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Abstract

The kernel embedding of distributions is a
popular machine learning technique to ma-
nipulate probability distributions and is an
integral part of numerous applications. Its
empirical counterpart is an estimate from a
finite set of samples from the distribution un-
der consideration. However, for large-scale
learning problems the empirical kernel em-
bedding becomes infeasible to compute and
approximate, constant time solutions are nec-
essary. Omne can use a random subset of
smaller size as a proxy for the exhaustive set
of samples to calculate the empirical kernel
embedding which is known as sampling with-
out replacement. In this work we generalize
the results of Serfling (1974) to quantify the
difference between the full empirical kernel
embedding and the one estimated from ran-
dom subsets. Furthermore, we derive prob-
ability inequalities for Banach space valued
martingales in the setting of sampling with-
out replacement.

1 INTRODUCTION

The kernel embedding of distributions or kernel mean
map (Smola et al., 2007; Sriperumbudur et al., 2008)
became a popular technique to handle probability
measures. The key idea is to embed a distribution into
a reproducing kernel Hilbert space (RKHS) where the
distribution is then in a more accessible form and can
be manipulated efficiently. Most often we have to es-
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timate the kernel embedding empirically from samples
and consequently we are concerned with concentration
inequalities for such sample estimates which are intro-
duced in the next section.

Kernel embedding has been successfully applied to a
wide variety of applications. Gretton et al. (2012a)
used the kernel mean map to perform statistical hy-
potheses testing in high-dimensional spaces. They
formulated a two-sample test using the difference be-
tween the kernel embeddings of two distributions as
a test statistic which is called mazimum mean dis-
crepancy (MMD) (Gretton et al., 2005, 2012b). Gret-
ton et al. (2005) applied the MMD to the problem of
independence testing, with the associated test statis-
tic being the Hilbert-Schmidt independence criterion
(HSIC). The HSIC can also be applied to feature selec-
tion by choosing a subset of features which maximizes
the dependence between data and labels (Song et al.,
2012) or to derive a non-parametric independence
test for random processes (Chwialkowski and Gret-
ton, 2014). A new representation of Hidden Markov
Models (HMM) for structured and non-Gaussian con-
tinuous observation distributions can be defined in a
way such that the model updates can be performed
entirely in the RKHS in which these distributions are
embedded (Song et al., 2010). Representing prior and
conditional probabilities through the kernel mean map
allows the kernel Bayes’ rule to perform inference of
the posterior distribution in the same RKHS without
an explicit parametric from (Fukumizu et al., 2013).
Song et al. (2011) derived a kernelized belief propaga-
tion algorithm using the kernel embedding of condi-
tional distributions (Song et al., 2009).

In the following, we introduce concepts and notation
required for the understanding of reproducing kernel
Hilbert spaces and the kernel embedding.
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1.1 The Kernel Mean Embedding

Let X be a random variable taking values in a mea-
surable space (X, Z") with distribution P. A Hilbert
space (H, (-,-)) of functions f: X — R is said to be a
reproducing kernel Hilbert space (RKHS) if the eval-
uation functional d,: f +— f(x) is continuous. The
function k: X x X — R which satisfies the reproduc-

ing property
(f k(z,)) = f(x)
(k(z,), Ky, ) = k(z,y)

is called the reproducing kernel of H (Steinwart and
Christmann, 2008).

The map ¢ : X — H, ¢:  — k(x,-) with the property
that

and in particular

k(z,y) = (d(x), (y))

is called feature map. Given a reproducing kernel,
the mean map embeds a probability measure into an
RKHS and is defined as follows.

Definition 1 (Kernel Embedding). The kernel em-
bedding or kernel mean map of a measure P associated
with the kernel function k: X x X — R is

p: QX)) > H
uP] = /X bz, ) dP(z),

where Q(X) is the set of all finite Borel measures on
X.

In the following, we assume that X" is a separable mea-
surable space and that the kernel k is continuous and
bounded in expectation such that u[P] exists for all
P € Q(X) (Sriperumbudur et al., 2011). We see that
p maps every distribution (measure) to a single point
in the RKHS H. This mapping is injective if k is char-
acteristic (Sriperumbudur et al., 2008; Fukumizu et al.,
2009; Sriperumbudur et al., 2011). However, we em-
phasize that the characteristic property is not relevant
for this work.

Often, the underlying distribution P is unknown,
but it is possible to draw independent samples
X1, X5, X3,... from P. The empirical measure after n
draws

1

where 6, is the Dirac measure, can act as a proxy for
P. Hereby P, is used to construct an approximation
p[P] of u[P] as

P~ P = [ 9(0) dBalt) = 130 0(X)
i=1

which is called empirical kernel embedding (Smola
et al., 2007). This is reasonable a choice since the law
of large numbers implies that p[P,] converges almost
surely to pu[P] for n — oo as E[[|¢(X)]|] is bounded.

We may ask how well p[P,] approximates u[P]. An
answer to this question is given by the following con-
centration inequality. We will see in Remark 1 that

2

Pr ([[ulB] — ulB.]|| > ) < 2exp (—;‘d) 1)
holds if ||¢(X)|| < d almost surely, bounding the prob-
ability that the empirical kernel embedding u[P,] dif-
fers from the actual embedding u[P] using n indepen-
dent samples. This is (up to some constants) a Ba-
nach space version of Hoeffding’s inequality. Here |||
denotes the norm on H induced by the inner product

<'a >
Concentration inequalities are of wide interest in var-
ious applications.

“The  problem of providing expo-
nential bounds for the probabilities
Pr(||Snl| >¢€) (e >0) is of paramount

importance, both in Probability and Statis-
tics. From a statistical viewpoint, such
inequalities can be wused, among other
things, for the purpose of providing rates of
convergence (both in the probability sense
and almost surely) for estimates of various
quantities.” (Roussas, 1996)

1.2 Large-Scale Kernel Embedding

In most machine learning and data-mining applica-
tions, the samples from P are given in form of a fixed
dataset (x1,...,2y) of size N € N. The empirical ker-
nel embedding p[Py] is then typically estimated using
all N samples from this set. However, for large-scale
learning problems, u[Py] becomes infeasible to com-
pute due to the linear computational complexity in N.
As a consequence one might to consider to use only a
subset of n samples from the dataset, where 1 < n < N.

It is therefore of central interest how much error we
introduce into the empirical kernel embedding by sub-
sampling the dataset. The approximation accuracy
increases as more samples are used and obviously
u[Pn] — wu[Py] as n — N. The theory developed in
this work can be applied to state probabilistic bounds
for the difference

[|4[P] — pu[Px]|

for any 1 < n < N. The estimation of this quantity is
well known in probability theory as sampling without
replacement which is formally defined as follows.
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Definition 2 (Sampling without Replacement). Let
(z1,...,2x) be a finite population of N elements. For
any n € N with n <N, the realization (zy,,...,25,) of
the random variables (X1,...,X,) with

aIn) == (Zlaazn)]
=NN-1)--(N=n+1)]"

Pr [(Il,

is said to be drawn without replacement (Serfling,
1974).

Following Hoeffding’s argumentation (Hoeffding,
1963), it can be shown that Eq. (1) does also hold in
the case of sampling without replacement and hence
we can use it to bound the error ||u[P,] — u[Py]|| by

Pr (] - Pl 2 ) < 20w (1 ) (@)

however we will see that much tighter bounds can be
found if the finite size of the dataset is taken into ac-
count.

1.3 Contributions and Outline

Serfling (1974) already derived bounds in the case of
sampling without replacement superior to Hoeffding’s
inequality, but only for real-valued random variables.
However the random variables Z = ¢(X) used to esti-
mate the kernel mean map are elements of the repro-
ducing kernel Hilbert space H which requires a more
general theory of concentration inequalities.

The main contributions of this work are the following
two theorems. In the former we derive probabilistic
bounds in the setting of sampling without replacement
for the sum S,, = Z; + --- + Z,, of independent ran-
dom variables Zy, Zs, ... taking values in a 2-smooth
Banach space.

Theorem 1. Let (B,|||) be a (2, D)-smooth' sepa-
rable Banach space and the wvariables (z1,...,2x) be
elements of B with (Z1,...,Z,) being a random sam-
ple without replacement. We assume that all ||z;|| < d
almost surely with constant d > 0. Then

ne
An < Zexp ( 8D242 (1 _ n;l))’
where
N—n b
o= (s [ o 2 )

i=1

for all e > 0, where i = %2?21 z; is the mean of over
all realizations.

!See Definition 3 for an explanation of (2, D)-smooth.

This concentration inequality is very general and can
be applied to numerous problems in machine learning,
probability theory and statistics. We will use Theo-
rem 1 to derive probabilistic bounds for the difference
of empirical kernel mean maps ||u[P,] — u[Py]|| which
is subject of the second theorem.

Theorem 2. Let (x1,...,xy) be a realization with ele-
ments in X of the random sample without replacement
(X1,...,Xn). Let k: X x X — R be the reproducing
kernel of the RKHS H with ||¢p(x)|| < d almost surely
for all (x1,...,xy) with constant d > 0. Then for all
e>0

P (luleu) = Bl ) < 208 = s )

where

are elements of H.

This is a probabilistic bound to quantify the error in-
troduced by u[P,] as a surrogate for u[Pyx]. We see
that the factor (1 — 2=1) in the equation above leads
to a significant improvement over Eq. (2) in the setting

of sampling without replacement.

Sampling without replacement is itself subject of
various application such as survey sampling (Kish,
1965), Markov chain Monte Carlo algorithms (Bar-
denet et al., 2014) and computational learning the-
ory (Cannon et al., 2002) to name a few. We em-
phasize that the kernel mean embedding is just one of
many applications of Theorem 1.

The remainder of this paper is structured as
follows:

Even though u[P,] is the empirical mean of Hilbert
space valued random variables Z = ¢(X), we will de-
rive more general bounds for Banach space valued mar-
tingales established in Theorem 1 and then show that
Theorem 2 is only a special case thereof.

e Section 2 introduces the inequalities derived by
Serfling for sampling without replacement.

e In Section 3 we generalize Serfling’s inequality to
Banach space valued martingale sequences which
proves Theorem 1.

e The subsequent Section 4 presents the proof for

Theorem 2 which is the concentration inequality
for the kernel embedding pu[P,].
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2 SERFLING’S INEQUALITY

Hoeffding’s inequality (Hoeffding, 1963) provides an
upper bound on the probability that a sum of inde-
pendent, real-valued random variables X7 + --- + Xy
deviates from its expectation E[X; + --- + X\]. The
same upper bound also holds for the setting of sam-
pling without replacement, where X1, ..., X, is a ran-
dom sample without replacement from the sample
(z1,...,2y). Hoeffding’s inequality is then

Pr ’liX—lzN:x >e) <2ex —LGQ
n YN - =)= P (b—a)?

=

where @ = min;<;<y #; and b = maxi<ij<y T;-

Serfling (1974) introduced a tighter Hoeffding bound
for this inequality replacing the factor n by m
in the bound on the right hand side of the equation
above.

Theorem 3 (Serfling). Let (x1,...,2x) € RY, N€ N

be a realization of the random sample without replace-
ment (X1,...,X,). Defining

b = max x;
1<i<N

a= m_ig x; and

1<i<N

it holds for all € > 0 that
Pr liX lix >
- i i Z €
nia N3

< exp(— = nj?)e(gb_aﬂ).

Serfling did not provide a two-sided variant of this in-
equality, but this can easily be derived using symmetry
and by adding a factor of 2 to the right hand side of the
equation above. Bardenet and Maillard (2015) (Bar-
denet and Maillard, 2015) derived a Bernstein-type
Serfling inequality for real-valued random variables
which is based on the wariances of Xq,X5,... in-
stead of their bounds d. A generalization of their work
to Hilbert- or Banach-valued random variables is not
straightforward and out of scope of this work.

In the following section we generalize Serfling’s bound
to random variables which take values in a separable
Banach space instead of R.

3 A BANACH SPACE
INEQUALITY FOR SAMPLING
WITHOUT REPLACEMENT

For the deviation of the concentration inequality in
Theorem 1 we will exploit bounds for certain martin-
gale structures derived by (Serfling, 1974). However,

in contrast to Serfling we will not bound the moment
generating function, but utilize Pinelis’ theorem for
Banach space valued martingales, which we will state
next together with some preliminaries.

Let No = NUO and {M,,} = {M,, }nen,, Mo =0 be a
martingale with respect to the filtration {F, },en, on
a probability space (2, F,P). We assume the martin-
gale takes values in a separable Banach space (B, ||-]|)
and denote the set of all such martingales with M(B)
(Kallenberg, 2006).

Definition 3 ((r, D)-smooth Banach spaces). A Ba-
nach space (B,|||) is called (r,D)-smooth for some
1 <r <2, if there exists a D > 0 such that

Iz +yll" + llz = ylI” < 2l|z|" + 2D"|ly||"

for all x,y € B and is simply called 2-smooth if it is
(2, D)-smooth for some D > 0.

The notion 2-smooth Banach spaces is the analogue
of the notion of a Banach space of type 2 in the case
of martingale differences. For example any LP space,
p > 1 (of R-valued functions), associated with a o-
finite measure is r-smooth for » = min(2,p). Then
D?=p—1ifp>2and D> =2if1 < p < 2. It can be
shown that any Hilbert space is (2, 1)-smooth (Cuny,
2015).

Pinelis derived an inequality for the probability that
the martingale {M,} escapes a ball with radius € as
described in (Pinelis, 1994, Theorem 3.5) and (Pinelis,
1992, Theorem 3).

Theorem 4 (Pinelis). Suppose that {M,} € M(B),
where B is a (2, D)-smooth separable Banach space and
> oo, esssup||M; — M;_1|*> < ¢ for some ¢ > 0. Then

€2
Pr (sup||{M,}|| > €) < 2exp <—202DQ>
for all e > 0.

The challenge is to choose a martingale sequence such
that Pinelis theorem can be applied to the difference
|| 4[Pr] — u[Py]|| where c then yield the desired bound
with a dependence on n.

3.1 A Serfling Type Inequality for Banach
Spaces

The remainder of this section is concerned with a
bound for the martingale difference

oo
Zess sup||M; — Mi_1|\2 <c?

i=1

used at a later stage to prove Theorem 1. We start
with the definition of a stochastic process and show
that it is a martingale.
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Lemma 1. Let (Z1,Zs,...) be random variables in a
(2, D)-smooth separable Banach space. The stochastic
process {My}, oy, defined as

1
N—Fk

k
My, = Y (Zi—p) (1<k<N)
=1

with My = 0 is a martingale.

Proof. Since Zj, is uniformly drawn from the remain-
ing N — k + 1 points, it holds that for 1 <k <N

Zli\’:k Zi
N—k+1
_ k—1

_ Ne— 2im1 Zi

N—k+1
Y Zi— (k- Da
H N—k+1
= IEL - Mk—la (3)

E[Zk ‘ Zlv"'7Zk—1] =

where the expectation is taken with respect to the re-
maining elements Zy, ..., Zy. By definition we have

Lk
My, = Z(Zi —R)

N —k 4
=1
k-1
1 . Zy— I
= Z,
N—kizl(z H%FN—k
N—k+1 Zy — M
= 7M _ 4
N—k kl+’N—k 4)
and hence
N—k+1
E[My | My, ..., Mp_1] = ﬁqu
E[Zk) | Mla-"7Mk:—1] _)U’
_l’_
N—k
N—k+1
= ——M;_
N—k
p— My — [
+ N-—k
= My 1
where we used Eq. (3) in the second step. O

We can now bound the quantity ||My — My_1|| using
Eq. (4) from which we get
Zy — i+ M1
N—k
and hence for 1 < k < N it holds that

1
N—k

2d
T N—k

My, = My +

| My, — My || =

1Zx =+ Mo (5)

We now follow a similar analysis as (Serfling, 1974,
Lemma 2.1) using the inequality

1
>3 <

r=k+1

m—k

— " 1<k<meN, (6
km+1) == (©)
and are now in a position to prove Theorem 1.

Proof of Theorem 1. Using the previous derivations
we observe that

(N —n)? " 9 " (N—n)?
RS _ _ < N
L

N—1

=1+ (N—n)? Z %
k=N—n+1
(N=n)*(n—1)
<1+ NN = 7)
:N+(N—n)(n—1)

N
-1

(i
N

where we used Eq. (6) in the second last step. Hence
the bound on the martingale difference is

n
Sl Mi = My ||* <
k=1
with
2 04271
T n=n)p

-1
and a2:4d2(17n )
N
We now apply Pinelis’ inequality (Theorem 4) and get
/\2
Pr (SupH{Mn}H 2 A) S 2eXp <_2_D202)
Sk — ki )\Q(an)Q
2k PRI S ) < - ).
Pr (1?1?;1 N—k H - A) < Zexp < 2D2a2n
Substituting (N—n)A = ne in the equation above yields
€2
An = 200 (‘wan)

ne?
< 2Zexp T 8D242 (1 _ L*l) ’
N

which concludes the proof. O

We will now show that Theorem 2 is a consequence
of Theorem 1 if an appropriate martingale structure is
applied.
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4 KERNEL MEAN EMBEDDING
INEQUALITIES

Using the results from the previous derivation we can
now proof Theorem 2. We first remind that if (#, (-, -))
is a Hilbert space, then it is (2, 1)-smooth.

Proof of Theorem 2. Let Zy,Z5,... be independent
random variables in the Hilbert space H, bounded by
I1Z:]] < d almost surely. Then {My} = Zle Z; is ob-
viously a martingale and || M; — M;_1||> = || Z]|* < d2
a.s.

For any fixed n € N we now consider the martingale
difference

Z; if1<i<n

M; — M; 1 = .
0  otherwise,

for which the bound
Zess sup||M; — MZ-_1H2 < nd>
i=1

holds. From the elementary relation

Pr (HE:Zi(Z B ne) <A,
1

1=

it follows that
2

re(l Sl o) < 2o (- )

by means of Theorem 1. Substituting
Zi = ¢(Xz) and

1 N
=1 Z p(xi)
=1
concludes the proof for Theorem 2. O

Remark 1. Notice that from the discussion above it
is also clear that Eq. (1) holds using Pinelis’s bound
(Theorem 4) with ¢ = nd? and D = 1. A bound
similar to Eq. (1) can be found in (Smola et al., 2007)
which states the following.

Assume that || f||,, < d for all f € H with
|1l < 1. Then

(|[Pr] — ulP]]| < 2R, (H,P) + dy/—n~"log 6

with probability at least 1 — 9.

A rearrangement of variables yields an exponential in-
equality similar to Eq. (1). However, this bound in-
volves the Rademacher average Ry, (H,P) (Bartlett and
Mendelson, 2002) associated with the Hilbert space H
and the measure P.

5 EMPIRICAL EVALUATION

In this section we empirically evaluate the deviation
between the kernel embeddings p[P,] and p[Py] as
n — N. Since the equation

|6[Ba) = wlB]||* = (Pl wlPal) — 2(ulPy], u[Py])

+ (u[Px], p[Py])
_ % SO k(XL X))
i=1 j=1
1 N N 2 n N
+ E ZZ k(l’i,l'j) — % Z Zk(XZ,JJJ)
i=1 j=1 i=1 j=1

holds, it is not necessary to explicitly represent ¢(x)
and we can calculate the error ||u[Py,] — u[Py]|| exactly.

As data we take random instances from the MNIST
(LeCun et al., 1998) and ImageNet (Russakovsky
et al., 2015) datasets. The former contains images of
handwritten digits and the latter is a database contain-
ing various images. We randomly sample N = 1000 in-
stances from each dataset and calculate ||u[P,]—pu[Py] ||
for 1 < n < N using the squared exponential and
Matérn kernel.

We use two different kernel functions.
squared exponential kernel given by

k(z,y) = acxp (llw—yll)

First, the

202

with scaling factor o and length scale o2, where
a,0? > 0. The second kernel is the Matérn (Minasny
and McBratney, 2005) defined as

a (Maf;m)”m(?ﬁliyll),

I(v)2v—1 o o

k(z,y) =

where I' is the gamma function and K, is the modified
Bessel function of the second kind. In the following we
set v =2, 02 =10 (MNIST) and ¢ = 100 (ImageNet)
to obtain reasonable kernel values. For both kernels,
we vary the scaling factor a such that ||¢(x)|| < d, for
d =1,3,5 to gain insight how the convergence is influ-
enced by this bound. A variation of the bandwidth o2
does not have any influence on the bound d and hence
does not affect our inequalities.

The results of 10 independent experiments are illus-
trated in Fig. 1, where we report the mean +2x vari-
ance. As reflected in Theorem 2, the convergence rate
becomes slower as ||¢(x)|| grows and we also observe an
increased variance. The influence of this bound dom-
inates over the influence of the kernel characteristics
and the dataset properties.
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6 CONCLUSION

We provide concentration inequalities for Banach
space valued martingales in sampling without replace-
ment. These probabilistic bounds are a generalization
of Serflings work, which has numerous applications in
probability, statistics and machine learning. Our in-
equalities do not use any knowledge about the underly-
ing distribution other than the requirement of bounded
martingale differences and are therefore applicable to
a wide class of problems.

We apply our new theory to estimate errors for the em-
pirical kernel embedding of distributions which is itself
a Hilbert space valued random variable. This embed-
ding is done with the kernel mean map and used to
manipulate probability distributions without the need
of an explicit analytical representation. We focus on
the error introduced when only a subset of the data
is used as a proxy for the full dataset. This is of spe-
cial interest for very large-scale applications where it
is, due to computational limitations, not possible to
process all available data. This is just one of various
potential applications of these new concentration in-
equalities.
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Figure 1: This figure shows plots for the deviation between u[P,] and p[Py] as n — N for different datasets and
different kernels. Each kernel is scaled such that ||¢(z)|| < d, for d = 1,3,5. We repeated each experiment several
times and plot the mean (solid line) £2x variance (shaded region). The theoretical upper bounds for various
d are plotted in gray (dotted line) such that ||u[P,] — u[Py]|| < € with 95% probability. Each column shows a
different dataset (MNIST and ImageNet) and each row a different kernel (Matérn and Squared Exponential).
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