UNIVERSITY OF NORTH CAROLINA
Department of Statistics
Chapel Hill, N. C.

PROBABILITY INEQUALITIES FOR SUMS OF

BOUNDED RANDOM VARTABLES

by

Wassily Hoeffding
May 1962

Contract No. AF(638)-261

Upper bounds are derived for the probability that the sum S
of n independent random variables exceeds its mean ES by
a positive number nt. It is assumed that the range of each
summand of S 1is bounded or bounded above. The bounds for
Pr{S~-ES > nt} depend only on the endpoints of the ranges of
the summande and the mean, or the mean and the variance of 8.
These results are then used to obtain analogous inequalities
for certain sums of dependent random variables such as U
statistics and the sum of a random sample without replacement
from a finite population.

This research was supported by the Mathematics Division of the
Alr Porce Office of Scientific Research,

Institute of Statistics
Mimeo Series No. 326



PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABIJE}S:L
Wassily Hoeffding
University of North Carolina

Summary. Upper bounds are derived for the probability that the sum S of n
independent random variables exceeds its mean ES by a positive number ant. It isg
assumed that the range of each summand of S is bounded or bounded above. The
bounds for Pr f S~ ES > nt} depend only on the endpoints of the ranges of the
summands and the mean, or the mean and the variance of S. These results are then
used to obtain analogous inequalities for certain sums of dependent random
variables such as U statistics and the sum of a random sample without replacement

from a finite population.

1. Introduction. Iet Xl’ XQ’

with finite first and second moments,

ey Xn be independent random variables

= S/n s

»al

(1.1) B =X + . v X,

2

(1.2) L =EX = BS/n s ¢ =nvar( X ) =far Yn .

(Thus if the Xi have a common mean then its value is p and if they have a common
variance then its value is 02.) In section 2 upper bounds are given for the
probability,

(1.3) Pr{-)_(-uz t}:Pr{s-Esgnt} ,

where t > 0, under the additional assumption that the range of each random variable
Xi is bounded (or at least bounded from sbove). These upper bounds depend only on
t, n, the endpoints of the ranges of the Xi’ and on 4, or on K and o. We assume

t > 0 since for t < 0 no nontrivial upper bound exists under our assumptions. The
proofs are given in section 3. Note that an upper bound for Pr-{'i - p2>t }

- 3
implies in an obvious way an upper bound for Pr {'-X +p>t f and hence also for

1
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' (1.4) Pr{ [K-pl>t) =Pr[T-u>t) +Pr{ X+u>t .
~ =7 =" ! Zty

Known upper bounds for these probabilities include the Bienayme’- Chebyshev

inequality
| o
(1.5) Pr{ﬁ(-ulft;f-—-—é )
' nt
2

Chebyshev's inequality

(1.6) PriX-p>t{ < —5

(which do not require the assumption of bounded summends) and the inequalities of
Bernstein and Prohorov (see formules (2.22) and (2.23) below). Surveys of in-
equalities of this type have been given by Godwin [ ’+__7 , Savage [ 11_7 and
. Bennett [ 1_7. Bennett also derived new inequalities, in particular inequality
(2.21) below, and made instructive comparisons between diffewent bounds.

The method employed to derive the inequalities, which has often been
used (appareh‘tly first by S. N, Bernstein) , 1s based on the followiry simple
observation. The probability Pr { S~ ES. rt J/’ is the expected vrius of the
function which takes the values O end 1 according as S - ES - nt is <0 or > 0.
This function does not exceed exp { hCS - BS - n‘c)} , where h is an arbitrary
positive constant. Hence

h({ s-ES-nt)

O m

(1.7 Pr{X-p>t} =Pr {8-ES>nt 5 <BEe

If, as we here assume, the summands of S are independent, then

2 .

Inequality (1.6) has been attributed to various authors. Chebyshev / 15/
. seems to be the first to have announced an inequality which implies (1.6) as an
‘ illustration of a general class of inequalities.
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n h( Xi—EXi)

- eh(S-ES—nt) . -t 5 e

(1.8)
i=1

It remains to obtain an upper bound for the expected value in (1.8) and to
minimize this bound with respect to h. The bounds (2.1) and (2.12) of Theorems 1
and 3 are the best that can be obtained by this method under the assumptions of
the theorems. They are not the best possible bounds for the probability in (1.7).
The bounds derived in this paper are better than the Chebyshev bounds (1.5) and
(1.6) except for small values of t. Typically, if t is held fixed, they tend to
zero at an exponential rate as n increases.

In section L4t the results of the preceding sections are used to obtain
probability bounds for certain sums of dependent random variables such as U
statistics and sums of p-dependent random variables. In section 5 a relation
between samples with and without replacement from a finite population is estab-
lished which implies probability bounds for the sum of a sample without replace-
ment.

The following facts about convex functions will be used; for proofs see
1—5;7. A continuous function f(x) is convex in the interval I if and only if
flpx + (1 - ply) < pf(x) + (1L - p)f(y) for 0 <p <1 and all x and y in I, If
this is true for all real x and y, the function is simply called convex. A
continuous function is convex in I if it has a nonnegative second derivative in I.
It f(x) is continuous and convex in I then for any positive numbers pl, cony pN

seey X dn I

such that Py + eoe F Py = 1 and any numbers x N

l}

it M=

pif(xi) .

N
(1.9) SEEXRERS

1 i

This is known as Jensen's inequality.
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2. Sums of independent random variables. In this section probability

bounds for sums of independent random variables are stated and discussed. The
proofs are given in section 3.

- 2
Let Xl, XE’ P Xn be independent random variables and let S, X, p and ¢

2
be defined by (1.1) and (1.2). First we consider bounds which do not depend on o .

Theorem 1. If X., X, «.o, Xn are independent and O < Xi_f 1 for i =1,

1 72
seey 0, then for 0 <t <1 -~ u

| -t ) 0
Iz ) 1-p o
(2.1) Pr{X-u>t] <; (u+t) (l_“’_t) /

2
(2.2) < o0t a(u)

2
(2.5 < et :
where

l 1 1 1

(2.4) g(u —"——— {n for 0 <p <3, g(u) = e for5<u<1l ,

The assumption 0 < Xi'f 1 has been made to give the bounds a simple form.
If instead we assume a < Xi-f b, the values 4 and t in the three upper bounds of

the theorem are to be replaced by (m - a)/(b - a) and t/(b - a), respectively.

Ift>1a K4, then under the assumptions of Theorem 1 the probability in
(2.1) is zero. Inequality (2.1) remains true for t = 1 - u if the right hand
side is replaced by its limit as t tends to 1 - u, which is un. In this special
case the sign of equality in (2.1) can ve attained. Indeed, if t = 1 - u, then
Pr{X-u>t] =Pri%=1)

it
=

j , and Pr i S = nj} = un if

(2.5) Pr { X, =0

i

7
1-u , Prfxi=1; =4 ,i=1,...,n,
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that is, if S has the binomial distribution with parameters n and p.

The bound in (2.1) is the best that can be obtained from inequality (1.7)
under the assumptions of the theorem. Indeed, it is the minimum with respect to
h of the right hand side of (1.7) when the Xi have the distribution (2.5).

Denote the bounds in (2.1) and (2.2) by A, and A_., respectively. Then

1 2
Al.f A2 and the first bound is appreciably better than the second if the ratio

Al/AE is not close to 1. We can write

(2.6) Al = e_ntgG(t:M) ,
where
(2.7) 65600 = (o (1 + D)+ (1w p- (1 - 7).

If t is small, we can approximate G(t,u) by the first terms of its expansion in

powers of t,

(2.8) G(t,u) = 1 b=l 2 Sl - L) 2 4 ... .
2u(L - ) 6u°(1 - w)© 1207(1 - w)?

If u >-}, then all coefficients in the expansion (2.8) are positive and we have

A ,
(2.9) Z; < exp - ‘"%E;:_E;‘§ t3n‘} .
2 L oauf(1- )

) =-%, then Al/A2 < exp(—hthn/ﬁ). In this case the bounds in (2.2) and (2.3)
are equal.

If u <-1, then g(u) < EERTE%TTIT and for t small A, is appreciably better

1 2 . _ . 1
than A, unless r Sy " g{n) ] t°n is small. We have Ay = Ay if p <3 and
t =1« 20,
For the special (binumial) case (2.5) the inequalities of Theorem 1 (except

for (2.2) with u <~%) have been derived by Okamoto 1—9;7.
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. The following theorem gives an extension of bound (2.3) to the case where
the ranges of the summands need not be the same.

Theorem 2. If Xl’ Xg, e Xn are independent and ai_f Xi-f bi (i = 1, 2,

ceey n), then for ¢t > 0

2n2t2

n 2
2, (b,-a.)
{ - 1 =
(2.10) Pri{X-p>t) <e 171 .

—

As an application of Theorem 2 we obtain the following bound for the dis-
tribution function of the difference of two sample means.

Corollary. If Yl, ey Ym’ Zl’ ey Zn are independent random variables
with values in the intervel [a,b |, and if ¥ = (Yl t oeee Ym)/m,'z =

(Zl + oeee + Zn)/n, then for t >0

2t2

; PR S 2
{ = — - N See
’ (2.11) Pri1Y¥-%-(87-52) >t} <e (40" "){b-a)
. S
The inequalities of the next theorem depend also on the variance 02/n of X.
We now assume that the Xi have a common mean. For simplicity the mean is taken to
be zero.
Theorem 3, If Xl’ XE’ ey Xn are independent, EXi =0, Xi_f b (i=1, 2,

+es, n), then for 0 <t <b

n
2 2
t
(14 D5 -(1- §) "’2’1?"'2"2
, o bt b+ '
. .
(2.12) Pri%>tf < |(1+2) (1-3) f
N ' o
nt | 0'2 bt
-5 E(l +—b-7t)ﬂn(l +-§) - 1 ]
» o
. Here the summends are assumed to be bounded only from above. However, to

obtain from this theorem an upper bound for Pr { ISE lf‘t } s We must assume that

the summands are bounded on both sides.
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‘ . ...Inequality (2.12) is the best that can be obtained from (1.7) under the
Present assumptions. It is the minimum with respect to h of the right hand side

of (1.7) when the Xi have the distribution

(2.14) Pr | X —-—‘72 ] -——-———-b2 Pr%, X =D | -—-—-—-—"2
. ; . = s = 2 i = ; = ’
L b 'b2 + 02 * 4 b2 + 02
i = l, ey n .

Inequality (2.12) is true also for t = b if the right hand side is replaced by
its limit as t tends to b, which is [ o°/(b° + o°) J°. 1In this case the sign of
equality in (2.12) is attained when the distribution is (2.14).

The bound (2.13) is due to Bennett (/ 1/, inequality (8b)). (Bennett's
notation is different from mine. His first proof assumes ,Xi l <b (= nis M),
a second proof (pp. 42-U43) uses only S b.)

' Let the upper bounds in (2.12) and (2.13) be denoted by B, snd By, re-

1
spectively. The ratio Bl/B2 can be written in the form

B
(2.15) - o~ 1B(v,w) ’
2
where
1 t
(2..16) v = 0—2 R W =_5 ,
1+ e
(2.7 O P O R C) ,
-1 ~1
v o o+w =1
-2 1.2
p(x) = x “[(1- x)fn(1 - x) tX-35x T
(2.18)
1,12 1.3
‘2.3X+3.)+X +E—5X F o oeen .
' Since 0 < t < b, both v and w are between O and 1. The function @¢(v,w) is an

increasing function of both v and w. Hence 0 < ¢(v,w) <1l, If b and 02 are both

fixed and t approaches O, then
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&)
(2-19) ¢(V,W) ot 2 .
6ba
Hence Bl is appreciably smaller than 32 if n t5/(6b02) is not small.
If we let
bt nt
(2.20) A= =g ) T =5 ,
o

Bennett's inequality (bound (2.13)) can be written

. . —Thl(h) 1
(2.21) Pr{ K>t <e s b (M) = (TP er) -1 .
Bennett has shown that (2.21) is better than Bernstein's

: -Th (A
(2.22) PriX>t] <e ral) RSN pp—_

T
2(1 + -57\)

Inequality (2.21) is also better than Prohorov‘s.z_lq;7

- Th5( A

€ 2

In

Pef %>t }
(2.23)
h (K) =3 L oresinh -g =-% (n(— + [1+ (-»-)2 ] l/2) .
Indeed, it can be shown that the bound in (2.21) is the best bound of the form
exp { -7 h(A)} that can be obtained from (2.12) and hence from (1.7). If Ais
small, Bernstein's bound (2.22) does not differ much from Bennett's (2.21).

Under certain conditions X is approximately normally distributed when n is

large, so that, for y = VE t/o fixed,

{ b - ! % ;
(2.24) PriX-pn>t; =Pr'}jX~HEU;--f \/;- j ex/gdxﬂz(-y)
' n 7

(o]
as n——>c. (Sufficient conditions are no~ —> @ and ZEIXi-EXiP/(a'\/Z)5

—> 0.) It is instructive to compare the present bounds with the upper bound for
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P (-y) vhich results from inequality (1.7) when X is normally distributed. In
this case the right hand side of (1.7) is exp(-hnt + h2n02/2). If we minimize

with respect to h we obtain

_ nt2

2

(2.25) Pr{?{-ugt} =7 (- ‘/:r;t)ge 20

or § (-y) < exp(-yg/E), where y > O. This bound for § (-y) is rather crude,
2
exp(-y~/2).
vV 2x

In contrast, the bounds (2.1) and (2.12) are attainable at the largest nontrivial

especially vhen y is large, in which case:g: (-y) is approximated by

values of t. It is interesting to note that the bound (2.2) with p > 1/2 is equal
to the right hend side of (2.25) in the binomial case (2.5). The bound (2.10) of

Theorem 2 is equal to the right hand side of (2.25) in the case where Pr { X, = a.?
H

L i
= Pr ;’"xi = bj_; =-,‘-£ for all i. Bernstein's bound (2.22) is close to the right

hand side of (2.25) when A = bt/ce is small. The same is true of the bounds of
TheoremTaé inequalities of this section can be strengthened in the following way.
Let Sm = Xl * oeee F Xm form=1,2, ..., n. It follows from a theorem of Doocb
(/[ 27, p. 314) that

(2.26) Pr{ mex (S -ES)>nt! <E eh(sn“ES“-nt)
.4 m m - }o-

for h > 0., The right hand side is the same as that of inequality (1.7) (where
S = Sn). Since the inequalities of Theorems 1, 2 and 3 have been obtained from
(1.7), the right hand sides of those inequalities are upper bounds for the Prob-
ability in (2.26) under the stated assumptions. This stronger result is analogous
to an inequality of Kolmogorov (see, e.g., Feller‘[_j;7, p. 220).

Furthermore, the inequalities of Theorems 1 and 2 remain true if the as-

sumption that X., X,, ..., Xn are independent is replaced by the weaker assumption

1’ "2
that the sequence S& = Sm - ESm, m=1,2, ..., n, is a martingale, that is,
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(2.27) B(s! |81, «ve, 81) = 8} 5 1<§sm<n )

with probability one. Indeed, Doob's inequality (2.26) is true under this as-
sumption. On the other hand, (2.27) implies that the conditional mean of X.m for
Sérl fixed is equal to its unconditional mean. A slight modification of the

proofs of Theorems 1 and 2 yields the stated result.

3, Proofs of the theorems of section 2. ILet X be a random variahle such

that a < X <b, ©Since the exponential function exp(hX) is convex, its graph is
bounded above on the interval a < X < b by the straight line which connects its

ordinates at X = a and X = b, Thus

hX b- X ha X - a hb
(3.1) e Sg—s e +p——e

Hence we obtain

Iemma 1. If X is a random variable such that a < X < b, then for any real

number h
h¥ b - EX ha  ®{ -~ a hb
(3.2) Ee Sme +me .

We now prove Theorem 1. By (1.7) and (1.8) we have for h >0

- i - hnt= hny ° hXi
(3.3) Prj X-p>t} <e T Ee .
‘ ‘ i=1

By assumption O < Xi'f 1. Let by = EXi. Then nup = By + Ko + eee + b By
Lemma 1 with X = Xi’ a =0, b =1we have

n hX, n h
(3.4) T Ee "< TT (L-w +ue) :
i=1

Since the geometric mean does not exceed the arithmetic nean,
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1
f _m p} B g D h
(3.5) 1 I (1 - M, + e ) § <z = (L= u +ue By C1 - p ok ope
= i=1
It follows from (3.3), (3.4) and (3.5) that
- ) ( -ht-hu ny 7 °
(3.6) PryX-p>ty < je (l-u+ue)j .

The right hand side of (3.6) attains its minimum at h = h , where

1~ w) t)
(3.7 by = fn ((l _P-u(-!:l :)u )

Since 0 <t <1 - u, h is positive. Inserting h =h  in (3.6) we obtain in-
equality (2.1) of Theorem 1.
To prove inequality (2.2) we write the right hand side of (2.1) in the

form exp(—ntgG(t,u)) (as in (2.6)), where

y<Brt gurt lou-t ol t

t

y=

(3.8) G{t,u

= n - —
tg M L~

Inequality (2.2) will be proved by showing that g(u) as defined in (2.4) is the
minimum of G(t,u) with respect to t, where O <t <1~ u. The derivative

3G(t,u) /Ot can be written in the form

2 8 6(t,0) =(1 - 2 2 n(1 - 32)-(1- 2 EY (1 -

(3.9)
= H( ) (u+t ’

where H(x) = (1 - 2x“1){(n(l - x). By assumption 0 < t/(u + t) <1 and

0 < t/(1 - p) < 1. For ,x] < 1 we have the expansion

(510  EHx =2+ E-DP GO E-Pxte .

where the coefficients are positive. Thus H(x) increases for 0 < x < 1. It
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follows from (3.9) that 0G/dt > 0 if and only if t/(1 - u) > t/(n + 1), that is,
t>1- 2u. Hence if 1 - 2p >0, G(t,u) has its minimum at + = 1 ~ 2u and the
value of the minimum is ({n -l'-;—“)/(l - 2u) = g(u). If 1~ 2u<O0, then G(t,u) has
its minimum at t = O and the value of the minimum is 1/ EEu(l - ) ] = g(p) (see
(2.8)). This proves inequality (2.2).

It is easily seen that g(u) > g(«%) = 2, This implies inequality (2.3).
The proof of Theorem 1 is complete.

We next prove Theorem 2. The proof will also indicate a short direct
derivation of the simple bound (2.3).

In Theorem 2 we agsume a; < Xi < bi. Iet again Wy = EXi' By (1.7) and

(1.8),
. . n h(X, -, )
(3.11) Pri{X-u>t; < e T ge 11 .
i i=1
By Lemma 1,
h(X.-u,) -hy, b,-u. ha 4,8, b L(n,)
i1 i1 i 71 _
(3.12) E e <e T e el =e 5
i 74 i i
where
h'i
(3.13) K(h;) = -hp, + fo(l- p, +pe”) )
M, - a,
i i
(3.1k4) h; = h(bi - ai) s Ty .
i i
The first two derivatives of L(hi) are
D,
_ i
L'(ny) = -p; + -y )
(1-ple ~+op
-h,
pi(l - Pi) €

Ln(hi)
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The last ratio is of the form u(l - u) where O < u < 1, Hence L"(hi)_f 1/ k4.

Therefore by Taylor's formula

, 1.2 1.2 1.2 2
(3.15) L(hi) < L0) + L (o)hi +gh - =gh - =5h (bi - ai) .
Hence by (3.12)
1,2 2
h(x, - w,) h(b, - a,)
(3.16) Ee -~ % geB ol
and by (3.11)
n
‘ -hnt +-% w3 (b, - ai)2
(3.17) Pr{T-u>t] <e 1=l .

The right hand side of (3.17) has its minimum at h = Mnt/z(bi - ai)2 Inserting
this value in (3.17) we obtain inequality (2.10) of Theorenm 2.

To prove Theorem 3% we need two lemmas.

Lemma 2. If X is a random variable such that EX = O, EX2 = 02 and X. <D,

then for any positive number h

(3.18) Ee " <

A proof of this inequality can be found in Bennett 1“1;7 .

Lemma 3. If ¢ > 0, the function

1 -Ccu u c
(5.19) f(u) = (n(l T e +T:Ti_ e )

has a negative second derivetive for u >0,

To prove this we write £f(u) = ¢ + {n fl(y), where y = 1 + u and

-1 - -1
fl(y) =y T e y o+ 1 .
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2
For the second derivative f'"(u) we have fle(y)f"(u) = fl(y)fl"(y) - (fl'(Y)) .
Now

-2 -1, - -2
£.'(y) = (¥ " - ey )oY 4y 5

(2y"5 + 2cy-2 + 02y~l)e-cy - 23/'"5

it

£,"(y)

=2y~36~cy(ecy = 1= cy~ % cgyg)

which is negative for cy > O. Since fl(y) >0 for y > 1, it follows that
£"(u) <0 for u > 0.

We now can prove Theorem 3. By assumption, EXi = 0 and Xi <b. ILet

cri2 = EXie, so that n02 = 012 + 022 + oewe ok O'ng. By (1.7), (1.8) and Lemma 2,
5 2
i 2
. n 2 - = h o,
m{xgﬁ 5JMtTr(3£~§e b +7f;?ew)
i=l b + o, b" + o,
1 1
(3.20)
: n
-hnt + I f(oie/bg)
1=1
k=4 e »

where f is the function defined by (3.19), with ¢ = bh. Since, by Lemma 3, f(u)
has a negative second derivative, -f(u) is convex for u > 0. Therefore by

Jensen's inequality (1.9)

n n
I s #6PnD) <f(d = c.e/be) = f(cg/be)
n . 1 - n . 1

i=1 i=1

(3.21)
cr2
v T3 B o bh
=fnl = e tg—pe ) -
b o+ 0o b o+ o

It follows from (3.20) and (3.21) that



2
i 2 (t +E“)h 2 n
(3.22)  Pr{X>t}! <(—52—p ER- S L .
b +o b +0
The right hand side of (3.22) attains its minimum at h = h,, where
1 +~E§
b ( 52
h, =———5 [n .
1 .bL. + 0_2 1 - %

Inserting this value in (3.22), we obtain inequality (2.12) of Theorem 3.
Inequality (2.13) follows from equations (2.15) to (2.18). The proof of
Theoren 3 is complete.
As noted above, the upper bound (2.13) for Pr {‘i_z t} has been derived

by Bennett‘l_;;7. An slternative direct proof goes as follows. By lLemma 3, if

it

u >0, then £"(u) < O and hence f(u) < £(0) + £'(0)u (e - 1 - c)u. Applying

this inequality to the right side of (3.20) (where ¢ = bh) and minimizing with

1l

respect to h we obtain the bound (2.13).

4. Sums of dependent random variables. The inequalities of sectionsg 2

and 3 can be used to obtain probability bounds for certain sums of dependent
random variables. Suppose that T is a random variable which can be written in the
form

(4.1) T = plTl + p2T2 + oees pNTl\T s

where each of Tl’ Tg, N

ses Dy Bre nonnegative numbers, pl+@2+ ce. Py = 1. The randcem variables

w20, T is a sum of independent random variables and Pys D

2}

Tl’ TQ’ ... T need not be mutually independent. For h >0

N

‘ b -
Pr iT‘E t; <e bt g ehT .

4

Since the exponential function is convex, we have by Jensen's inequality (1.9)
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N N
exp(hT) = exp(h % p,T,) < £ p, exp(h T,) .
. itih o=, i i
i=1 i=1
Therefore
; N h(Ti—t)
(4.2) PriT>t}; < % p,Be .
(. - = 5=l 1

Since each Ti is a sum of independent random variables, the expectations on the
right can be bounded as in section 3. If the random variables Ti are identically
distributed or if the upper bound for E exp(h('l‘i - t)) is independent of i, then

the upper bound we obtain for Pr { T>% ? is also an upper bound for
Pr i Ti.f't é . The bounds obtained in this way will be rather crude but may be
useful.

We now consider several types of random variables T which can be repre-

sented in the form (k.1).

ba. One-sample U statistics. Let X, X evey X be independent random
1’ T2’ > Tn
variables (real or vector valued). For n > r consider a random variable of the

form

(4.3) U =-—%;7 b g(X, , o4, X, ) s

n,r i
2 1 r

where n(r) =n({n-1) ... (n - p + 1) and the sum I, , is taken over all r-tuples
2

il, N ir of distinct positive integers not exceeding n. Random variables of
the form (4.3) have been called (one-sample) U statistics. For example, if X, =
(Yi’zi)’ i=1, ..., n, are independent random vectors with two components which
have continuous distributions, then Kendall's rank correlation coefficient is of
the form (4.3) with r = 2 and g(Xi’Xj) equal to the sign of (Yi - Yj)(zi - Zj)'
Other examples of U statistics can be found in.[_§;7.

Iet
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{
(L.k) V(X5 oy %) =-1-1§g 8(Xys «ees xr) + g(Xr+l, veus Xer) +

n

kr-r+1’ *°°? Xkr) ; ?

where k = En/ﬁ], the largest integer contained in n/r. Then

i

B

(k4.5) U L V(xi soeees X ) R

i 1 n

where (in accordance with the notation in (4.3)) the sum Zn,n is taken over all
permutations il’ 12, seesy in of the integers 1, 2, ..., n. Each term in the sum
on the right is a sum of k independent random variables. Thus (h.5) gives a re-
presentation of U in the form (4.1) with N = n! and p; = 1/n! .

If the function g is bounded,

(4.6) ajﬁﬁ,uwngb s

it follows from (M.E) and the proof of Theorem 2 that

. \ 2 2
(%.7) Pr’U-EU>t}: < o2t/ (b-2)

where k = [:n/r']. This is an extension of the bound (2.3). To obtain simple

extensions of the other inequalities of theorems 1 and 3 we assume that the ran-
17 X2, .
0< g(Xl, cevy Xr)-f 1, then the bounds of Theorem 1 with n replaced by [:n/r ]

dom variables X .y Xn are identically distributed. In this case, if

and B = Eg(Xl, coss Xr) are upper bounds for Pr g.U - EU > t.; , Where EU = (.
If g(Xl, cee, xr) < EU + b, then the right hand sides of (2.12) and (2.13) with

n replaced by [:n/r'] and 62 = var g(Xl, coey Xi) aze upper bounds for

!

Pr|U-EU>%

Yo, Two-sample U statistics. Let X, X., eee, £, Y., ¥

1’ "2’ m’ "1’ "2’

m + n independent random variables. For m > r and n > g consider a random vari-

ey Yn be

able of the form



1
(4.8) U = —r= 13 zm’r;n,s g(Xil, cee, xir , yjl, cen, Yjs) ,

where the sum & is taken over all r-tuples i,, ..., i_ of distinct positive
m,r;n,s 1 r
integers < m and all s-tuples (‘jl’ ceny js) of distinct positive integers < n. A
random variable of the form (4.8) has been called a two- sample U statistic. For
example, let Xi and Yj be real and let U'denote the number of pairs (Xi ’Yj) such
that YJ, < Xi' (This is one form of the Wilcoxon-Mann-Whitney statistic [ 15_],
/87.) Then U'/mn is of the form (4.8) withr = s = 1 and g(x,y) =1 or O ac-

cording as y < x or y > x. Other examples of two-sample U statistics can be

found in [ 7__7.

let
V(% X, ¥ v) =2 ax XY Y )
l, ¢ ey m, l, s o8,y n _-E'_lg l" vy r, 13 LI Y s
7 s e 25 — 3 Y 3 % % H LA
(4.9) * g(Xr+1’ 2 Xer 7 Ts+l’ T st) *
* g(xkr-r—!-l’ T Xkr ? YKS~S+J_’ e Yks) ?

where
(4.10) k = min( [w/r], [o/s i) .
Then U as defined in (4.8) can be written as

(k.11) U =

1 g oy
Z V X. LI ) X. )Y. . LI Y. ? .
min! “m,m;n,n ( i,° S AR M S

EBach term on the right is a sum of k independent random varisbles. Thus (h.ll)
represents U in the form (4.1).
If a < g <D, then for U as defined by(4.8) we have inequality (4.7) where

k is now given by (4.10). If we assume that Xl’ veuy Xm have a common distribution

and Y., <o, Yn have a common distribution

l.’
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(not necessarily the same as that of Xi), then the terms in (4.11) are identically
distributed and we obtain extensions of the inequalities of Theorems 1 and 3
analogous to those discussed at the end of section ha, where now n is replaced by
k as defined by (4.10).

he, Sums related to U statistics. Iet again Xl’ XE’ cees Xn be indepen~

dent and consider the random variable

1 B n
(l“olE) W=—f. Z “v e Z g(X. s c-cjx ) .
. ; i
n i.=1 i =1 1 r
1 r
- 2
For example, the Cramer-von Mises goodness of fit statistic & is defined by

(4.13) e /f’ [ Fn(x) - 6(x) :[2 aa( x) s

~ Q0

where G(x) is a given cumulative distribution function and n Fn(x) denotes the

number of those X., «.., X which are < x. IfG(x) is continuous, we can write m2

(4.1k) g(xl,xg) =-% % G (x ) += G (x ) - max ; G(x ), G(x ) .

A rendom variable W of the form (4.12) can be written as a U statistic,
1 *#
(4.15) W=ty By 8 (% 5 eees By ) :
n 1 r
*
where g (xl, N xr) is a weighted arithmetic mean of certain values of g. For

example, for r = 2 and r = 3 we have, respectively,

(l‘t'l6) g (Xl,X ) = g(xl,x ) + - g(xlax ) P
.(.P.:_l_)_(_fi:_?.). n-1

g (xlﬁerX ) g(xl’xg’xj) +';l_2'" '}‘ g(xl,xl)xz) + g(xl)xglxl)
(4.17)

P01
+ g(xz,xl,xl)§t-;§ g(xl,xl,xl)
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(The function g* for which (4.15) is satisfied is not uniquely determined. For
example, in (L4.16) the value g(xl,xl) may be replaced by-% g(xl,xl) +-% g(XE,X2>.)
Thus the results of section Ya can be directly applied to obtain upper
bounds for Pr { W-EWi>t } . Note also that since g* is an arithmetic mean of
values of g, a < g < Db implies a < g*_f b. Hence the right hand side of (L4.7)
with k = [:n/r‘j is alsc an upper bound for Pr {:W - EW >t ; if (4.6) is satis-
fied. (In some cases, as in example (H.lh), the range of g* is smaller than the

range of g, but the difference is negligible when n is large.)

4d. Sums of m-dependent random variables. Iet

\ —
(4.18; B=Yy ¥y e + Y s

where the sequence of random variables Yl, Y ey Yn is (r—l)-dependent; that

2)

is, the random vectors (Yl, ey Yi) and (Yj’ ey Yn) are independent if

J - 1>r, where r is a positive integer. (Example: S = Xer + XEXr+l + .e

+ X X .2 where X., X ess are independent.) Then the random variables Yi,

n r4ne- 1’ Tp’

Y ++. are independent. For i =1, ..., r let

4 .
r+i? T2r+i’?

n-i+r
(4.19) R AR SR S P Ynir-r+i ;o on = [ ===

Then S = Sl + SP + cea + Sr and Si is a sum of n; independent random variables.

If we put p; = ni/n then the equation

1 r 1
(4.20) E(S - ES) = Iop (si - Ebi)
i=1 i
represents (S - ES)/n in the form (4.1). Hence by (L4.2)
- ; = (Si—ESi)
(k.21)  Prji(s-ES)>v; <

it Mo
ke
o
jeal
[0}

i

If n is a multiple of r, n = kr, then n, = k for all i and we can obtain in a
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straightforward way explicit upper bounds similar to those of section 4a. 1In

general ni_2 [:n/r'] and i1t is easy to see that the bounds for the expected

values in (4.21) remain valid if n, is replaced by [n/r]. Explicitly, if

i ] 2 2

8 <Y, <D, then Pr {S-« ES > ntjl < exp(-2[ n/r Jt/(b - a)%). 1If Yo, Yo, oee,

Yn are ldentically distributed and 0 < YJ.S 1, then the bounds of Theorem 1 with
( . ;

n replaced by [ﬁJr’j and {4 = EYl are upper bounds for Pr i- 5« ES > nt § »

where ES = nu. If the Yj are identically distributed and Yj - EYj_f b, then the

2
right hend sides of (2.12) and (2.13) with n replaced by [n/r ] and ¢” = Var Y,

are upper bounds for Pr {S - ES > nt'} .

5. Sampling from a finite population. In this section it will be shown

that the inequalities of section 2 yield probability bounds for the sum of a ran~
dom sample without replacement from a finite population. Let the population C con-
sist of N values Cys Cps voe, e Iet Xl’ XQ’ o, Xn denote a random sample
without replacement from C and let Yl’ Y2, ceuy Yn denote a random sample with
replacement from C. The random variables Yl, ey Yn are independent and

]
identically distributed with mean p and variance 0", where

(5.1) 1 c. s o =—13\}

i=1 * i

1
=]
™M=

Z (e, - p
=1

If the ¢, are bounded, Theorems 1, 2 and 3 give upper bounds for Pr {'Y -p2>t } s
vhere ¥ = (Yl + ees + Yn)/n. It will now be shown that the same bounds, with p
and 02 defined by (5.1), are upper bounds for Pr E'X -y t~} , where X =

. ‘ S ] 2 2
(x:L toeee + Xn)/n. (Note that EX = EY = p but Var ¥ = =0 %— <%‘ = Var Y.) This

[l §o]

will be an immediate consequence of

Theorem 4. If the function f(x) is continuous and convex then

n n
(5.2) Ef( £ X.) <Ef( = Yi) .
i=1 = i=1
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Applied to f(x) = exp(hx) the theorem yilelds the claimed result if we re-
call that the bounds of Theorems 1 to 3 have been obtained from inequality (1.7).
(Note that the inequality Var i.f Var Y is a special case of (5.2).)

To prove Theorem 4 we first observe that for an arbitrary function g of n

variables we have, in the notation of (4.3),

1
(5.3) Eg(xl’ LI Xn) "‘Tﬁ'}' ZN,n g(ci 5 se ey Ci ) ,
N 1 n
N N
1
(5-“‘) Eg(Y; o'n,Y) = = e Z g(C. 9 eee C, ) .
1 n N i,=1 i=t 1 *n

The right hand sides are of the same form as U in (4.3) and W in (4.12), re-
spectively. It has been observed in section lbc that W can be written as U with

*
g replaced by an arithmetic mean g of values of g. It follows that
) *oy )
(5-5, Eg(Yl’ seay Yn) = Eg (n.l, s ey Xn .

*
As mentioned after (h.l7), the function g is not uniquely determined. The version

*
of g (xl, ceuy Xn) which is symmetric in x cees X, will be denoted by

l)
E(xl, cee, xn). Here we are concerned with the special case g(xl, coes xn) =

f(xl +oaee ok xn). In this case, if n = 2,
'é(xl,x?) = f(x + %, ) o+ = f(2x ) = f(2x ) .
In general E can be written as

(5.6) 'é(xl, ceus xn) = z'p(k,rl,...,;k, g5 eees ik)f(rlxi SIRRREL I N ),
W l t% k.

where the sum Z' is taken over the positive integers k, Ty eves T il’ veey ik
such that k = 1, ..., n; ry + ees F r, =13 and il, veey ik are all different

and do not exceed n. The coefficients p are positive and do not depend on the
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function f. In accordance with (5.5) we have

(5.7) Ef(Yl + e +'Yn) =E g(Xl, cee, Xn) .

If we let f(x) = 1, we see from (5.6) and (5.7) that

(5.8) 2'p(k, iy eees Tys gy eee, ik) =1 .

If we put £(x) X, then'é(xl, ey xn) is a linear symmetric function of
Kps veey X and hence equal to K-(xl + o + xn), where K 1s a constant factor.
Since E(Yl oees + Yn) = E(Xl oee. * Xn), it follows from (5.7) that K = 1. Thus
t 3 3 o~
(5.9) % 'p(k, ys vees Bs dys eee, 1k)(rlxil + oee. rkxik) = Xyt oHX o

If £(x) is continuous and convex, it follows from (5.6), (5.8), (5.9) and Jensen's

inequality (1.9) that

(5.10) 'é(xl, vees X)) > (%t ees +x) .

Hence E’g'(xl, ceey Xn) >E f(xl toees xn). With (5.7) this implies Theorem k.
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