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Summary
Background—Most machine learning approaches only provide a classification for binary
responses. However, probabilities are required for risk estimation using individual patient
characteristics. It has been shown recently that every statistical learning machine known to be
consistent for a nonparametric regression problem is a probability machine that is provably
consistent for this estimation problem.

Objectives—The aim of this paper is to show how random forests and nearest neighbors can be
used for consistent estimation of individual probabilities.

Methods—Two random forest algorithms and two nearest neighbor algorithms are described in
detail for estimation of individual probabilities. We discuss the consistency of random forests,
nearest neighbors and other learning machines in detail. We conduct a simulation study to
illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known
data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians.

Results—Simulations demonstrate the validity of the method. With the real data application, we
show the accuracy and practicality of this approach. We provide sample code from R packages in
which the probability estimation is already available. This means that all calculations can be
performed using existing software.

Conclusions—Random forest algorithms as well as nearest neighbor approaches are valid
machine learning methods for estimating individual probabilities for binary responses. Freely
available implementations are available in R and may be used for applications.
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Introduction
The problem of making accurate binary classification, also termed pattern recognition has a
long successful history. Statistical learning machines are often employed for this task
because of their good discriminatory performance. A closely related problem is estimation
of the probability of group membership, and this is very important in biomedical
applications (1). Beyond a simple statement that a patient is in one group or another, they
are better informed by having an estimated probability for belonging to one of the groups.
The performance of such a probability estimation model is assessed in terms of calibration,
which is defined as the degree to which estimated probabilities are accurate.

The model-free, nonparametric probability estimation problem has long been considered
difficult (2), although the probability of group membership is just the conditional Bayes
probability given a list of features, i.e., possible predictors. Classical parametric models,
such as logistic regression, or semiparametric models, such as generalized additive models,
have been widely used for probability estimation. Several assumptions underlying these
methods are rather strict and limit its use in practice: all the important predictors and
supposed interactions must be entered correctly in the model. Otherwise, important
problems of model misspecification can arise. Such constraints do not support scalability in
today’s very data-rich environments, where it is common to have data with up to a million
potential predictors with unknown correlation structure. The application of logistic
regression or generalized additive models therefore leave unsolved the more general
question of nonparametric, nonlinear, robust estimation of individual probabilities, given
arbitrarily large numbers of predictors, potentially of different types and having unknown
interactions within the predictors.

A solution of this general probability estimation problem is obtained by treating it as a
nonparametric regression problem, a task for which many learning machines are already
available. We refer to learning machines which estimate the conditional probability function
for a binary outcome as probability machines.

A key idea is that learning machines that perform well as nonparametric regression
machines will also perform well as probability machines. The list of good regression
machines is extensive and growing, and it includes nearest neighbors, neural networks,
kernel methods and penalized least squares (3, 4). Bagged nearest neighbors (b-NN = k-
nearest neighbors (k-NN) bagged regression), introduced by Breiman (5), and data
partitioning methods, such as decision trees and random forests (RF; 6) are also among this
group. However, some learning machines are known to be problematic and may not allow
consistent estimation of probabilities, see, e.g., Mease et al. (7) and Mease and Wyner (8)
for a discussion of logitboost and Adaboost. Furthermore, Bartlett and Tewari (9) consider
the hazards of using the output of any support vector machine (SVM), or some
transformation of it, as a direct estimate of the test subject probability; also see the erratum
by Glasmachers (10) in which he withdraws his proof of consistency of multi-class SVM
and states that multi-class SVM is not universally consistent.

Recent work on large-margin SVM classifiers have shown how they can be modified for
solving the problem of estimating individual probabilities (11). Specifically, sophisticated
computations are used as a solution path to bracket the probability for a given subject. This
approach is not identical to the direct probability estimate we describe here because a
practicably impossible infinite number of brackets, also termed bins is required for
generating any desired level of accuracy. In summary, the consistency of parameter
estimates from SVM can only be guaranteed for binning methods; other SVM schemes may
be consistent but this has to be considered on a case-by-case basis. Still other approaches,
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such as those implemented in libSVM (12), have no proven theoretical basis for probability
estimation.

It is important to emphasize that the probability machines considered here are fully
nonparametric, make essentially no distributional assumptions for the vector of features,
make no restrictions on the length of the feature list, and most importantly do not require a
specified model as a starting point. As will be demonstrated below, these machines have one
additional advantage when operated as regression machines: no additional coding or changes
to the basic algorithms underlying these machines is required.

Critical readers might argue that estimating individual probabilities has been well studied in
the field of machine learning or pattern recognition, even at a textbook level as soft
classification. However, soft classification still is classification, not individual probability
estimation. Another concern against our work might be that several software packages, such
as the prob option in the randomForest package of R, already allow the estimation of
individual probabilities. However, the availability of such an option does not mean that its
output may be interpreted as a consistent estimate of a probability. The consistency still
needs to be proven mathematically.

In this work, we focus on RF and b-NN, operating as probability machines. We demonstrate
how RF, k-NN, and b-NN can be used for consistent estimation of individual probabilities.
We illustrate the findings in a simulation study and the analysis of two biomedical data sets.
The methods are also compared with logistic regression and logitboost which can give and
claim to give, respectively, individual probability estimates conditional on the features.

Methods
Classification random forests (classRF) and regression random forests (regRF) as
probability machines

As in Breiman (6) consider a training data set drawn from a sample of independently
identically distributed random variables (x1, y1), (x2, y2), …, (xn, yn). Here, each subject i is
a pair of a feature vector xi taking values in IRp and an outcome yi with values 0 or 1. A test
subject is dropped down the tree in the usual RF manner and soon resides in a terminal node.
Under classification in random forests (classRF) a binary prognosis is made in each tree by
taking a majority vote in this terminal node of the tree. Under regression in random forests
(regRF), an estimate of the probability of y given the features x is obtained instead. This is
done by taking the proportion of observations in the training data set with y-value being 1.
We stress that the terms classRF and regRF are not related to the split criteria used for
generating the RF although the split criterion might affect the performance of the RF. The
general regRF procedure takes the following steps (modified from standard RF from Ref
13):

1. Consider a training data set of size n.

2. A bootstrap sample b consisting of n samples drawn with replacement is drawn
from the original training data set. The samples left out due to the bootstrapping
process are called ‘out-of-bag’ (OOB) data.

3. A regression tree is grown using the bootstrap data set. The tree is constructed by
recursively splitting data into distinct subsets so that one parent node leaves two
child nodes. For splitting data, all splits of a random subset of features are
considered. If features are continuous, the optimal split of a feature is the one
minimizing the mean square error (MSE) in the training data. The feature
minimizing the MSE over all randomly selected features at this node is selected.
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The number of features selected at a node is termed mtry in many RF packages and
might vary. In applications, it is held constant during the procedure, and the default
setting is , where ⌈ · ⌉ denotes the next largest integer.

4. The tree is grown to the greatest extent possible but requiring a minimum nodesize
of 10% of the sample. No pruning is performed. The final nodes in a tree are called
terminal nodes.

5. The proportion of ‘1s’ in each terminal node of the tree is determined.

6. Steps 2 to 5 are repeated to grow a specific number of trees ntree.

7. To estimate the probability of a new subject, it is dropped down a tree until its final
node. The proportion of ‘1s’ in this final node is determined. The probability
estimate is the proportion of ‘1s’averaged over all ntree trees.

For classRF, only steps (3) and (5) in the algorithm are altered. Specifically, in (3) a
dichotomous purity measure, such as the Gini index or the deviance is used instead of the
MSE (for details, see, e.g., Ref. 14). In step (5), the majority vote is taken in a terminal node.
Step (4) of the algorithm is different from current standard. In most RF implementations,
tree growing is stopped when ≥ 5 observations are left in the terminal node, regardless of
sample size, or they are grown to purity. The choice of 10% in step (4) is a practical decision
only; theory guiding this choice is given in Devroye et al. (2).

k-nearest neighbors (k-NN) and bagged nearest neighbors (b-NN) as probability machines
The averaging idea described above can be directly used for bootstrap averaging (bagging)
in the context of k-nearest neighbors, and the probability machine algorithm for k-NN
bagged regression is as follows; also see Breiman (5):

1. Consider a training data set of size n.

2. A bootstrap sample b consisting of n samples drawn with replacement is drawn.

3. The distance in the feature space is determined for the samples in the bootstrap
sample using a suitable metric.

4. The proportion of ‘1s’ of the k-nearest neighbors of a sample in the bootstrap
sample is determined.

5. Steps 2 to 4 are repeated.

6. The probability estimate of the b-NN is the proportion of ‘1s’ averaged over all
bootstrap samples.

Consistency of random forests and nearest neighbors
Informally, in the situation described above, the aim is to estimate the conditional
probability η(x) = IP(y = 1|x) of an observation y being equal to 1 given the features x. By
noting that IP(y = l|x) = IE(y|x) it can be seen that the probability estimation problem is
identical to the nonparametric regression estimation problem f(x) = IE(y|x). Hence, any
learning machine performing well on the nonparametric regression problem f(x) will also
perform well on the probability estimation problem η(x).

Thus, we aim at building a prognostic rule f: IRp → IR on the basis of the observations such
that an estimate f̂(x) of the regression function f(x) is a “good approximation” to y. More
formally, we say that a regression function estimate is consistent if the mean square error
IE((f̂(x) – f(x))2) converges to 0 if n → ∞.
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Consistency has been shown for many different nonparametric regression machines, such as
nearest neighbors, neural networks, kernel methods and penalized least squares (3, 4).
Recently, Biau et al. (15) have considered the simple randomized RF model of Breiman (6),
where splits are done at random. Specifically, in a single tree of the forest a leaf is chosen at
random in each step of its construction. A split feature is also chosen at random from the p
candidates present in the feature vector. Furthermore, the selected leaf is randomly split
using the selected feature. This procedure is performed k times in a tree. For this simple RF
model, Biau et al. (15) considered the classRF mode. A related but slightly different RF
model, where splits are done in the midpoint of the feature using the regRF approach has
been investigated by Biau (16) recently. For both models, consistency of the classRF and
regRF estimates f̂ of f has been proven. They also point out that one commonly applied
version of RF, where splits are performed to purity, is not universally consistent. The last
result is intuitively clear: If trees are grown to purity so that only a single observation resides
in a terminal node, the probability estimate is based on only a sample of size n = 1. And
averaging over a number of trees in an RF does not necessarily generate correct
probabilities. Therefore, some impurity within the tree is required for consistency of RF; see
Ref. (2) for more on terminal node size in trees. In contrast, bagging over trees split to purity
does return consistency (15).

Biau and Devroye (17) have considered not only the random splitting and the midpoint
splitting strategies of RF but also general splitting strategies, such as the one described in the
RF algorithm above. They have been able to show that these RF models can be embedded
into the theory of weighted layered nearest neighbors (18), and the RF models therefore
inherit consistency properties of weighted layered nearest neighbors.

In these different articles, convergence rates are also discussed, showing that RF provably
has the optimal rate under weak conditions.

Although these consistency and optimality results are quite general, we need to emphasize
that RF has many moving parts, not all of which are being taken into account when these
consistency results are obtained. The results also suggest that the convergence rates quoted
in the current literature might be sharply improvable as more of the working properties of
regRF are pulled into the story.

In simpler terms, the regression estimate tries to locate the expected value of the
independent variable, which is the binary outcome when we start with classification data,
given the feature vector. But this is exactly the best regression estimate of the true
conditional probability, given the features. It follows that k-NN, single trees and other
learning machines are consistent probability machines under exactly those conditions when
they are known to be consistent as regression machines. Equally important is the fact that we
do not have to worry about the probability estimate falling outside the interval [0, 1] with
these methods: no postprocessing regularization or constrained optimization is required.

For b-NN, the recent papers by Biau and colleagues (15, 17, 19, 20) showed consistency
under general conditions when operating as regression estimators. Therefore, these machines
are also consistent when acting as probability machines. Optimality and convergence rates
of k-NN are discussed in Györfi et al. (3, Chapter 6). Moreover, they have separate chapters
on the consistency of neural nets and kernel methods, when they act as regression
estimators.

Simulation study
The predictive performance of classRF, regRF and b-NN is compared using Monte-Carlo
simulations against three competing learning machines which also provide probability
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estimates for the binary regression problem, i.e., logistic regression (logreg), LogitBoost
(21; lboost), and k-NN.

We used two simulation models in this study. The first is from Mease et al. (7), where they
considered a simple two-dimensional circle model. Let x be a two-dimensional random
vector uniformly distributed on the square [0,50]2, and let y be a dichotomous dependent
variable with values 0 or 1 and conditional probabilities given x be defined as

(1)

where r(x) is the Euclidean distance of x from (25,25). We will refer to this as the Mease
model. We generated 5000 observations for x for the Mease model and computed the
conditional distribution of y|x. We then simulated 250 sets of y from this conditional
distribution using a binomial random number generator. We set aside 20%, i.e., 1000
observations of (x, y) pairs for validation purposes, and we trained the probability machines
on the remaining 4000 observations for each of the 250 simulated data sets.

The second model is generated from the Connectionist Bench (Sonar, Mines vs. Rocks) data
set from the UCI machine learning repository (http://archive.ics.uci.edu/ml). This data set
consists of 208 records with 60 numerical covariates originally intended to train networks to
discriminate sonar signals bounced off a metal cylinder and a rock (22). We used the
covariates in a logistic regression model, where the coefficients were generated from a
normal distribution with mean 2 and variance 0.2. The linear function was centered using an
intercept term, probabilities were generated using the expit function, and dichotomous
outcomes y were obtained using a binomial random number generator with the
corresponding probabilities. We will refer to this model as the Sonar model. We generated
250 simulated data sets from the Sonar model as well, and reserved 20% (41) covariate
observations and the corresponding simulated outcomes as a validation set.

For evaluating the goodness-of-fit and comparing the different machines using the training
data we used the following bootstrap approach: First, we drew a bootstrap sample and
second, trained the machines on the identical in-bag samples. Third, we evaluated the
performance of the machine using the OOB samples.

To evaluate predicted probabilities when we do not have the true probability available, we

used the Brier score (BS), which is given by  for a sample of n data
points. The Brier score is a proper score (23), can be estimated consistently if IP(yi = 1) is
estimated consistently, and therefore deemed suitable for this probability validation. We
utilized the MSE which measures the squared difference between IP(yi = 1) and 
when true probabilities were available. The sampling variances can also be determined for
both BS and MSE (24) and used for construction of confidence intervals.

As a graphical display, the estimated probabilities were plotted against the true, i.e.,
simulated probabilities. A smooth local regression (loess) with a two degree polynomial and
a span of 0.75 was used as graphical smoother.

Hosmer-Lemeshow type figures were created as described by Gillmann and Minder (25).
For the dichotomous outcome and predicted 0/1 value, standard measures of diagnostic
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accuracy, i.e., sensitivity and specificity were calculated and used for creating a receiver
operator characteristic (ROC) curve. Finally, the areas under the ROC curves (AUC) of
different learning machines were estimated.

Simulations and analyses were performed in R version 2.12. The functions and machines
used are provided in Tab. I. Example R code is provided in the Appendix. We ensured that
the number of observations in the terminal nodes for the RF was ≥ 10%, and the number of
neighbors used in k-NN and in b-NN was max {5% n, 20} to allow for efficient estimation.
logreg was run using main effects without interactions. Default settings were used for the
other machines.

Application I: Diabetes in Pima Indians
The diabetes in Pima Indians data set was obtained from the UCI Repository of Machine
Learning Databases (http://archive.ics.uci.edu/ml). All patients in this data set are Pima-
Indian women at least 21 years old and living near Phoenix, Arizona, USA. The response
variable is dichotomous with values 1 = diabetes, and 0, otherwise. Among the 768
observations, there are 268 (34.9%) diabetic cases. Eight clinical variables are available:
number of times pregnant, plasma glucose concentration at 2 hours in an oral glucose
tolerance test, diastolic blood pressure (mm Hg), triceps skin fold thickness (mm), 2-hour
serum insulin (mu U/ml), body mass index (kg/m2), diabetes pedigree function and age
(years).

Application II: Appendicitis diagnosis
The appendicitis data set is from a published study on the assessment of 8 laboratory tests to
confirm the diagnosis of appendicitis (26). Following surgery, only 85 out of 106 patients
were confirmed by biopsy to have had appendicitis. Thus, the ability to discriminate the true
appendicitis patients by lab tests prior to surgery would prove extremely valuable. Because
one test had some missing values, for purposes of comparison, we excluded results from that
test.

Results
Fig. 1 shows the median probability predictions across simulations from the test data for
each of the 6 machines against the true probabilities in the Mease model. regRF, b-NN and
k-NN do the best on both the test and the training data (Supplementary Fig. 1). logreg is not
able to correctly predict the probabilities. A better fitting logreg model on the Mease data
could not be obtained using an interaction term of the form x1 · x2 because this interaction
term does not allow a better fit of circular data. Instead, both quadratic terms of the form 
and  would be required (for a detailed discussion, see Ref 27, Chapter 5). However, this
points to a basic problem with any parametric model, namely the required complete and
correct specification of interaction and higher order terms. And such specification is not
required in the nonparametric methods such as regRF, k-NN, or b-NN. lboost has constant
levels of predicted probabilities and does not do as well as the RF-based and the NN-based
methods, either qualitatively or in terms of the MSE (Fig. 2, left, also see Supplementary
Figs. 2–4; 24). For the Sonar model, both regRF and the NN-methods performed better than
classRF (Supplementary Figs. 5–6). Note that classRF’s estimate is an average of vote-
winners in the terminal nodes (“0” or “1”), whereas regRF’s estimate is an average of
averages in the terminal nodes.

For the Sonar model, both the RF and the NN-methods performed well on both the training
and the test data (Fig. 2, right; Supplementary Figs. 7–8), while lboost and logreg showed a
poor fit (Fig. 2, right, and Supplementary Figures). We were surprised to see the bad

Malley et al. Page 7

Methods Inf Med. Author manuscript; available in PMC 2012 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://archive.ics.uci.edu/ml


performance of logreg on the Sonar data and therefore ran a second simulation with a
substantially larger sample size (n = 40,000). The fit was substantially improved and better
than regRF (results not shown).

regRF showed good performance on the two real datasets in terms of the Brier score and the
ROC curves. The goodness-of-fit of the different models is depicted by Hosmer-Lemeshow-
type plots in Supplementary Figs. 9–10. Both k-NN and b-NN performed well in terms of the
Brier score but less well on ROC curves (Supplementary Fig. 11, Tab. II). classRF performs
well on both datasets, but it is outperformed by regRF. Interestingly, lboost shows a similar
AUC in the appendicitis data when compared with regRF, while it is substantially worse on
the Pima Indians diabetes data set.

Discussion
Probability estimation for individual subjects has a long-standing tradition in biomedicine.
Applications include all areas of medicine, such as surgery (28), oncology (29), internal
medicine (1), pathology (30), pediatrics (31), and human genetics (32).

Traditionally, the probability estimation problem is tackled by well-known statistical
regression models, such as the logistic regression model, or density estimation approaches,
such as linear discriminant analysis (33). Neural networks also belong to the class of model-
based approaches, and the relationship between neural networks and regression analysis has
been well established (34). However, model-based approaches impose important
assumptions on the data, e.g., on the functional form of the probabilities or the underlying
distribution of the features, to mention just two.

Nonparametric approaches avoid these assumptions. One such approach are SVMs. They are
often used in bioinformatics applications and have also been considered for probability
estimation (11, 33, 35). The SVM approaches are based on binning or bracketing and similar
to nonparametric quantile regression estimators, as studied by Meinshausen (36). They
repeatedly search for boundaries to weighted versions of the probability problem, starting
from binary data. Approaches that use binning or bracketing the output probability interval
appear to require rather extensive user input, calibration and the correct specification of the
functional class containing the true conditional probability function. Most importantly, this
line of research does not make the basic point that any regression consistent machine can
provably do well, by directly estimating the individual test subject probability, often with
much less need for computational resources or user input.

As an alternative to the model-based approaches and the bracketing methods, we have
provided in this paper a general approach for probability estimation that is suitable for any
binary outcome data. It builds on nonparametric regression methods and is thus model-free.
It can use any kind of data, regardless of the structure of the predictors. Assumptions are not
made about the distribution of the data, nor are specific functions or specification of
interaction terms required. No pre-sifting or screening of features needs to be done. In fact,
screening is discouraged to enable the learning machine to uncover hidden relationships or
networks among the features. The importance, relevance or univariate predictive ability of a
feature does not need to be assessed before including it in this approach. For some specific
RF and NN machines, not only consistency but also sparseness has been shown (16, 19, 20).

To summarize, by viewing the conditional probability problem, given binary outcome data,
as a regression problem we find that probability machines are already available, and they are
fast and provably consistent. We expect this technique to be useful in any field in which
probability estimation is important, such as credit scoring or weather forecasting. We have
not considered here, by comparison, the many other provably consistent regression
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machines, such as specific forms of neural nets or SVMs. These also can provide probability
estimates for each patient, though with possible computational limitations not present in
regRF. Finally, we have also not considered some generalizations, such as the problem of
multiclass probability estimation, where the training data are subjects having category or
class outcomes. Other generalizations which will be considered in the near future include the
analysis of matched data, right censored data, survival data, or data with dependent features.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix: Example R code for estimating probabilities from random
forests and k-nearest neighbors

In this section, we provide R code examples for estimating individual probabilities from
regression random forests (regRF), classification random forests (classRF), k-nearest
neighbors (k-NN) and k-nearest neighbors bagged regression (b-NN). First, the required
packages need to be installed and loaded into the R workspace:
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install.packages (‘randomForest’, repos=‘

http://cran.r-project.org

’)
install.packages (‘caret’, repos=‘

http://cran.r-project.org

’)
library (randomForest)
library (caret)

For illustration, we use a small example data set from the base R package.

data (infert)

The response variable is “case”; all other variables are features, indicates by the dot.

First, the regression RF method is shown. As an option, the nodesize needs to be declared. It
indicates the minimum size of the terminal nodes, e.g., the minimum number or percentage
of individuals that reside in a in the terminal node. In the example, the nodesize is set to
10% of the sample size of the applied data. It is important to note that case is not converted
to a factor but is kept as a numeric variable for regression RF. Warnings on using a binary
numerical variable in regression RF will be generated by the software and may be ignored.

regRF <- randomForest (case~., data=infert,
nodesize=floor (0.1*nrow (infert)))

ClassRF models can be generated by

classRF <- randomForest (factor (case) ~., data=infert,
nodesize=floor (0.1*nrow (infert))

Second, we apply k-NN method to the data. Here, the choice of the number of nearest
neighbors k might be important. The option k controls the number of considered neighbors.
In the example, the maximum number of neighbors is bounded by 5% of the sample size of
the data.

knn <- knn3 (case~., data=infert, k=floor (0.05*nrow (infert)))

Third, b-NN is employed, and the calculations are slightly more complex for this learning
machine. In the first step, the data frame infert is split into a data frame termed features here,
which includes the features, and a vector class including the cases:
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features <- infert [, names (infert) ! = “case”]
class <- infert$case

For b-NN in R, a fit, a prediction and an aggregate function must be declared. For a detailed
description, see the manual.

baggedFit <- function (x, y, …) {
data <- as.data.frame (x); data$y <- y
knn3(y~., data = data, k=max (20, floor (0.05*nrow (data))))
}
baggedPred <- function (object, x) {
predict (object, x, type = “prob”) [, 2]
}
baggedAg <- function (x, type = “prob”) {
preds <- do.call (“cbind”, x); apply (preds, 1, mean)
}

After declaration of the bagged functions, b-NN is applied as follows:

bagKnn <- bag (features, class, B = 200, bagControl =
bagControl(fit =
baggedFit, predict = baggedPred, aggregate = baggedAg))

Here, the number of bootstraps is controlled by the parameter B.

Finally, the predictions are estimated for the single methods. Throughout, the estimation is
done with the generic function predict, which has built-in versions for the different modeling
methods. The main difference is the accumulation of the probability predictors. This
depends on the architecture of the functions. Therefore each method needs a specific
probability wrapper.

p.regRF <- predict (regRF, newdata=infert) # predict
random forest
p.classRF <- predict (classRF, newdata=infert, type=“prob”) [, 2]
p.knn <- predict (knn, newdata=infert) [, 2] # predict k-NN
p.bagKnn <- predict (bagKnn, newdata = infert, type = “prob”)
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Figure 1.
Predicted versus true probabilities in the Mease model for the 6 learning machines using the
test data. b-NN: k-nearest neighbor bagged regression, classRF: classification random forest,
k-NN: k-nearest neighbors, lboost: logitboost, logreg: logistic regression, regRF: regression
random forest.
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Figure 2.
Boxplots of the MSE in the Mease model (left) and the Sonar model (right) for the 6
learning machines using the test data. b-NN: k-nearest neighbor bagged regression, classRF:
classification random forest, k-NN: k-nearest neighbors, lboost: logitboost, logreg: logistic
regression, regRF: regression random forest.
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Table I

Summary of functions and packages in R used in the simulation study.

Machine Function R package

b-NN bag, knn3 caret (v. 4.54)

classRF randomForest randomForest (v. 4.5)

Lboost LogitBoost Rweka (v. 0.4)

logreg Glm stats (core, v. 2.11)

k-NN knn3 caret (v. 4.54)

regRF randomForest randomForest (v. 4.5)
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Table II

Area under the ROC curves (AUC), Brier score, and nonparametric 95% bootstrap confidence intervals (in
parenthesis) for the appendicitis and the Pima Indian diabetes data sets.

Machine Appendicitis data Pima Indian diabetes data

AUC Brier score AUC Brier score

b-NN 0.847 (0.672 – 1.000) 0.102 (0.066 – 0.145) 0.819 (0.779 – 0.858) 0.180 (0.167 – 0.197)

classRF 0.931 (0.846 – 0.900) 0.075 (0.038 – 0.121) 0.952 (0.853 – 0.913) 0.163 (0.147 – 0.184)

lboost 0.976 (0.928 – 0.900) 0.043 (0.023 – 0.073) 0.863 (0.825 – 0.897) 0.173 (0.155 – 0.198)

logreg 0.853 (0.672 – 0.900) 0.088 (0.050 – 0.136) 0.839 (0.802 – 0.875) 0.160 (0.145 – 0.181)

k-NN 0.844 (0.694 – 0.969) 0.106 (0.066 – 0.149) 0.843 (0.777 – 0.855) 0.182 (0.168 – 0.199)

regRF 0.976 (0.934 – 0.982) 0.061 (0.037 – 0.088) 0.971 (0.862 – 0.919) 0.163 (0.151 – 0.179)
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