and unit vectors pointing north and east are ĵ and î, respec-
tively. At each time p, we take measurements of array loca-
tion, tow direction, beam angle, and source level. Source
level is converted to distance using some algorithm. For p
=1, we assign upper and lower bounds and prior distribu-
tions for each measurement and for distance �1 given by
f�rp�, f�	p�, f�
p�, and f��p�, respectively. For example, the
prior distribution for distance could be estimated from
source level and be uniformly distributed between 10 and
40 000 m. A prior region is assigned to the location of the
whale, e.g., within a radius of 500 km from the array. Con-
figurations of variables are computed by drawing from
their prior distributions. Locations for each configuration are
obtained from Eq. �14�. Invalid configurations are discarded
�those with the whale outside its a priori bounds�, leaving
valid configurations. We transition the posterior bounds for
all variables and spatial bounds for the whale to the time of
the next datum, at p=2. Since each variable corresponds to a
datum, prior bounds are assigned to each datum at p=2, and
these are intersected with those transitioned from the data
that were transitioned from p=1 �Fig. 2�. Then, uniform dis-
tributions are assigned to all variables within their new inter-
sected bounds, and configurations are drawn from these dis-
tributions. Probability distributions for any variable can be
made for each time p. Sequential bound estimation may be
as accurate or more accurate than any other Bayes-type esti-
mation scheme since the prior distributions of the variables
are usually not known very well in this scenario.

V. OTHER CONSIDERATIONS

Bounds taken from the set of valid configurations almost
always define a smaller interval than the prior bounds for
each variable. We would not want to accept a smaller bound
if it is likely to have occurred by chance because we draw
from a finite number of samples. This “bound-creep” can be
mitigated using standard statistical techniques. Bound-creep
mitigation is used in some of the examples in Sec. III.

Experience with many different kinds of problems is
needed to appreciate convergence criteria for distributions. In
analogy to many Markov chain Monte Carlo approaches,
convergence for sequential bound estimation is checked by
increasing the number of valid configurations until no sig-
nificant change is found. Convergence could be difficult
when one seeks distributions for which a pertinent event oc-
curs with small probability. On the other hand, there is no
advantage in adopting a Gaussian distribution for a prior for

TABLE II. 100% confidence intervals for x, y, and z Cartesian coordinates
of receivers 2–6 after using sequential bound estimation on the lags from
100 animal calls at unknown locations �e.g., Figs. 4 and 5�. For example, the
100% limits for the x component of receiver 2 are ±0.10 m about a mean
value. The mean value is not shown but the mean value plus and minus the
indicated limit encompasses the correct coordinate of the receiver in all
cases. Thea priori errors of each Cartesian coordinate are ±3.94 m. By
definition, the y coordinate of receiver 2 and the z components of receivers
2 and 3 are 0 �Sec. III D�.

Receiver
no.

±100% Confidence limits

x �m� y �m� z �m�

2 0.10 0.00 0.0
3 0.20 0.13 0.0
4 0.81 0.41 3.3
5 0.24 0.36 3.0
6 1.2 0.50 2.9

FIG. 6. Probability density function
for the Cartesian x coordinate of re-
ceiver 2 �Table I� as determined from
sequential bound estimation. The cor-
rect answer for the x coordinate is
19.76±0.05 m.
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the sake of analytical beauty when one distribution is usually
as easy to draw from as another, such as a truncated Gauss-
ian. Because data are finite, measurements cannot strictly
obey a Gaussian distribution.

We define efficiency as the number of valid configura-
tions divided by the number of configurations,

E � V/C . �15�

An efficiency of 1 means that each configuration is a valid
configuration. Efficiency increases �decreases� when vari-
ables approach statistical independence �dependence�. In
Sec. III, the efficiency varies roughly between O�1� and
O�10−3� and depends on the example and receiver constel-
lation in question. Example III D 1 �receiver surveying�

has an efficiency of about 10−3 and takes about 12 days to
run on an Advanced Micro Devices Athlon 1800+ CPU.
Example III D 2 �bird location� has an efficiency of about
0.3 and takes 13 min to run. Little effort has been made to
optimize run times for the software written in the
MATLAB programming language.

VI. CONCLUSION

A new sequential Monte Carlo algorithm called “sequen-
tial bound estimation” was used to estimate the probability
distributions of all pertinent random variables, numbering 13
to 41, in situations where calls from animals were recorded
on widely separated receivers. The algorithm was efficient
enough to provide distributions for all variables because it
did not attempt to propagate joint probability distributions
between the use of subsequent data as done using Bayes
theorem,14 Gibbs samplers,14 and particle filters.15 These
other techniques may be too inefficient to estimate the dis-
tributions of so many variables and that is evidently why the
literature does not appear to report solutions for the problems
dealt with in this paper. Sequential bound estimation was
able to estimate the distributions of the receiver locations,
speeds of sound, winds, lags, and animal locations by se-
quentially processing lags between pairs of receivers. The
algorithm is robust and leads to distributions that bound the
distributions that would be obtained from Bayes theorem if
that theorem was practical to implement. Sequential bound
estimation need not make any linear approximation between
the variables and the data, and it is able to use any realistic
prior distributions for each of the variables in the problem.
Like a Kalman filter, the algorithm is flexible enough to in-
corporate any model for the transition of all the variables
between sequential use of the data.

FIG. 7. Joint probability distribution,
f(r2�x� ,s�x�), from valid configura-
tions of random variables following
use of data from the fifth receiver con-
stellation. The x coordinates of re-
ceiver 2 and the bird location are r2�x�
and s�x�, respectively. The marginal
distribution for r2�x� is shown in Fig.
6. The joint distribution shows the
probability of joint occurrence for bin
intervals of 0.3 and 0.14 m for r2�x�
and s�x�, respectively.

FIG. 8. An array located between the tic marks is towed along course 	p

degrees True at time p. At this time, the center of the array is located at rp

and the bearing angle to the whale call is 
p.
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The covariance intersection method26 is used for Kal-
man filters when the correlation between data is unknown,
but is boundable.26 Sequential bound estimation is somewhat
analogous to that method in that bounds of distributions are
sequentially propagated between data without propagating
joint distributions. The latter approach appears to be useful
because prior distributions are often unknown and it is too
inefficient to propagate joint distributions of many variables
using other sequential Monte Carlo methods.15

According to the new algorithm, the lags of travel time
between widely separated receivers contain significant infor-
mation about the location of a calling animal, the speed of
sound in air, and the locations of receivers whose initial lo-
cations are poorly known. The algorithm indicates that large
prior uncertainties for the speed of sound or receiver loca-
tions can be improved by factors of one or two orders of
magnitude by using the information from the lags. One prac-
tical use of the new algorithm may be to use animal calls to
accurately survey the locations of receivers that may be too
expensive or inconvenient to navigate by other means.
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