PROBABILITY MEASURES ON METRIC SPACES

K. R. PARTHASARATHY

AMS CHELSEA PUBLISHING American Mathematical Society • Providence, Rhode Island

CONTENTS

Preface		÷	8	•	÷	1	•	÷	v
Chapter I-The Borel Subsets of a Metric Space									
1. General Properties of Borel Sets		2		23		5	27	s.	1
2. The Isomorphism Theorem									7
3. The Kuratowski Theorem									15
4. Borel Cross Sections in Compact Metric Spaces			•	•		•			22
5. Borel Cross Sections in Locally Compact Group	s.	×		•	×	÷	e	×	24
Chapter II-Probability Measures in a Metric Spa	ace								
1. Regular Measures			•	×.		3 9	•		26
2. Spectrum of a Measure	•		•	\mathbf{x}_{i}			•		27
3. Tight Measures				\mathbf{z}			\cdot	a.	28
4. Perfect Measures				•			•	*	30
5. Linear Functionals and Measures									32
6. The Weak Topology in the Space of Measures		•		•	•	•	•	•	39
7. Convergence of Sample Distributions				•			•		52
8. Existence of Nonatomic Measures in Metric Spa	ces	÷	·	•	•		•	•	53
Chapter III—Probability Measures in a Metric G	ou	p							
1. The Convolution Operation							•	÷	56
2. Shift Compactness in $\mathcal{M}(X)$									

CONTENTS

4.	Indecomposable	Measures	•	•	•	٠	•	•	•	•			٠		•	•	63
5.	The Case When	X Is Abelian	÷					ł.			3	•	ŝ	÷.			70

Chapter IV-Probability Measures in Locally Compact Abelian Groups

1.	Introduction	3
2.	Preliminary Facts about a Group and Its Character Group 74	4
3.	Measures and Their Fourier Transforms	1
4.	Infinitely Divisible Distributions	7
5.	General Limit Theorems for Sums of Infinitesimal Summands 82	2
6.	Gaussian Distributions	7
7.	Representation of Infinitely Divisible Distributions 102	2
8.	Uniqueness of the Representation	9
	Compactness Criteria	
	Representation of Convolution Semigroups	
	A Decomposition Theorem	
12.	Absolutely Continuous Indecomposable Distributions in X 120	0

Chapter V-The Kolmogorov Consistency Theorem and Conditional Probability

1.	Statement of the First Problem	\$1
2.	Standard Borel Spaces	32
3.	The Consistency Theorem in the Case of Inverse Limits of Borel	
	Spaces	37
4.	The Extension Theorem	
5.	The Kolmogorov Consistency Theorem	3
6.	Statement of the Second Problem	4
7.	Existence of Conditional Probability	5
8.	Regular Conditional Probability	6

Chapter VI-Probability Measures in a Hilbert Space

1.	Introduction			•				٠	151
2.	. Characteristic Functions and Compactness Criteria								151
3.	An Estimate of the Variance								165
4.	Infinitely Divisible Distributions				•				170
5.	Compactness Criteria	10			•		×		182
6.	Accompanying Laws	•2			•		×		189
	Representation of Convolution Semigroups								
8.	Decomposition Theorem	•	•	•	•				201
9.	Ergodic Theorems		•			\sim		i.	202

2.	Probability	Measures	on	C[0,	1]		3			×.		e.			•						÷,	21	12
----	-------------	----------	----	------	----	--	---	--	--	----	--	----	--	--	---	--	--	--	--	--	----	----	----

x

CONTENTS

3.	A Cond	liti	on	fo	or	th	e	R	eal	iza	ati	on	0	fa	1 5	Ste	och	nas	tio	: 1	Pro	oce	ess	ir	ı ʻ	'C	"		215
4.	Conver	ger	ice	te	o]	Br	ow	ni	an	M	lo	tio	n		2		×.		÷	3			34						219
5.	Distrib	uti	on	s	of	С	er	tai	in	F	lar	ndo	om		Va	ria	ы	es	A	SS	oc	iat	ed	1	wit	h	tl	ne	
	Browni	an	Μ	ot	ior	ı.								•	•	×	•						13	•			•		224
6.	The Sp	ac	e l	D[0,	1]								•	•			•	•		•		×				•		231
7.	Probab	ilit	y	Me	eas	ur	es	ir	1 '	'D	"						•	•										×	249
8.	Ergodie	: 1	The	eor	en	ıs	fo	or	D	-V	al	ue	d	Ra	ind	do	m	v	ari	ab	les	ι.		•					254
9.	Applica	tic	ons	to	5	Sta	ati	sti	ca	1 '	Гe	sts	0	f	Hy	/po	oth	nes	is		•			•	•	•	•		259
Bibliogra	aphical	No	otes	s				•			×.	13	÷	8			22								2			22	268
Bibliogra	aphy .			32		•	1				.					÷	32			2						×.	100		270
List of	Symbol	δ.			•	÷	×	•	×	×	•	•	×	×		•		•	×		•	•		•	•	×		•	273
Author 1	ndex .			1	•	×.	×						÷			×				×									274
Subject 1	Index .							•	•		•		×		•			8.00						•					275

xi