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In this paper, we consider a class of models for two-way matrices with binary entries of 0 
and l. First, we consider Boolean matrix decomposition, conceptualize it as a latent response 
model (LRM) and, by making use of this conceptualization, generalize it to a larger class of 
matrix decomposition models. Second, probability matrix decomposition (PMD) models are 
introduced as a probabilistic version of this larger class of deterministic matrix decomposition 
models. Third, an algorithm for the computation of the maximum likelihood (ML) and the 
maximum a posteriori (MAP) estimates of the parameters of PMD models is presented. This 
algorithm is an EM-algorithm, and is a special case of a more general algorithm that can be used 
for the whole class of LRMs. And fourth, as an example, a PMD model is applied to data on 
decision making in psychiatric diagnosis. 

Key words: Boolean matrix decomposition, latent response model, clustering, two-way data, 
incomplete data, EM-algorithm, psychiatric diagnosis. 

Within the domain of data analysis binary data have often taken a special place. 
This paper deals with a collection of models for binary data, which in the simplest case 
will be two-way two-mode (i.e., a binary matrix). Throughout this paper, the first mode 

will be referred to as objects and the second mode as attributes. Depending on the 
substantive context, the objects may be thought to denote persons, situations, stimuli, 
etc., and the attributes person characteristics, intelligence items, variables, etcetera. 
The data then indicate whether a person has a given characteristic, etcetera. This paper 
will also consider models for a slightly more complex type of data that arises when a 
binary two-way two-mode data set is extended with a replication mode (which can be 
conceived as a two-way matrix with multiple observations per cell). 

Given such data, one may be interested in formal models that reveal the mecha
nisms according to which the data have come about. Quite a natural class of mecha
nisms that may be considered in this respect accounts for the data on the basis of the 
interplay of certain properties or events at the level of the objects, on the one hand, and 
properties or events at the level of the attributes, on the other hand. Existing models 
that make use of such mechanisms are the models of nonmetric factor analysis 
(Coombs, 1964), the Rasch model and various other models from Item Response The
ory. The representation (i.e., the properties or events mentioned above) on which these 
models are based can be considered as geometrical: the objects and the attributes are 
represented as points in a space (possibly unidimensional as in the case of the Rasch 
model) whose geometrical relations determine (the probability of) the response. For 
nonmetric factor analysis, these geometrical relations are dominance relations between 
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the coordinates of the objects and the attributes on each of the dimensions of this space. 
For the Rasch model, we also have a dominance relation, but this time it is with respect 
to points on a single line (i.e., the person and the item parameter) and it does not 
determine the response in an ali-or-none fashion but probabilistically. And in the item 
factor analysis model (see Bock & Aitkin, 1981) the probability of a response depends 
on the position of the person and the item in the space through the scalar product of 
their coordinate vectors. 

A distinctive characteristic of the models to be presented in this paper is that the 
properties or events they include (i.e., their representation) have the same nature as the 
data they intend to account for, that is, they are binary. The substantive relevance of 
such type of models can be exemplified by the case of successes of persons in intelli
gence items one wants to explain in terms of unobserved strategies that a person 
masters/does not master and via which an item can/cannot be solved. Another example 
are person by choice alternative (pick any out of n) data one wants to explain on the 
basis of latent requisites that a person poses/does not pose and that a choice alternative 
meets/does not meet. 

Throughout this paper, the unobserved properties/events at the level of the objects 
and attributes will be referred to with the generic term of latent responses, and the 
modeling of data in terms of latent responses from the object side and from the attribute 
side will be referred to as matrix decomposition. Two cases of matrix decomposition 
will be considered: a first case in which the latent responses are constants, which will 
lead to deterministic models, and a second case in which the responses are random 
variables, which will lead to probabilistic models. The deterministic models are gener
alizations of the known models of Boolean factor analysis (Mickey, Mundie & Engel
man, 1983) and hierarchical classes analysis (De Boeck & Rosenberg, 1988; Van 
Mechelen, De Boeck & Rosenberg, 1995). The probabilistic models are novel. 

In the following, we begin by introducing the basic ideas of Boolean matrix de
composition by means of an example. We then show how these ideas can be general
ized to a larger class of matrix decomposition models. Next, probability matrix decom

position (PMD) models are introduced as a probabilistic version of this larger class of 
deterministic matrix decomposition models. Then, an algorithm for the computation of 
the maximum likelihood (ML) and the maximum a posteriori (MAP) estimates of the 
parameters of PMD models is presented. Finally, as an example, a PMD model is 
applied to data on decision making in psychiatric diagnosis. 

Basic Ideas 

Example 

We consider a hypothetical study on decision making in interpersonal relations. 
Fourteen subjects participated in this study. They were shown video recordings of 12 
other persons presenting themselves in some standardized way (e.g., by giving a sketch 
of a typical week in their daily life, and telling about the most happy and most sad 
period in their lives). Mter each person's presentation, a subject had to indicate 
whether or not he or she would like this person as a member of a group with which he 
or she would spend a hypothetical one-week holiday. The data of this study can be 
presented in a 14-by-12 array, which is shown in Table 1(a). 

The structure in this matrix can be understood in terms of some characteristics of 
the persons presenting themselves (further denoted as candidates), namely those that 
are relevant for the subject's judgments. In particular, it is assumed that each of the 
subjects has based his or her judgment on a subset of the following three person 
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TABLE 1 

!lMa Murix !II a !b:wluaiQI Siwb: !2!1 ll~llil!ll Makin& in 

Intexnersonal Relations and its Numerical Representation 

a. Data Matri.z 

Candidate 

Subject I I! 9 4 5 6 7 8 9 IO II II! 

Paul 0 0 0 0 0 0 0 0 

Mary 0 0 0 0 0 0 0 0 

Rebecca 0 0 0 0 0 0 0 0 

Donald 0 0 0 0 

Clyde 0 0 0 0 

Fred 0 0 

Susan 0 0 

David 0 0 0 0 0 0 0 0 

Jacky 0 0 0 0 0 0 0 0 

Ellen 0 0 

Jim 0 0 

Lucy 0 0 

Robert 

George 0 0 0 0 0 0 0 0 0 0 0 0 

b. Numerical Representation 

Bundle Bundle 

Subject I I! 9 Candidate I I! 9 

Paul 0 0 0 0 

Mary 0 0 2 0 0 

Rebecca 0 0 3 0 0 

Donald 0 0 4 0 0 

Clyde 0 0 5 0 0 

Fred 0 6 0 0 

Susan 0 0 

David 0 0 8 0 

Jacky 0 0 9 0 0 

Ellen 0 10 0 0 

Jim 0 11 0 

Lucy 0 12 0 

Robert 

George 0 0 0 
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characteristics: (a) other-orientedness (i.e., being primarily oriented towards the needs, 
feelings, and thoughts of the other person, instead of ones own), (b) interestingness 
(i.e., being able to keep the other person interested in a conversation, and in the relation 
in general), and (c) physical attractiveness. Each of the subjects can be characterized 
in terms of the subset of these three person characteristics they want to see realized in 
a candidate in order to choose him or her as a member of his or her holiday group. Each 
of the candidates can be characterized in terms of the subset of the same three person 
characteristics that applies to him or her. 

Apart from the characteristics on which the subjects base their judgments, there is 
also a decision rule to be specified. One rule is that a candidate must have at least one 
of the characteristics he or she considers important (belonging to his or her subset). 
Other rules are possible, and in the following we will consider some of them. 

This way of describing the structure in the data can be represented numerically. 
The numerical representation of the subjects is shown in the left-hand side of Table 
1(b). It involves that each of the subjects is assigned a binary vector containing as many 
elements as there are relevant person characteristics. The elements correspond to 
other-orientedness, interestingness, and physical attractiveness, respectively. If a per
son characteristic is relevant for the subject's judgments, the corresponding element 
takes the value 1, 0 otherwise. 

The numerical representation of the candidates is shown in the right-hand side of 
Table 1(b). The elements of the binary vectors that are assigned to the candidates take 
the value 1 if the corresponding person characteristic applies to the candidate, 0 oth
erwise (the order of the elements is the same as for the subjects). 

At this point, it is convenient to introduce some terminology and notation. We will 
refer to the row entries of the data matrix (shown in Table l(a)) as the objects, and to 
the column entries as the attributes. The number of objects and attributes will be 
denoted by, respectively, 0 and A. The data matrix will be denoted by M and its 
elements by M oa ( o = 1 , . . . , 0, and a = 1 , . . . , A). The two sets of binary vectors 
constituting the numerical representation can be considered as the row vectors of two 
matrices (one for the objects, and one for the attributes). The columns of these matrices 
are called bundles, and the matrices themselves bundle matrices. The number of bun
dles will be denoted by B. The bundle matrices for the objects and the attributes will be 
denoted by, respectively, Sand P, and their elements by, respectively, Sob and P ab 

(o = 1, ... , 0, a= 1, ... , A, and b = 1, ... , B). If S 0 b(Pab) equals 1, we say 
that the o-th object belongs to the b-th bundle. The o-th row of Swill be denoted by 
S~ = (S 0 1, ••• , S0 B), and thea-throw of P by P~ = (P a!, ••• , P aB)· 

Now, it is possible to describe how the bundle matrices are related to the data 
matrix. Every element M oa in M is related to the column vector (S~, P ~) t in a way that 
is determined by the subjects' decision rule. In particular, the rule that the candidate 
must have at least one of the characteristics the subject considers important, leads to 
the Boolean scalar product as the function relating M oa and (S~, P ~) t. The Boolean 
scalar product will be denoted by v, and is defined as follows: 

B 

v(S 0 , Pa) = EB (Sob X Pab), (1) 
b=! 

in which EB denotes the Boolean sum, which has function value 0 if all terms are 0 and 
1 otherwise. It is clear that v(S 0 , P a) equals 1 iff there is at least one b for which Sob 

= P ab = 1, and 0 otherwise. Now, the relation between some M oa and the corre
sponding vector (S~, P ~) t is simply the following: 
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This relation can be expressed for the matrix M as a whole in the following way: 

M = S ® P 1
, (2) 

in which ® denotes the Boolean matrix product. The Boolean matrix product is defined 
the same way as the ordinary matrix product, except for the fact that the familiar scalar 
product is replaced by the Boolean scalar product. Equation (2) is the characteristic 
equation of Boolean matrix decomposition. Boolean matrix decomposition is the prob
lem of finding two matrices Sand P (with a minimal number of bundles) such that (2) 
holds. 1 This type of model has been presented by De Boeck and Rosenberg (1988); see 
also Van Mechelen and De Boeck (1990). 

As an aside, it can be mentioned that the matrix M can be considered both as the 
data matrix itself or as a model for the data matrix. The advantage of considering it as 
a model is that it allows one to deal with (a) deviances between the data (which may be 
denoted by D, for example) and the model and (b) the fact that the observations in some 
cells may be missing. 

Now, assume that the subjects use a different decision rule. In particular, assume 
that in order for a subject to choose a candidate as member of his or her group, the latter 
must have all the characteristics the subject considers important. This decision rule 
leads to a different function relating theM oa 'sand the (S~. P~) t 's. In particular, it leads 
to the following: 

B 

v(So. Pa) = n {1- [Sob X (1- Pabm· 
b=! 

(3) 

This function has function value 1 iff P ab is larger than or equal to Sob for all b, and 0 
otherwise. 

By introducing an alternative for the Boolean scalar product, we have in fact 
defined a new type of matrix decomposition. In particular, referring to (2), we only have 
to consider ® as a symbol that denotes a new type of matrix product, namely one in 
which the Boolean scalar product is replaced by the function defined in (3). In this way, 
Boolean matrix decomposition can be generalized by simply defining alternatives for 
the Boolean scalar product. 

Latent Response Models 

The way the structure in M was formally described in the previous section can be 
looked upon from the distinction between latent and observed responses. 2 The Sob's 

and P ab 's are the latent responses, and they explain the observed responses, the 
M oa 's, as formally specified by the Boolean scalar product or its alternative defined in 
(3). 

The basic idea involved in this conceptualization of Boolean matrix decomposition 
can be easily generalized to a much broader class of models, both with respect to the 
type of data to which they apply (categorical/continuous, scalar/vector-valued) and the 
type of structure they impose on the data. This class of models are the so-called latent 
response models (LRMs) (see also, Maris, 1992, 1995). In the following, we will give a 
formal definition of LRMs and will show how Boolean matrix decomposition and its 
generalizations are special cases. 

1 It should be noted here that in Kim's (1982) book on Boolean matrix theory, the term decomposition 
is used in a different sense. 

2 Were it not for possible confusion with latent variable models, the term responses could be replaced 
by variables. 
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Presenting these matrix decompositions within the framework of LRMs has the 
advantage that they can be considered as formalizations of the psychological structure 
or process that generates the observations (as was already shown implicitely in the 
example). Besides this, there are two more advantages of this way of presenting these 
matrix decompositions. First, it shows how a probabilistic version of these matrix 
decompositions can be formulated in a straightforward way, because deterministic and 
probabilistic LRMs are related in a simple and well-specified way. In this section, we 
will only consider deterministic LRMs. Probabilistic LRMs will be considered in the 
next section. A second advantage is that, for the probabilistic versions of the matrix 
decomposition models, we can make use of a general algorithm for the computation of 
the maximum likelihood (ML) and maximum a posteriori (MAP) estimates of the pa
rameters of probabilistic LRMs. 

A LRM is a model for a set of N response variables Yn (n = 1, ... , N) in which 
each variable is explained on the basis of (a) a number of unobserved underlying 
variables that can be conceived of as latent responses, and (b) a rule to combine these 
latent responses. For the models that are considered here, N always equals 0 x A, the 
number of objects times the number of attributes, and every n is associated with a 
particular object-attribute pair (o, a). In particular, for these models, every Yn corre
sponds to one element M oa in the matrix M. 

The definition of LRMs involves two key aspects: (a) the definition of latent re

sponse variables, and (b) the definition of a condensation rule. So, first, for every Y n, 

a set of K latent variables X nk (k = 1, ... , K) is defined. In vector notation, we write 
Xn = (Xnl, ••• , XnK)

1
• In principle, not every Xnk has to be defined for a particular 

Y n. However, in order to keep the notation simple, it is assumed that for every Y n a 
complete vector Xn can be defined. For the matrix decomposition models that will be 
considered here, Xn is the (2 x B)-dimensional vector (S~, P ~) 1

• 

Second, a condensation rule is defined as a function that specifies the relationship 
between Yn and Xn. Using Cas a generic symbol for a condensation rule, this rela
tionship can be expressed as follows: 

(4) 

This function may be different for different values of n, but in order to keep our notation 
simple, we will not index C. Instead, we let its argument (with n being some particular 
value) indicate its particular form. In the following, a class of matrix decomposition 
models will be presented by means of the condensation rules that are involved in them. 
In fact, these condensation rules are simply different modifications of the Boolean 
scalar product. 

Loosely speaking, a LRM starts from a conceptualization of the unobserved (la
tent) process that underlies the observed response. This unobserved process is de
scribed in terms of latent variables whose values determine the observed response in an 
ali-or-none fashion. By giving a particular psychological interpretation to these latent 
variables, LRMs are well suited for testing hypotheses about the psychological process 
involved in the coming about of the observed response. 

At this point, we do not yet have a model for the Yn 's. In the deterministic case, 
the model for the Yn 's assumes that the values of these variables are constants. This 
model is a set of functions (one for each Y n, but possibly identical) expressing the 
relationship between the Y n 'sand some unknown parameters. In the probabilistic case, 
which will be considered in the next section, the model assumes that the Yn 's are 
random variables whose values are not constant (which is expressed by saying that a 
random variable has multiple realizations). And their model is a set of probability 
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distribution functions (PDFs) (one for each Y n, but possibly identical) that depend on 
some unknown parameters. 

The parameters will be denoted by 01 (t = 1, ... , T). In vector notation, 9 = 

(0 1 , ••• , Or) 1
• No distinction is made between different types of parameters, as for 

example, parameters that are associated with the objects, and parameters that are 
associated with the attributes. Now, the model for the Yn 'sin the deterministic case 
can be expressed as follows: 

(5) 

in whichfn is some function. At first sight, this equation may be confusing because in 
(4) Yn is expressed as a function of 9. However, the relationship between these two 
equations is established by the following essential feature of LRMs: given a particular 
condensation rule, the model for the Y n 's is completely specifi~d by the model for the 
Xn 's. The model for the Xn 's (in the deterministic case) will be expressed as follows: 

(6) 

in which g n is some function. If K > 1 , g n is in fact a set of K more elementary 
functions, which can be denoted by Ynk (k = 1, ... , K). Now, equations (4)-(6) can 
be combined as follows: 

Boolean Matrix Decomposition and its Generalizations as LRMs 

We will now show how Boolean matrix decomposition and its generalizations can 
be considered as LRM's. For the matrix decomposition models, it holds that Y n and Xn 

can be replaced by M oa and X 0 a , respectively. Moreover, M oa is a binary scalar, and 
X0 a is a (2 x B)-dimensional binary vector. 

The model for the X 0 a 's is the same for all matrix decomposition models; the 
difference between them is determined by a difference in condensation rules. The 
parameters of the model for the X 0 a 's are the two matrices Sand P (9 = (S, P)). The 
function values of the Yoa 's are (2 x B)-dimensional, and are defined as follows: 

Yoa(S, P) = (Sol• · · ·, SoB• Pal• ••• , PaB)
1

• 

Through the relation X 0 a = goa (S, P) the 0 x A x (2 X B) latent responses are 
expressed as a function of (0 + A) x B parameters. It is instructive to stress the fact 
that when we write Xoa = (S~, P~) 1 , as we have done previously, we have in fact 
already adopted a model for the X0 a 's. 

We will now present a class of matrix decomposition models by specifying mod
ifications of the Boolean scalar product, which, in the framework of LRMs, are simply 
alternative condensation rules. They all involve a mapping from a (2 x B)-dimensional 
Boolean space into a 1-dimensional one. In presenting these condensation rules, we will 
use a notation that is specific for the model chosen for the Xoa 's. In particular, we 
replace Xoa by (S~, P~) 1 • 

The first condensation rule is the Boolean scalar product. Here, we define it in a 
way that can be more easily interpreted in psychological terms than in the previous 
section. In particular, 
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v(S 0 , Pa) = 1 if 3 b: (Sob= I)A(Pab =I) 

= 0 otherwise, 
(7) 

in which A denotes the logical and. Both for psychological interpretation and estima
tion it is useful to consider (7) as a condensation rule consisting of two steps. In the first 
step, for each of the B bundles, it is determined whether the condition (Sob = 1) A 
(P ab = 1) holds. Whether or not this condition holds, is indicated by the variable U oab, 

which has the value 1 if the condition holds, and 0 otherwise. U oab can be considered 
as a variable that indicates whether or not object and attribute have something in 

common. In the second step, it is determined whether there is a bundle for which U oab 

equals 1. The rule involved here, is the disjunctive one (one U oab being 1 is enough for 
the vector product to be 1 also). The complete condensation rule is denoted as disjunc

tive communality. 

The second condensation rule is the one we proposed as an alternative for dis
junctive communality in the previous section. It is defined as follows: 

v(S 0 , Pa) = 1 if 'I b: Pab ~Sob 

= 0 otherwise. 

Again, this condensation rule can be considered as consisting of two steps. In the first 
step, for each of the bundles, it is determined whether the condition P ab ~ Sob holds. 

We will use U oab to denote whether this condition holds ( U oab = I) or not ( U oab = 
0). U oab can be considered as a variable that indicates whether or not the attribute 
dominates the object. It is clear that another version of this condensation rule is ob

tained by replacing P ab ~ Sob with P ab ::s Sob , in which case U oab denotes whether 
the object dominates the attribute. In the second step, it is determined whether U oab 

equals 1 for every bundle. The rule involved here is the conjunctive one (all U oab 's 
have to be 1 for the vector product to be 1 also). The complete condensation rule is 
denoted as conjunctive dominance. 

Two other condensation rules can be simply defined as modifications of, respec
tively, disjunctive communality and conjunctive dominance. As such, they are illus
trations of the generality of the framework. As their first step, both condensation rules 

determine, for each of the bundles, whether the condition Sob = Pab (the equality 

condition) holds. And as their second step, they involve, respectively, the disjunctive 
and the conjunctive rule. Therefore, the resulting complete condensation rules are 
denoted as, respectively, disjunctive and conjunctive equality. 

Probability Matrix Decomposition Models 

Probability matrix decomposition (PMD) models are the probabilistic version of 
the class of deterministic matrix decomposition models presented in the previous para
graph. Extending these models to the probabilistic case makes sense for two reasons. 

First, it may be that the process that generates the observations is of a probabilistic 
nature. This probabilistic nature may be introduced by random between-subject vari
ability, or random within-subject variability. An example of the former are the judg
ments of the members of some homogeneous population of subjects with respect to 
whether or not a particular politician (the object) has a particular personality charac
teristic (the attribute), like for example conscientiousness. And an example of the latter 
are the responses (recognized-not recognized) of a particular subject (the object) to 
tachistoscopic presentations of a particular character (the attribute). In both examples, 
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it makes sense to assume that multiple responses on the same object-attribute combi
nation are realizations of the same random variable. 

The second reason for considering this probabilistic version is of a practical nature. 
In particular, in most applications it will turn out that the number of bundles (B) that 
is required for the deterministic matrix decomposition is far too large to be useful. The 
solution for this problem in the deterministic case, is to select an approximate decom
position that has a relatively small number of bundles, but that is nevertheless good 
enough as evaluated by means of some goodness-of-fit measure. Such a measure de
pends on the discrepancies between the observations and the values that are predicted 
by the model (decomposition). This approach is followed by De Boeck & Rosenberg 
(1988). Now, using probabilistic models, we also drop the goal of obtaining a perfect 
decomposition, but we do not do this by introducing some error afterwards, in the form 
of discrepancies between observations and predicted values. Instead, we consider the 
observations as being generated by some well-specified stochastic process. 

In a probabilistic model, the Y n 's are considered as random variables for which a 
set of PDFs is specified. These PDFs will be denoted by fn ( Y n; 6), in which 6 is the set 
of parameters on which the PDFs depend. 

The M 0 a 's are considered as Bernoulli random variables whose PDF is specified 
by the probability P(M0 a = 1). Loosely speaking, we want to impose some structure 
on the P(M oa = 1) 's such that the characteristics of the deterministic matrix decom
position are reflected in it. This can be obtained in a simple way by considering the 
Sob's and the P ab 's as independent Bernoulli random variables. The PDFs of Sob and 
P ab are specified by the probabilities P(S ob = 1) and P(P ab = 1), which will be 
denoted by Pob and Tab• respectively. Thus, in PMD models, the fact of belonging to 
a particular bundle is considered as a random variable. 

Using the symbols for the general case of LRMs, our transition from a determin
istic to a probabilistic model involves considering Xn as a (vector-valued) random 
variable. In the following, the PDF of Xn will be denoted by g n (Xn; 6). 

Now, the P(M0 a = 1)'s that characterize the PDFs of the M
0

a 'scan be expressed 
as functions of the Pob 'sand Tab's, which are the basic parameters of the model. Thus, 
for this LRM, 6 consists of an ( 0 x B)-matrix of Pob 's, which will be denoted by p, and 
an (A X B)-matrix of Tab's, which will be denoted by -r. Denoting P(M0 a = 1) by 7T

0
a, 

it is easy to show that, for disjunctive communality the following holds: 

B 

7T oa = 1 - TI (1 - 1/1 oab ), 

b=l 

in which .Poab denotes P( U oab 1), which itself is defined as follows: 

1/1 oab = P ob Tab · 

For conjunctive dominance, the following holds: 

B 

7T oa = TI 1/J oab ' 
b=l 

(8) 

(9) 

in which 1/1 oab again denotes P( U oab = 1), which is defined as follows for this con
densation rule (in the version of attributes dominating objects): 
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Finally, for disjunctive and conjunctive equality, the same structure as in, respectively, 
(8) and (9) holds. The only difference with the previous two condensation rules is the 
definition of rf!oab. For both disjunctive and conjunctive equality, this definition is the 
following: 

This is an appropriate place to mention the close connection between PMD models 
and the so-called structural statistical reliability theory (see Gertsbakh, 1989), which 
was pointed out by one of the reviewers. In this theory, one considers the probabilistic 
behavior of systems (machines, water supply circuits, logistic networks, ... ) that are 
composed of components that may or may not operate appropriately. It is assumed that 
appropriate behavior of the system (the machine works, water is supplied to every 
town, every refugee camp gets the necessary medicine, ... ) is some function of the 
behavior of the components, in the same way that M oa is some function of (S~, P ~) 1

• 

Also, the components' behavior is assumed to be probabilistic, similar to our assump
tion of independent Bernoulli PDFs for the Sob's and P ab 's. The problems this theory 
deals with are methods for obtaining accurate upper and lower bounds to system 
reliability (the counterpart of P(M00 = 1)) and for accurate approximations to it. 

Estimation 

We will consider a general algorithm for the computation of the ML and the MAP 
estimates of the parameters of probabilistic LRMs, and will show how this algorithm 
can be used to compute the estimates of the parameters of PMD models. The algorithm 
will be presented first in the context of ML estimation, and later it will be shown how 
it can be adapted for MAP estimation. 

ML Estimation 

We start by introducing some notation. The PDF of Y = (Y1 , ••• , YN) 1 is 
denoted by f(Y; 6), and the PDF of X = (X1 , ••• , XN) 1 by g(X; 6). Making the 
assumption of local stochastic independence (LSI), these PDFs are defined as follows: 

N 

f(Y; 6) = 0 fn(Yn; 6), 
n=l 

and 

N 

g(X; 6) = 0 gn(Xn; 6). 
n=l 

Now, the conditional PDF h(XIY; 6) can be written as follows: 

g(X; 6) 
h(XIY; 6) = f( ) . 

Y; 6 
(10) 

The essential point in (10) is the fact that the joint PDF of X and Y (which appears in 
the numerator of the formula of the conditional PDF) is the same as the marginal PDF 
of X. This fact allows us to use the EM-algorithm (Dempster, Laird, & Rubin, 1977) to 
maximize In f(Y; 6) (and therefore also f(Y; 6)). In the terminology of the EM-algo-
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rithm, g(X; 9) is denoted as the complete data likelihood, andf(Y; 9) as the observed 

data likelihood. 

We will now show how the EM-algorithm can be used to compute the ML esti
mates of the parameters ofPMD models. We first introduce some notation. The number 
of 1- and 0-responses on the (observed) random variable M 0 a will be denoted by noal 

and noaO• respectively. Their sum will be denoted by noa+. The total number of 
responses to the o-th object will be denoted by no++, and the total number of re
sponses to the a-th attribute by n +a+. The number of 1- and 0-responses on the (latent) 
random variable Sob that occur in the process that generates the responses on M oa will 
be denoted by r oabl and r oabO, respectively. Their sum will be denoted by r oab+. 

Similar numbers can be defined for the responses on the (latent) random variable P ab. 

They will be denoted by toabl, toabO• and toab+, respectively. It is clear that both 
r oab+ and toab+ are equal to noa+. In the formula's below, r oabO and toabO will be 
replaced by (noa+ - r oabl) and (noa+ - t oabl), respectively. 

Now, g(X; 9) is defined as follows: 

0 A B 

g(X; 9) = fl fl fl [p~/,"b'(l _ Pob)(n •• +-roobd] 

o=l a=l b=l 

0 A B 

X n fl fl [ T ~'t' (1 _ Tab) (noa+ -toabd], 

o=l a=l b=l 

which is a product of 0 x A x (2 x B) Bernoulli random variables, each having noa+ 

realizations. Thus, in this case, 9 consists of an (0 x B)-matrix of object parameters, 
denoted by p, and an (A x B)-matrix of attribute parameters, denoted by T. The rows 
of p will be denoted by p~ = (p01 , ••• , p08 ). The rows ofT will be denoted by T ~ = 

(Tal • • • • • TaB). 
In this definition of g(X; 9) we have implicitely made use of the assumption of local 

statistical independence (LSI) between the latent responses. This assumption involves 
(a) that the realizations of different Sob's en P ab 's are LSI and (b) that also the multiple 

realizations of each Sob (n 0 + + realizations) and each P ab (n +a+ realizations) are LSI. 
These multiple realizations can be both within a single subject responding to multiple 
(object, attribute)-pairs and over multiple subjects responding to a single (object, at
tribute)-pair. This latter type of LSI (multiple realizations coming from different sub
jects) is the classical assumption of experimental independence. 

It is easy to show the following: 

0 B 

In g(X; p, 'T) = L L {[ro+bl ln Pob] +[(no++ - ro+bl) ln (1 - Pob)]} 
o=l b=l 

A B 

+ L L {[t+abl In Tab]+ [(n+a+- t+abd In (1- Tab)]}. (11) 
a=l b=l 

In (11), r o+bl and t +abl denote the sum of r oabl and toabl over all attributes and 
objects, respectively. 

The maximization of (11) is simple. In particular, the ML estimates, denoted by 
Pob and 7-ab, are given by the following equations: 
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A r o+bl 
Pob =--, 

no++ 

A t +abl 
Tab=--. 

n+a+ 

(12) 

(13) 

The same equations that can be used for maximizing ln g(X; p, -r) can also be used 
for the maximization of ln f(Y; p, -r), the loglikelihood of the PMD model. This is 
because using the EM-algorithm involves that in the (p + 1)-th EM-cycle we maximize 
E[ln g(X; p, -r)JY; p<Pl, -r<Pl], the conditional expected value of the complete data 

loglikelihood given the observed data and the parameter values of the p-th EM-cycle 

(denoted by p<Pl and -r<Pl). Since lng(X; p, -r) is linear in the statistics ro+bl and t+abl, 

E[ln g(X; p, -r)JY; p<Pl, -r<Pl] differs from In g(X; p, -r) only in the fact that these 

statistics are replaced by their conditional expected values, which can be expressed as 
follows: 

A 

E(ro+btJY, p<Pl, T(Pl) = L {[noatE(SoblMoa = 1, p~Pl, T~Pl)] 
a=l 

and 

0 

E(t+abtJY, p<Pl, T(Pl) = L {[noatE(PablMoa = 1, p~Pl, T~P))] 
o=l 

The right-hand sides of (14) and (15) follow from their corresponding left-hand sides 

because of the assumption of LSI between the M oa 's. 
Now, for the maximization of E[ln g(X; p, -r)JY; p<Pl, -r<Pl], we can make use of 

equations (12) and (13). In particular, since E[ln g(X; p, -r)JY; p<Pl, -r<Pl] differs from 

In g(X; p, -r) only in that the statistics r o+bl and t +abl are replaced by their conditional 
expected values, it follows that the maximization of this function is possible by making 
use of (12) and (13) with the numerators being replaced by these conditional expected 
values. 

The computation of the conditional expected values of the statistics r o+bl and 
t +abl is the E-step of the EM-algorithm. What is needed for this computation are the 
expected values on the right-hand side of (14) and (15). They are conditional probabil
ities defined by the PDFs of the S0 'sand Pa 's, and the condensation rule. The deri
vation of the formula's for these conditional probabilities is straightforward but tedious. 
As an example, we will derive the formula's for disjunctive communality. Because the 

derivations for the Sob's and P ab 's are completely analogous, we will only consider the 
latter. 

For all condensation rules, the formulas for the conditional probabilities are all 
based on the following basic formula: 
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P(P ab = liM oa; Po, T a) 

= [P(Pab = liUoab = 1; Pob• Tab) X P(Uoab = liMoa; Po• Ta)] 

+ [P(Pab = liUoab = 0; Pob• Tab) X P(Uoab = OIMoa; Po• Ta)] (16) 

Because P(Uoab = OIMoa; p0 , Ta) equals [1 - P(Uoab = liMoa; Po• T0 )], we can 
rewrite (19) as follows: 

P(Pab = 1IMoa; Po• Ta) 

= {[P(Pab = 1IUoab = 1; Pob• Tab)- P(Pab = 1IUoab = 0; Pob• Tab)] 

X P(Uoab = liMoa; Po• Ta)} + P(Pab = liUoab = 0; Pob• Tab). (17) 

Three different conditional probabilities appear on the right-hand side of (17). The two 
that involve conditioning on U oab will be considered first. Obviously, they depend on 
how U oab is defined (the first step of the condensation rule). Then we will consider the 
conditional probability that involves conditioning on M oa . This probability only de
pends on the second step of the condensation rules (i.e., disjunctive or conjunctive). 

According to the definition of U oab in disjunctive communality, the formula's for 
the two conditional probabilities that involve conditioning on U oab can be shown to be 
the following: 

P(P ab = 11 U oab = 1; P ob, Tab) = 1, 

and 

(1 - Pob)T ab 
P(P ab = ll U oab = 0; P ob , Tab) = ( ) · 

1 - Pob Tab 

The formulas for P( U oab = liM oa; p0 , T a) are most easily expressed in terms of 
the 1/Joab 's (the probabilities of the U oab 's being equal to 1). For the disjunctive major 
condensation rule, they can be shown to be the following: 

and 

1/1 oab 
P(Uoab = liMoa = 1; Po• Ta) = =, 

1T oa 

P(Uoab = 1IMoa = 0; Po• Ta) = 0, 

in which 1r oa is determined according to disjunctive communality. 
Next, in theM-step, the conditional expected values at the right-hand sides of (14) 

and (15) replace ro+bl and t+abl in (12) and (13). In this way, new values for the 
parameters are obtained, that replace the given values p<P> and T(p) for the E-step of 
the next cycle. 

Summarizing, we can say that an EM-algorithm has been specified whose E-step 
involves the computation of the conditional expected values of the r o+bl 's and the 
t +abl 's, and whose M-step involves the maximization of a function that has the same 
structure as ln g(X; p, T). 

We still have to deal with the question whether the EM-algorithm does what it is 
being used for, namely maximizing lnf(Y; 9). In this respect, the EM-algorithm is better 
nor worse than the existing algorithms (e.g., steepest ascent, Newton-Raphson, Dav
idon-Fletcher-Powell). In particular, under certain regularity conditions (see Wu, 1983), 
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which are fulfilled for all PMD models, it can be proved that the EM-algorithm con
verges to a stationary point (i.e., a solution of the likelihood equations) of In f(Y; 9). 
Whether or not this stationary point is also a local or global maximum, depends on the 
particular form of lnf(Y; 9) and the starting values (i.e., 9<0l). 

MAP Estimation 

Considering MAP estimation was motivated by the fact that, depending on the 
particular set of observations, ML estimates that are in the interior of the parameter 
space may not exist. In the case of multinomial logistic regression, this problem has 
been dealt with by Albert and Anderson (1984). For the PMD models, this means that 
ML estimates of the Pob 'sand Tab's in the interior of [0, 1] may not exist. This fact is 
problematic because it results in over/underflow during computation. 

In the Bayesian framework, this problem does not exist. For reasons that will 
become clear in the following, we will consider MAP estimation. With respect to the 
arbitrariness of the prior PDF, it has to be noted that, except for a constant, the 
likelihood function and the posterior PDF are asymptotically equivalent. Therefore, 
MAP and ML estimates are asymptotically equivalent. 

Although ML and MAP estimates are defined in a different statistical framework, 
their actual computation may be very similar. In particular, the choice of a particular 
prior PDF in some cases is formally equivalent to adding a prior sample within the ML 
framework (see, e.g., Jannarone, Yu, & Laughlin, 1990; Novick & Jackson, 1974). 

A prior PDF that (for certain values of its parameters) is formally equivalent to a 
prior sample for the case of PMD models, is the beta distribution (see Mood, Graybill, 
& Boes, 1974, p. 115). This PDF is defined on the domain ]0, 1[ only, as it should be for 
probabilities. Assuming that the two parameters of this PDF are both equal to 2, it 
follows that 

f(W; 2, 2) = c x W(l - W), 

in which c denotes a constant value. This PDF has expected value and variance equal 
to 0.5 and 0.05, respectively. Now, considering W to be any parameter of the PMD 
model (Pob or Tab), and disregarding the constant c (which has no effect on parameter 
estimation), it follows that f( W; 2, 2) has the same functional form as the joint prob
ability of a 1- and a 0-response on the latent Bernoulli random variable (Sob or P ab) 

whose PDF is specified by this parameter. 
Making use of the prior sample interpretation of the prior PDF, it is clear that 

computing MAP estimates is the same as computing ML estimates using an extended 
sample. This extended sample involves both Y and the prior sample, which will be 
denoted by Z. The array Z is of order (T x 2), and contains one pair of observations, 
Z,1 and z,2 , for every value oft. For the PMD models, T equals B x (0 +A). 

The MAP estimates can be computed by means of the EM-algorithm. The com
plete data are X and Z. The Z,/s are considered as a special type of latent random 
variables because they are mapped in observed random variables by means of a func
tion, which is the identity function in this case. The function to be maximized in the 
M-step is the conditional expected value of In g(X; p, T), as defined for the ML esti
mates, plus the loglikelihood of Z. This latter log likelihood has the same structure as 
In g(X; p, T). It follows that, disregarding the constant c, their sum differs from the 
conditional expected value of In g(X; p, T) only in that one has to add 1 to each of the 
conditional expected values of the r o+bl 'sand t +abl 's, and 2 to each of the no++ 'sand 
n +a+ 's. In the M-step, these quantities (with the 1 's and the 2's added) appear in, 
respectively, the numerator and the denominator of (12) and (13). Since the conditional 
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expected values of the r o+b! 'sand t +abl 's are bounded above by, respectively, no++ 

and n +a+ , and since one observation in the prior sample is a 0 and the other is a 1, it 
is clear that this algorithm cannot result in estimates on the boundary of the parameter 
space (0 or 1). 

Uniqueness 

Many estimation methods involving the optimization (either maximization or min
imization) of some function, have to deal with the following two problems: (i) the 
optimization algorithm may not always find the (a) solution for this optimization prob
lem (i.e., the problem of local maxima and minima), and (ii) the solution may not be 
unique. It is instructive to note that both problems can be considered as uniqueness
problems: the first concerns the uniqueness of the results ofthe optimization algorithm, 
and the second the uniqueness of the solution of the optimization problem itself. Now, 
for the estimation of the parameters of PMD models, either ML or MAP, no analytical 
results have been obtained with respect to either the uniqueness of the results of the 
optimization algorithm, or the uniqueness of the solution of the optimization problem. 

Therefore, at this point, in applications, the only way in which we can get evidence with 
respect to these two problems, is by running the optimization algorithm several times, 
each time using different random starting values. 

Application: Decision Making in Psychiatric Diagnosis 

In this section, we will present the results of an analysis of data that were collected 
by Van Mechelen and De Boeck {1990). In their study, 15 psychiatrists were asked to 
judge 30 patients (objects) with respect to 23 symptoms and four psychiatric diagnoses 
(thus, 27 attributes). The four psychiatric diagnoses are four major categories of the first 
axis of the Diagnostic and Statistical Manual of Mental Disorders (DSM-111) of the 
American Psychiatric Association (1980), namely substance use disorders, schizo
phrenic disorders, affective disorders (with exclusion of the manic), and anxiety dis
orders. The psychiatrists were not instructed to give a single diagnosis to every patient; 
they were allowed to give more than one. The data can be organized in a (30 x 
27)-matrix, in which each cell contains 15 observations. 

Notice that the four diagnostic categories are considered attributes just like the 
symptoms. Using a PMD model to analyze the responses to both symptoms and diag
nostic categories involves that we implicitely assume these responses to be LSI. This 
assumption is violated if the psychiatrists use some decision rule in which they combine 
their responses to the symptoms to determine their responses to the diagnostic cate
gories. However, this assumption does not imply global statistical independence: the 
responses to the symptoms and the diagnostic categories may very well be statistically 
dependent, as long as this dependence disappears after conditioning on the parameters 
(making the independence local). 

These data were analyzed according to the PMD model involving disjunctive com
munality. The analysis involved the computation of the ML and MAP estimates for 
models with from one to four bundles. However, except for the model with one bundle, 
no ML estimates in the interior of the parameter space could be found. Therefore, in the 
following we will only consider the MAP estimates. 

Uniqueness 

Because no formal proof of the uniqueness (in the two senses that were described 
previously) could be given, we took the approach to apply the algorithm several times 
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to the same optimization problem, each time using different random starting values. 
Now, for the models with from one to three bundles, using 10 different random starting 
value configurations for each of these three models, the algorithm converged to the 
same solution. However, for the model with four bundles, we found four different 
solutions of which the corresponding likelihoods were different but not substantially. 
Thus, these different four bundle solutions did not differ much from each other with 
respect to the likelihood criterion. 3 

As will be argued in the following, the fact of having found four different solutions 
for the four bundle model does not have to be considered problematic. In particular, 
there is good evidence that the fourth bundle is only very weakly identified by the data. 
This evidence was found by examining the pair-wise correspondences between the 
bundles of the different four bundle solutions. For every pair of different solutions, 
4 2 = 16 correspondences between pairs of bundles were examined. We computed the 
average absolute difference between the elements of these pairs, which will be denoted 
by V be (in which b indexes the first bundle of the pair, and c the second). The differ
ences between the elements of the object bundles and those between the elements of 
the attribute bundles were added in order to obtain an overall statistic per bundle. 
Denoting the estimated probabilities of the two solutions by p ob ( 7-ab) and p ob (1-ab), 

respectively, V be can be defined formally as follows: 

Now, the V be-values for the comparisons between different pairs of solutions all show 
the same pattern. It was decided not to compute the average V be-values over the 6 = 
(4 x 3)/2 tables that were obtained, because this would involve a rearrangement of the 
rows and columns of these tables according to some expected pattern (see further). 
Such a rearrangement can result in a spurious pattern in the table of averages. There
fore, in Table 2, the V be-values for only one of the six comparisons are shown. For 
three ofthe four rows (columns) in Table 2 (and in the tables for the other comparisons) 
there is one element that is substantially smaller than the others. Moreover, the bundle 
of a given solution that is different from all the bundles in some other solution, is always 
the same (i.e., for all other solutions). Thus, it appears that, by way of speaking, the 
data provide information that is strong enough to always let three particular bundles 
show up in the solution, but not to let a particular fourth one show up. 

The explanation given above is consistent with the fact that the three bundles that 
always appear in the four bundle solutions, correspond very highly with the three 
bundle solution. This can be seen in Table 3, where the V be-values are shown of the 
comparison between the three bundle solution and one of the four bundle solutions. The 
V be -values for the other four bundle solutions are similar. 

The Solution 

The three bundle solution is presented in Tables 4 and 5 for, respectively, the 
attributes (symptoms and syndromes) and the objects (the patients). In order to get a 
clearer picture of the main structure in these matrices of probability estimates, we 
transformed (trichotomized) them into the ordered categories 0, mid, and 1, depending 

3 In an analysis of another data set (see Candel & Maris, 1994), we also found convergence to the same 
solution for different random starting values for models with a low number of bundles (up to 4 for these data), 
whereas convergence to different solutions was found for models with a high number of bundles. Also with 
respect to the likelihood criterion, these different solutions did not differ much from each other. 
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rABLE 2 

t\.verage Absolute Differences Between the Elements of 

Bundles of Different Solutions for the Four Bundle Model 

Bundles of 

Solution 2 

1 

2 

3 

4 

TABLE 3 

1 

0.016713 

0.364948 

0.287653 

0.368113 

Bundles of Solution 1 

2 4 

0.376705 0.245678 0.368399 

0.061612 0.323485 0.413740 

0.271789 0.275048 0.235633 

0.434569 0.214719 0.103347 

Average Absolute Differences Between the Elements of the Bundles of the 

Solution for the Three Bundle Model and one of the Solutions for the Four Bundle Model 

Bundles of the 

Solution for the 
Bundles of a Solution for the Four Bundle Model 

1 2 3 4 
Three Bundle Model 

1 0.035308 0.379390 0.226820 0.365584 

2 0.376718 0.014500 0.353927 0.392403 

3 0.379243 0.414455 0.262051 0.048235 

23 
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TABLE 4 

Three Bundle Solution for the Attributes 

MAP Estimates Trichotomized Values 

Bundle Bundle 

Attribute 1 2 9 2 9 

•speech disorganisation 0.799 0.09 0.083 1 0 0 

•inappropriate affect/ 
behavior 

0.932 0.081 0.282 1 0 0 

•* schizophrenic disorder 0.853 0.008 0.015 1 0 0 

•hallucinations 0.346 0.007 0.013 mid 0 0 

•denial of illness 0.419 0.019 0.184 mid 0 0 

•intellectual impairment 0.433 0.28 0.246 mid 0 0 

• depression 0.088 0.98 0.111 0 0 

•anziety 0.14 0.772 0.247 0 1 0 

•*affective disorder 0.107 0.967 0.202 0 1 0 

•suicide/self-mutilation 0.011 0.487 0.017 0 mid 0 

•excessive somatic 0.231 0.344 0.054 0 mid 0 
concerns 

•narcotics/ drugs 0.009 0.009 0.855 0 0 1 

•* substance use disorder 0.007 0.007 0.941 0 0 

•alcohol abuse 0.008 0.006 0.457 0 0 mid 

•social isolation 0.793 0.702 0.125 1 1 0 

•social dullness 0.807 0.368 0.165 1 mid 0 

•retardation/ 0.528 0.338 0.091 mid mid 0 
lack of emotion 

•*anxiety disorder 0.019 0.621 0.339 0 mid mid 

•role impairment 0.929 0.835 0.685 1 1 

•disturbance in daily 0.805 0.543 D.401 1 mid mid 
routin~leisure time 

• agitation excitement 0.281 0.137 0.156 0 0 0 

• disorientation/ 0.218 0.268 0.143 0 0 0 
memory impairment 

•antisocial 0.056 0.024 0.327 0 0 0 

•beUigerencef negativism 0.212 0.21 0.028 0 0 0 

•thoughts of grandeur 0.051 0.006 0.176 0 0 0 

•suspicion/ persecution 0.269 0.071 0.031 0 0 0 

•impulse control 0.21 0.076 0.197 0 0 0 
impairment 
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TABLE 5 

Three Bundle Solution for the Objects 

Trichotomized Values 

Bundle 

1 2 3 Number of Patients 

1 0 0 6 

mid 0 0 3 

0 1 0 9 

0 mid 0 1 

0 0 1 2 

mid 1 0 2 

mid mid 0 1 

mid 0 1 1 

mid 0 mid 1 

0 mid mid 1 

mid mid mid 1 

0 0 0 2 

on whether their value was in the range ]0.0-0.33 ... ], ]0.33 ... --0.66 ... [, or 
[0.66 ... -1.0[, respectively. For interpretation, we will make the simplification that the 
trichotomized values land 0 indicate that the object (attribute) always belongs to (value 
l) or never belongs to (value 0) the bundle. The value mid will be considered as 
indicating that the object (attribute) either belongs to or does not belong to the bundle 
with about equal probability. In Table 4, the solution for the attributes is given, together 
with the trichotomized values. The names of the attributes with a clear pattern (i.e., a 
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pattern without a mid) is printed in italic. In Table 5, the solution for the objects is given 
by indicating the number of patients having each of the possible patterns of trichoto
mized values. The numbers of patients with a clear pattern are printed in italic. This 
information is sufficient for an interpretation. 

Interpretation 

We first consider the interpretation of the solution for the attributes, to which we 
will give the most attention, and then the one for the objects. The interpretation of the 
solution for the attributes is straightforward. In particular, ignoring for the moment the 
position of the anxiety disorder, each of the three bundles specifies the symptoms of 
one major disorder. This is the case because, ignoring the anxiety disorder, each of the 
remaining major disorders belongs to a single different bundle. Thus, the basic structure 
in the solution for the attributes is such that a patient that is diagnosed as having a 
particular major disorder, has all the symptoms of the bundle that corresponds to this 
major disorder. In the following, this inference will be weakened somewhat, but its 
essence will remain. 

In uncovering the implicit rules that govern the psychiatrist's diagnoses, it is useful 
to look for the symptoms that are specific for a particular diagnosis. Obviously, these 
specific symptoms may only belong to the bundle that corresponds to this diagnosis. 
However, since an object (attribute) may have both the value 1 and the value mid for 
a particular bundle, we have two kinds of diagnosis-specific symptoms. The difference 
between these two kinds of symptoms will be explained in the following. 

The first bundle contains the symptoms of the schizophrenic disorder. The specific 
symptoms speech disorganisation (which refers to disorganisation in the content of 
what is being said as, e.g., lack of coherence) and inappropriate affect and behavior, do 
have a 1 for the first bundle. Ignoring the probabilistic nature of bundle-membership, 
one can say that these symptoms are necessary conditions for the schizophrenic dis
order diagnosis (however, they are not the only necessary conditions). In other words, 
every patient that is diagnosed as schizophrenic has these two symptoms. This is not 
the case for three other specific symptoms with a mid-value on the first bundle, namely 
hallucinations, denial of illness, and intellectual impairment. For these symptoms, it is 
also possible that they do not belong to the first bundle. This reflects the fact that not 
every patient that is diagnosed as schizophrenic exhibits hallucinations, denial of ill
ness, and intellectual impairment. But, because these symptoms are nevertheless spe
cific for the schizophrenic disorder diagnosis, they must possess high cue validity. 

Notice, however, that the corresponding probability of bundle membership (Tat) may 
not be interpreted as the probability that a patient who shows such a symptom, is 
considered a schizophrenic by a psychiatrist. The correct interpretation is that, if the 
probabilities for all the other bundles are zero, this probability of bundle membership 
on the attribute side is the probability of having such a symptom if the patient is being 
considered a schizophrenic by a psychiatrist (Sol = 1). 

These findings illustrate an advantage of PMD models over their deterministic 
equivalents. In particular, by allowing an attribute to have a moderate probability on a 
particular bundle, one can represent the fact that it sometimes but not always applies 
to the objects of its bundle. A specially interesting case are attributes that do not apply 
to objects of other bundles; they are interesting because of their cue validity. It is 
obvious that, in an analogous way, an object may have some but not all attributes of a 
particular bundle. 

The second bundle contains the symptoms of the affective disorder. For this dis
order, there are two specific symptoms that are also necessary conditions, namely 
depression and anxiety. And again, we have two symptoms that are not necessary, but 
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that nevertheless have a high cue validity, namely thoughts about and attempts at 
suicide and/or automutilation, and excessive somatic concerns. 

The third bundle contains the symptoms of the substance use disorder. The diag
nosis-specific symptom that is also a necessary condition (excessive use of narcotics/ 
drugs) is rather obvious. And again, since alcohol abuse is only one particular case of 
the substance use disorder, we also have a non-necessary symptom with high cue 
validity for this disorder. 

We will now consider the position of the anxiety disorder in the solution. The 
reason why there is not a bundle that is uniquely associated to the anxiety disorder, is 
that this diagnosis is mainly given together with either the affective (mostly) or the 
substance use disorder. It probably is so that the anxiety disorder is not considered as 
a diagnosis like the others, but more as a way to indicate that anxiety is an important 
aspect of the patient's mental illness. The fact that the symptom anxiety (contrary to the 
anxiety disorder diagnosis) does not belong to the bundle of the substance use disorder, 
possibly reflects the fact that anxiety (as an emotion) is assumed to occur in some of 
these patients, but that it does not show itself as an observable symptom because of the 
influence of narcotics and/or alcohol. With respect to anxiety, it is also interesting to 
note that neither anxiety as a symptom nor the anxiety disorder ever applies to patients 
that are diagnosed as schizophrenic (disregarding the patients with a multiple diagno
sis). 

The symptoms that belong to both the first and the second bundle apply to both the 
patients that are diagnosed as having the schizophrenic, and those that are diagnosed as 
having the affective disorder. In particular, both types of patients are judged to have a 
disturbed social life, whereas this is not the case for patients that were given the 
substance use disorder diagnosis. 

And from the kind of attributes that belong to all three the bundles it can be inferred 
that what all patients had in common is the fact that they were considered as not being 
able to fulfill some of their roles in daily life (e.g., parent, partner, employee, student). 

Finally, we will briefly consider the solution for the objects (patients). The first 
point to be made with respect to this structure is that the majority of the patients were 
given a simple diagnosis in one of three categories: schizophrenic, affective, or sub
stance use disorder. These patients are the ones that·belong to a single bundle. It also 
has to be noted here that the affective and the substance use disorders may be com
plemented by the anxiety disorder as a secondary diagnosis. 

The second point to be made is that none of the patients that belong to two or more 
bundles has a clear pattern (i.e., one without a mid). This reflects the fact that there is 
no agreement among the psychiatrists with respect to which combined diagnosis should 
be given. This disagreement resulted in moderate observed proportions in the cells that 
correspond to these patient-diagnosis combinations. 

Related Models and Conclusion 

The PMD models presented here can be characterized with three important fea
tures: (a) they are models for binary two-way two-mode data (possibly with replica
tions); (b) they are decomposition models in that the data are considered a function of 
properties of the elements from each mode separately; (c) they are probabilistic. Other 
models exist with one, two, or even all three of these features, and therefore it is of 
value to situate the PMD models in the broader context of those other models and to 
indicate where exactly their specificity is to be found. 

Many models exist for two-mode binary data, such as item response models, item 
factor analysis, latent class analysis, lattice models, hierarchical classes models, etc. 
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Natural ways to analyze binary data are to use set-theory and Boolean algebra, like in 
lattices and hierarchical classes models, or to model the probabilities of the data, like 
in item response and latent class models. In the PMD models, a combination of both 
approaches is used. First, the data are considered as resulting from different partitions 
of the element sets of the two modes (each partition defines a bundle) and a Boolean 
rule applied on multiple partition class membership (the condensation rule), and sec
ond, the partitions are random partitions (bundle membership is probabilistic). 

Like item response models (e.g., Fischer, 1974) and models for item factor analysis 
(Bock & Aitkin, 1981), PMD models are decomposition models, in that they model the 
probabilities of the data from separate parameter sets for the two modes. Typical for the 
PMD models is that the decomposition can be thought of in terms of separate latent 

response vectors for the two modes, with the probability parameters applying to these 
covert data. In other models, either there are no intermediate covert data behind the 
observed data, like in item response models, or these covert data are not random 
variables but constants instead, like in the hierarchical classes model (which makes the 
model deterministic). What is decomposed in the PMD models are the data, like in a 
singular value decomposition of the raw data (Greenacre, 1984; Nishisato, 1980), but 
unlike in traditional singular value decomposition, the components are binary and have 
a probabilistic nature. One can of course also present the PMD models as models that 
decompose the probabilities of the data, namely into single mode probabilities that are 
combined in nonlinear ways. 

PMD models are probabilistic models, in that they take the data as results from a 
random process and in that they consequently contain parameters describing this ran
dom process. A different approach would be to consider the random process unknown 
and consequently not to try to model the random process. The corresponding strategy 
is to construct a theoretical data set from which the observed one deviates as little as 
possible while the theoretical data set that is used for this approximation is still the 
result of a rather simple but now deterministic process. The random element is then 
captured in the deviations of the observed data from the hypothetical data. This is a 
possible rationale behind what Arabie and Hubert (1992) have called "combinatorial 
data analysis." It is also the approach followed with hierarchical classes analysis. 
Important drawbacks are that one cannot make use of ML estimation and statistical 
theory. 

The PMD models offer a new way of analyzing two-mode binary data, which is 
especially interesting if the data can be considered to result from binary random vari
ables for the elements of both modes. An important advantage is that one can select a 
PMD model with a condensation rule that corresponds to one's theory about how the 
two modes interact to yield the data. Furthermore, an algorithm exists that allows for 
estimating the parameters of the model, that is, the parameters of the Bernoulli PDF for 
each random variable. Although the uniqueness problem has not been solved in a 
satisfactory way, it was shown with an application how one can gain information about 
uniqueness from using different randomly chosen starting values. The results of the 
application are also quite encouraging as far as their meaningfulness is concerned. 

Besides uniqueness, another topic for future research is the development of meth
ods for assessing accuracy of estimation and goodness-of-fit. With respect to accuracy 
of estimation, the obvious thing to do is to compute the inverse of the information 
matrix at the MAP (or ML) estimates. And for goodness-of-fit testing, a statistic whose 
usefulness should be examined is Pearson's chi-square. Finally, PMD models in their 
present version require more than one observation in each cell (i.e., for each combi
nation of elements from the two modes), since otherwise the consistency of the ML and 
MAP estimates cannot be proved. However, when the parameters would be considered 
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random variables themselves, a kind of random effects or marginal version of the PMD 
models can be formulated, which allows for a corresponding estimation method that 
can be applied to data with a single observation in each cell. 
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