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ABSTRACT

The probability hypothesis density (PHD) filter is a practical alternative to the optimal Bayesian multi-target
filter based on finite set statistics. It propagates only the first order moment instead of the full multi-target
posterior. Recently, a sequential Monte Carlo (SMC) implementation of PHD filter has been used in multi-
target filtering with promising results. In this paper, we will compare the performance of the PHD filter with
that of the multiple hypothesis tracking (MHT) that has been widely used in multi-target filtering over the past
decades. The Wasserstein distance is used as a measure of the multi-target miss distance in these comparisons.
Furthermore, since the PHD filter does not produce target tracks, for comparison purposes, we investigated
ways of integrating the data-association functionality into the PHD filter. This has lead us to devise methods
for integrating the PHD filter and the MHT filter for target tracking which exploits the advantage of both
approaches.
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1. INTRODUCTION

In the multi-target filtering problems, the number of individual targets and the measurements generated by
these targets may change over time as the targets or clutter appear and disappear in the scene. One approach
to filtering for multiple targets is to consider each target separately from others and track it with a separate
filter. However this requires correct association of individual targets with its measurement among the collection
of targets and measurements!? and leads to a model-data association problem. Multiple hypothesis tracking
(MHT) is a data association technique that has been widely used in multi-target filtering. MHT allows the use
of measurements that arrive in future to resolve the uncertainty in the correct association of measurements and
targets at present. Another approach involves modelling of the collection of individual targets and measurements
with random finite sets (RFS) and propagating the first order moment of the multi-target density of the RFS3™
analogous to the tracking of a single target in the constant gain Kalman filtering. This approach however keeps
no records of the target identities and avoids the data-association problem.

The Probability Hypothesis Density (PHD) filter is a computationally cheaper alternative to optimal multi-
target filtering. It recursively propagates the PHD or the first order moment of the multi-target posterior,
assuming the Poisson characteristics of the multi-target density. However, the inherent need for the evaluation
of multiple integrals that have no closed form in general makes the implementation of the PHD filter extremely
difficult. Recently, a technique that approximates the PHD recursion using a Sequential Monte Carlo (SMC)
method has been proposed in Refs. 6 and 7.

Further author information: (Send correspondence to Kusha Panta)
Kusha Panta: E-mail: kusha@ee.mu.oz.au, Telephone: + 613 8344 7436
Ba-Ngu Vo: E-mail: bv@ee.mu.oz.au, Telephone: + 613 8344 6693
Sumeetpal Singh: E-mail: ssss@ee.mu.oz.au, Telephone: + 613 8344 9206
Arnaud Doucet: E-mail: ad2@eng.cam.ac.uk, Telephone: + 44 1223 332 676



The aim of the paper is to compare the performance of the PHD filter with that of the MHT filter. The
comparison can be made in terms of the point state estimates of the targets at each time step. This can be
achieved by calculating the Wasserstein distance of the point state estimates of the targets from the ground truth
for each filter. However the MHT filter does more than just provide the estimates of the target states, it provides
target tracks which the PHD filter cannot. Therefore, it may not be fair to compare the PHD and the MHT
filter only in terms of the point state estimates of the targets. In this paper, we have investigated possible ways
of adding the data-association functionality to the PHD filter to do the comparison in terms of tracks. This lead
us to consider a number of alternative schemes for integrating the PHD and the MHT filter so as to exploit the
advantages of both methods.

The rest of the paper is organized as follows. Section 2.1 describes the multi-target model considered in this
paper. Section 2.2 describes the PHD, the PHD filter and its SMC implementation. Section 2.3 presents an
overview of multi-target filtering with MHT. Section 3 presents the comparison of the performance of the PHD
filter with that of the MHT filter. Section 4 presents novel schemes for adding target tracking capability to the
PHD filter. Finally Sect. 6 summarizes the results obtained in Sects. 3 and 5.

2. MULTI-TARGET FILTERING BACKGROUND

This section introduces the backgrounds to the problem of multi-target filtering and the description of two
different approaches to multi-target filtering using the PHD and the MHT filter. Section 2.1 presents the multi-
target model of the multi-target scenario used in this paper. Section 2.2 introduce the PHD filter and its particle
approximation with the SMC method. Section 2.3 present a brief description of multi-target filtering with the
MHT filter.

2.1. Multi-Target Model

In a multi-target scenario, targets appear and disappear randomly. For the duration the target is present, it
moves according to a Markov dynamic model

Trr1 ~ frprr(lzr), (1)

and generates observation according to
Y,i ~ (| T,i)- (2)

At time k, let M (k) be the number of targets present with states y 1,...,2, p k), and N(k) the corresponding
number of measurements received. Let

X =Azk1, - Tmm} C Es, (3)

Y = {yk,la s 7yk,N(k)} C EO7 (4)

denote the set of targets and measurements received at time k. F, and F, represent the state and the observation
space where individual targets and observations respectively lie. Some of the N (k) observations may be due to
clutter. If yy; is due to clutter, then yi; ~ ci(-). The number of clutter points are assumed to be Poisson
distributed with a mean of Ag.

2.2. Multi-Target Filtering with the PHD Filter

Finite set statistics (FISST)%® enables the multi-target filtering problem to be formulated in the Bayesian
framework. Optimal Bayes multi-target filtering involves propagating the multi-target posterior density in time.
However the inherent computational intractability means that we have to approximate the multi-target posterior
density with its statistical moments and propagate the moments instead. Assuming the point process represented
by the RFS is Poisson, its statistics is completely characterized by the its first moment.® This section introduces
the first order moment of a RFS and multi-target filtering using the first order moment.



2.2.1. Probability Hypothesis Density
The probability hypothesis density (PHD) D= is the first order moment of the RFS =% %and is given by

zk@zEmwnaﬂk@%wm (5)

where d= () is the random density representation of = and equals the summation of Dirac delta functions centered
at x for each z € E, i.e., d=(x) = > .= 0.

The PHD D= of = is a unique function on the space F where the individual targets exist and its integral over
a measurable subset S C E, i.e., [ s D=(z)A(dr), yields the expected number of elements of = that are present
in S. It can be constructed from belief functions of RFSs using FISST.>»4 Moreover, the peaks of the PHD of
= gives the estimates of the elements of =.

2.2.2. The PHD filter

The PHD filter consists of the prediction operator and the update operator. Assuming the RFS is Poisson, it
has been shown that the recursion propagating the PHD Dy, of the multi-target posterior py follows®

Dy = (V5 0 ppro—1)(Dp—1j—1)

where Wy, is the prediction operator and ®;_; is the update operator. These operators are defined as follows:

@WAW@Z/%MM%M@W@+% (6)
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for any (integrable) function « on E, where
Prjp—1(7,8) = exp—1(8) fejp—1(T|€) + brjp—1,
v(z) =1—pp(x),
Vk,2(2) = pp (@) gr(2|z),

ki(2) = Aker(2)

and v, denotes the PHD of the RFS Iy, of targets which appear spontaneously; by,—1(-|§) denotes the PHD of
the RFS Byx—1({{}) spawned by a target with previous state &; eyx—1(§) denotes the probability that the target
still exist at time k given that it had previous state &; fij,—1(:|-) denotes the transition probability density of
individual targets; gx(-|-) denotes the likelihood of individual targets; ¢, denotes the clutter probability density;
A, denotes the average number of Poisson clutter points per time step; and pp denotes the probability of
detection. The details on the derivation of these densities and likelihood functions from the underlying models
of the sensors, individual targets dynamics, target births and deaths are found in Refs. 3 and 4.

Although the PHD filtering is a computationally cheaper alternative to optimal multi-target filtering, it
still involves computation of multiple integrals that have no closed form in general making it computationally
intractable. However, a generalized sequential Monte Carlo (SMC) implementation of the PHD filtering is
proposed in Ref. 6. A brief description of the SMC implementation of the PHD filter is included in Appendix A.
The proposed SMC implementation is computationally efficient and takes care of the time-varying number of
targets.



2.3. Multi-target Filtering with Multiple Hypothesis Tracking

Given the set of observations, multi-target filtering based on data association requires correct partitioning of
observations amongst individual targets and clutter. A simple approach would be to find the most probable
association of measurements with individual targets in each time step. Instead of making the decision on the most
probable data partitioning at each time step, the MHT hypothesizes several possible partitioning of observations
and propagates these hypotheses so that the uncertainty in the correct partitioning can be reduced on the arrival
of subsequent data.!>2819 Thus, the MHT allows the use of later measurements in the prior data partitioning.
However the number of hypotheses can grow exponentially over time and the required computational costs could
render the implementation of MHT infeasible. Gating and pruning techniques are the commonly used ad-hoc
methods to limit the number of track hypotheses at each time step by eliminating the unlikely and the least
likely track-to-measurement association.

In this section, we briefly describe an MHT algorithm that has been presented in detail in Refs. 9 and 10.
A track-oriented MHT is chosen over a hypothesis-oriented one as this approach is simpler to implement and
results in smaller number of hypotheses. In a track-oriented approach, the number of possible tracks are pruned
by eliminating tracks with low probabilities before the hypotheses are formed. The likelihood of each track
hypothesis is determined by its likelihood score, often maintained as log-likelihood ratio (LLR).

2.3.1. Overview of a track-oriented MHT

In a track-oriented approach, each track hypothesis represents a collection of assigned observations over time that
is likely to have originated from the same target. It makes no assumptions on the origin of the measurements.
To begin with tracks are initiated for all measurements. Clusters of tracks are formed so that tracks in one
cluster share observation amongst each other and do not share observations with tracks from another clusters.
Fig. 1 shows a block diagram of a practical implementation of the track-oriented MHT. Given a number of track
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Figure 1. An overview of track-oriented MHT algorithm.

hypotheses at time step k—1, MHT allows measurement prediction for each track hypothesis and the predictions
are gated with the noisy measurements of time step k. For mj measurements that fall within the gate of a track
prediction, my association track hypotheses are constructed. When an existing track is not gated with any
measurement, a target detection-miss is noted and the track is propagated ahead. A new track is started for all
measurements that are not gated with any of the existing tracks. Upon the creation of each association track
hypothesis, its score or LLR is updated.

Pruning of tracks are performed at the track level based on their LLR and the number of consecutive target
detection-misses. Track hypotheses with N (usually 3 or more) consecutive miss-detections or with LLRs smaller
than a chosen threshold are deleted. Track hypotheses that have at least N (usually 3 or more) target detections
are considered to be confirmed. Only confirmed track hypotheses are considered for data outputs. Confirmed
track hypotheses are also subject to N-scan pruning on a global level. The choice of the actual parameter values



used in pruning depend on the tracking scenario. The tracks that survive pruning are updated with its gated
observation and propagated to the next time step.

For each target, there may exist multiple track hypotheses representing multiple assignments of observations
over the subsequent time steps. All track hypotheses that are started by the same target form a tree structure
with the same root and track hypotheses as the branches of the tree. The MHT chooses the most likely track
hypothesis from each tree representing a true target track to produce a collection of hypotheses which are known
as global hypotheses. The sequence of observations represented by each global hypothesis is filtered to produce
the track estimates of targets present in the scene.

The MHT uses extended Kalman filtering (EKF) for prediction and update on each track hypothesis. However
SMC methods have also been proposed instead of EKF.11:12 See Refs. 1 and 9 for the detailed description and
the issues related to the implementation of the track-oriented MHT.

3. THE PERFORMANCE OF THE PHD AND MHT FILTER FOR STATE
ESTIMATES

For illustration purpose only, we consider a simple one-dimensional scenario, in which the targets move along
the line segment [—100; 100] and can appear or disappear in the horizon at any time. The target states consist
of positions and velocities with only the position measurements available. We assume that target birth follows
a Poisson model with the intensity 0.2A/(-|0,1) where A/(-|0,1) represent zero mean and unit variance normal
distribution and targets have linear Gaussian dynamics. Similarly, the clutter process is also Poisson with uniform
intensity over the region [—100;100] and has an average rate of 2.0. The probability of target being detected
is 0.99 (= 1) and the survival of each target is state independent with a probability e = 0.8. Observations are
made according the multi-target model described in Sect. 2.1 above.

In this particular implementation of MHT, the ellipsoid gate size equals 6.63. A hypothesis track is deleted if it
has either 3 or more consecutive target-detection misses. Tracks are not deleted on the basis of their likelihoods
as this implementation of MHT can handle the number of track hypotheses without. Track hypotheses are
confirmed once they have at least 3 target detections. For data output, the best global hypothesis is considered.
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Figure 2. Point estimates of the target states with the PHD filter.



Figures 2 and 3 show the state estimates of the targets given the PHD and the MHT filter for the same set of
observations over a number of time steps. The vertical axis of Fig. 3 has been reset from [—100, 100] to [—20, 70]
to give the clear comparison of the estimates. Figures 2 and 3 show that most of target positions are picked up
by both filters. The PHD filter outputs fewer false alarms than the MHT filter. The velocity estimates in both
cases are bad since only the position measurement is obtained. It should also be noted that for MHT to pick up
target tracks, the target must be present in the scene for at least a number of time steps equal to the number of
target-detection hits needed for a track hypothesis to be confirmed.

The performance of a multi-target tracking algorithm can be measured by a “distance” between two finite
sets representing the ground truth (actual target states) and the corresponding point estimates produced by the
algorithm. Hoffman and Mahler'® have shown that the Wasserstein distance is a good measure of the multi-
target miss distance. Given the multi-target ground truth G(k) = {g1,--- ,gmx)} and the corresponding point

estimates X (k) = {&1, - s T ()} the Wasserstein distance ) is defined as
M (k) M (k)
d:ZV(X,G) = HCI‘f i Z Z Cljd(i'l,gl)p (8)
i=1 j=1
dZZ(X’, G) = ifclf maxlgigM(k),lgng(k)éi,jd(‘%i7gi) (9)

where the infimum is taken over all M (k) x M (k) transportation matrices C' = {C; ;}; and C; ; = 1 if C;; # 0
and ¢;; = 0 otherwise. An M (k) x M (k) matrix C is a transportation matrix if for all ¢ = 1,..., M (k) and

j=1,...,M(k), C; ; satisfies the followings:
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Figure 3. Point estimates of the target state with the track-oriented MHT filter.
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Figure 4. The Wasserstein distance between the point estimate outputs of the PHD and MHT filter and the ground
truth

and
Oi,j > 0.

The Wasserstein distance is preferred over the commonly used Hausdorff distance for the Hausdorff distance
is insensitive to the different number of objects in two sets and hence can not penalize for picking additional
clutter in the point estimate outputs .3

It should be noted that the Wasserstein distance is not defined when one or both sets are empty. When both
sets are empty, the miss distance can be set to zero. However when only one of the set is empty, the notion of
miss distance is open to interpretation. However, if we extend the concept of the Wasserstein distance to include
the empty set, an unbounded large multi-target miss distance between an empty and a non-empty set would be
required to satisfy all the metric axioms. Figure 4 shows that the miss distance of the PHD outputs is lower
than that of the MHT outputs. We have assigned zero distance when both the ground truth and the set of point
estimates are empty. The filled circles on the plots represent the undefined miss distance between the non-empty
set of point estimates of the filter and the empty ground truth.

The implementation of the MHT filter is more complicated than that of the PHD filter. The implementation
of the MHT require a careful design of the data structures and algorithm that are complex. The MHT filter
need to store previous observations and records of multiple track hypotheses. As a result, the MHT filter would
require a large memory. The performance of the MHT filter heavily depends on the particular implementation
of gating and pruning techniques® '° that are ad-hoc in general. A tradeoff exists between the performance of
a MHT filter and the associated computational cost and memory. Additional improvement on the performance
would require more memory and increased computational cost. On the other hand, the performance of the PHD
filter is mainly dictated by the details of its particle approximation; i.e. the number of particles per targets, the
choice of the proposal density function and the re-sampling scheme.

The computational comparison of the MHT and PHD filter implemented in this work requires additional
consideration. The MHT filter used in this simulation is designed to exploit the linear and Gaussian target
dynamics by employing the Kalman filtering. A general tracking scenario includes target dynamics that are
nonlinear and noise that are non-Gaussian for which MHT would require particle filters for prediction and
filtering on individual tracks. On the other hand, the PHD filter employs particle approximation of the target



dynamics and hence can be used for non-linear data models without further modification. It is obvious that
for general tracking purposes, multiple number of particle filters (working in parallel) would make the MHT
filter computationally expensive than the PHD filter. Actual details on the computational cost is the subject of
ongoing research.

4. MULTI-TARGET TRACKING WITH THE PHD FILTER

The PHD filter introduced in Sect. 2.2 above only gives the estimates of the states of targets that are present in
the scene at any time step k, i.e. X Tt keeps no records of the target identities and hence does not produce
tracks followed by individual targets over time. However some data-association functionalities of MHT can be
incorporated with the PHD filter to produce the desired tracks. This section will discuss several methods for
doing so. We use the word ‘tracking’ to denote the trajectories followed by individual targets and the ‘point
state estimates’ to denote the estimates of the tarcet states at individual time stens
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Figure 5. Target Tracking with the PHD filter.

4.1. Scheme One: PHD-with-association filter

This approach takes the output of the PHD filter and performs data association on them (see Fig. 5(a)). At each
time step k, the PHD filter provides an estimate of the number and the states of the targets that are present in
the scene, i.e. Xj. Assuming these estimates are sufficiently accurate, we may regard the output of the PHD
filter as defining a new observation model given by

Uki = Tks+nkq, t=1,...,M(k) (10)

where M(k) is the estimate of the number of targets present and error in the estimate n;; = Zx; — x,; is
regarded as the noise. Thus, regardless of the fact that the observation process is non-linear or non-Gaussian,
the data-association functionality is given a linear observation process. Implicit in this scheme is the assumption
that M(k) ~ M(k). There are a number of ways to estimate the statistics of the noise ny ;. In this paper,
we assume ny; is a zero-mean Gaussian process with variance Q)i ; that can be estimated from the particle
approximation of the PHD recursion. In simulations, we find that this scheme works well although the true
distribution of ny ; is not Gaussian.

The size of the modified observation set Y given by Eq. (10) is smaller than that of the original observation
set Y; as each observation in }N/k is associated with a target whilst Y; has additional clutter. As a result, a
much smaller number of track hypotheses are created at each time step and the computational cost of the
data-association will be smaller as well. The data-association functionality can perform the track-to-estimate
association in a way similar to the MHT filter performs track-to-measurement association. Pruning of track
hypotheses can be simpler than that in the MHT. Since track consists of associated estimates, there is no need
for further filtering on the tracks as is the case with the MHT filter. We remark that the computation and



memory requirement of this PHD-with-association filter as compared to that of the MHT filter implemented
with Y}, is ongoing work.

Furthermore, the point estimates of the target states given by the MHT filter can be used toconstruct a
proposal density function that approximates the target PHD function. The closely the proposal density matches
the target PHD function, the better is the performance of the particle filter. The proposal density qk(-|x,(21, Z)
(see Step 1 of the algorithm of the PHD particle filter in Appendix A.) can be constructed as the mixture
of weighted Gaussian distributions that are constructed from the respective means and variances of the point
estimates of the output target tracks. For mean p; ;, and variance O'Zk on track ¢ at the time step k, qk(~|x§£1, Zy)

is constructed as ‘
(Gl Zk) = 3 ainfir(), (11)

where f; k(-) ~ N (i, afyk), weighting coefficient a; = % and LR, j is the likelihood score of the track 4

at the time step k. The proposal density function obtained according to Eq. (11) should work well provided the
target dynamics and the measurement process are linear with Gaussian noise.

4.2. Scheme Two: The MHT-with-PHD clutter Filter

In the above method, the PHD filter was effectively used as a clutter pre-filter that feeds a modified observation
set to the data-association functionality. We now describe how to use the PHD filter as a clutter filter but
without modifying the observation process. The MHT is used for the purpose of data-association.

The proposed scheme is represented by the block diagram in Fig. 5(b). The PHD filter output X, are used
to define validation gates in the observation space. The observations that fall outside the gates are discarded

as clutter and the new reduced observation set is feed to the MHT to produce tracks. In summary, given an
N (k)

observation set Y, = {yx;},_; at time step k, the new observation set is given by

Vi = {yi. : g(yi.|Zk;) > ga for some j},

where X = {Z; }jjvi(lk) is the PHD output at time step k and gq is the observation gate threshold. Simulation
results in Sect. 3 would justify the use of the PHD filter as a clutter filter. In effect, the PHD filter is used to
eliminate most of the observations that are unlikely to have originated from the targets. Hence, this clutter filter
approach can be viewed as a way of performing gating on a global level. The proposal density function used in
the PHD recursion can be constructed according to the scheme presented above in 4.2.

5. SIMULATION RESULTS FOR TARGET TRACKING WITH THE PHD FILTER

This section shows the tracks produced by the MHT filter and the PHD filter. With the PHD filter, the tracks
that have been obtained according to the scheme presented in Fig. 5(a) above. The implementation of the PHD
filter follows the algorithm given below in Appendix A. For data-association, the generic MHT is used. Tracks
are not subjected to pruning based on their likelihoods. For illustration purpose, we use the same multi-target
scenario given in Sect. 3 above.

Figure 6 shows the tracks produced by applying the MHT filter on the noisy observation set generated
according the scheme described in Sect. 3. In addition to picking up the majority of true tracks, the MHT filter
also picks a number of false tracks. In this example, the number of false tracks is 11. The MHT fails to pick up
four tracks that do not exist in the horizon for long enough (in this case a target has to exist at least over three
time steps).

Figure 7 presents the tracks that are given by the PHD-with-association filter. The PHD-with-association
filter picks up the most of the target tracks for majority of times. Missed tracks include four short tracks (not
picked up due to their existence being smaller than required). Two tracks given by this method forms part of
the same true track. However the number of false tracks is smaller than that given by the MHT filter. In this
example the number of false tracks is one. The performance of this scheme mainly depends on the quality of
the PHD outputs. The end user will benefit from the availability of the point state estimates as well as the
individual target tracks.
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Figure 6. Target tracks obtained using the track-oriented MHT filter on observation sets.
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(Scheme One).

6. CONCLUSION

In this paper, we have presented the simulation results of multi-target filtering with the PHD and MHT filter
for a linear, Gaussian target model. The Wasserstein distance of the points state estimates from the ground
truth have been calculated for both filters. Comparison between the Wasserstein distances of two filter shows
that the PHD filter outperforms the MHT filter. Our contribution also includes the proposal of a number
of schemes for providing the data association functionality in the PHD filter. Target tracks are presented
for the proposed filtering scheme proposed in Sect. 4.1. Various issues associated with the complexities and
computational requirements of the proposed schemes and the optimal solution to initiate tracks with the PHD



filter is the subject of the ongoing research.

APPENDIX A. A SMC IMPLEMENTATION OF THE PHD FILTER

Given a set of particles oy = {w,(:),ml(f)}fz’cl representing the PHD Dy, for any k < 0, the PHD at time step
k > 0 can be obtained using the PHD recursion as follows:

Particle PHD filter

At time k> 1,
Step 1: Prediction step

e Fori=1,...,L;_1, sample %,(f) ~ QK (| x,(jzl,ZO and compute the predicted weights

(i) Pk (fz(;)» 951811) ()

Wglk—1 = ~l G W1
qk (x,(c) J?;(Cll,Zk>

e Fori=1Lg 1+1,...,Lg_1+ J, sample

2D~ pr (4| Ze)

and compute the weights of new born particles

~(i) 1Tk (%g))
B N A G
s (0] )

Step 2: Update step

e For each z € Z, compute

Lp_1+Jy ) _
Co(z) = > @),
j=1

e Fori=1,...,L;_1 + Ji, update weights
~(1)
—(0) _ |, =00 Uz (@) | )
Wy~ = [U(xk )+ Z /ik(Z)"‘r‘Ck(Z) wk\k—l'
2€Z},
Step 3: Resampling step

. P
o Compute the total mass Ny, = Zjill+J’” w,(f)

(i) }Lk—1+Jk

ok O RON
e Resample {wk Nijk, T, to get {wk Nijk, ), } .
i=1

Ji, represents the number of particles that are sampled from proposal density function related to the target birth
process .

This SMC approximation of PHD filtering adaptively allocates the number of particles Ly to keep the number
of particles per target constant. At each time step, a new Lj is obtained from Ly_; + Ji so that Ly equals
the number of particles per target times the expected number of targets. This in effect stops the SMC approx-
imation from not having enough particles when there exist a large number of targets as well as minimizing the
computational resources when only a small number of targets exists.
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