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Abstract
In this paper, we derive the probability distributions of difference propagation proba-

bilities and input-output correlations for random functions and block ciphers, for several
of them for the first time. We show that these parameters have distributions that are
well-studied in the field of probability such as the normal, Poisson, Gamma and extreme
value distributions.

For Markov ciphers there exists a solid theory that expresses bounds on the complexity
of differential and linear cryptanalysis in terms of average difference propagation probabil-
ities and average correlations, where the average is taken over the keys. The propagation
probabilities and correlations exploited in differential and linear cryptanalysis actually de-
pend on the key and hence so does the attack complexity. The theory of Markov ciphers
does not make statements on the distributions of these fixed-key properties but rather
makes the assumption that their values will be close to the average for the vast majority
of keys. This assumption is made explicit in the form of the hypothesis of stochastic
equivalence.

In this paper, we study the distributions of propagation properties that are relevant
in the resistance of key-alternating ciphers against differential and linear cryptanalysis.
Key-alternating ciphers are basically iterative ciphers where round keys are applied by an
XOR operation in between unkeyed rounds and are a sub-class of Markov ciphers.

We give the distributions of fixed-key difference propagation probability and fixed-key
correlation of iterative ciphers. We show that for key-alternating ciphers, the hypothesis
of stochastic equivalence can be discarded. In its place comes the explicit formulation
of the distribution of fixed-key differential probability (DP) of a differential in terms of
its expected differential probability (EDP) and the distribution of the fixed-key linear
probability (or rather potential) (LP) of a linear approximation (or hull) in terms of its
expected linear probability (ELP). Here the ELP and EDP are defined by disregarding the
key schedule of the block cipher and taking the average over independently selected round
keys, instead of over all cipher keys. Proving these distributions requires no assumptions
standardly made in Markov cipher theory as perfectly uniform behavior, independently
acting rounds or the technique of averaging over keys.

For key-alternating ciphers, we show that if the EDP is equal to 2−n with n the
block length, the fixed-key DP has a distribution that is very close to that in a random
n-bit cipher. The same holds for the ELP and the corresponding fixed-key LP. Finally
we present a technique for computing bounds on the EDP based on the distribution of
probabilities of differential characteristics and of the ELP based on the distribution of LP
of linear characteristics.

Key Words: Block ciphers, Probability Distributions, Differential cryptanalysis, Linear
cryptanalysis
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1 Introduction

Differential and linear cryptanalysis are the two most powerful general purpose cryptographic
attacks known to date. In this paper we identify the properties of block ciphers that determine
their resistance against these attacks. We make explicit the relations between the identified
properties and derive their probability distributions.

1.1 Differential and linear cryptanalysis

In their basic form, both attacks retrieve key information from the last round by analyzing
(large) amounts of plaintext/ciphertext pairs. The key information acquired is then used to
find even more key bits until the full key is found.

Differential cryptanalysis is a chosen-plaintext attack where plaintexts are applied in pairs
that have a fixed difference [5]. The attack exploits the non-uniformity in the distribution
of differences in the outputs of a map α, when pairs of inputs with a fixed difference are
applied. The non-uniformity exploited can be a differential with a high probability, or, for
more advanced versions of the attack, a differential with probability zero, or a combination
of differentials with a high probability.

In the first type of differential attack, α equals the block cipher. The information on the
ciphertext (output) pairs and plaintext (input) pairs is used to derive information on the key
(input). If the distribution of output differences has a large peak with value P , the amount of
plaintext/ciphertext pairs for the attack to be successful is proportional to P−1. P is called
the differential probability (DP). In the second type of differential attack, α is only a part of
the block cipher. The map α is selected in such a way that its inputs and outputs can be
computed from the plaintext and ciphertext and a ‘small’ number of key bits (typically 10
to 20 key bits). As in the first type of attack, the required amount of plaintext/ciphertext
pairs is proportional to DP−1. In general, DP depends on the key. Hence, the probability of
success given a certain amount of plaintext/ciphertext pairs is key-dependent.

Linear cryptanalysis is a known-plaintext attack [20]. It exploits the correlation between
linear combinations of input bits and linear combinations of output bits of a non-linear map α.
In the first type of linear attack, α equals the block cipher. The information on the ciphertext
(output) and the plaintext (input) is used to derive information on the key (input). If the
correlation between input and output equals C, the required amount of known plaintexts
is proportional to C−2. In the second type of linear attack, α is only a part of the block
cipher. The map α is selected in such a way that its inputs and outputs can be computed
from the plaintext and ciphertext and a ‘small’ number of key bits (typically 10 to 20 key
bits). If there is a linear combination of input bits and output bits of α that correlate to zero
with a correlation value C while all other linear combinations have a negligible correlation,
then it is possible to recover the key bits involved in the computation. In this attack the
required amount of known plaintext for the attack to be successful is proportional to C−2.
The quantity C2 is generally denoted by the term linear probability (or rather potential) (LP).
In general, LP depends on the key and hence the probability of success given a certain amount
of known plaintext is key-dependent.

Both linear and differential cryptanalysis have been improved with smart techniques that
make them more efficient. Moreover, they have been extended in several ways and new attacks
have been published that are related to them. The best known extensions are partitioning
cryptanalysis [11] and truncated differentials [17]. Other attacks use difference propagation
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and correlation in different ways. This includes differential-linear attacks [13], impossible
differentials [3, 6], boomerang attacks [34] and rectangle attacks [4]. In all these variants, the
ability to predict difference propagation probabilities and correlations over multiple rounds
that significantly deviate from the average values are essential for their success.

1.2 Existing work

We briefly summarize existing work related to the subject at hand.

1.2.1 Markov ciphers

The Markov cipher theory [18] has inspired many research on iterative block ciphers, including
ours. It can be considered as the first approach to design block ciphers resistant against
differential cryptanalysis. A Markov cipher is an (iterative) cipher for which the average
difference propagation probability over one round is independent of the round’s text input.
For such ciphers, the assumption of independent round keys allows to compute the average
DP of a characteristic as the product of the probabilities of the individual round. Here the
average is taken over all the round keys, considered as independent variables. The average
DP of a differential can be computed —in principle— as the sum of the probabilities of
all characteristics with input difference a in the first round, and output difference b in the
last round. Estimating the average probability of a differential to be equal to the fixed-
key probability for almost all keys, is called making the hypothesis of stochastic equivalence.
After the publication of linear cryptanalysis, Markov cipher theory has been extended to the
resistance against linear cryptanalysis (e.g. see [26, 30]), leading to analogous conclusions
for the LP of linear approximations (hulls) over the cipher. In [27] Markov theory was used
to show that the average DP values in a Markov cipher employing differentially 2-uniform
mappings converges exponentially fast to a flat distribution with high probability.

1.2.2 Provable security

In [23, 2], a theory of provable security against differential attacks is developed. Originally
developed for Feistel ciphers, the theory has been extended to cover more general Feistel-like
constructions in [21]. In [15], the approach is extended further towards SP-networks, and
also covers linear cryptanalysis. Follow-up results [16, 28, 29] allow to tighten the bounds
for certain designs, using more complex counting strategies. The main contribution of these
approaches is the construction of bounds on the average DP of differentials and LP of linear
approximations (hulls), with as only condition the assumption of independent round keys.

1.2.3 Decorrelation theory

In [31, 32] the decorrelation theory is proposed as a way to design ciphers secure against
linear and differential cryptanalysis. The authors propose to use transformations reminiscent
of universal hash functions [33] as an alternate way to have provable upper bounds to EDP and
ELP. These transformations are used to construct a decorrelation module which can be plugged
in into regular ciphers to make them secure against linear and differential cryptanalysis.
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1.3 The contributions of this paper

The complexity of an attack exploiting a differential is determined by the DP of that differen-
tial. In general, including Markov ciphers as well as ciphers using decorrelation modules, this
quantity depends on the value of the key. The existing theories on cipher design [18, 23, 32]
study the DP averaged over all keys assuming independent round keys, denoted by expected
DP (EDP). This approximation is known as the hypothesis of stochastic equivalence. The
same argument is true for fixed-key and average LP in the context of linear cryptanalysis.
Proposed cipher designs upper bound the average value in order to obtain resistance against
differential and linear attacks [21].

The problem with this approach is that the average values in general do not allow to draw
conclusions on the shape of the distributions of the fixed-key values. In other words, the upper
limits proven for the average probabilities do not guarantee that the fixed-key probabilities
are small. This has been demonstrated in [1].

In the ideal case the distributions of the fixed-key differential and linear properties of a
cipher are the same as for random block ciphers. A random block cipher can be modeled as
a family of random permutations. For this purpose, we derive in Section 2 the distributions
of the typical and maximum DP (or rather cardinality) of differentials over random vector
Boolean functions and permutations. Section 3 does the same for the correlations of linear
approximations (or hulls) over random vector Boolean functions and permutations. Section 4
treats the cardinalities and LP values in random block ciphers, both for the fixed-key case
and for the averages over all keys.

In this paper we consider classes of ciphers that are a subset of Markov ciphers: long-
key ciphers and key-alternating ciphers, defined in Section 5. Key-alternating ciphers are
basically iterative ciphers where round keys are applied by an XOR operation in between
unkeyed rounds. Long-key ciphers are key-alternating ciphers with independent round keys.
For long-key ciphers we show in Section 6 that the distribution of the fixed-key probabilities
of differentials is determined by the value of the average probability, the EDP. Similarly, in
Section 7 we show that the distribution of the fixed-key LP is determined by the value of
the average LP over all keys, the ELP. We show that these results remain valid if a key
schedule is introduced, i.e. if the long-key cipher is turned into a key-alternating cipher.
Hence, for key-alternating ciphers we show that the hypothesis of stochastic equivalence is
replaced by the fact that the distribution of the fixed-key DP is determined by the average
value of the corresponding long-key cipher. These quantities determine not only the shape of
the distributions of the fixed-key quantities, but also the extreme value distribution, i.e. the
maxima over all values of the key.

In Section 8 we present a method to compute bounds for the EDP over a key-alternating
cipher given the distributions of the DP of differential characteristics and for the ELP over a
key-alternating cipher given the distributions of the LP of linear characteristics.

Our approach differs from that of decorrelation theory in the following way. Decorrelation
modules reduce the average DP of differentials, but not the fixed-key DP. In particular, for
each value of the key, there is a differential with very high probability. The formal security
proofs are based on the fact that since the key is not known, the attacker can not predict
which differential has high DP. With our approach, we can avoid altogether the occurrence
of differentials with high fixed-key DP, where ‘high’ means relative to what can be expected
for a family of random permutations.

Section 10 contains the conclusions, Appendix A lists the probability distributions we
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encounter in this paper and Appendix B derives the distribution of the maximum of a large
number of variables with a given distribution.

2 Differentials in random functions

In this section we study the distributions related to the DP of differentials in random vector
Boolean functions. This serves as a basis for studying the distributions for block ciphers in
later sections and can also be used to predict the differential properties of randomly generated
S-boxes.

2.1 Random vector Boolean functions and permutations

A Boolean vector is a vector with bits as coordinates. The bitwise binary addition of two
Boolean vectors a and b of the same dimension is a Boolean vector whose coordinates consist
of the binary addition (addition modulo 2) of the corresponding bits of a and b. We denote
this operation by +.

A Boolean function b = f(a) is a function that maps a Boolean vector to a bit.

f : GF(2)n → GF(2) : a 7→ b = f(a) . (1)

The imbalance Imb(f) of a Boolean function f is the number of inputs that it maps to 0
minus the number of inputs that it maps to 1 divided by two. The imbalance can have any
integer value and ranges from −2n−1 to 2n−1. We have:

Imb(f) =
1
2

(# {a|f(a) = 0} −# {a|f(a) = 1}) . (2)

A Boolean function with imbalance 0 is called balanced.
A vector Boolean function b = α(a) is a function that maps a Boolean vector to another

Boolean vector:
α : GF(2)n → GF(2)m : a 7→ b = α(a) . (3)

This vector Boolean function has n input bits and m output bits. A vector Boolean function
can be specified by its definition table: an array containing the output value for each of the
2n possible input values.

Each bit of the output of a vector Boolean function is itself a Boolean function of the
input vector. These are the coordinate Boolean functions of the vector Boolean function.

A vector Boolean transformation is a vector Boolean function with the same number of
input bits as output bits. A vector Boolean permutation is an invertible vector Boolean
transformation and maps all input values to different output values.

There are 2m2n
n-bit to m-bit vector Boolean functions. A random n-bit to m-bit vector

Boolean function is a function selected at random from the set of 2m2n
different n-bit to m-bit

vector Boolean functions, where each function has the same probability of being chosen. A
random vector Boolean function can be obtained by filling its definition table with 2n random
m-bit values. A random n-bit permutation is a permutation selected at random from the set
of 2n! possible n-bit permutations, where each permutation has the same probability of being
chosen.
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2.2 Terminology related to differentials

A pair is an unordered set of two Boolean vectors of the same dimension: {v, u} = {u, v}.
The difference of a pair is a Boolean vector with value u + v, where + denotes the bitwise
difference or XOR. In the context of difference propagation in a vector Boolean function α, we
speak of an input difference of a pair of vectors {v, u} and of its output difference α(u)+α(v).
For a given n, there are 2n − 1 possible non-zero input differences. For each non-zero input
difference, there are 2n−1 pairs with that input difference.

A differential over a vector Boolean function α consists of an input difference a and an
output difference b and is denoted by (a, b). The differential probability (DP) of the differential
(a, b) is given by the number of pairs that have input difference a and output difference b,
divided by the total number of pairs with input difference a:

DP(a, b) = # {{v, u}|v + u = a and α(v) + α(u) = b} /2n−1 (4)

Note that the differential probability can take only a limited number of values: it is either
zero or a multiple of 21−n. In the following, we will consider DP(a, b) as a stochastic variable.
It is often more convenient to work with the cardinality of the differential, because this term
avoids confusion between the stochastic variable DP(a, b) and its probability distribution.
Furthermore, using the term cardinality, we emphasize the discrete character of this quantity.

Definition 1 The cardinality of a differential N(a, b) is the number of pairs with input dif-
ference a that have output difference b.

N(a, b) = # {{v, u}|v + u = a and α(v) + α(u) = b} . (5)

Hence the cardinality equals the DP times 2n−1. An impossible differential is a differential
with DP (or cardinality) equal to 0. The weight of a possible differential (a, b) is the absolute
value of the binary logarithm of its differential probability:

wd(a, b) = − log2 DP(a, b) . (6)

The weight of a differential ranges from 0 to n− 1.
A differential with an input difference equal to 0 also has output difference 0 and is called

a trivial differential. The trivial differential has differential probability 1, cardinality 2n−1 and
weight 0. For a permutation α, all differentials (a, 0) with a 6= 0 are impossible differentials.
The only possible differential of the form (a, 0) is the trivial differential. In the remainder of
this document we will use the term differential to mean nontrivial differential.

In the following subsections we study distributions of the DP and cardinality of differentials
over random vector Boolean functions and permutations.

2.3 The cardinality of a differential for a random function

The cardinality of a differential is determined as follows.

Theorem 1 For a random n-bit to m-bit vector Boolean function, the cardinality N(a, b) of
a given differential (a, b) is a stochastic variable with a binomial distribution:

Pr (N(a, b) = i) =
(
2−m)i (

1− 2−m)2n−1−i

(
2n−1

i

)
.

6



Proof: A random vector Boolean function maps the 2n different input values v to independent
output values α(v) and hence it maps the differences of pairs {v, u} to independent output
differences. Given (a, b), taking a pair with a difference a is an experiment that is successful if
the output difference is b. The number of experiments is 2n−1 and the probability of success
is 2−m. The number of successes has the binomial distribution. ut

Corollary 2 For n ≥ 5 and n−m small , we have:

Pr (N(a, b) = i) ≈ e−2n−m−1 2(n−m−1)i

i!
= Poisson(i; 2n−m−1) .

Proof: If n ≥ 5 and n − m is small, then the binomial distribution can be approximated
closely by a Poisson distribution with λ = 2n−m−1 (see Appendix A). ut

Corollary 3 If m is small, we have:

Pr(N(a, b) = i) ≈ Z

(
i− 2n−m−1

√
2n−m−1(1− 2−m)

)
.

with Z () denoting a normal distribution (see Appendix A).

Proof: For small m, the binomial distribution can be approximated closely by a normal
distribution with mean µ(N(a, b)) = 2n−m−1 and variance σ2 = 2n−m−1(1 − 2−m) (see Ap-
pendix A). ut
Both approximations improve as n grows.

For a Boolean function we have m = 1 and hence the cardinality N(a, b) has a normal
distribution with

µ(N(a, b)) ≈ 2n−2, (7)
σ2(N(a, b)) ≈ 2n−3 . (8)

Corollary 4 For a random vector Boolean transformation we have

Pr (N(a, b) = i) ≈ Poisson(i;
1
2
) =

e−
1
2

i!2i
.

Proof: This follows from Corollary 2. For a transformation it holds that m = n and hence
λ = 1

2 . ut
In a random permutation, the entries in the definition table of a permutation are not

independent from one another. In the series of 2n−1 experiments of applying the pairs with a
given nonzero input difference and observing the output difference, we see that in the output
pairs all 2n possible output values appear exactly once. This restriction strongly complicates
the analysis. Fortunately, the case of permutations was rigorously studied and described in
[24, 12]. With the exception of the fact that differentials of the form (a, 0) with a 6= 0 are
impossible, it turns out that the probability that a pair with a given input difference maps to
a given output difference is not noticeably affected by the fact that the transformation is a
permutation. It follows that in the computation of the distribution it is sufficient to replace
the probability of success by 1/(2n − 1) for nonzero output differences b and by 0 for b = 0.
For large n this has a negligible effect on the cardinality of differentials (a, b) with b 6= 0 and
hence Corollary 4 for random transformations is also valid for random permutations.
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2.4 Maximum cardinality

In [24, 12] bounds have been proven for the maximum DP over permutations. In this sec-
tion, we derive the shape of the distribution of the maximum cardinality for Boolean vector
functions and permutations.

Let the cumulative distribution of the cardinality of a differential be denoted by Φ(`).

Φ(`) = Pr(N(a, b) ≤ `) . (9)

For values of ` with 1 < ` ¿ 2m, the distributions for differentials with the same input and
different outputs can be approximated closely by independent distributions. We have:

Pr
(

max
b

N(a, b) ≤ `

)
= Pr (∀b : N(a, b) ≤ `) ≈ (Φ(`))2

m
. (10)

This expression is not valid for ` = 0 as not all differentials over which the maximum is taken
can have cardinality 0.

If Φ(`) ≈ 1 we can write:

(Φ(`))2
m

= e2m log(Φ(`)) ≈ e−2m(1−Φ(`)) . (11)

For a random vector Boolean function, the cumulative distribution of the maximum cardi-
nality over all differentials with a given input difference is therefore:

Pr
(

max
b

N(a, b) ≤ `

)
≈ e−2m(1−Φ(`)) . (12)

Again, for values of ` with 1 < ` ¿ 2m, the distributions for differentials with the different
inputs can be approximated by independent distributions. For a random vector Boolean
function, the cumulative distribution of the maximum cardinality is:

Pr
(

max
a,b

N(a, b) ≤ `

)
≈ e−2m(2n−1)(1−Φ(`)) ≈ e−2m+n(1−Φ(`)) . (13)

If we derive the expressions for n-bit vector Boolean permutations instead of n-to-m vector
Boolean functions, we must replace 2m by 2n − 1. For large n we can approximate 2n − 1 by
2n, yielding:

Pr
(

max
b

N(a, b) ≤ `

)
≈ e−2n(1−Φ(`)) , (14)

Pr
(

max
a,b

N(a, b) ≤ `

)
≈ e−22n(1−Φ(`)) . (15)

For a permutation, λ = 1
2 and we can approximate Φ(`) closely by [10, 19]:

Φ(`) ≈ 1− 2`

2`− 1
e−

1
2

`!2`
. (16)

Using (14), (15) and (16), we can compute the distributions for concrete values of n. Table 1
gives the probability distributions for the maximum cardinality over all differentials for n =
64, 128 and 256. The values in the table illustrate that the distributions are very narrow. The
probability is only large in a single, or two successive values of `. In Appendix B we derive
an expression to compute the expected value of the maximum as a function of n and discuss
the shape of the distribution. Table 2 lists the mean values of the distributions for random
permutations with typical dimensions.
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Table 1: Distribution of t = maxa,b N(a, b) for permutations of some given sizes.

n = 64 n = 128 n = 256
t Pr t Pr t Pr
26 4.5× 10−62 47 1.8× 10−9 83 8.0× 10−56

27 0.080 48 0.81 84 0.47
28 0.88 49 0.18 85 0.52
29 0.042 50 0.002 86 0.004
30 7.1× 10−4 51 2.0× 10−5 87 2.5× 10−5

31 1.2× 10−5 52 1.9× 10−7 88 1.4× 10−7

32 1.8× 10−7 53 1.8× 10−9 89 7.9× 10−10

33 2.7× 10−9 54 1.7× 10−11 90 4.4× 10−12

34 4.0× 10−11 55 1.5× 10−13 91 2.4× 10−14

Table 2: Mean value for the distribution of the maximum cardinality

n µ(maxa N) µ(maxa,b N) n µ(maxa N) µ(maxa,b N)
8 3.34 5.64 64 16.22 27.96

12 4.53 7.68 96 22.20 38.29
16 5.64 9.54 128 27.96 48.19
24 7.68 13.08 192 38.29 67.02
32 9.54 16.22 256 48.19 84.53
48 13.08 22.20 384 67.02 118.02
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Figure 1: Distributions of maximum cardinality in 8-bit random permutations.

2.5 Experimental data

To verify our approximations, we have generated a large number of random invertible S-
boxes ranging from 4 to 8 bits and computed the distribution of the maximum cardinality.
Starting from 5 bits the typical shape of extreme value distribution (see Appendix B) becomes
apparent. Figure 1 illustrates that already for values as small as 8 the distributions derived
in this section are quite close to experimentally obtained data.

3 Correlation in random functions

In this section we study the distributions of correlation and LP of linear approximations over
random vector Boolean functions and permutations. This serves as a basis for studying the
distributions for block ciphers in later sections and can also be used to predict the correlation
properties of randomly generated S-boxes.

3.1 Terminology related to correlation

A parity of a Boolean vector is a binary Boolean function that consists of the binary addition
of a number of its coordinates. A parity is determined by the indices of the bits of the Boolean
vector that are included in the binary addition.

The selection vector u of a parity is a Boolean vector that has a 1 in the bit positions that
are included in the parity and a 0 in all other positions. Analogously to the inner product
of vectors in linear algebra, we express the parity of vector a corresponding with selection
vector u as uTa. In this expression the T suffix denotes transposition of the vector u.

A (linear) approximation over a vector Boolean function α consists of an n-bit input
selection vector v and an m-bit output selection vector u and is denoted by (v, u). What we
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call a linear rule, is sometimes referred to as a linear approximation. However, we think it
makes sense to introduce a new term here, because the term linear approximation is also used
to indicate what we call a linear trail (see Section 7.1). An approximation with both the input
selection vector and the output selection vector equal to 0 is called a trivial approximation.
The imbalance Imb(v, u) of an approximation (v, u) over a function α is the imbalance of the
Boolean function given by:

vTa + uTα(a) .

The correlation of an approximation is its imbalance divided by 2n−1:

C(v, u) = Imb(v, u)/2n−1 = 21−n × Imb(v, u) . (17)

The correlation ranges from −1 to +1. A correlation with value −1 means that the parities
defined by v and u are each others complement and value +1 means that they are equal.
Several authors work with the bias [20]. The bias of an approximation is its correlation
divided by two. We prefer to follow here the terminology of e.g. [22] and work with the
correlation. Note that the quantity denoted here by correlation, corresponds exactly to the
definition of correlation in other fields of mathematics, e.g. probability theory [14].

The linear probability (or rather potential) (LP) of an approximation LP(v, u) is the square
of its correlation and ranges from 0 to 1. We call an approximation with zero correlation an
impossible approximation. The weight of a possible approximation is the absolute value of the
binary logarithm of its LP. The weight ranges between 0 and 2(n− 1). It is well known, see
e.g. [7], that for any vector Boolean function and for all u:

∑
v

LP(v, u) = 1 . (18)

The approximation with output selection vector 0 and input selection vector 0 is the only
possible trivial approximation. It has imbalance 2n−1, correlation 1 and weight 0. Approxima-
tions (v, 0) with v 6= 0 are impossible approximations. For permutations, all approximations
(0, u) with u 6= 0 are also impossible approximations. The weight of an approximation over
an n-bit permutation ranges from 0 to 2(n− 2) (as the correlation of an approximation over
a permutation is an integer multiple of 2n−2). In the remainder of this document we will use
the term approximation to mean nontrivial approximation.

3.2 Correlation of an approximation over a random vector Boolean func-
tion

We start with a result on the imbalance of an approximation.

Theorem 5 For a random n-bit to m-bit vector Boolean function, the imbalance Imb(v, u)
of an approximation is a stochastic variable with the following distribution:

Pr(Imb(v, u) = z) = 2−2n

(
2n

2n−1 + z

)
.

Proof: We start by computing the number of vector Boolean functions for which an approx-
imation (v, u) has imbalance z. For a given Boolean function f , the number of n-bit to m-bit
vector Boolean functions α that satisfy

vTa + uTα(a) = f(a)
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is independent of the choice of f and is equal to 2m2n−1
. So the number of vector Boolean

functions that satisfy Imb(v, u) = z is equal to 2m2n−1
times the number of Boolean functions

f(a) with imbalance z. Dividing by the total number of n-bit to m-bit vector Boolean
functions results in the given distribution for the imbalance. ut

Corollary 6 For n ≥ 5, the result of Theorem 5 can be approximated by:

Pr(Imb(v, u) = z) ≈ Z

(
z

2(n−2)/2

)
,

for z an integer and 0 otherwise.

Proof: The distribution of the imbalance is binomial. If 2n is large, it can be approximated
closely by a normal distribution with µ(Imb) = 0 and σ(Imb) = 2(n−2)/2 [10, 19]. ut
For the correlation this yields C(v, u) = 2−n+1Imb(v, u), hence µ(C) = 0 and σ(C) = 2−n/2.

Approximating the discrete distribution of (6) by a continuous density function, we can
derive from it the density function of the LP. This results in a Gamma distribution (see
Appendix A).

Corollary 7 For a random n-bit to m-bit vector Boolean function, with n ≥ 5, the probability
distribution of the LP of an approximation can be approximated by a Gamma distribution:

Pr(LP = z) ≈ 2n/2

√
2πz

e−
z

21−n ,

for z > 0 and 0 otherwise.

This distribution has mean µ(LP) = 2−n and standard deviation σ(LP) =
√

2× 2−n.

3.3 Correlation of an approximation over a random permutation

We first derive the distribution of the imbalance of an approximation over a random n-bit
vector Boolean permutation. This distribution was already given in [25] but the proof was
missing due to page limit restrictions.

Lemma 8 ([25]) For a random n-bit permutation, the imbalance Imb(v, u) of an approxi-
mation is a stochastic variable with the following distribution:

Pr(Imb(v, u) = 2x) =

( 2n−1

2n−2+x

)2

( 2n

2n−1

) .

Proof: We start by computing the fraction of permutations for which an approximation (v, u)
has imbalance Imb(v, u) = z. Consider the Boolean function g defined by

g(a) = uTα(a). (19)

Clearly, g(a) is an output parity of α. Since α is a permutation, g(a) is balanced. Its definition
table contains 2n−1 zeroes and 2n−1 ones.

A vector Boolean permutation for which one output parity has been fixed to a function g
can be constructed as follows. Complement the output parity with an (n−1)-bit permutation
for the part of the definition table with g(a) = 0 and an (n−1)-bit permutation for the part of
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the definition table with g(a) = 1. It follows that the number of such vector Boolean permu-
tations is independent from the particular function g(a) and only depends on the dimension
n. Hence the fraction of vector Boolean permutations that satisfy Imb(v, u) = z is equal to
the number of balanced Boolean functions g that satisfy

Imb(g(a) + vTa) = z , (20)

divided by the total number of balanced Boolean functions.
We compute now the number of balanced Boolean functions that satisfy (20). Partition

the definition table of g(a) in two halves: D0 for which vTa = 0 and D1 for which vTa = 1.
The total imbalance of g(a) + vTa is given by the imbalance of g(a) restricted to D0 (called
x) minus the imbalance of g(a) restricted to D1 (called y). As g(a) is balanced, we have
x + y = 0 and so y = −x. The imbalance of g(a) + vTa is hence given by 2x. It follows that
in a vector Boolean permutation all approximations have an even imbalance.

The number of balanced Boolean functions g(a) for a given value of x is:
(

2n−1

2n−2 + x

)(
2n−1

2n−2 − x

)
=

(
2n−1

2n−2 + x

)2

. (21)

If we divide this by the total number of balanced Boolean functions, we obtain the probability
distribution of the imbalance. ut

In [25], it is proven that the number of approximations with correlation equal to 0, tends to
zero when n grows. Additionally, some upper bounds are derived on the maximum correlation
amplitude over all approximations of a random permutation. The distributions for correlations
and maximum LP values we derive in the remainder of this section and following sections,
confirm these results.

Theorem 9 For a random n-bit permutation, with n ≥ 5 the imbalance Imb(v, u) of an
approximation is a stochastic variable with a distribution that can be approximated as follows:

Pr(Imb(v, u) = z) ≈ 2Z

(
z

2(n−2)/2

)
,

for z even and zero otherwise.

Proof: We start with the expression of Lemma 8. If 2n−1 is large, we have:
(

2n−1

2n−2 + x

)
≈ 22n−1

Z

(
x

2(n−3)/2

)
, (22)

and (
2n

2n−1

)
≈ 22n 2−(n−2)/2

√
2π

. (23)

Working this out yields:

Pr(Imb(v, u) = 2x) ≈ Z

(
x

2(n−4)/2

)
. (24)

Substituting x by z/2 gives the desired distribution. ut
It follows that the correlation of an approximation over a random permutation and a

random transformation are both approximated by a normal distribution with mean 0 and
variance 2−n. They differ in the fact that the probability is only non-zero for correlation
values that are an integer multiple of 22−n for permutations and 21−n for transformations.
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3.4 Maximum LP

Let the cumulative distribution of the LP of an approximation be denoted by Φ(x):

Φ(x) = Pr(LP(v, u) ≤ x) . (25)

For values of x ¿ 1, the distributions Φ(x) for approximations with the same output parity
and different input parities can be approximated by independent distributions. We have:

Pr(max
v

(LP(v, u) < x) ≈ Φ(x)2
n

. (26)

If Φ(x) is very close to 1, we can approximate this by:

Pr(max
v

(LP(v, u) < x) ≈ e−2n(1−Φ(x)) . (27)

Again, for values of x ¿ 1, the distributions Φ(x) for approximations with different output
parities can be approximated by independent distributions. For the cumulative distribution
of the maximum LP of a random vector Boolean function we have:

Pr(max
v,u

(LP(v, u) < x)) ≈ e−(2m−1)2n(1−Φ(x)) ≈ e−2m+n(1−Φ(x)) . (28)

If we derive the expressions for permutations instead of transformations, we must replace 2n

by 2n − 1. For large n we can approximate 2n − 1 by 2n, yielding:

Pr(max
u

(LP(v, u) < x) ≈ e−2n(1−Φ(x)) . (29)

Pr(max
v,u

(LP(v, u) < x) ≈ e−22n(1−Φ(x)). (30)

Due to the fact that
∑

v LP(v, u) = 1, all these distributions are 0 for x < 2−n.
In Appendix B we have derived the distributions of the maximum. Their mean and

standard deviation depend on the number of approximations the maximum is taken over. If
we denote this number by 2y, the distribution of the maximum has mean 2−n(1.38y−ln(1.38y))
and standard deviation 2.6× 2−n.

3.5 Experimental data

We have computed the maximum LP of a large numbers of random permutations. Also here,
the typical shape of extreme value distribution (see Appendix B) becomes apparent starting
from 5 bits. Figure 2 illustrates that already for an 8-bit permutation our approximations
match the experimental data quite closely.

4 Differentials and Correlation in Random Block Ciphers

A block cipher B with block length n and key length h is an array of 2h vector Boolean
permutations operating on n-bit Boolean vectors. Each key value k determines a vector
Boolean permutation denoted by B[k]. We also refer to B[k] as a fixed-key (block) cipher. A
random block cipher with block length n and key length h is an array of 2h n-bit random
permutations: one random n-bit permutation for each key value. Equivalently, a random
block cipher with block length n and key length h is a block cipher chosen randomly from
the set of (2n!)2

h
possible block ciphers of these dimensions, where each block cipher has an

equal probability of being chosen.
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Figure 2: Distributions of maximum cardinality in 8-bit random permutations.

Table 3: Expected values for the maximum of the fixed-key cardinality over all keys and
differentials

n h µ(maxk,a,b N [k]) h µ(maxk,a,b N [k])
64 56 37 128 48
96 96 53 192 67

128 128 67 256 85
192 128 85 256 101
256 192 110 256 118

4.1 Differentials in random block ciphers

We call the cardinality of a differential over a block cipher where the key is fixed to a specific
value a fixed-key cardinality (of that block cipher).

The fixed-key cardinality of a differential over a random block cipher has the same distri-
bution as the cardinality of a random permutation. We denote it by the symbol N [k](a, b).
Since a random block cipher is an array of 2h fixed-key block ciphers, the distribution of the
maximum over all keys of the fixed-key cardinalities of differentials of a random block cipher
is given by:

Pr
(

max
a,b,k

N [k](a, b) < `

)
≈ e−22n+h(1−Φ(`)) . (31)

Table 3 lists the expected values of the maximum fixed-key cardinality for random block
ciphers with typical dimensions.

We can consider a differential (a, b) over a block cipher B as the combination of all dif-
ferentials (a, b) of its fixed-key block ciphers. The total cardinality Ntot of a differential (a, b)
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Table 4: Values of µ(maxk,v,u LP[k]) for random block ciphers

n h µ(maxk,v,u LP[k]) h µ(maxk,v,u LP[k])
64 56 252× 2−64 128 351× 2−64

96 96 396× 2−96 192 529× 2−96

128 128 529× 2−128 256 706× 2−128

192 128 706× 2−192 256 883× 2−192

256 192 972× 2−256 256 1061× 2−256

over a block cipher B is the sum of the fixed-key cardinalities of the differential (a, b) over all
keys.

Ntot(a, b) =
∑

k

N [k](a, b) . (32)

The average DP can be computed as the total cardinality divided by 2h, the number of
possible keys, and 2n−1, the number of pairs with input difference a.

Theorem 10 The distribution of the total cardinality of a differential over a random block
cipher is very close to a normal distribution with mean µ(Ntot) = 2h−1 and standard deviation
σ(Ntot) =

√
2h2−1 = 2(h−1)/2.

Proof: The total cardinality of a differential over a random block cipher is the sum of 2h

independent variables. For all reasonable values of h, 2h is large enough to invoke the central
limit theorem. The individual variables have the distribution of (4), i.e. with mean 2−1 and
variance 2−1. ut
The distribution of the average DP has mean 2−n and standard deviation 2(h−1)/2/2h+n−1 =
2−n2(1−h)/2.

We can estimate the maximum and minimum of the average cardinality of all differentials
over a random block cipher by applying the formulas in Appendix B.1. While a random
block cipher always has differentials with high fixed-key cardinality, the average cardinality
of differentials stays extremely close to their mean value 1/2.

4.2 Correlations in random block ciphers

A linear approximation over a block cipher is often indicated by the term hull. We call the
correlation (LP) of a hull over a block cipher where the key is fixed to a specific value a
fixed-key correlation (LP).

The distribution of the maximum over all keys of the fixed-key LP of hulls of a random
block cipher is given by:

Pr
(

max
k,a,b

LP[k](a, b) < x

)
≈ e−22n+h(1−Φ(x)) . (33)

Table 4 lists the expected maximum values of the fixed-key LP for a number of block ciphers
with typical dimensions.

We can consider a hull (v, u) over a block cipher B as the combination of the fixed-key
hulls (v, u) for all keys. The average LP of a hull (a, b) is the average of the fixed-key LP
values of (a, b) over all keys.
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Figure 3: Block diagram of an iterative cipher.

Theorem 11 The distribution of the average LP of a hull over a random block cipher is very
close to a normal distribution with mean 2−n and standard deviation 2−n2(1−h)/2.

Proof: The fixed-key LP of a hull has a Gamma distribution with mean 2−n and standard
deviation 2

1
2
−n (Corollary 7). Application of the central limit theorem results in the given

distribution. ut
As in the case for the total cardinality of differentials, the average LP of hulls stays very
close to its mean value 2−1. The extreme values can be found by applying the formulas in
Appendix B.1.

5 Iterative Block Ciphers

Most block ciphers are constructed as a sequence of rounds, where each round is a key-
dependent permutation. The keys that are used by the rounds are called round keys and
to avoid confusion the key of the block cipher is called the cipher key. The round keys are
derived from the cipher key by the key schedule. A block cipher with this structure is called
an iterative (block) cipher. Figure 3 depicts the iterative block cipher structure.

5.1 Key-alternating and long-key ciphers

Key-alternating (block) ciphers are a class of iterative ciphers in which the round keys are
introduced in a particularly simple way.

Definition 2 A key-alternating cipher consists of an alternating sequence of unkeyed rounds
and simple bitwise key additions.
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Figure 4: Block diagram of a key-alternating cipher.

The key-alternating cipher structure is depicted in Figure 4. Most examples of key-alternating
ciphers are ciphers with a Substitution-Permutation Network (SPN) structure. However, it
is also possible to present a cipher with a Feistel structure as a key-alternating cipher, on
the condition that the F function can be presented as the sequence of a round key addi-
tion and an unkeyed function. For DES this is not possible due to the expansion before
the key addition and hence DES is not a key-alternating cipher. Figure 5 illustrates the
alternative representation for a balanced Feistel cipher. To illustrate the differences between
Markov and key-alternating ciphers: DES, IDEA, Twofish, RC5, RC6, Serpent, Square and
Rijndael (AES) are all Markov ciphers, but of these only Serpent, Square and Rijndael are
key-alternating ciphers.

In order to develop our reasoning, we introduce yet another type of block cipher: long-key
ciphers.

Definition 3 A long-key cipher is a key-alternating cipher with a particularly simple key
schedule. It has a h = n(r + 1) bit cipher key that consists of the concatenation of the r + 1
round keys.

We call the key schedule of a long-key cipher trivial. Note that a long-key cipher is a special
case of a Markov cipher. In particular, it satisfies, by definition, the assumption of independent
and random round keys. Note further that we introduce this type of cipher only to explain
better in the following sections our extensions to the Markov cipher theory.

6 Differentials in Key-alternating Ciphers

In this section we study the distributions of the total cardinalities and fixed-key cardinalities
of differentials over key-alternating ciphers.
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Figure 5: Two balanced Feistel rounds (left) and an alternative key-alternating representation
(right).

6.1 Characteristics in iterative block ciphers

A characteristic Q through an r-round cipher consists of a sequence of r + 1 differences:

Q =
(
q(0), q(1), q(2), . . . , q(r−1), q(r)

)
. (34)

The fixed-key cardinality and DP of a characteristic through an iterative cipher are defined
in the same way as the fixed-key cardinality and DP of a differential. We have

N [k](Q) = #
{
{v, u}|v + u = q(0) and ρ(v) + ρ(u) = q(1) and . . .

}
, (35)

where ρ is the round transformation. A pair that shows the differences of a characteristic is
called a pair that follows that characteristic. Similarly, the total cardinality of a characteristic
through an iterative cipher is defined as the sum of the cardinalities of the characteristic over
all keys.

A characteristic is a sequence of r differentials
(
q(j−1), q(j)

)
, that each have a weight

wd

(
q(j−1), q(j)

)
. We define the weight of a characteristic through a fixed-key cipher as the

sum of the weights of the differentials it is composed of:

wd(Q) =
r∑

j=1

wd

(
q(j−1), q(j)

)
. (36)

If a characteristic is composed of possible differentials, then the weight of characteristics is
bounded as follows:

0 ≤ wd(Q) ≤ r(n− 1) . (37)

Note that while (6) unambiguously relates the weight of a differential to its differential prob-
ability, this is not the case for characteristics. In general, the DP of single-round differentials
of an iterative cipher depends on the value of the round key. Consequently, the weight of
characteristics depends on the value of the cipher key. In a key-alternating cipher, the round
functions are unkeyed and hence the weight of the single-round differentials is independent of
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the key. The addition of the round keys between the rounds has no impact on the DP of single-
round differentials. It follows that in a key-alternating cipher, the weight of characteristics is
independent of the key, and hence also the key schedule.

The following result has been proven for Markov ciphers in [18] under the assumption of
independent round keys. Since a long-key cipher is a Markov cipher with independent round
keys, the result applies here as well.

Theorem 12 The average DP of a characteristic through a long-key cipher equals the product
of the DP values of the single-round differentials that form the characteristic.

DP (Q) =
∏

j

DP
(
q(j−1), q(j)

)
.

Using (6), we can write this as follows:

− log2 (DP (Q)) =
∑

j

wd

(
q(j−1), q(j)

)
= wd(Q) . (38)

Hence, a characteristic with weight z has average DP equal to 2−z and total cardinality
equal to 2−z2h+n−1. So, as opposed to a fixed-key cardinality of a characteristic, the total
cardinality of a characteristic in a long-key cipher is easy to calculate.

6.2 Characteristics forming differentials

We denote by Q(a,b) a characteristic between a and b, i.e. with q(0) = a and q(r) = b. Clearly,
a fixed-key cardinality of a differential (a, b) equals the sum of the fixed-key cardinalities of
all characteristics between a and b.

N [k](a, b) =
∑

Q(a,b)

N [k](Q(a,b)) . (39)

Consequently, the total cardinality of a differential (a, b) over an iterative cipher equals the
sum of the total cardinalities of all characteristics through that iterative cipher that have
q(0) = a and q(r) = b. The relations between cardinalities are summarized in the following
equation:

Ntot(a, b) =
∑

k

N [k](a, b) =
∑

k

∑

Q(a,b)

N [k](Q(a,b)) =
∑

Q(a,b)

Ntot(Q(a,b)) . (40)

If we consider the fixed-key cardinalities of all characteristics that start from the same differ-
ence, we see that they sum to 2n−1. Clearly, each pair must follow exactly one characteristic.
This generalizes in a straightforward way to fixed-key and total cardinalities of characteristics
through block ciphers, that sum to 2h+n−1. We have

∑

b

∑

Q(a,b)

N [k](Q(a,b)) = 2n−1 , (41)

∑

b

∑

Q(a,b)

Ntot(Q(a,b)) = 2h+n−1 . (42)

The fixed-key DP of a characteristic equals its fixed-key cardinality divided by 2n−1, the total
number of pairs with the given input difference. The average DP of a characteristic through
a block cipher is equal to the total cardinality divided by 2h+n−1, the total number of pairs.
It follows that the (average) DP values of all characteristics that start from a given difference
sum to 1.
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6.3 Cardinality of characteristics and differentials over key-alternating ci-
phers

We define the long-key cipher associated with a key-alternating cipher by replacing its key
schedule by the trivial key schedule. Hence, the set of 2h expanded key values produced by
the key schedule of the key-alternating cipher are a subset of the set of 2(r+1)n key values of
the long-key cipher. For a given long-key cipher, the total cardinality of all characteristics is
deterministic and easy to compute. It follows that the total cardinalities of its differentials
are also deterministic. The distributions of fixed-key and average cardinality of characteris-
tics and differentials in key-alternating ciphers are determined by the average DP of those
characteristics and differentials in the associated long-key cipher. This quantity is called the
expected differential probability (EDP).

Definition 4 The expected differential probability (EDP) of a characteristic or differential
over a key-alternating cipher is the average DP of that characteristic or differential over the
associated long-key cipher.

Note that the EDP can be defined for iterative ciphers that are not key-alternating by taking
the average DP over all round keys, ignoring the key schedule [30]. Our definition of EDP
makes explicit the assumption of independent round keys that is always made when the EDP
of a characteristic or differential is computed. We have:

EDP(a, b) =
∑

Q(a,b)

EDP(Q(a,b)) =
∑

Q(a,b)

2−wd(Q(a,b)) . (43)

A cipher with independent round keys is its own associated long-key cipher, and hence for
such a cipher the EDP equals the average DP. For other ciphers, the equality doesn’t need to
hold. The following theorems show that for key-alternating ciphers, the difference between
the EDP and the average DP is small.

It seems reasonable to make the following assumption.

Assumption 1 (The Sampling Model) The set of pairs that follow a characteristic for a
given key can be modeled by a sampling process.

Under this assumption, we can prove the following relation between the EDP and the DP of
a characteristic.

Theorem 13 In a key-alternating cipher, the fixed-key cardinality of a characteristic with
weight z is a stochastic variable with the following distribution:

Pr(N [k](Q) = i) ≈ Poisson(i; 2n−1−z) = Poisson(i; 2n−1EDP(Q)) ,

where the distribution function measures the probability over all possible values of the key and
all possible choices of the key schedule.

Proof: We start by considering the associated long-key cipher. The total cardinality of a
characteristic over a long-key cipher follows directly from Theorem 12. The 2(r+2)n−1 pairs of
the associated long-key cipher are divided uniformly over the keys: 2n−1 pairs for each value
of the expanded key.

For each characteristic Q, the set of pairs following the characteristic for a fixed value
of the key can be modeled as the outcome of a sampling of a population. The ‘population’
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consists of all pairs (for all key values) in the long-key cipher, and the set of pairs belonging to
the fixed key is the ‘sample’. The distribution of the outcome of a sampling process depends
on the following parameters:

The size of the total population: the total number of pairs for the associated long-key
cipher, 2(r+2)n−1;

The number of ‘successes’ in the population: the number of pairs following the char-
acteristic for the associated long-key cipher, 2(r+2)n−1−z;

The sample size: the number of pairs belonging to the fixed key, 2n−1;

Sampling theory states that the outcome of the sampling process has a hypergeometric dis-
tribution [10]:

Pr (N [k](Q) = i) =

(2(r+2)n−1−z

i

)(2(r+2)n−1−2(r+2)n−1−z

2h+n−1−i

)
(2(r+2)n−1

2n−1

) . (44)

The mean of this distribution equals 2n−1−z and the variance equals

2(r+2)n−1 − 2n−1

2(r+2)n−1 − 1
2n−1−z(1− 2−z) . (45)

This distribution can be approximated by a binomial distribution

Pr(N [k](Q) = i) ≈
(

2n−1

i

)
2−zi(1− 2−z)2

n−1−i , (46)

with the same mean and with variance 2n−1−z(1 − 2−z). This distribution in turn, can be
approximated closely by a Poisson distribution with parameter λ equal to the mean of the
binomial distribution. ut

Clearly, if z > n − 1, then the characteristic is very likely to have cardinality 0 for a
significant fraction of the keys. The sampling model seems especially appropriate for trails
over many rounds of a cipher in which the single-round differentials have low weight. For
ciphers in which the sampling model is justified we can prove the following theorem.

Theorem 14 In a key-alternating cipher, the fixed-key cardinality of a differential is a stochas-
tic variable with the following distribution:

Pr(N [k](a, b) = i) ≈ Poisson(i; 2n−1EDP(a, b)) ,

where the distribution function measures the probability over all possible values of the key and
all possible choices of the key schedule.

Proof: The cardinality of a differential (a, b) over an iterative cipher equals the sum of the
cardinalities of the characteristics Q through that iterative cipher that have q(0) = a and
q(r) = b.

N [k](a, b) =
∑

Q(a,b)

N [k](Q(a,b)) (47)

Since the characteristic cardinalities have Poisson distributions, the sum has a Poisson distri-
bution with as λ-parameter the sum of the λ-parameters of the terms [14]:

λ =
∑

Q(a,b)

2n−1−wd(Q(a,b)) = 2n−1EDP(a, b) .

ut
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Theorem 15 In a key-alternating cipher, the total cardinality of a characteristic is a stochas-
tic variable with the following distribution:

Pr(Ntot(Q) = i) ≈ Poisson(i; 2h+n−1−z) = Poisson(i; 2h+n−1EDP(Q)) ,

where the distribution function measures the probability over all possible choices of the key
schedule.

Proof: The total cardinality of a characteristic is the sum of the fixed-key cardinalities of
the characteristic, over the 2h values of the key.

Ntot(Q) =
∑

k

N [k](Q)

By Theorem 13, the fixed-key cardinalities are Poisson variables. If h ¿ (r + 1)n, then we
can assume that the fixed-key cardinalities are independent. The sum of independent Poisson
variables is itself a Poisson variable, with as λ-parameter the sum of the λ-parameters of the
terms [14]. ut

Theorem 16 In a key-alternating cipher, the total cardinality of a differential is a stochastic
variable with the following distribution:

Pr(Ntot(a, b) = i) ≈ Poisson(i; 2h+n−1EDP(a, b)) .

where the distribution function measures the probability over all possible choices of the key
schedule.

Proof: The total cardinality of a differential (a, b) over an iterative cipher equals the sum of
the total cardinalities through that iterative cipher that have q(0) = a and q(r) = b. The sum
of variables with Poisson distributions, has itself a Poisson distribution with as λ-parameter
the sum of the λ-parameters of the terms. ut

Most characteristics and differentials have an EDP value that is much larger than 21−h−n.
For these characteristics and differentials, the Poisson distributions of Theorems 15 and 16
can be closely approximated by normal distributions. This results in the following corollary
on the distribution of the average DP of characteristics and differentials:

Corollary 17 In a key-alternating cipher, the average DP of a characteristic or differential
is a stochastic variable with a distribution that is very close to a normal distribution with
mean the EDP and with standard deviation 2−(h+n−1)/2

√
EDP, where the distribution function

measures the probability over all possible choices of the key schedule.

6.4 Summary

Table 5 gives an overview of the results derived in this section. The result on the average
DP (Ntot) of a characteristic through a long-key cipher is the same as the result obtained
in Markov cipher theory. Markov cipher theory also works with the average DP (Ntot) of
differentials over a long-key cipher, and the theory of provable security against differential
attacks bounds this quantity. The 6 remaining cardinalities are not considered in Markov
cipher theory, nor in the theory of provable security (except by invoking the hypothesis of
stochastic equivalence).
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Table 5: Overview of results on the cardinalities of characteristics and differentials.

long-key cipher key-alternating cipher
N [k](Q) Theorem 13 Theorem 13
N [k](a, b) Theorem 14 Theorem 14
Ntot(Q) Markov = Theorem 12 Theorem 15
Ntot(a, b) Markov, provable security Theorem 16

In most practical ciphers, the cardinality of characteristics and differentials depends on
the value of the key. In this section, we modeled the choice of a particular value for the key as
a sampling process in a population formed by the ciphers with keys consisting of independent
round keys. Under assumptions standardly made in probability theory, Theorem 13 and
Theorem 14, show how in a key-alternating cipher the EDP of characteristics and differentials
determines the distribution of the fixed-key cardinalities of characteristics and differentials.

The average DP is the mean value of the distribution of fixed-key DPs of a characteristic
or differential over all cipher keys. In most practical ciphers, the number of cipher keys is
much smaller than the number of keys consisting of independent round keys. Hence, the
fixed-key DPs can be assumed to be independent from one another. Corollary 17 indicates
distributions for the average DP of characteristics and differentials that are very narrowly
centered around the mean. Hence, in the case of key-alternating ciphers, we can justify the
approach of [18, 21, 23] to approximate the average DP by the EDP.1 A similar conclusion
can be drawn for the average DP of a characteristic.

7 Correlations in Key-alternating Ciphers

In this section we study the distributions of the average and fixed-key LP over different types
of iterative ciphers. The material of Section 7.1 appeared before in [7].

7.1 Linear characteristics in iterative ciphers

We can describe the fixed-key correlation of a hull over an iterative cipher as the sum of the
fixed-key correlation contributions of a number of linear characteristics. A linear character-
istic Q through a r-round iterative cipher consists of a sequence of r + 1 selection patterns:

Q =
(
q(0), q(1), q(2), . . . , q(r−1), q(r)

)
. (48)

A linear characteristic consists of a sequence of r single-round approximations
(
q(j−1), q(j)

)
,

that each have a correlation C
(
q(j−1), q(j)

)
. We define the fixed-key correlation of a linear

characteristic through an iterative cipher as the product of the fixed-key correlations of its
single-round approximations. The fixed-key correlation has a sign that is the product of the
signs of the correlations of its single-round approximations. The fixed-key LP of a linear
characteristic is the square of its fixed-key correlation. We define the weight of a linear

1Note that our model doesn’t require the assumption of independent, uniformly distributed, pseudo-random-
looking round keys.
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characteristic as the absolute value of the binary logarithm of its LP. It follows that the
weight of a linear characteristic is the sum of the weights of its single-round approximations.
The weight of a linear characteristic through an iterative cipher for a given key unambiguously
determines its LP and hence the amplitude of its correlation. As opposed to the fixed-key
cardinality of characteristics, the fixed-key correlation of a linear characteristic is in general
easy to compute, both its amplitude and its sign:

C[k](Q) =
∏

j

C[k](qj−1, qj) . (49)

For a linear characteristic that is composed of possible single-round approximations, the
weight is bounded as follows:

0 ≤ wl(Q) ≤ r2(n− 2) . (50)

For a general iterative cipher, the fixed-key LP (and hence also the weight) of a single-round
approximation depends on the value of the round key. Consequently, the weight of linear
characteristics depends on the value of the key. For a key-alternating cipher we can prove the
following lemma:

Lemma 18 In a key-alternating cipher, the weight z and LP 2−z of a linear characteristic
are independent of the key, and hence also the key schedule.

Proof: In a key-alternating cipher, the round functions are independent of the key and hence
the weight of the single-round approximations is independent of the key. The addition of the
round key has only impact on the sign of the correlation [7]. It follows that the weight z and
the LP 2−z of the linear characteristic are independent of the key. ut
The sign of the correlation of a linear characteristic is determined by a parity of the expanded
key resulting in a distribution with two equal peaks at −2−z/2 and at 2−z/2, yielding:

Corollary 19 In a long-key cipher, the fixed-key correlation of a linear characteristic C[k](Q)
has mean 0 and variance 2−z.

In [8] it is shown that the sign of the correlation of a linear characteristic Q in a long-key
cipher can be expressed in terms of a parity of the key k plus a key-independent constant:

sQ = (−1)qTk+dQ . (51)

The constant dQ is the sign of the correlation of the linear characteristic in the case of a
key consisting of all-zero round keys. The selection vector q completely determines the linear
characteristic, i.e, two linear characteristics are different if they have a different selection
vector q. We have

C[k](Q) = sQ|C[k](Q)| = (−1)qTk+dQ |C[k](Q)| . (52)

7.2 Linear characteristics forming hulls

For the fixed-key correlation of hulls over iterative block ciphers the following theorem was
proven in [7]:

Theorem 20 The fixed-key correlation of a hull (v, u) over an iterative block cipher equals
the sum of the fixed-key correlations of all linear characteristics between v and u:

C[k](v, u) =
∑

Q(v,u)

C[k](Q(v,u)) .
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Definition 5 The expected linear probability (or rather potential) (ELP) of a characteristic
or hull over a key-alternating cipher is the average LP of that characteristic or hull over the
associated long-key cipher.

The ELP can be defined for iterative ciphers that are not key-alternating by taking the
average LP over all round keys, ignoring the key schedule [30]. Our definition of ELP makes
explicit the assumption of independent round keys that is always made when the ELP of a
characteristic or hull is computed. Note that the expected linear probability (ELP) despite
its name is neither a probability nor the expected value over a key-alternating cipher unless
it is a long-key cipher. We still chose to use the term here because it is well accepted in
cryptographic literature. For the ELP we have the following theorem:

Theorem 21 The ELP of a hull over a key-alternating cipher ELP(v, u) is the sum of the
LP values of all linear characteristics between v and u.

ELP(v, u) =
∑

Q(v,u)

LP(Q(v,u)).

Proof: We have:

ELP(v, u) = 2−h
∑

k

(C[k](v, u))2

= 2−h
∑

k


 ∑

Q(v,u)

C[k](Q(v,u))




2

.

We now index the linear characteristics Q(v,u) with i and j. We denote the correlation of
linear characteristic i with Ci, its sign with si, its selection vector with qi and its constant
with di. This results in:

ELP(v, u) = 2−h
∑

k

(∑

i

si|Ci|
)2

= 2−h
∑

k

∑

i

∑

j

sisj |CiCj |

=
∑

i

∑

j

(
2−h

∑

k

sisj

)
|CiCj | .

The factor of |CiCj | in this expression is:

2−h
∑

k

sisj = 2−h
∑

k

(−1)qi
Tk+di(−1)qj

Tk+dj

= (−1)di+dj2−h
∑

k

(−1)(qi+qj)
Tk

= (−1)di+dj2−h
∑

k

(−1)(qi+qj)
Tk

= (−1)di+djδqi+qj

= δqi+qj ,
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with δx the Kronecker delta that is 1 if x = 0 and 0 otherwise. This yields:

ELP(v, u) =
∑

i

∑

j

δqi+qj |CiCj |

=
∑

i

|CiCi|

=
∑

i

Ci
2

ut
A similar result has been proven in [22]. ELP plays an important role in the distributions of
the fixed-key LP values in associated key-alternating ciphers.

7.3 Fixed-key correlation of hulls in long-key ciphers

The distribution of the fixed-key LP of a hull over a long-key cipher LP[k](v, u), given
ELP(v, u) depends on the number of linear characteristics between v and u and the relative
size of their LP values. In the extreme case that there is only a single linear characteristic,
the fixed-key LP is equal to that of the linear characteristic and is independent of the key. In
the case that there are many linear characteristics and for all individual linear characteristics
2−zi ¿ ELP(v, u), the correlation C[k](v, u) is the sum of many stochastic variables with
mean 0 resulting in a Gamma distribution for LP[k](v, u).

For the case that the number of linear characteristics is large we can prove the following
theorem:

Theorem 22 If the number of linear characteristics between v and u is large, the fixed-key
LP of a hull LP[k](v, u) over a long-key cipher is a stochastic variable with the following
Gamma distribution:

Pr(LP[k](v, u) = z) ≈ 1√
ELP(v, u)

1√
2πz

exp(− z

2ELP(v, u)
) ,

for z > 0 and 0 otherwise. This distribution is taken over all possible expanded keys. This
distribution has mean ELP(v, u) and standard deviation

√
2× ELP(v, u).

Proof: The mean of the fixed-key LP µ(LP[k](v, u)) is equal to the variance of the fixed-key
correlation σ2(C[k](v, u)). The fixed-key correlation C[k](v, u) is the sum of the (signed)
correlations of the linear characteristics Q(v,u). These correlations are independent as their
sign depends on independent parities of the expanded key. It follows that the variance of
the fixed-key correlation is equal to the sum of the variances of the correlations of the linear
characteristics. The variance of the correlation of a linear characteristic is equal to 2−wl(Q)

and hence it follows that:

µ(LP[k](v, u)) =
∑

Q(v,u)

2−wl(Q(v,u)) = ELP(v, u) . (53)

When the number of linear characteristics is large and the LP of the linear characteristics are
small compared to ELP(v, u), a fixed-key correlation C[k](v, u) is the sum of many indepen-
dent variables, leading to a normal distribution around 0. The distribution of the square of a
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variable with such a normal distribution with variance ELP(v, u) has the Gamma distribution
specified in the theorem. ut
Thanks to the key-dependent signs of the correlations of the linear characteristics the value
LP[k](v, u) depends strongly on the key from the moment that more than a few linear char-
acteristics are involved.

This proof is valid for a long-key cipher. In an key-alternating cipher the presence of
the key schedule makes that the signs of the correlations of the linear characteristics may no
longer be independent. The worst case occurs when in a cipher with a linear key schedule the
sign-determining parities of two linear characteristics in the expanded key are reduced to the
same parity in the cipher key. In that case the correlations of the two linear characteristics
will systematically have the same sign or systematically a different sign for all cipher keys.
In that case the sum of the terms LP(Q1) + LP(Q2) in the computation of ELP(v, u) must
be replaced by (

√
LP(Q1) +

√
LP(Q2))2 or (

√
LP(Q1)−

√
LP(Q2))2 depending on the case.

The probability that the worst case actually occurs, is small. As there are 2h cipher key
parities, the probability that there are linear characteristics with colliding cipher key parities
only becomes significant when the number of linear characteristics is of the order 2h/2. In
that case the LP values of the contributing linear characteristics are very small with respect
to the total ELP value and the effect on ELP(v, u) can be neglected.

8 Bounds based on the weight distributions of (differential
and linear) characteristics

In Section 4 we have shown that for a random cipher, N [k](a, b) has a Poisson distribution
with λ = 1/2. In Theorem 14, we have proven that in a key-alternating cipher, N [k](a, b) has
a Poisson distribution with λ = 21−nEDP(a, b). It follows that the fixed-key cardinality of a
differential over a key-alternating cipher with EDP(a, b) = 2−n has the same distribution as
in a random cipher.

Similarly, in Section 4 we have shown that for a random cipher, LP[k](v, u) has a Gamma
distribution with mean 2−n and standard deviation

√
2×2−n. In Section 7.3, we have demon-

strated that in a key-alternating cipher, LP[k](v, u) has a Gamma distribution with mean
ELP(v, u) and standard deviation

√
2× ELP(v, u) if there are a large number of linear char-

acteristics Q(v,u). It follows that the fixed-key LP of a hull over a key-alternating cipher with
ELP(v, u) = 2−n and for which there are many linear characteristics has the same distribution
as in a random cipher.

Therefore for a key-alternating cipher, the following design goals make sense:

• The EDP of all differentials over the cipher minus two rounds should be close to 2−n,

• The ELP of all hulls over the cipher minus two rounds should be close to 2−n and the
number of linear characteristics Q(v,u) should be large for any hull (v, u).

In Section 6.2, we have shown that the EDP of a differential is the sum of the DP values
of characteristics and Theorem 21 states that the ELP of a hull is the sum of the LP values of
linear characteristics. Now, both for differential and linear characteristics, there are techniques
for designing ciphers such that one can prove lower bounds for the weight of characteristics,
over a given number of rounds [9]. In this section we show how these bounds allow to make
statements on the distributions of the EDP and ELP in the case of key-alternating ciphers.
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More generally, we discuss how information on the weight distribution of the characteristics,
can be used to make statements on the number of characteristics, with finite weight and the
distributions of the EDP of differentials and the ELP of hulls in key-alternating ciphers.

The results of this section can be seen as a quantitative extension of a fundamental
theorem of Markov cipher theory that states that under certain assumptions the average
difference propagation probabilities of all differentials converge to 2−n for all (a, b) as the
number of rounds grows and hence one can make a Markov cipher secure against differential
attacks by just taking a sufficient number of rounds. This is Theorem 3 from [18]. In the
following subsections we derive how fast this convergence is for the EDP and ELP in terms
of the weight distribution of characteristics, that depend on the number of rounds.

8.1 Distributions of EDP

For a key-alternating cipher, we define the characteristic weight counting function Ta(z) of
an input difference a as the number of characteristics with weight z that start from a:

Ta(z) = # {Q|q0 = a and wd(Q) = z} . (54)

We define the characteristic weight distribution ta(z) as

ta(z) = 2−zTa(z) . (55)

The total number of characteristics that start from a is given by
∑
z

Ta(z) =
∑
z

2zta(z) . (56)

The characteristic weight distribution ta(z) expresses how the pairs with an input difference
a are distributed over characteristics, indicated by their weight.

Lemma 23 The characteristic weight distribution is a distribution, i.e.,
∑
z

ta(z) = 1 .

Proof: Since in a long-key cipher the total number of pairs with a given input difference is
2h+n−1 and each pair must follow exactly one characteristic, we have:

∑
z

2(h+n−1)−zTa(z) = 2h+n−1 . (57)

∑
z

2−zTa(z) = 1 . (58)

ut
We now consider the population of long-key ciphers that all have the same characteristic

weight distribution ta(z). We have the following results on the number of characteristics
Q(a,b) and on the EDP of a differential EDP(a, b) for a cipher drawn at random from this
population.

Theorem 24 For a key-alternating cipher with a given characteristic weight distribution
ta(z), the number of characteristics Q(a,b) with finite weight, denoted by Nc(a, b) has a Poisson
distribution with λ =

∑
z ta(z)2z−n.
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Proof: For a randomly drawn cipher, the characteristic weight distribution determines the
number of characteristics with weight z starting from a but not where they arrive. We can
consider the characteristic weight distribution as representing a set of virtual characteristics,
that each may arrive in b or not. The probability that a characteristic arrives in b is equal to
1/(2n − 1) ≈ 2−n and the number of characteristics is

∑
z 2zta. This leads to the a Poisson

distribution with λ = 2−n ∑
z 2zta =

∑
ta2z−n. ut

It follows that

µ(Nc(a, b)) =
∑
z

ta(z)2z−n (59)

σ(Nc(a, b)) =
√∑

z

ta(z)2z−n . (60)

Theorem 25 For a key-alternating cipher with a given characteristic weight distribution
ta(z), the EDP of a differential (a, b) has a distribution with:

µ(EDP(a, b)) = 2−n

σ(EDP(a, b)) = 2−n

√∑
z

ta(z)2n−z .

Proof: The increase of a characteristic with weight z to EDP(a, b) depends on whether the
characteristic arrives in b: if so, its increase is 2−z, otherwise its increase is 0. EDP(a, b) is
the sum of the increases of all virtual characteristics that start in a. The increase of a virtual
characteristic with weight z is a stochastic variable that has the following distribution:

Pr(0) =
2n − 2
2n − 1

≈ 1− 2−n , (61)

Pr(2−z) =
1

2n − 1
≈ 2−n , (62)

and zero elsewhere. This distribution has mean 2−(z+n) and variance:

2−n2−2z − 2−2(z+n) = (2n − 1)2−2(z+n) ≈ 2−n−2z. (63)

Consequently, EDP(a, b) has mean:

µ(EDP(a, b)) =
∑
z

Ta(z)2−(z+n) =
∑
z

ta(z)2−n = 2−n . (64)

and variance:

σ2(EDP(a, b)) =
∑
z

Ta(z)2−n−2z =
∑
z

ta(z)2z2−n−2z = 2−2n
∑
z

ta(z)2n−z . (65)

ut

8.2 Distributions of ELP

For a key-alternating cipher, we define the linear characteristic weight counting function Tu(z)
of an output selection pattern u as the number of linear characteristics with weight z that
arrive in u:

Tu(z) = # {Q|qr = u and wl(Q) = z} . (66)
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We define the linear characteristic weight distribution tu(z) as

tu(z) = 2−zTu(z) . (67)

Lemma 26 The linear characteristic weight distribution is a distribution, i.e.,
∑
z

tu(z) = 1 .

Proof: Combining (18) and (21) we obtain
∑
v

∑

Q(v,u)

LP(Q(v,u)) = 1 , (68)

i.e. the LP values of the linear characteristics through a key-alternating cipher that arrive in
the same selection pattern sum to 1. It follows that:

∑
z

Tu(z)2−z =
∑
z

tu(z) = 1 . (69)

ut
The total number of linear characteristics that arrive in u is given by

∑
z

Tu(z) =
∑
z

2ztu(z) . (70)

We now consider the population of long-key ciphers that all have the same linear char-
acteristic weight distribution tu(z). We have the following results on the number of linear
characteristics Q(v,u) and on the ELP of a hull ELP(v, u) for a cipher drawn at random from
this population.

Theorem 27 For a key-alternating cipher with a given linear characteristic weight distri-
bution tu(z), the number of linear characteristics Q(v,u) with finite weight has a Poisson
distribution with λ =

∑
z tu(z)2z−n.

The proof is the same as that of Theorem 24.

Theorem 28 For a key-alternating cipher with a given linear characteristic weight distribu-
tion tu(z), the ELP of a hull (v, u) has a distribution with:

µ(ELP(v, u)) = 2−n

σ(ELP(v, u)) = 2−n

√∑
z

tu(z)2n−z .

The proof is the same as that of Theorem 25.
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8.3 Characteristic weight margins

In this section we describe what can be concluded on the distributions of the EDP and the ELP
given a lower bound on the weight of characteristics and linear characteristics respectively.
We give the derivation for the EDP only, the derivation for the ELP is identical and gives
very similar conclusions.

Assume that we have a key-alternating cipher for which there are no characteristics with
weight below n + ω. The term ω is a characteristic weight margin with respect to the block
length n: all characteristics have a weight that is above the block length plus the margin. We
then have the following corollary that results from Theorem 24 and Theorem 25.

Corollary 29 If n + ω is a lower bound for the weights of the characteristics in a long-key
cipher, then

σ(EDP(a, b)) ≤ 2−n
√ ∑

z≥n+ω

ta(z)2n−z ≤ 2−n × 2−ω/2 ,

µ(Nc(a, b)) =
∑

z≥n+ω

ta(z)2zmin−n ≥ 2ω .

It follows that the EDP of almost all differentials (a, b) can be brought arbitrarily close to
2−n by increasing the number of rounds, thereby increasing ω.

Let us now consider the worst case, i.e., the maximum EDP over all differentials (a, b).
Corollary 29 does not allow to make statements on this value unless we make assumptions
on the shape of the distribution of the EDP over all differentials. If we assume a normal
distribution, the maximum EDP over all differentials can be found by applying Appendix B.1.
The mean value of the maximum EDP is then upper bounded by:

2−n(1 +
√

2−ω(1.17
√

2n)) = 0.5(1 + 1.65
√

2−ωn) . (71)

If we require this upper bound to be 1 + ε times 2−n we obtain:

ω =
ln(n) + 1− 2 ln(ε)

ln(2)
. (72)

For example, if we take ε = 1% we obtain for an 128-bit block cipher ω ≈ 20. For the ELP,
lower bounds on the weight of linear characteristics allow similar conclusions.

Please note that one should be careful in assuming a normal distribution in specific cases.
For example, a small number of rounds of a cipher with strong diffusion typically has many
differentials with DP equal to 0. Such cipher specifics can be taken into account in order to
find closer bounds.
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10 Conclusions and future work

In this paper, we have derived the probability distributions of a number of important param-
eters for random functions and block ciphers, for most of them for the first time. We have
shown that these parameters have distributions that are well-studied in the field of probability
theory such as the normal, Poisson, Gamma and extreme value distributions. These distri-
butions replace the quantities obtained by averaging over keys and invoking the hypothesis
of stochastic equivalence.

We showed how much difference there is between fixed-key cardinality and correlation of
linear characteristics and average cardinalities and correlations. As far as we know, there is no
other theory for the study of differential and linear cryptanalysis that distinguishes between
fixed-key behavior and key-averaged behavior.

We proposed the key-alternating round structure, which has the advantage that the
weights of the characteristics, are independent of the value of the key. For ciphers adopting
this round structure, we derived bounds on the EDP and ELP as a function of the minimum
weights of the characteristics.

The results obtained in this paper can be extended in several ways. Firstly, the results can
be applied to a particular cipher in order to compute some practical bounds or to examine
the validity of the sampling model. Secondly, application to other sub-classes of (Markov)
block ciphers can be considered. Thirdly, more work on the interpretation of the results can
be done, e.g. what values for ω are needed to obtain provable resistance against linear and
differential attacks. Finally, the theory can be extended to cover explicitly resistance against
variants of linear and differential attacks.
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A Probability distributions

In this appendix we mention a number of probability distributions that we refer to in the
body of the paper. For a more detailed treatment we refer to specialized textbooks such as
[10] and [14] and sites on the Internet like [19].
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A.1 Binomial distribution

The binomial distribution is a discrete distribution with parameters p and n and is defined
as follows:

Pr(X = i) =

(
n

i

)
pi(1− p)n−i for 0 ≤ i ≤ n . (73)

The mean value of this distribution equals np, and the variance equals np(1− p).

A.2 Poisson distribution

The Poisson distribution is a discrete distribution with parameter λ and is defined as follows:

Pr(X = i) =
e−λλi

i!
= Poisson(i;λ) . (74)

The mean value and the variance of this distribution are equal to λ. It is well known that
a binomial distribution with small p can be closely approximated by a Poisson distribution
with λ = np.

A.3 Normal distribution

A normal distribution is a continuous distribution. For mean µ(x) and variance σ2 it has the
following density:

D(x) =
1

σ
√

2π
e−

x−µ(x)

σ2 = Z

(
x− µ(x)

σ

)
. (75)

If µ(x) is 0 and σ = 1, we speak of the standard normal distribution. It is well known that a
binomial distribution with large n can be closely approximated by a normal distribution with
mean µ(x) = np and variance σ2 = np(1− p).

A.4 Gamma distribution

A Gamma distribution is a continuous distribution with two free parameters α and λ [14, 19]:

g(x; α, λ) =
λα

Γ(α)
xα−1e−λx . (76)

for x > 0 and 0 otherwise. Γ(x) is the well-known gamma function. The Gamma distribution
has mean α/λ and variance α/(λ2)

If we have a variable x with a normal distribution with mean 0, the distribution of its
square x2 has a Gamma distribution with α = 1

2 and λ = 1/(2σ2). It follows that µ(x2) = σ2

and σ2(x2) = 2σ4.

B Distributions of maxima

In this appendix we study the distribution of the maximum over a very large set of independent
stochastic variables. We consider the case that all variables have the same distribution and
that their density decreases exponentially for large x. We denote the number of variables by
2y and model the cumulative distribution D(X) as:

D(X) = 1− e−f(X) . (77)
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Figure 6: Extreme value distribution with a = 0 and b = 1.

with f(X) a function that increases in a sub-exponential way. From order statistics [10, 19]
we know that the (cumulative) distribution of the maximum of a number of variables is the
product of the (cumulative) distributions of these variables. We have:

Dmax(X) = D(X)2
y

= (1− e−f(X))2
y ≈ e−2ye−f(X)

= e−eln(2)y−f(X)
. (78)

We can approximate the function ln(2)y− f(X) by a linear function around the point where
its value is 0. Let a be the solution of f(X) = ln(2)y and let b be 1 divided by the derivative
of f(x) in a. This gives the following expression:

Dmax(X) ≈ e−e
a−X

b . (79)

This distribution has been well studied in probability theory and is known as the extreme
value distribution, Fisher-Tippett distribution or log-Weibull distribution [10, 19]. The cor-
responding density is depicted in Figure 6. Its peak is in a and its width is proportional to
b. This distribution has µ(X) = a + bγ with γ ≈ 0.58 and σ(X) = π√

6
b ≈ 1.3b. Clearly, the

validity of (79) depends on the quality of the linear approximation of f(x) around (a, 0).

B.1 Maximum over X with a normal distribution

Let us first consider the special case for a variable x with a standard normal distribution. We
have

D(x) =
∫ x

−∞
Z (u)du . (80)
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For large x, this can be closely approximated by [10, 19]:

D(x) ≈ 1− 1
x

Z (x) = 1− 1
x
√

2π
e
−x2

2 . (81)

From this we can derive the following expression for f(x):

f(x) = − ln(
1
x

Z (x)) =
1
2
(ln(2π) + x2) + ln(x) . (82)

The parameter as (subscript s for standard) is the solution of

as =
√

2 ln(2)y − ln(2π)− 2 ln(as) , (83)

which can be solved iteratively, ignoring the rightmost term in the first iteration. The deriva-
tive of f(x) is given by:

x +
1
x

, (84)

hence
bs =

as

as
2 + 1

≈ 1
as

. (85)

Roughly speaking, the maximum has a distribution with mean 1.17
√

y and standard deviation
1.11/

√
y. We can find the values of a and b for any normal distribution with mean µ(X) and

standard deviation σ by substituting x by X−µ(X)
σ . This gives:

a = σas + µ(X) , (86)
b = σbs . (87)

B.2 Maximum over X2, with X normally distributed

Let us first consider the special case for a variable x with a standard normal distribution. For
z = x2, we have:

D(z) =
∫ √

z

−√z
Z (u)du = 2

∫ √
z

−∞
Z (u)du . (88)

Using (81), this gives:

D(z) ≈ 1− 2√
2πz

e
−z
2 , (89)

yielding

f(z) =
1
2
(ln(

π

2
) + z + ln(z)) . (90)

as is the solution of:
as = 2 ln(2)y − ln(

π

2
)− ln(as) . (91)

The derivative of f(z) is given by:
1
2

+
1
z

; (92)

As the function f(z) around (as, f(as)) only differs from a linear function by a logarithmic
term, this is a particularly good approximation. Roughly speaking, the maximum has a
distribution with mean 1.38y − ln(1.38y) and standard deviation 2.6.
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We can find the values of a and b for any normal distribution with mean 0 and standard
deviation σ by substituting x by X

σ . This gives:

a = σ2as , (93)
b = σ2bs . (94)

B.3 Maximum over X with a Poisson distribution

If the maximum is taken over variables with a Poisson distribution, we must take into account
the discrete nature of the latter. We can however obtain expressions for the mean and stan-
dard deviation of the maximum if we approximate the Poisson distribution by a continuous
function. We can derive an expression for the function f(x) and use it to find the values of a
and b. We have:

Φ(i; λ) =
i−1∑

x=0

Poisson(x; λ) = 1−
∑

x≥i

Poisson(x; λ) . (95)

For i À λ, this can be closely approximated by [10, 19]:

Φ(i; λ) ≈ 1− (1 +
λ

i
)Poisson(i; λ) ≈ Poisson(i;λ) = e−λ λi

i!
. (96)

If we use the Stirling approximation for the factorial [10, 19], we obtain the following expres-
sion for f(i):

f(i) =
1
2

ln(2π) + λ + i ln(i)− (1 + ln(λ))i +
1
2
ln(i) . (97)

If we now make abstraction of the fact that i must be an integer, we can compute the
parameter a by solving:

ln(2)y =
1
2

ln(2π) + λ + i ln(i)− (ln(λ) + 1)i +
1
2

ln(i) , (98)

or equivalently:

i =
ln(2)y − 1

2 ln(2πi)− λ

ln( i
λ)− 1

, (99)

which can be solved iteratively. The derivative of f(i) is given by:

ln(
i

λ
) +

1
2i

. (100)

Filling in a and using a À λ, we have:

b ≈ 1
ln( a

λ)
. (101)

It follows that if a is much larger than λ, the standard deviation becomes smaller than 1.
Since the distribution of the maximum is discrete, this small value of the standard deviation
that the distribution is concentrated at the two integer values near a.
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