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Abstract 

Probability distributions for the heights of maxima and minima in fluctuating nuclear cross sections 

have been obtained from synthetic excitation functions. It is shown how these distributions can be 
used to determine the extent to which experimentally observed large excursions from the average 

cross sections may deviate from the predictions of simple fluctuation theory. A discussion is given of 

problems associated with the detection of resonance anomalies in experimental excitation functions. 

Introduction 

It is well known that, at bombarding energies E such that the mean level width r is 

much greater than the mean level spacing D (that is, riD ~ 1), nuclear reaction cross 

sections exhibit fluctuations similar to those described by the simple statistical model 

of Brink and Stephen (1963) and Ericson (1963). The fluctuations arise from inter

ference between the overlapping states of the compound system. They give rise to 

distributions of cross sections 0', relative to that of the average cross section ii, which 

depend on the number N of independently fluctuating cross sections contributing to 

the reaction. This number depends on the number of magnetic substates involved, 

which in turn depends on the number of decay channels, the spins of the initial 

and final states, and the angle of observation. According to the simple statistical 

model, the cross sections should be correlated over an energy range of '" nr and an 

angular range of ",(kR)-l, where k is the wave number of the incident particles and 

R the interaction radius (Brink et al. 1964), but outside of these ranges the cross 

sections should be uncorrelated. The model also predicts the numbers of maxima per 

unit energy interval, so that a comparison with experimental data enables one to 

deduce r and, in some cases, the fraction of the direct reaction component of the 

reaction. 

The simple theory contains the assumption that ii is independent of the bombarding 

energy. In practice this is almost never the case, owing to effects such as barrier 

penetration and the opening of new channels, and perhaps to more subtle effects as 

well. The slow change of ii over energy regions ~ r must be taken into account before 

the raw experimental data can be compared with the model predictions, and this 

inevitably introduces some uncertainty into the comparison. Nevertheless, when this 

has been done, one usually obtains quite good accordance with the model predictions. 

Throughout the paper we assume that such effects have been accounted for. 

At present it is of greater interest to find data that disagree rather than agree with 

the predictions of the fluctuation model. One reason for this is that the observation of 
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large maxima or deep minima, which possess very improbable values of alii and occur 

in a number of supposedly independent channels, may indicate the presence of a 

special and unusual state at high excitation. Alternatively, it might indicate that the 

model itself is inadequate, as was suggested but not followed up by Moldauer (1967). 

A number of experiments, mainly with heavy-ion projectiles, have recently been 

carried out to search for such anomalies. 

Although a few fairly definite anomalies have been observed, it is generally very 

difficult to establish the existence of such behaviour since, in order to obtain good 

values of ii, it is necessary to cover a large energy range. Also, a number of the many 

(usually hundreds) of open reaction channels must be investigated and these must 

be randomly chosen in the statistical sense. However, a special nuclear state may only 

populate a limited number of channels. Hence, while an obvious violation of the 

model might appear if these channels (which are a priori unknown) were studied alone, 

if many other channels were also included in the analysis, there might appear to be 

little if any violation. Another difficulty is that, in a sufficiently large range of data, a 

number of rather improbable peaks must be expected. 

We are concerned here with the more limited problem of determining the expected 

numbers of peaks (and dips) per unit energy range having maxima (or minima) with 

heights greater (or less) than given values of alii. These values are required if one is to 

make a quantitative assessment of a possible deviation from model predictions. 

As far as we are aware this problem has not been solved previously. An analytical 

solution would be very difficult because the cross sections are correlated over an 

energy region "'nr (P. A. P. Moran, personal communication). We have therefore 

adopted the approach of generating synthetic excitation functions using a digital 

computer. 

Method and Results 

Synthetic excitation functions were generated by means of the Univac 1108 

computer of the Australian National University. The first method, used for the 

case N = 1, was that of Brink and Stephen (1964), in which we have 

a = ISI2 , (1) 

where 

S = IA;./(E-E;.+tir). (2) 
;. 

The amplitudes A;. were all taken to be real and of equal magnitude, with signs chosen 

at random. The compound levels were assumed to be equally spaced with an energy 

separation D of one energy unit, while the coherence energy r was taken to be 10 

energy units (that is, rjD = 10). The summation range was 1 ~ A. ~ 201, or 20r in 

extent, which according to Van der Woude (1966) and Dallimore and Hall (1966) is a 

reasonable compromise between reliability of results and computer time. 

The initial value of a was generated from 201 random signs for the A;. as input data. 

The signs were obtained by determining ( - 1 Y from a set of random numbers x given 

by Abramowitz and Stegun (1964). Each subsequent value of a was obtained by 

decreasing the indices of the A;. by 1 and assigning amplitude A 201 a new random sign, 

which was chosen to be positive or negative according as the least significant digit in 

the antecedent value of a was even or odd. In this manner, synthetic excitation 



Probability Distributions for Fluctuating Cross Sections 295 

functions which extended over 2 x 104 coherence widths (2 x 105 values of u) were 

generated. A small sample of the data is shown in Fig. 1. 

Since it was impracticable to save 2 x 105 numbers in the computer, only the three 

most recently calculated values of u were stored and updated every time a new value of 

u was calculated. After each calculation, the appropriate channel of the spectrum of 

cross sections was incremented. Also the three stored values of u were investigated to 

see if the previously calculated one had been a maximum or minimum. If this was the 

case, the register corresponding to the range of heights within which the maximum 

occurred was incremented. 
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Fig. 1. Example of a synthetic excitation function with N = 1, in which if is the average for 
the entire set of data (2 x 1()4 r in extent). 

The distribution P of the derived cross sections for r; D = 10 is shown in Fig. 2a, 

where it is compared with the theoretical distribution function (Ericson 1963) 

P(u/a) = exp(u/a), (3) 

which applies when r;D =00. It is clear that the present results deviate from the 

theoretical distribution (3) by increasing amounts as u/a increases. To investigate this 

further we generated synthetic excitation functions for r; D = 2·5, 5 and 20. The 

resulting distributions are included in Fig. 2a, from which it can be seen that P only 

approaches the theoretical result (r / D = 00) for very large r; D. Since it was impractic

able to use a value of r; D ~ 10, an empirical correction was applied to the points in 

the r; D = 10 excitation function in order to compare the results with the theory. 

After application of this correction, the distribution agreed with the form (3) to an 

accuracy of 5% for u/a ~ 7. 

It should be pointed out that a value for r; D of 10 is perhaps more typical of 

realistic cases than one of 00. For equal nonzero level spacings, it is obvious that the 

exponential distribution (3) cannot be achieved and that P must vanish for some finite 

value of u/a. Even if more realistic distributions were used for the Aj. and for the 

level spacings (e.g. the Wigner distribution), it would seem likely that the exponential 

distribution would overestimate the probability density for large values of u/a. We did 

not investigate the effect of different distributions for the AA and D but Van der Woude 

(1966) and Dallimore and Hall (1966) obtained almost identical results when they 
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used the Wigner distribution for D instead of constant D. In view of these con
siderations, the adopted procedure of applying an empirical correction probably over

estimates the number of maxima to be expected above any level greater than ujii ~ 3. 

Analysis of the data on maxima and minima showed that the number n of maxima 

per energy interval r was 0'77, which does not agree well with the theoretical 

estimates of 0·587 (Stephen 1963) and 0·55 (Dallimore and Hall 1966, quoted as a 

personal communication from D. M. Brink). However, as is shown in Fig. 2b, it does 

agree with the result of Van der Woude (1966) for FlD = 10, which was obtained by a 

similar method to ours. To examine this situation further, we computed values of n 

for values of r = 2'5, 5 and 20 energy units (Djr = 0'4, 0·2 and 0·05) keeping 
the summation range 1 ::::;; A ::::;; 201. The results of these calculations are also shown 

(full circles) in Fig. 2b. The decrease in the number of maxima observed for Djr > 0·3 
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Fig. 2. Results obtained from the synthetic excitation functions: 

(a) distribution of cross section for the indicated values of r; D and 

D/r 

(b) average number n of maxima observed per energy interval r as a function of D/r. The sharp 
rise in n predicted both by Van der Woude (1966) and the unmodified present results is an artefact 
of the method of generating the excitation functions. 

is probably largely due to the fact that, if maxima are more closely spaced than'" 2D, 

they cannot be observed by the method described here. However, this explanation is 

unlikely to account for the rapid increase observed below Djr = 0'1, since it would 

imply that many maxima were separated by less than 0·1 r. This result is not expected 

from the form of equation (2) nor is it obvious from plots of the excitation functions 

(e.g. Fig. 1). Furthermore, if the summation range is increased to 1 ::::;; A ::::;; 401, the 

number of maxima is found to decrease by a factor of ",2 for Djr = 0·05, as is 
shown by the plus sign in Fig. 2b. The sharp increase in the expected number of 

maxima at low values of Djr is thus an artefact of the method used to generate the 

synthetic excitation functions. The effect arises because of the small discontinuous 

changes that are made to the cross section each time a new amplitude is introduced to 

and removed from the summation (2). Such discontinuities can produce spurious 

maxima and minima when aujaE is small, i.e. near to genuine maxima and minima. 

The number of spurious maxima and minima that can be generated in this way clearly 

increases as the step length Djr decreases. 
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To reduce the effect of discontinuities at the ends of summation (2), the terms with 

A = 1, 2, 3, ... , 10 were multiplied by 0 ·1, 0·2, 0·3, ... , 1·0 and those with A = 191, 

192, 193, ... , 201 by 1·0, 0·9, O·S, ... , 0·1 respectively. Results obtained from this 

modified summation are shown by full diamonds (lower curve) in Fig. 2b. This curve 

has a much shallower rise for Djr < 0·1. Increasing the range of the modified 

summation to 1 :::::; A :::::; 401 has a negligible effect on all calculated points except that 

for Djr = 0·05 (cross in Fig. 2b). We therefore consider that the rjD = 10 data 
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Fig. 3. Properties of maxima in 
fluctuating cross sections calculated by 

the modified summation method: 

(a) distribution of the separations 

between maxima as a function of r for 

N = 3 (the distribution is not 

significantly sensitive to changes in N), 

(b) probability gJ of the presence of a 

maximum greater in height than a/ii in 

an energy interval r as a function of 

a/ii and 

(c) probability ~ of the presence of a 

minimum smaller in depth than a/ii in 
an energy interval r as a function of 

• ii/u. 
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generated in this manner contain an insignificant number of spurious maxima and 
minima. The distribution of the separations between maxima are shown in Fig. 3a. 

From this figure it is evident that the number of maxima to be expected with separ

ations less than 0·2 r is negligible, which indicates that the r j D = 10 data should give 

a good estimate of the number of maxima per energy interval r. This estimate was 

found to be 0·56, which agrees well with the prediction of 0·55 (Dallimore and 

Hall 1966). The modified method for generating the synthetic excitation functions 

was used in deriving the results presented below. 
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Excitation functions for N = 1· 25, 1· 5, 2, 3, 4, 6 and 8 were obtained by adding 

together the appropriate number of corrected independent cross sections for N = 1. 

The distribution functions for u/a were found to be in good agreement with the 

theory, which predicts that they should behave like X2 functions for 2N degrees of 

freedom. The distribution functions for maxima separation were found to be inde

pendent of N within the limits of accuracy of our method. They have the shape shown 

in Fig. 3a. The distributions for the heights of maxima and minima which we obtained 
are shown in Figs 3b and 3c. 
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Fig. 4. Dependence of the factor C on 1 - W.' 

It was found empirically that, for W < O· I, where W is the probability integral 

of the l distribution for 2N degrees of freedom taken over the range 2N(u/a) to 00, 

the expected number of maxima per coherence width r with height ~ u/a is given by 

{jJ = (1. 2 ± 0·2) W. 

The error is not statistical and includes the extreme results required to describe all 

or'the data shown in Fig. 3b. Consequently it might be thought that the number of 

minima observed below a given level per interval r is given by an expression of the form 

p) = C(1- W), 

where C is constant. It was found, however, that C is not constant but varies as 

shown in Fig. 4. Within the present limits of accuracy, C appears to be independent 

of N and is given approximately by the relation 

C = O·52-0·9810g1O(1- W). 

Hence empirical values for the number of minima below a given value of u/a can be 

obtained easily. Our results have poor statistical accuracy for the lower values of 

(1 - W), so that it is uncertain whether the above relationship for C holds accurately 

over the whole range of the present data. There is some slight indication that C may 

become independent of (1- W) as (1- W) becomes smaller. It would certainly be 

unwise to use the expression to extrapolate to very much smaller values of (1- W) 

than we have considered. 
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Discussion 

To show the use of the results of the previous section, we consider two examples. 

Halbert et al. (1967) measured excitation functions for the 12C(160, oc)24Mg reaction 

leading to the first seven states of 24Mg. They noted that, when the data are summed 

over all seven oc-groups, strong peaks are seen at 31·7 MeV bombarding energy at a 

number of observation angles. At 0° and 20° (lab.) they obtained values for a/ii of 

2·72± 0·19 and 2·70± 0·08 with N = 6 and 22 respectively. From the present results 

it follows that the expected number of peaks with heights greater than those observed 

in the measured data-range of84r is 0·017 and 1·0 x 10- 5 for 0° and 20° respectively. 

Data at these two angles would be expected to be independent according to the model, 

and hence the probability of two such peaks being coincident within ± 1- r is given by 
o . 017 xI· 0 x 10 - 5 x 84 -1 = 2·0 x 10 - 9. 

A different type of anomaly was observed by Stokstad et al. (1972) in the same 

reaction. They observed a deep minimum for E = 46·0 MeV in the summed excit~tion 

function for 12 oc-groups taken at 0°. Taking N = 12, it follows that the expected 

number of minima with depths a/ii ~·O ·18 (the observed value) is '" 5 X 10-4 for 

their range of data ( '" 25 r). 

In both of the above cases it is clear from the present results -that the observed 

anomalies are extremely unlikely to be Ericson fluctuations. Hence they may be a 

consequence of special nuclear properties such as quasi-molecular states, as has been 

proposed. We have thus demonstrated how the probability functions presented here 

can be used to investigate the possibility that an anomaly exists in a set of data. It seems 

likely, however, that a quantitative investigation of anomalies should also involve 

consideration of their width as well as their height or depth. This might be of con

siderable help in assessing cases which are not so clear cut as those above. 
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