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Abstract. This paper juxtaposes the probability matching paradox of decision theory and the magnitude of rein- 
forcement problem of animal learning theory to show that simple classifier system bidding structures are unable 
to match the range of behaviors required in the deterministic and probabilistic problems faced by real cognitive 
systems. The inclusion of a variance-sensitive bidding (VSB) mechanism is suggested, analyzed, and simulated 
to enable good bidding performance over a wide range of nonstationary probabilistic and deterministic environments. 
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1. Introduction 

Classifier systems (CSs) are genetics-based machine learning systems that combine syntac- 

ticaUy simple rules called classifiers, parallel rule activation, rule rating and conflict resolu- 

tion by analogy to a competitive service economy, and genetic algorithms (GAs). Although 

classifier systems were originally suggested quite some time ago (Holland, 1971), and despite 

their existence for over a decade (Holland & Reitman, 1978), the development of usable 

theory of classifier system operation has lagged behind CS simulation efforts, especially 

when compared to the development of  applicable theory for genetic algorithms in search 

and optimization. In this paper, I connect two important questions of learning and decision 

theory--the paradox of probability matching and the magnitude of reinforcement problem to 

an important question of  classifier system bidding structure. The connection suggests a 

new direction for classifier system design. 1 

In the remainder of  this paper, I restate the paradox of probability matching, suggest 

a plausible explanation for its occurrence, and discuss its connection to the two most com- 

monly used classifier system bidding structures: the noisy auction and the weighted roulette 

wheel. The magnitude of reinforcement problem is then discussed in the context of these 

same two bidding structures. The juxtaposition of  the two problems immediately suggests 

the need for a modified classifier system design that incorporates variance-sensitive bidding 

(VSB). An equilibrium analysis, a cursory analysis of transitions, and some computer simula- 

tions are presented to demonstrate the utility of this mechanism in mixed probabilistic- 

deterministic environments. 

2. The paradox of probability matching 

Suppose you are faced with a decision between two mutually exclusive alternatives. For 

example, suppose you must guess whether a friend is going to wear a red necktie or a 

blue necktie, and further suppose the friend chooses red with probability p and blue with 
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probability 1 - p. At first you are uncertain as to the value of the red-tie probability p. 

Over time, you gain experience with your friend's preferences in cravat color and determine 

with reasonable certainty an estimate of his preference probability. Thereafter, you are faced 

with a question: what strategy should you adopt if you want to maximize the expected number 

of correct predictions of tie color? According to decision theorists, the answer is straightfor- 

ward: simply select the tie with maximum probability of occurrence: 

if p = max{p, 1 - p} then decision = red 

else decision = blue. (1) 

That this is the optimal strategy once p is known can be shown by assuming that you choose 

the red tie alternative with probability p '  and the blue tie with probability 1 - p'. Maximi- 

zation of the expected value of the proportion of correct decisions 

D = p p '  + (1 - p ) ( 1  - p ' )  (2) 

by elementary means yields a maximum when eitherp' or 1 - p '  is unity, depending whether 

the red or blue tie has maximum probability of being selected. Of course in choosing this 

way, you will be correct a proportion max{p, 1 - p} of the time. In the remainder of 

this discussion, we assume that the red tie is preferred (p > 0.5). We will also call this 

all-or-nothing strategy the decision theory (DT) solution. 

The preceding calculation seems straightforward and hardly open to question, but when 

human subjects are placed in a similar decision-making situation they do not follow the 

all-or-nothing allocation strategy of DT. When faced with a similar binary prediction task, 

numerous experiments have repeatedly shown that human (Lee, 1971) and non-human 

(Mackintosh, 1974) decision makers seem to choose randomly between the two alternatives 

using a probability of selection roughly equal to the probability of presentation (p '  = p). 

This behavior has been called probability matching, and a simple calculation shows that 

the expected payoff under this strategy is less then the amount that can be obtained by 

selecting the better alternative. If  a subject adapts his probabilities to match the reinforce- 

ment probability, the expected number of correct decisions under probability matching, 

Dpm , may be calculated as 

Op m = p2 A- (1 -- p)2. (3) 

Figure 1 shows a plot of the ratio of payoff under probability matching to that expected 

under the decision theory approach. For the worst case (when p = ~ / 2 ) ,  probability match- 

ing is at a 17 % disadvantage compared to the decision theory approach. That humans and 

other animals should select such sub-optimal behavior has bothered psychologists and deci- 

sion theorists for some time, and numerous theories have been developed to explain these 

supposed irrationalities of animal and human behavior. 

For example, Flood (1954) suggested that human subjects do not recognize the sequence 

as random, and further suggested that had they known this, they would have picked the 

decision theory (DT) solution. Unfortunately, subsequent experiments have lent only limited 
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Figure 1. The ratio of payoff under probability matching to payoff under decision theory is plotted as a function 

of environmental probability p. 

support to this hypothesis. DT-like results (with varying rates of error) were obtained with 

humans only after supplying subjects with specific instructions to perform in a manner 

very close to the DT solution (Goodnow, 1955; McCracken, Osterhout, & Voss, 1962). 

Others have tried to explain PM by inventing utilities for activities that would justify the 

behavior. For example, Siegel (1959) assumed that a subject is motivated to be both correct 

and not bored. By introducing a utility value for boredom-alleviating caprice, Siegel calcu- 

lated a utility function that justified the PM response somewhat. Though he had some suc- 

cess, certain parameters in this composite utility function were varied over the range of 

probabilities p, leaving the model open to question. 

3. A different view 

It is strange--at least, interesting--that a number of authors have sought to explain PM 

as a capricious, if not improper, act. What happens instead if we take the opposite tack 

and view the behavior as correct? Can we uncover any holes or loose assumptions within 

the problem definition that might allow us to understand the circumstances under which 

PM behavior should be preferred to its DT counterpart? After all, humans (and many other 

organisms) are a competitive lot. It is difficult to believe that such exploitative beings would 

leave a large window of payoff open for others with no good reason. Furthermore, the selec- 

tive pressures that developed Homo sapiens over 3.5 to 4.5 billion years of evolution could 

hardly have failed to fill such gaping competitive holes with more cost-conscious beings. 

Unfortunately, there do not appear to be too many places we can look for flawed assump- 

tions in the PM problem statement. We can question our unquestioned use of knowledge 

regarding the probability p when we are, at first, uncertain of its value. After all, we must 

estimate p and then make our decision, and in a finite number of trials we will never know 
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p with certainty. This, of course, is the tradeoff between exploration and exploitation that 

is faced whenever the results of a search must be used to some practical end; however, 

in the present case, this hole in the problem statement is little help in explaining the choice 

of probability matching over the decision theory approach: it can be shown that the opti- 

mal decision under uncertainty allocates greater than exponentially increasing numbers 

of trials to the observed better alternative as the number of trials increases (Holland, 1973, 

1975). After sufficient experimentation, this calculation agrees with the decision theorists: 

simply give the preponderance of the trials to the better alternative? 

Fortunately, there is one other place we can turn to combat the label of impropriety, 

so unceremoniously pinned upon ours and other species by the paradox of probability match- 

ing. Returning to our necktie example, what would happen if our friend changed his mind 

and started wearing blue ties more frequently? Put another way, what if we no longer accept 

as reasonable the previously hidden assumption of environmental stationarity? Instead, we 

consider the possibility that the preference probability varies as an unknown function of 

time p = p(t). 
For the sake of concrete argument, let's assume that our friend simply switches his red 

and blue tie preference probabilities. At the moment of this switch, we are not aware of 

the change and through careful observations are able to readjust our preference probability 

estimate. During this readjustment period we assume that the environmental switch has 

occurred, but we have not corrected yet for the change. Thus regardless of whether we 

are using a DT or PM approach, during the readjustment period, we make a higher level 

of errors than we were making prior to the switch. In the case of the decision theory ap- 

proach, we are correct during this readjustment period a proportion Dat as given by the 

equation 

Ddt = (1 - p). (4) 

I f  we are using probability matching, the proportion of correct decisions would be given 

by the equation 

D/~m = 2 p ( 1  - p ) ,  (5)  

which may be obtained by recognizing that there are two equally probable ways of getting 

the right answer. Thus, during this readjustment phase, the probability matching approach 

has the upper hand because Dpm > Djt or 

2p(1 - p )  > 1 - p ,  (6) 

whenever p > 0.5 (as was previously assumed). This draws us toward an interesting con- 

clusion. If  the environment of decision is changing such that it is possible for the environ- 

ment to go against our current thinking, then probability matching can hold the upper hand 

during the readjustment phase. This possibility permits the calculation of the circumstances 

under which PM has an advantage over DT. This is precisely the calculation performed 

in the next section. 
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4. A s imple  analysis  

In this section, we consider a symmetric nonstationary environment (a switching environ- 

ment) where preferred becomes less preferred during alternating periods of time. It is impor- 

tant to recognize that there is no need to assume such a drastic change, however. A simple 

calculation shows that a cost advantage is maintained for PM during the readjustment phase 

whenever the environment goes against the current preference (whenever p falls below 0.5). 

The switching environment is a simple abstraction of a capricious environment that changes 

its mind, however, and our simple model will demonstrate the important points of any such 

assumed changes. Notice that we have shifted the presence of caprice from the learning 

subject (as was assumed by Siegel) to the subject's environment. This simple shift places 

the burden of whimsical behavior where it belongs and allows us to understand more clearly 

why subjects might be willing to pay insurance premiums as a hedge against the uncertainty 

of their environments. 

To begin the analysis, consider the situation posed in the time line of Figure 2. Here 

we assume the environment will switch every Tr units of time, and the decision theory 

approach takes T C units of time to correct itself. We further assume that the probability 

matching approach takes ty.Tc units of time to correct with 0 < ct _ 1. Defining ~ as the 

ratio of DT correction time to environmental reversal time ~ = Tc/Tr, we may calculate 

the breakeven point for the probability matching approach versus the decision theory ap- 

proach as follows: 

(1 - cz~)[p 2 + (1 - p ) 2 ]  + 2ot~p(1 - p )  _> (1 - ~)p + ~(1 - p ) .  (7) 

Letting q = 1 - p and solving for the breakeven ~ value, we obtain the following inequality: 

p _ (p2 + q2) 

> o~[2pq - (p2 + q2)] + 2p - 1 " (8) 

Tr 

r c  = 

Figure 2. A time line shows the relationship between the reversal (switching) time Tr, the DT correction (readjust- 

ment) time T c = ~Tr, and the PM correction time cvT c in a symmetrical switching environment. 
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We may solve for some important special cases quite directly. Examining the case when 

correction times for probability matching and decision theory approaches are equal (when 

ot = 1), we obtain the result that ~ > 0.5. In other words, i fDT and PM approaches require 

comparable times to correction, then that correction time must be at least one half of  the 

switching time in order for probability matching to have an overall cost advantage over 

the decision theory approach. 

It may also be reasonable to assume that probability matching might have an advantage 

in readjusting to an environmental switch because it has a head start (its bet is already 

hedged). Taking this argument to the extreme (setting ot = 0) and solving for the breakeven 

value of ~ yields the computation 

> 1 - p.  (9) 

Figure 3 shows the two limiting curves along with curves for intermediate values of or. 

It is clear from this curve that only reasonable speed increases need be assumed to get 

values that make probability matching the more profitable approach. 

Additionally, a hidden assumption in the above calculations may further understate the 

case for probability matching. The calculations assume that both approaches readjust and 

eventually correct themselves, but this may not be an appropriate assumption for a DT 

decision maker or automaton. Recall that the idealized DT decision maker estimates the 

preference probabilities and then gives all additional trials to the more frequent alternative. 

For many implementations of  reward estimator (such as those found in classifier systems, 
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Figure 3. The ratio of DT readjustment time to the environmental switching time (~ = Tc/Tr) is plotted versus 
the environmental probability p at different ratios of PM-to-DT readjustment time (c~). 
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learning automata, and neural networks), it is not difficult to imagine switching environments 

that fool an overly decisive automaton into making the wrong decision indefinitely (even 

if the automaton continues to estimate its alternative probabilities). Under such circum- 

stances, the calculations of this section are overly conservative, and the payment of the 

relatively small insurance premium of PM to avoid improper convergence is essential if 

the system is not to get stuck after an adverse environmental shift? 

5. Do CS bidding structures permit probability matching? 

The previous section demonstrates how the indecision of probability matching may be viewed 

as a reasonable strategy when the environment of decision is itself uncertain. In a sense, 

the PM decision maker is willing to pay a small insurance premium (up to 17 % of the 

potential reinforcement) to guard against either slowed recovery resulting from an environ- 

mental shift or, worse yet, possible long term convergence to the worse alternative follow- 

ing an adverse environmental shift. This is a crucial point in all reinforcement learning 

systems, because the system's decision and its ability to get feedback are completely coupled. 

This contrasts sharply to supervised learning systems, where multiple decisions may be 

made simultaneously, knowledge of the correct decision is assumed to exist, and this knowl- 

edge may be used to correct all errors. In this light, it is important to compare different 

classifier systems to see whether they can exhibit PM behavior. 

Different classifier systems vary in their implementation details, but most have three main 

components (Goldberg, 1989): 

1. rule and message system; 

2. genetic algorithm; 

3. apportionment of credit system. 

The rule and message system implements the raw syntactical capability of the system to 

process information. Although a number of rule-and-message variants have been used and 

many more are possible, nile syntax is not an issue here. The genetic algorithm is the primary 

rule discovery heuristic used in classifier systems, and the details of GA operation are covered 

in standard references. The GA is also not an issue here, because we assume that the com- 

peting rules have already been discovered. The primary object of attention in this study 

is the apportionment of credit system. More specifically, the combination of strength adjust- 

ment and bidding mechanism sometimes called the bidding structure is the focus of concern. 

To study this, we consider the following simple situation, where two rules, R1 and R2, 

exist in a classifer store: 

RI: if [prediction required] then [predict red tie]; 

R2: if [prediction required] then [predict blue tie]; (10) 

As per usual (Goldberg, 1989), classifiers are assumed to bid in proportion to their strength, 

and strength is incremented in the amount of their receipts. Mathematically, bid B i and 

the strength Si of the ith classifier vary as follows: 
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Bi(t ) = cSi(t), (11) 

Si(t + 1) = (1 - c)Si(t) + Ri(t), (12) 

where c is the bidding coefficient, Ri is the total reward received, and t is an iteration index 

(the strength calculation assumes that the ith classifier has won the bid and has been per- 

mitted to post its message; otherwise the strength value remains unmodified or is reduced 

by a small tax). Analysis of the steady state strength and bid values yields the following 

calculation: 

Bi(ss) = Ri(ss) (13) 

Si(ss) = Ri(ss)/c, (14) 

where ss is a sufficiently high time index value where steady state may be assumed to have 

been reached. In the present case, the reward at steady state is simply the expected value 

of reward for the ith arm (simply the preference probabilities p and 1 - p). 

This description of classifier system operation applies to different classifier systems, with 

minor adjustments in notation; however, the selection of decisions from the bids--the CS's 

bidding structure--has been a source of diversity in different classifier systems. At two ends 

of the spectrum are the noisy auction suggested in my work (Goldberg, 1983, 1989) and 

the roulette wheel section suggested elsewhere (see Holland & Reitman, 1978; Wilson, 1987). 

In the noisy auction an effective bid EB i is made by the ith classifier by simply adding 

zero-mean Gaussian noise to the classifier's bid Bi: 

EBi = Bi + G(on), (15) 

where G is a Gaussian (normal) noise generator and an is the standard deviation of the 

noise (a system parameter). 

In roulette wheel selection, a probability of selection for the ith rule is calculated as follows: 

Pi = Bi/~ Bj, (16) 

where the sum is taken over all bidding classifiers j .  Thereafter, the probability distribution 

determined by the Pi values is used to determine a winner. 

In the red-blue tie problem, the roulette wheel mechanism is particularly easy to analyze. 

The expected steady-state bid of the two classifiers is simply 

(B1) = p, (17) 

(B2) = 1 - p ,  ( 1 8 )  

and since roulette wheel selection chooses according to bid, this bidding mechanism must 

follow probability matching behavior. A more detailed analysis treats the bids as random 
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variables, but, as we shall soon see, the bid variance may be made arbitrarily small by 

judicious choice of  the bidding coefficient c. 

The noisy auction may also be analyzed. The expected bid values are the same as for 

the roulette wheel case. The variance values for the bids may be calculated directly by 

summing the squares of  the coefficients 

oo 

var(B) = c2a2~a (1 - c) 2j, 
j=O 

(19) 

where c is the bidding coefficient and a 2 is the variance of  the receipt (p[1 - p] for a 

Bernoulli trial). The infinite sum may be calculated since if I --- r(1 - c) 2j, then I(1 - c) 2 

= I - 1. Thus I --- 1/[c(2 - c)]. Thereafter, the variance of  the bid may be calculated as 

C 
- - -  cr 2. (20) var(B) 2 - c 

The variance of  the bid decreases with decreasing c, an intuitive result if  we recognize 

the bidding coefficient as being responsible for the number of  time steps over which the 

memory of  the system is averaged. 

Since we may make the variance of  the bid as small as we wish, we analyze the noisy 

auction assuming that the bids are perfect estimators of  the expected payoff. Whether rule 

one or two wins the noisy auction depends strictly on the expected values for the bids and 

the standard deviation of  the bidding noise. Since Gaussian noise has been added to both 

signals, this probability may be calculated as the convolution of  the two distributions such 

that the alternative with higher mean has lower value than the alternative with lower mean. 

Recognizing that the difference of  two Gaussian distributions is Gaussian, we obtain the 

result that the probability of  the signal with lower mean winning is the same as the proba- 

bility of a normally distributed random variable with mean 2p - 1 and variance 202 having 

a value less than zero. Using this relationship to analyze the noisy auction at its extremes, 

we recognize that a range of  behavior from DT-like to random guessing can be obtained 

depending upon how the noise parameter on is set. With an = 0, the noisy auction simply 

picks the better rule; in other words, it executes DT behavior. With On very large, the alter- 

natives are indistinguishable and the noisy auction essentially tosses a coin. At an intermedi- 

ate value of  an, the noisy auction can be made to match probabilities. Setting z = (2p - 1)/ 

~r2o n, and setting the value of  the cumulative unit Gaussian distribution at z equal to the 

environmental probability p as 

P _ ~ l  fz_o e_ 2/2d , (21) 

we may then solve for the values of  an that yield PM at different p values (Table 1). Thus, 

we see that the noisy auction can emulate the probability matching solution if the noise 

is made sufficiently large. Note that over the range of  probability values the noise values 

change only slightly, meaning that a PM-like solution can be obtained over the range of  

problem probabilities without much manipulation of  the noise parameter. 



416 D.E. GOLDBERG 

Table 1. Bid noise values required for probability matching under the noisy auction 

p value a n value 

0.6 0.559 
0.7 0.540 

0.8 0.504 
0.9 0.441 

Table 2. Noisy auction simulation results with PM a n values 

p Simulated I Differencel Std. Dev. 

0.6 0.5904 0.0096 0.0069 
0.7 0.6968 0.0032 0.0065 
0.8 0.7990 0.0010 0.0057 

0.9 0.9052 0.0052 0.0042 

To test this suggestion that the noisy auction can match probabili t ies,  computer simula- 

tions of the noisy auction have been run using the an values of Table 1. A bidding coeffi- 

cient c = 0.001 has been chosen to minimize the variance contributed by fluctuations in 

the bid values Bi.  Initial strength values have been set at their steady values, Si(O) = pi /c .  

The time-averaged proport ion of red trials at t = 5000, their absolute deviation from the 

probabili ty matching value, and their expected standard deviation values are shown in Table 

2. Here the standard deviation in proport ion is conservatively calculated as that we should 

expect from a sequence of 5000 Bernoulli  trials, Std. Dev. = x/p(1 - p)/5000.  Al l  runs 

are within two standard deviations of probabil i ty matching as expected. 

6. Counterpoint: The magnitude of reinforcement problem 

We have just  seen how the two major types of bidding structure can model  PM decision- 

making behavior in a probabil i ty learning problem. In the case of  roulette wheel section, 

probabil i ty matching behavior is inevitable. For  the noisy auction, PM-like behavior can 

be obtained over a range of  problems through the judicious choice of bidding noise, but 

this behavior is not hard-wired into the auction procedure.  This immediately raises the 

question whether there is ever any motivation to depart  from PM-behavior and move toward 

the more decisive approach of decision theory. 

The answer from psychological experiments,  as has already been hinted, is that PM- 

behavior in humans is no absolute state of affairs. Real payoff and assurances that the envi- 

ronment is stationary can cause human subjects to move toward DT-like behavior (Lee, 

1971). I f  real subjects can adjust the degree to which they hedge their bets, perhaps there 

is some motivation to have a similarly adaptive mechanism within a classifier system. 

To put this in closer perspective, consider a deterministic binary decision problem where 

the  magn i tude  o f  re in forcement  assigned to the two alternatives differs. For example, suppose 

two paths are presented to a subject in a T-maze. When  the subject chooses path one, he 

receives payoff rl; when he chooses path two, he receives a payoff r2. I f  we normalize 
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the payoff values so that rl + r2 = 1, we have a problem that connects directly with the 

probability learning problem discussed earlier in that both problems can be made to have 

the same expected reward, but in the magnitude of reinforcement problem all uncertainty 

is removed from the picture. It might be tempting to assume that this difference between 

the two problems is negligible, and we might reason by analogy that the PM solution to 

the probability learning problem carries over to the magnitude of reinforcement problem, 

but when real decision makers are actually observed, it is somewhat surprising to discover 

that this originally surprising result is not observed in magnitude of reinforcement experi- 

ments: in the magnitude of reinforcement problem natural subjects do follow a DT strategy. 

Specifically, it has been observed for varying ratios of reinforcement that animals presented 

with a binary T-maze learn to allocate all of their trials to the observed better path (Mackin- 

tosh, 1974). It is true that it takes animals longer to learn to choose the better alternative 

when the difference in payoff is small, but eventually they allocate the preponderance of 

trials to the observed best. 

As before, we need to ask whether our two prototypical bidding structures can emulate 

the observed behavior of natural decision makers in the magnitude of reinforcement prob- 

lem. Since uncertainty has disappeared from consideration, the performance of roulette 

wheel selection and the noisy auction may be derived directly. Roulette wheel selection 

achieves steady state bids for the two rules equal to the reinforcement: 

Bi = ~. (22) 

Thereafter, winners are chosen as the proportion of an individual rule's bid to the total 

bid: roulette wheel selection follows a deterministic equivalent of the probability matching 

solution. 

On the other hand, the noisy auction can be made to follow the behavior of natural deci- 

sion makers in the magnitude of reinforcement problem as closely as desired simply by 

setting the bidding noise an close to zero. The expected bid of a rule is again simply the 

reinforcement it receives. As soon as the reinforcement is estimated with reasonable accu- 

racy, the not-too-noisy auction chooses the better of the two alternatives. Of course, there 

may be some motivation for retaining some small amount of noise to insure that there is 

some non-zero probability of occasionally trying the worse alternative. 

7. A new direction: variance-sensitive bidding 

At first, the juxtaposition of probability learning and the magnitude of reinforcement prob- 

lem is puzzling. Natural subjects seem to adapt the certainty of their decision-making and 

learning to the level of certainty in their environment. This results in the selection of a 

range of behavior varying from DT-like to PM-like. Yet, in examining different classifier 

system bidding structures, we have seen how these do not adapt to environmental uncer- 

tainty. It is true that both of the classifier system bidding structures examined herein can 

emulate probability matching behavior. In the case of the roulette wheel, this occurs auto- 

matically, and in the case of the noisy auction, it can occur with the addition of a fair amount 

of noise to each bid. On the other hand, of the two bidding structures we have examined, 
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only the noisy auction can easily emulate the behavior of natural decision makers in the 

magnitude of reinforcement problem. The noisy auction can give the preponderance of 

its trials to the observed best after sufficient learning if the bid noise is set close to zero, 

whereas the roulette wheel must stick with an allocation of trials in proportion to rule 

rewards. Thus, if adapting to a range o f  environmental uncertainty is important--as it often 

is--the noisy auction appears to be the more flexible of the two procedures 4 and in the 

remainder of the paper it is considered exclusively. 

In normal practice, this flexibility of the noisy auction has not been realized. For exam- 

ple, in my dissertation work (Goldberg, 1983), I chose a compromise value for the bid 

noise and held that value constant for all time across all rules in the population. If, as 

the juxtaposition of the probability learning and magnitude of reinforcement problems sug- 

gests, we require a range of behaviors from PM-like to DT-like, then setting the noise at 

any fixed value is incorrect. No single noise setting can model the observed behavior of 

natural decision makers over a range of problems. In order to achieve the necessary flexi- 

bility, I propose the addition of variance-sensitive bidding (VSB) to future classifier systems. 

In one possible implementation of VSB, let each classifier maintain one other statistic 

in addition to its strength: a variance estimate V. After a reward cycle, calculate the squared 

difference between a rule's bid and its receipts and update the variance estimate as follows: 

V/(t + 1) = (1 - b)Vi(t ) + b[Ri(t) - ni(t)] 2, 0 < b ___ 1. (23) 

In this way, the variance estimate maintains a geometrically weighted average of the squared 

difference between a rule's bid and its actual reinforcement. In turn, the variance estimate 

may be used in the noisy auction to calculate each rule's effective bid: 

EBi(t) = cSi(t) + G[~/V/(t) ], (24) 

where the effective bid EB is calculated as the sum of a rule's usual bid, cS(t), and the 

zero-mean Gaussian noise with standard deviation ~ r ~ ( t ) ,  where/3 is a system constant. 

In this way, the noisiness of the auction is controlled by the variation of the actual-to-expected 

receipts of participating rules. 

7.L An equilibrium analysis of variance-sensitive bidding 

At equilibrium in a probability learning problem, the variance estimate V approaches the 

variance of the receipts, V -~ p(1 - p). Taking the difference between the expected bid 

of the two rules and dividing by their/3-adjusted standard deviation value, the unit normal 

random variable z may be calculated as follows: 

z -  2p - 1 (25) 

f342p(1 - p)  

Evaluating the proportion of times the better arm is selected--evaluating p~--is simply a 

matter of calculating the cumulative probability of the unit normal distribution at z: 
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1 f z  e_~2/2d~. (26) p( - ~ -~ 

Figure 4 displays the proportion of better trials as a function of environmental probability 

p for/3 = 1.35. Actually, probability-matching-like behavior is predicted over a fairly wide 

range of/3 values, but/3 = 1.35 is adopted for the remainder of the study. 

An equilibrium analysis of a VSB-augmented auction in a deterministic problem is straight- 

forward. At equilibrium the variance estimates V approach zero, the bids approach the 

deterministic reward values, and the system gives all of its trials to the better alternative. 

In a moment, we will examine some simulations to observe DT-like and PM-like behavior 

in the face of environmental shifts. Before we do this, we need to consider whether the 

mechanism can become stuck in transitions. 

7.2. A cursory analysis of transitions 

A complete analysis of the transient behavior of the VSB-augmented noisy auction is beyond 

the scope of this paper; however some simple reasoning suggests that VSB and the noisy 

auction should be able to react to the four possible types of shifts between probability learn- 

ing problems (probabilistic) and magnitude of reinforcement problems (deterministic): 

1. Probabilistic to probabilistic 

2. Probabilistic to deterministic 

3. Deterministic to probabilistic 

4. Deterministic to deterministic 
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Figure 4. Near-PM performance is predicted by an equilibrium analysis over the range of probabilistic environments. 

The solid line is the perfect PM solution and the dashed line is the equilibrium solution for the VSB-angmented 

auction when fl = 1.35. 
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In all cases, we make the conservative assumption of  an adverse shift, where preferred 

becomes less preferred on alternating cycles. 

In an adverse, probabilistic-to-probabilistic environmental shift the VSB-augmented clas- 

sifier system should adapt easily. Near-PM behavior can be maintained if the/3 coefficient 

is sized to achieve the noise standard deviation values close to those of  Table 1. 

Similarly a shift from probabilistic to deterministic should cause no adaptation difficulty, 

and the existence of  VSB will insure that the system moves from PM-like behavior on the 

probabilistic problem to DT-like behavior on the deterministic problem. 

Shifts from deterministic to probabilistic should also pose no particular difficulty. At 

the time of the problem shift, the noise of  the probability learning problem will show up 

in the variance estimate V. This in turn will increase the noisiness of  the bid, which will 

encourage trial of  the other alternative, thereby allowing discovery of the correct answer. 

Shifts from deterministic problem to deterministic problem are the most worrisome of 

the lot. Under VSB, when such shifts occur, rules have stable strength values and low vari- 

ance estimates. At the time of  the shift, however, the previously correct rule starts to make 

errors with respect to its expected value. This surpr i se  increases the variance estimate, 

which introduces enough noise to cause the required trials of the other rule. This require- 

ment of being sensitive to variance shifts suggests that the variance averaging parameter 

b should be of  the same magnitude or larger than the bidding coefficient c. It may also 

be wise to prevent the bid noise from falling below a specified value. This will ensure 

an occasional trial of an out-of-favor rule. 

Thus, we see how a VSB-modified classifier system is expected to have little difficulty 

in matching the types of environmental shifts it might encounter. In the next section, some 

simulations verify the equilibrium performance of a VSB-augmented auction. Other simula- 

tions demonstrate typical transition performance of  the algorithm. 

7.3. Simulation results 

In a probabilistic problem, the VSB-augmented auction achieves PM-like behavior as pre- 

dicted by the equilibrium analysis of  Section 7.1. Simulation results over 5000 time steps 

using a bidding coefficient c --- 0.001, VSB update coefficient b = 0.001, VSB auction coef- 

ficient 13 = 1.35, initial strength values Si(O) = pi /c ,  and initial variance estimates Vi(0) = 

Pi( 1 - Pi) confirm the expected performance as shown in Table 3. The standard deviation 

of the proportion is again calculated conservatively assuming the VSB-augmented auction 

behaves as a sequence of  Bernoulli trials, except here the predicted proportion is used in 

the computation instead of  the probability matching value. 

Table 3. Comparison of VSB analysis and simulation in a probabilistic environment (/3 = 1.35) 

Probability p Pred ic ted  Simulated I Differencel Std. Dev. 

0.6 0.5847 0.5760 0.0087 0.0070 
0.7 0.6762 0.6730 0.0032 0.0066 
0.8 0.7840 0.7808 0.0032 0.0058 
0.9 0.9188 0.9252 0.0064 0.0039 
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To test the performance of the VSB-augmented auction in switching environments, we 

examine simulations of a probabilistic-deterministic shift and a deterministic-deterministic 

shift. 

The VSB-augmented auction is simulated in a 0.7-0.3 probabilistic-deterministic environ- 

ment with fixed shift half-period of 1000 time steps. Bid coefficient is set to c = 0.02, the 

variance coefficient is set to b = 0.04, the auction coefficient is set of/3 = 1.35, and the 

strength and variance values are set to the steady state values appropriate to the first environ- 

ment. Larger values of c and b than those used in earlier tests are used, because here we 

are less concerned with keeping system variance low, Instead, the main concern in these 

tests is that response be fairly rapid, which requires that the half-life of the auction be less 

than the half-period of the shift, -ln2/ln(1 - c) << tshift. The proportion of red trials 

is shown as a 50-step moving average in Figure 5. As expected, near-PM performance is 

achieved in probabilistic half cycles and near-DT performance is achieved in deterministic 

half cycles. During probabilistic half cycles, the fluctuations in moving average value are 

reasonable if they are compared to the magnitude of the standard deviation of the average 

proportion of a 50-step Bernoulli seuqence. Although it is not shown, the variance estimate 

during probabilistic half cycles tends to fluctuate about a value near the Bernoulli value. 

Deterministic variance values approach zero in a manner consistent with the results of the 

deterministic-deterministic shift to be shown next. 

Perhaps more interesting is the simulation of the VSB-augmented auction in the 

deterministic-deterministic environment shown in Figure 6. Here a 50-point moving average 

of the proportion of red trials is shown for the 0.7-0.3 oscillating magnitude of reinforcement 

environment. On each half-cycle, initial transients are followed by near-DT performance. 

The automaton does not become stuck because the variance of surprise is measured after 

each shift and contributes to an increase in the bidding noise which enables the decision 

to shift to the now-better alternative as shown in Figure 7, a graph of the variance estimate 
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Figure 5. A 50-step moving average of the proportion of red trials shows that the VSB-augmented auction shifts 

appropriately in a 0.7-0.3 probabilistic-deterministic environment, approaching near-PM performance in each 

probabilistic half-cycle and near-DT performance in each deterministic half-cycle. 
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Figure 6 A 50-step moving average of the proportion of red trials shows that the VSB-augmented auction (~ = 1.35) 
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Figure 7. A t ime history of  the variance estimate of  the red rule, V~, shows the variance of  surprise that occurs 

at each shift. The relatively s low decay of  the variance estimate is a result of  the infrequent trial o f  the out-of- 

favor rule. 

of the red rule, V~ versus time. Note that the currently out-of-favor alternative maintains 

a fairly high level of  residual variance which prevents less-than-perfect DT performance. 

The variance does not go to zero immediately, because the worse alternative is sampled 

infrequently, delaying the decay of  the residual. This effect could be minimized by setting 

the variance coefficient much greater than the bidding coefficient--by setting b > >  c--but  

the small amount of  indecision left as a result of this effect may not be particularly harmful 

in practical problems. 



PROBABILITY MATCHING 423 

The other types of shifts have been simulated, but are not presented here, becuase they 

are a straightforward blend of the types of behavior demonstrated already. 

7.4. Other considerations 

VSB is primarily designed to permit a bidding strategy that adapts to the noise or its lack 

in a particular environment. It may also be useful in overcoming a knotty problem that 

arises in classifier systems when the genetic algorithm is used, new rule insertion. At present 

in a classifier system, when a genetic algorithm is activated, offspring rules are inserted 

into the population with strength values taken as a function of their parents' strength values. 

This has the advantage that the rules will usually get an opportunity to bid (offspring usually 

come from highly fit parents), but it has the disadvantage that bad rules may dominate system 

performance until they can be cleaned out through a number of bad bids. From a genetic 

standpoint this is also disadvantageous, because unused, high strength offspring can clutter 

the population and may dominate reproductive activity even though their strength values 

do not reflect their expected reward. VSB can help overcome this problem, because rules 

may be inserted with low strength values and high variance estimate values. Doing so will 

permit all offspring to win an occasional auction, but bad offspring will not dominate bidding 

or reproductive performance. In this way, the assignment of low strength and high variance 

better reflects our prior knowledge concerning a new rule's expected value to the system. 

Although VSB has been proposed and has been tested in the context of a stimulus-response 

classifier system with a small number of rules, the mechanism should scale up to larger 

systems, including those with bucket-brigades or other rule-to-nile credit assignment mecha- 

nisms. Notice that the VSB mechanism is strictly local: it only considers what it expects 

to receive in relation to what it gets. Thus, payments between classifiers are unaffected, 

making the installation of VSB a relatively simple task. 

8. Conclusions 

In this paper, a problem of decision theory and a problem of learning theory have been 

juxtaposed and considered in the light of classifier system bidding structure. The paradox 

of probability matching and the magnitude of reinforcement problem have both been exam- 

ined with the resulting conclusion that no existing classifier system bidding structure can 

match the range of behaviors required in the deterministic and probabilistic problems faced 

by most cognitive systems. 

These thoughts have led to the development of the notion of variance-sensitive bidding 

(VSB), which allows matching of PM-like and DT-like behaviors when one or the other 

is appropriate. A simple implementation of VSB has been proposed and simulated, and 

early computational results, an equilibrium analysis, and some simple reasoning suggest 

that the method is able to track the correct decision in each of the four categories of envi- 

ronmental shift. More detailed simulations and analysis are required to confirm these initial 

results and to determine whether the method scales to systems with multiple rules, default 

hierarchies, and rule chains. 
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Notes 

1. Although the paper addresses classifier systems most directly, the same notions may be useful in learning 

theory, learning automata, and neural networks. In the interest of concrete exposition, however, I stick to my 

knitting and develop the ideas in the context of the classifier system paradigm. 

2. A slight modification of Holland's k-armed bandit formulation can achieve a PM-like allocation of trials through 

the formation of niches via forced sharing (Goldberg & Richardson, 1987; Holland, 1975). Simply stated, when 

organisms exist in a resource-limited environment they are forced to share food and other resources; this in 

turn limits subpopulation size in proportion to the fitness of each organism. In the present context, if we think 

of different organisms as different solutions, we see that niche formation advocates a PM-like allocation of 

trials among alternative organisms. The arguments we shall soon make concerning environmental uncertainty 

can be applied to the utility of niche formation without modification. 

3. This argument can be made more rigorously (and more elegantly) by considering the minimization of regret 

(Simon, 1956). The argument of this section is fairly intuitive, however, and instead of pursuing the regret 

computation, we consider the more practical matter of whether probability matching behavior can be emulated 

by the various classifier bidding and payment mechanisms. 

4. This apparent advantage of the noisy auction does not entirely rule out the roulette wheel, however. Wilson 

(1987) has observed a drive-out effect when roulette wheel bid selection is used in combination with the reproduc- 

tive pressure of a genetic algorithm. In this way, the genetic algorithm cleans house, permitting more decisive, 

DT-like behavior than would be possible without the GA enabled. If it is desirable to separate credit assignment 

and discovery, there is some question whether such effects should be used. Additionally, it is unclear how 

any such population-based control mechanism can regulate the randomization of the bidding quickly enough 

to permit rapid shifting between problems. 
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