
ar
X

iv
:2

20
4.

07
00

3v
1 

 [
cs

.L
O

] 
 1

4 
A

pr
 2

02
2

Probability monads with submonads of deterministic
states – Extended version

Sean Moss
University of Oxford

Department of Computer Science
Oxford, UK

sean.moss@cs.ox.ac.uk

Paolo Perrone
University of Oxford

Department of Computer Science
Oxford, UK

paolo.perrone@cs.ox.ac.uk

Abstract

Probability theory can be studied synthetically as the com-
putational effect embodied by a commutative monad. In the
recently proposed Markov categories, one works with an
abstraction of the Kleisli category and then defines determ-
inistic morphisms equationally in terms of copying and dis-
carding. The resulting difference between ‘pure’ and ‘determ-
inistic’ leads us to investigate the ‘sober’ objects for a prob-
ability monad, for which the two concepts coincide. We pro-
pose natural conditions on a probability monadwhich allow
us to identify the sober objects and define an idempotent
sobrification functor. Our framework applies to many ex-
amples of interest, including the Giry monad onmeasurable
spaces, and allows us to sharpen a previously given version
of de Finetti’s theorem for Markov categories.

This is an extended version of the paper accepted for the
Logic In Computer Science (LICS) conference 2022. In this
document we include more mathematical details, including
all the proofs, of the statements and constructions given in
the published version.

About citing this work. All the definitions, propositions,
and theorems appearing in the published version also ap-
pear here, with the same numbering as in the published ver-
sion. There is one result here, Lemma 3.18, not present in the
published version. The numbering of particular equations is
however inevitably different between the two versions. Be-
cause of this, if future readers need to refer to any of the
equations contained here, we recommend them to refer to
the corresponding definition or theorem instead.

1 Introduction

This paper is about different models of ‘abstract’ or ‘syn-
thetic’ probability theories. Such theories talk about both
deterministic quantities and random quantities (i.e. random
variables). The difference is analogous to the distinction between
values and computations in the semantics of programming
languages. Indeed, particular non-standard models of syn-
thetic probability have proved useful in applications to prob-
abilistic programming:

• Quasi-Borel spaces ([19], [30]) model Kock’s synthetic
measure theory [22]. Unlike traditional foundations

for probability in measurable spaces, they are well-
suited to higher-order data.
• While naive handling of conditional probabilities can
lead to paradoxes [20], it was shown in [33] that in
more restrictive models of probability ‘exact condi-
tioning’ can be given a consistent meaning. Fritz’sMarkov
categories [6] were used to formulate the result.

A useful way to present a model of probability is with
a commutative monad [22]. This gives the link to the se-
mantics of more general programming effects, since com-
mutative monads are a special case of the strong monads
used by Moggi for the semantics of call-by-value languages
[25]. A potentially strange aspect of monadic semantics is
that it effectively gives both values and computations sep-
arately, with no need for one to be a subset of the other.
In terms of probability, we are led to ask whether the de-
terministic quantities can be characterized as certain well-
behaved random quantities. Two useful criteria, relevant to
both probability and more general computation are the fol-
lowing, described informally.

1. Discardable: A computation that has negligible effect
if its result is not used, so may be safely discarded.

2. Copyable: A computation which can be run once and
have its output used twice instead of being run twice.

Unlike monadic semantics, in a Markov category only the
random quantities are explicitly given. All the quantities in
a Markov category are discardable, and then deterministic
quantities are defined to be those that are also copyable.
Having deterministic quantities characterized equation-

ally has enabled many interesting results from traditional
probability theory to be expressed and proved synthetically.
However, it is often the case that we wish to preserve some
connection with the ‘pure’ quantities, i.e. those morphisms
in the original category hosting amonad for probability. This
is because that category is where we have explicit descrip-
tions of the objects. The goal of this paper is to elucidate
such a connection for several examples of interest. More
specifically, we address whether probability monads of in-
terest admit ‘sobrification’ submonads, i.e. a universal way
of replacing each object with one for which pure quantity
coincides with deterministic quantity.

http://arxiv.org/abs/2204.07003v1
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In the remainder of this introduction, we provide some
informal explanation of the background material on prob-
ability monads and a high-level picture of the development
in this paper. Our main contribution rests in packaging up
properties of certain probability monads into the observa-
tionality and S-observationality conditions, showing that these
are indeed satisfied by examples and interest, and showing
that these conditions abstractly imply the desired results on
sobrification.

1.1 Probability monads

The canonical mathematical model of probability theory is
in the category Meas of measurable spaces. A measurable
space is a pair (-, Σ- ) where - is a set and Σ- ⊆ P(- ) is a
collection of subsets of- containing ∅ and - and closed un-
der countable unions and complements.Morphisms (-, Σ- ) →
(., Σ. ), or ‘measurable functions’, are functions 5 : - → .

such that 5 −1(�) ∈ Σ- for every � ∈ Σ. . It is necessary
to consider measurable spaces rather than just sets because
there are foundational problems with constructing probab-
ility distributions that assign probability to every subset of a
given set - . Instead, we equip - with a family Σ- of ‘meas-
urable sets’, and require a probability measure to be a func-
tion < : Σ- → [0, 1] satisfying <(- ) = 1, <(∅) = 0 and
countable additivity.
Interestingly, the set %- = % (-, Σ- ) of probability meas-

ures on a measurable space (-, Σ- ) can itself be considered
as a measurable space. In fact, % is the functor part of the
Giry monad on Meas (see Example 2.2). This allows us to
consider ‘probability measures on the set of probability meas-
ures’. The Giry monad is a strong monad, and indeed a com-
mutative monad, so following Moggi [25] we can use it to
interpret a first-order call-by-value language.
The basic setting in this paper is that of a categoryCwith

finite products and amonad) on it. The idea is that amonad
includes an assignment � ↦→ )�, where )� is the object of
‘distributions’ or ‘measures’ on �. Hence, for any pair of ob-
jects �,- ∈ obC, we can consider morphisms �→ - to be
‘pure’ functions and morphisms � → )- to be ‘stochastic
functions’. In the language of computation, the latter would
be a computation that produces an - .

1.2 Thunkable morphisms

Besides the aforementioned properties of copyability and
discardability, there is an additional property that makes a
monadic computation look ‘ordinary’: thunkability. A thunk
is a computation that has been ‘frozen’. In probability, the
‘thunk’ of a state G is a ‘Dirac delta’ probability distribution
XG which assigns probability 1 to G and 0 to everything else.
In other words, sampling from XG almost surely returns G .
Informally, a program " : � is thunkable if it satisfies the
equation

__." = let G ← " in __.G : 1→ �.

In terms of probability, we think of " as a distribution, the
difference between the two sides is that the left-hand side
returns a thunk that samples anew from " every time it
is run, but the right hand side creates a thunk by sampling
from" once and for all then wrapping the result.
From the point of view of probability theory, thunkable

morphisms are those that commutewith formingDirac deltas.
This can be seen as related to determinism, since any stochastic
map which ‘spreads’ the mass of a measure, from a single
point to several ones, cannot possibly commute with form-
ing deltas. (See also [8, Remark 3.11] for additional context.)
It therefore seems that thunkability is yet another prop-

erty that sets pure computations apart from the other ones,
and so it is interesting to study the relationship between pur-
ity, thunkability, copyability, and discardability [14, 15]. We
recap these properties and their relationships in Section 3.
We show that in nice situations thunkable morphisms are
encoded by a submonad of the original monad, often idem-
potent, which one can think of as measuring the extent to
which a generic thunkable morphism fails to be pure.

1.3 Observations and de Finetti’s theorem

In the practice of probabilistic programming, as well as in
statistics, one is sometimes given two random variables and
has to test whether they follow the same distribution or
not. The problem is not an easy one. In the best case one
can draw independent samples from them, and compare the
(random) sequences obtained by the repeated draws. This
idea is also reflected by the famous de Finetti theorem [5],
which roughly says that random probability measures cor-
respond bijectively to exchangeable random sequences. In
this work wemakemathematically precise, in terms of mon-
ads, the intuition that random variables are tested by repeated
draws, or more generally, that in some contexts, effectful
computations can be compared by taking repeated independ-
ent runs. In terms of a program " : 1 → (1 → �), we test
with the program contexts

C= ["] ≔ letI ← " () in letG1 ← I() in . . .

letG= ← I() in return (G1, . . . , G=)

where C= ["] : �= , for= ∈ N. To see why repeated sampling
is necessary, consider the following programs

"1 ≔ __.__.or(true, false)

"2 ≔ __.or(__.true, __.false)

of type 1 → (1 → bool) where or is a non-deterministic
choice. Then C1 ["1] and C1 ["2] can each evaluate to both
true and false, but C2 ["1] can evaluate to only two of the
four possibilities and C2 ["2] can evaluate to any of them.
We call monads that exhibit this property observational.

While this property is often considered typical of probab-
ilistic contexts, somewhat surprisingly it can also hold for
monadswhich are not strictly about probability. For example,
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the lower Vietoris monad (or Hoare powerdomain) is ob-
servational (Theorem 9.4), and it generally does not encode
randomness, but rather, nondeterminism. For observational
monads, aswe prove in Theorem7.1, every thunkablemorph-
ism is deterministic.

1.4 Outline

In Section 2 we recall the basic concepts of monad theory,
with a view on the probability case. We in particular look at
the equalizing requirement, which is one of the less known
concepts which is of great relevance for this work, and we
sketch how a monad interacts with the products of a mon-
oidal category, in order to form ‘joint states’.
In Section 3 we look in detail at the structures that se-

lect the different versions of effectful (in particular, random)
and noneffectful computation.We recall (Theorem3.14) that
every puremorphism is thunkable and every thunkablemorph-
ism is copyable and discardable, but not the otherway around
(as counterexamples show).

In Section 4 we construct for every monad) a submonad
� whose Kleisli morphisms are the thunkable morphisms
of) . In Section 5 we define sober objects as those for which
every thunkable morphism is pure, and look at the relation-
ship with the submonad � . We show that in several cases,
such as for the Giry monad, the submonad � is idempotent,
and that sober objects generalize sober topological spaces.
In Section 6 we define observational monads, those for

which computations can be tested by repeated independ-
ent runs. We look at the connection with ground types, the
ones that are directly observable (e.g. by the user or exper-
imenter), and we give technical conditions to show obser-
vationality of monads. In Section 7 we prove what could
be considered the main result of this work (Theorem 7.1),
namely that for observational monads, deterministic morph-
isms are the same as thunkable morphisms. Therefore, in
that case the submonad � equivalently encodes determin-
istic morphisms.
In Section 8 we connect the notion of observationality

with de Finetti’s theorem. In particular, we show that for
observational monad one can sharpen the known version
of the synthetic de Finetti theorem for Markov categories
[7].
Finally, in Section 9 we prove observationality for three

apparently very differentmonads: theGirymonad, the lower
Vietoris monad of nondeterminism, and the monad of name
generation. We give concluding remarks in Section 10.

2 Background on monads

Recall [24] that a monad on a category C is a triple T =

() , [, `) (subsequently also just denoted by ) ) where

1. ) is a functor C→ C,
2. [ is a natural transformation id⇒ ) ,
3. ` is a natural transformation )) ⇒ ) ,

satisfying `� ◦[)� = 1)� = `� ◦)[� and `� ◦`)� = `� ◦) `�
for all � ∈ C.
Monads are used in denotational semantics tomodel a dis-

tinction between pure values and effectful computations [25].
If morphisms � → - are ordinary ‘- -valued functions’,
then morphisms � → )- are ‘- -producing computations’.
For the purposes of this work, we are mainly interested in
those monads involving probability, i.e. for which a morph-
ism � → )- can be seen as a stochastic map from � to - ,
involving random chance.

Example 2.1. Consider the category Setwhose objects are
sets and morphisms are functions. The distribution monad
on Set is themonad) with)- = {c ∈ [0, 1]- :

∑

G ∈- c (G) =
1}, [- (G) = _G ′.ÈG = G0É (i.e. it forms a “delta at G”) and

`- (d) (G) =
∑

c ∈)-

d (c) × c (G).

Example 2.2. Consider the category Meas whose objects
are measurable sets and morphisms are measurable func-
tions. The Giry monad % [18] consists of

• The functor % assigning to each measurable space -
the set %- of probability measures over - , equipped
with the coarsest f-algebra which makes the evalu-
ation of measures measurable;
• The natural transformation of components [ : - →
%- assigning to each point G ∈ - the “Dirac delta”
measure XG , such that for every measurable � ⊆ - ,
XG (�) = 1 if G ∈ � and XG (�) = 0 otherwise.
• Thenatural transformation of components ` : %%- →
%- which, analogously to the case of the distribution
monad, assigns to each measure d ∈ %%- the “mix-
ture” measure `(d), such that for every measurable
� ⊆ - ,

`(d) (�) =

∫

%-

? (�) `(3d).

OnMeaswe can analogously define the monad" of sub-
probability measures, where now instead of having ? (- ) =
1 we only require 0 ≤ ? (- ) ≤ 1.

For more information, we refer to [18]. For an introduc-
tion to the concepts, see [27, Chapter 1], [10, Section 6] and
[26].

In this view of a monad, [� : � → )� is the compu-
tation which, given 0 ∈ �, just returns 0. The rest of the
monad data tells us how to sequence computations together.
The Kleisli category Kl() ) is the category with the same ob-
jects as C but homsets the Kl() ) (�, �) is in bijection with
C(�,)�). We explicitly denote this bijection with

(−)♯ : Kl() ) (�, �) → C(�,)�)

(−)♭ : C(�,)�) → Kl() ) (�, �).

The composition in Kl() ) (�, �), denoted by ⊚, is given by

(6 ⊚ 5 )♯ = ` ◦) (6♯) ◦ 5 ♯
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with the identity maps (1�)♯ = [�. Since the morphisms of
Kl() ) can easily be confused with those of C, in diagrams
we use an ordinary arrow 5 : � → )� when consider-
ing morphisms in C and a wavy arrow 5 ♭ : �  � for
morphisms in Kl() ). The bijection above gives an adjunc-
tion between C and Kl() ) called the Kleisli adjunction.

Example 2.3. For the distribution monad on Set, a Kleisli
morphism is a function- → ). , i.e. an- -indexed family of
probability distributions on. , or a function on- whose out-
put is random, also called a finite probability kernel. We can
denote its entries by : (~ |G), interpreted as the conditional
probability of obtaining output ~ from the input G .
The Kleisli composition of : : - → ). and ℎ : . → )/

returns the kernel ℎ ⊚ : : - → )/ given by

ℎ ⊚ : (I |G) =
∑

~∈.

ℎ(I |~) ℎ(~ |G).

also known as theChapman-Kolmogorov composition of prob-
ability kernels.

Example 2.4. We denote the Kleisli categories of % and
" by Stoch and SubStoch, respectively. Given measurable
spaces- and. , a morphism : : -  . of Stoch is aMarkov
kernel (or stochastic map) : from - to . , i.e. either a meas-
urable function - → %. ,or equivalently a map

- × Σ. [0, 1]

(G, �) : (� |G)

:

such that

• for each measurable subset � ⊆ . , the assignment
G ↦→ : (� |G) is measurable;
• for each G ∈ - , the assignment � ↦→ : (� |G) is a sub-
probability measure (i.e. : (. |G) = 1).

The Kleisli composition is the continuous analogue of the
Chapman-Kolmogorov formula, it is given by the integral

ℎ ⊚ : (� |G) =

∫

.

ℎ(� |~) : (3~ |G).

The morphisms of SubStoch, called substochastic maps,
are defined similarly, except that 0 ≤ : (. |G) ≤ 1.

In some sense, the unit of the monad allows to transport
morphisms of the base category into the Kleisli category.:

Definition 2.5. A morphism 5 : -  . of Kl() ) is called
pure if its counterpart 5 ♯ : - → ). is in the form

- . ).
6 [

for some 6 : - → . of C. We call 5 uniquely pure if 5 ♯ can
be written as [ ◦ 6 for a unique 6.

Puremorphisms are, in some sense, those that “come from
the base category”, or “do not really use the monad”.

Example 2.6. For the Giry monad of probability measures,
a pure morphism 5 : -  . is a kernel assigning to each
point of G a Dirac measure on . , in a measurable way. So,
in some sense, it is simply a measurable function - → . .
Note that, if the f-algebra of . does not separate points, dif-
ferent measurable functions - → . might define the same
kernel, and so in general a pure morphism 5 : -  . is not
uniquely pure. An example of that will given in Example 2.8.

2.1 Unit fork and equalizing requirement

Recall that a fork is a diagram

� � �
5 6

ℎ

such that 6 ◦ 5 = ℎ ◦ 5 (but not necessarily 6 = ℎ). One can
view an equalizer as a universal fork.

Given a monad) , for each object- , the unit of the monad
forms the following fork,

- )- ))-
[ [

)[
(1)

which is indeed a fork by naturality of[.We call the diagram
(1) the unit fork at - .

The monads for which the unit fork is an equalizer for
every - are said to satisfy the equalizing requirement [25,
Section 4].

Example 2.7. The distribution monad on Set satisfies the
equalizing requirement. Indeed, given ? ∈ )- , the two dis-
tributions [ (?) and )[ (?) ∈ ))- are respectively, a delta
peaked at ? , and a convex combination of deltas at points
G with coefficients ? (G). These are equal if and only if ? is
itself a delta at some point G .

Example 2.8. (This example comes from [6, Example 10.5].)
The Giry monad onMeas does not satisfy the equalizing re-
quirement. Let- be the 2-point space {G, G ′}, equippedwith
the codiscrete sigma-algebra (i.e. the only measurable sets
are the empty set and - itself). Then the measures XG and
XG ′ are equal, even if the points G and G ′ are not. As the unit
[ (i.e. X) is not injective, it cannot be an equalizer.

Remark 2.9. The unit fork for objects in the form )- is
always an equalizer, in fact a split one.

)- ))- )))-
[

`

[

)[

) `

2.2 Monads on monoidal categories

A symmetricmonoidal category (SMC) is a category equipped
with a “tensor product”, i.e. a binary functor ⊗ : C×C→ C,
and a “unit” object � , together with isomorphisms

- ⊗ � � - � � ⊗ -, (- ⊗ . ) ⊗ / � - ⊗ (. ⊗ / ),

g-,. : - ⊗ . � . ⊗ -
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satisfying appropriate coherence conditions andg-,. ◦g.,- =

1. By a coherence theorem we can calculate as though the
first three are actually identities — see [24] for precise defin-
itions and details. The interpretation is that given objects
�, �,�, � and morphisms 5 : � → � and 6 : - → . , we
can form new objects � ⊗ - and � ⊗ . of “joint states”, and
the morphism 5 ⊗ 6 : � ⊗ - → � ⊗ . , which as a process it
consists of “executing 5 and 6 independently, in parallel”.
The interaction between monads and the monoidal struc-

ture of a category are of interest for probability theory: in
general the probability of a product is not the product of
the probabilities, and this difference encodes correlation and
other statistical interaction. See [11] for more on this.
So let (C, ⊗, � ) be an SMC. Amonoidal monad is a monad

) together with a natural transformation of components
∇ : )� ⊗ )� → ) (� ⊗ �) and a morphism � → ) � sat-
isfying associativity, unitality, and compatibility with the
monad structure. The monad is symmetric monoidal if the
map ∇ is compatible with permutation of the factors. (See
for example [11, Appendix A] for the detailed definition.)
Amore general interaction between amonad and themon-

oidal structure of a category is the notion of strength, widely
used in theoretical computer science at least since Moggi
[25]. A strength consists of a natural transformation of com-
ponents f : - ⊗ ). → ) (- ⊗ . ), satisfying suitable con-
sistency conditions (see the source above for the details). It
intuitively turns a computation in . paired with a value of
- into a computation in - and . , which is in some sense
“trivial in - ”. A strength can always be obtained from a
monoidal structure using the unit as ∇ ◦ ([ ⊗ id) : - ⊗
). → ) (- ⊗ . ). Conversely, given a strength, one can ob-
tain amonoidal structure provided that the strength satisfies
a particular commutativity condition (one speaks of a com-
mutative monad). Indeed, a symmetric monoidal structure
for a monad is equivalent to a commutative strength, see
for example [12, Appendix C] for details. Moreover, in that
case Kl() ) is a monoidal category as well, with the tensor
product induced by the one on the base category.

3 Categories of structured objects

By this we mean categories where the objects have struc-
ture and the morphisms do not necessarily preserve all of
this structure. This paper will essentially be the study of the
Kleisli adjunction induced by a commutative monad on a
cartesian monoidal category, but we recall here the relation
to various abstractions.

3.1 Copy-discard structure

Definition 3.1. Let (K, ⊗, � ) be a symmetric monoidal cat-
egory. A comonoid in K is a triple (-, 2, 3) where - ∈ K ,
2 : - → - ⊗ - , 3 : - → � and these satisfy the following
equations.

(3 ⊗ 1- ) ◦2 = 1- = (1- ⊗3) ◦2 (2 ⊗ 1- ) ◦2 = (1- ⊗2) ◦2

A comonoid is cocommutative (or commutative, for short)
if in addition 2 = g-,- ◦ 2 . The category of commutative
comonoids in K , written CComon(K, ⊗, � ) = CComon(K),
has as morphisms (-, 2, 3) → (- ′, 2 ′, 3 ′) those maps 5 :
- → - ′ in K such that 3 ′ ◦ 5 = 3 and 2 ′ ◦ 5 = (5 ⊗ 5 ) ◦ 2 .

Definition3.2. A copy-delete or copy-discard (CD) category,
also called a garbage-share (gs) monoidal category, is a sym-
metricmonoidal category (K, ⊗, � ) togetherwith a specified
section of the function

obCComon(K, ⊗, � ) → obK

mapping a commutative comonoid in K to its underlying
object. In other words, each object - ∈ K is equipped with
maps copy- : - → - ⊗ - and del- : - → � making it into
a commutative comonoid.

CD categories were first defined (in strict form, and un-
der the name “gs-monoidal categories”) in [17], and redis-
covered independently several times. See [9, Remark 2.2]
(and references therein) for a more detailed history of the
subject. While every object of a CD categoryK is a comon-
oid, this does not make K a subcategory of CComon(K)
since the morphisms of K do not have to respect the co-
monoid structures. This allows us to consider subclasses of
morphisms in K which do respect them to various degrees.

Example 3.3. Any cartesianmonoidal category is a CD cat-
egory in an essentially unique way. The copy map is given
by the diagonal - → - × - , and the discard map is given
by the unique map - → 1.

Example 3.4. More generally, the Kleisli category of a com-
mutative monad) on a cartesian monoidal categoryC has a
canonical CD structure. The copy and delete structures are
inherited by those of C.

Example 3.5. The Kleisli categories of % and" , which we
called Stoch and SubStoch, have the following copy and dis-
card maps.

- " (- × - )

G X (G,G)

- " (1) � [0, 1]

G 1

where instead % (1) � 1 for the Giry monad. The CD struc-
ture of Stoch has been studied in detail in [4] and [6].

Example 3.6. A seemingly different example of CD cat-
egory is a full subcategory of commutative comonoid ob-
jects in a symmetricmonoidal categorywith all maps between
them, not just the comonoid homomorphisms. Dually, we
can also see this as the opposite category to a category of
commutative monoid objects, for example rings or algebras.

Definition 3.7. A morphism 5 : - → . in a CD category
is called
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• copyable if it commutes with the copy map;

- .

- ⊗ - . ⊗ .

5

copy copy

5 ⊗5

• discardable or normalized if it commutes with the dis-
card map;

- .

�

5

del del

• deterministic if it is copyable and discardable.

A Markov category [6] is a CD category in which every
morphism is normalized.

Example 3.8. In SubStoch, a morphism : : -  . is

• copyable if and only if for every G ∈ - , and for every
measurable � ⊆ . ,

: (� |G) ∈ {0, : (. |G)};

• normalized if and only if for every G ∈ - ,

: (. |G) = 1;

• deterministic if and only if for every G ∈ - , and for
every measurable � ⊆ . ,

: (� |G) ∈ {0, 1}, : (. |G) = 1.

In other words, deterministic morphisms are the ones that
are certain about whether any event (measurable subset � ⊆
. ) is going to happen (probability 1), or not (probability 0).

Every morphism of Stoch is normalized, therefore it is
a Markov category. A canonical example of a deterministic
morphism 1  . of SubStoch (and Stoch) is a Dirac delta
1 ↦→ X~ at a point ~ ∈ . . Not every deterministic morphism
is in this form in general:

Example 3.9. Let . be the unit interval [0, 1], equipped
with the countable-cocountable sigma-algebra (i.e. themeas-
urable sets are precisely the countable subsets and their com-
plements). Then the assignment

� ↦→

{

1 if � is uncountable

0 if � is countable

is a deterministic morphism 1 . of SubStoch, and it can-
not be written as X~ for any ~ ∈ . .

Note also that measures of the form XG do not always cor-
respond to points bijectively, as Example 2.8 shows. One of
the main purposes of this paper is, indeed, to study those
deterministic kernels which are not (parametrized) Dirac
deltas. More generally, to study those deterministic morph-
isms in a Kleisli category which do not come from morph-
isms of the base category (i.e. are not pure, according to
Definition 2.5).

We conclude this section with a general remark. The fol-
lowing conditions are equivalent for a CD category:

• Every morphism is deterministic;
• The copy and discard maps are natural;
• The category is cartesian monoidal.

In some sense, one can view cartesian monoidal categories
as a special case of CD categories where no randomness or
nondeterminism is involved.

3.2 Thunk-force structure

As is a well-known fact in category theory, an adjunction
between two categories gives rise to a monad on one and a
comonad on the other. Thus when) is a monad on C, there
is a comonad on) † on Kl() ). On objects,) †- = )- and on
morphisms 5 : � � we have

() †5 )♯ = )�
(5 ♯)†

−−−−→ )�
[
−→ ))�,

where (5 ♯)† denotes the Kleisli extension of 5 ♯ . It is useful to
describe the unit and counit in terms of some slightly richer
structure.

Definition 3.10 ([14]). A thunk-force category or abstract
Kleisli category is a category K equipped with an endofunc-
tor ! : K→ K and two families of maps

thunk� : �→ !� force� : !�→ �

for � ∈ K such that

1. force is a natural transformation ! ⇒ id,
2. thunk! is a natural transformation ! ⇒ !!,
3. !(thunk�) ◦ thunk� = thunk!� ◦ thunk�,
4. force� ◦ thunk� = 1�,
5. !(force�) ◦ thunk!� = 1!�.

Note thunk is not required to be natural in general. It does
follow that the endofunctor ! underlies a comonad with
counit force : ! ⇒ id and comultiplication thunk! : ! ⇒
!!.

Example 3.11. Kl() ) is canonically a thunk-force category.
The endofunctor ! is given by the composite ) † = � ◦ � :
Kl() ) → C → Kl() ), where (�,�) are the functors of the
Kleisli adjunction, and

(thunk�)
♯
= �

[
−→ )�

[
−→ ))� (force�)

♯
= )�

1
−→ )�.

This suffices to describe the comonad structure of) †.

In the context of categorical probability, i.e. in [8] and [7],
the morphism force is denoted by samp. This can be inter-
preted as a map taking a probability measure ? and return-
ing a random element distributed according to ? .

3.3 Thunkable morphisms

In [14] it is shown that every thunk-force category has the
formof Example 3.11. The crucial concept is that of thunkable
morphism, of which we recall here the basic definitions and
constructions.
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Definition 3.12. A morphism 5 : � → � in a thunk-force
category is thunkable if the following diagram commutes.

� �

!� !�

5

thunk� thunk�

!5

(2)

The thunkablemorphisms form awide subcategory,Kthunk.
Note that each map thunk� is itself thunkable, by one of
the axioms in Definition 3.10, as is any map of the form !5 ,
by naturality of thunk! . The identity-on-objects inclusion
Kthunk ↩→ K has a right adjoint given by the factoring of
! : K → K through Kthunk ↩→ K. At the level of homsets
the bijection is

(�
5
−→ �) ↦→ (�

thunk
−−−−→ !�

!5
−−→ !�)

(�
6
−→ !�) ↦→ (�

6
−→ !�

force
−−−→ �).

This adjunction gives rise to amonad onKthunkwhose Kleisli
category constructed as in Example 3.11 is the original thunk-
force categoryK. In [14] it is further observed that in an ap-
propriate sense this is the universal solution to the inverse
problem of presenting a thunk-force category via a monad.
In [8, Remark 3.11] it was remarked that the unit of the

monad is natural against morphisms of the base category,
but not against generic Kleisli morphisms. From this per-
spective, we see thunkable morphisms as precisely those
against which the unit of the monad is natural.
Thunkable morphisms of a Kleisli category can be char-

acterized in terms of the base category as follows.

Proposition 3.13. A morphism 5 : �  � of Kl() ) is

thunkable if and only if its counterpart 5 ♯ : � → )� in C
sits in the following fork.

� )� ))�
5 ♯ [

)[

Proof. One way around square (2) is given by

) 5 ◦ [)� ◦ [� = [)� ◦ 5

and the other one is

`)� ◦) ([)�) ◦) ([�) ◦ 5 = ) ([�) ◦ 5 . �

3.4 Relationship between the different classes of

maps

Given a commutative monad on a cartesian monoidal cat-
egory, we get both a copy-discard structure and a thunk-
force structure canonically. The two structures interact in
the following way.

Theorem3.14. Let) be a commutative monad on a cartesian
monoidal category C. Consider its Kleisli category Kl() ) to-
gether with its canonical thunk-force and copy-delete struc-
tures.We have the following inclusions formorphisms ofKl() ),

pure ⊆ thunkable ⊆ deterministic ⊆ all.

Before proving the theorem, let’s look at some examples.

Example 3.15. Consider the ‘maybe’ monad )- = - +
1 on Set. This satisfies the equalizer condition, so pure =
thunkable. Every map is copyable, but discardable = pure.
Therefore deterministic = thunkable.

Example 3.16. The ‘read-only state’ monad )- = - × -
on Set satisfies the equalizer condition, so pure = thunkable.
As observed in [14], every map is copyable and discardable.
Thus deterministic ≠ thunkable.

Example 3.17. For the Giry monad on Meas, the measure
given in Example 3.9 is a deterministic, but not pure morph-
ism. However, as one can verify, applying [ and)[ one gets
the same result, and so by Proposition 3.13, the morphism is
thunkable. So, pure ≠ thunkable. (As we will show in The-
orem 9.1, every deterministic morphism for the Giry monad
is thunkable.)

Let’s now prove the theorem. We make use of the follow-
ing lemma, which holds in every CD category.

Lemma 3.18 (not present in the published version). Let

� � �
5 6

be a composable pair of maps in any CD-category.

(i) If 65 and 6 are both discardable, then 5 is discardable.
(ii) If 65 and 6 are both copyable and 6 is split monic, then

5 is copyable.

Proof of Lemma 3.18. For (i), we have

�
5
−→ �

del
−−→ �

= �
5
−→ �

6
−→ �

del
−−→ �

= �
del
−−→ � .

For (ii), we have

�
5
−→ �

copy
−−−→ � ⊗ �

6⊗6
−−−→ � ⊗ �

= �
5
−→ �

6
−→ �

copy
−−−→ � ⊗ �

= �
copy
−−−→ � ⊗ �

5 ⊗5
−−−→ � ⊗ �

6⊗6
−−−→ � ⊗ �

whence the result since 6 ⊗ 6 is split monic. �

Proof of Theorem 3.14. Let 5 : -  . be pure. Then there
exists 6 : - → . in C such that 5 ♯ = [ ◦6, and so the fork of
Proposition 3.13 can be decomposed through the unit fork
(1) as follows,

- . ). )).
6 [ [

)[

so 5 is thunkable.
Let now 5 be thunkable. Then thunk. ⊚ 5 = ) 5 ⊚ thunk-

is equal to the composite of two pure (hence deterministic)
maps. But as thunk. is deterministic and split monic, Lemma 3.18
says that 5 is deterministic. �
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4 The submonad of thunkable morphisms

We now want to express the category Kl() )thunk itself as
the Kleisli category of a new monad, a submonad of ) . Re-
call that every pure morphism is thunkable (Theorem 3.14).
Therefore we have a functor

C Kl() )thunk

6 ([ ◦ 6)♭.

8

which takes 6 : - → . of C and gives the pure map 5 :
-  . of Kl() ) such that, as above, 5 ♯ = [ ◦ 6.

Now with the help of Proposition 3.13, let’s construct a
right-adjoint to this functor 8 . We will suppose that the par-
allel pair ([,)[) has an equalizer. This happens for example
if C has coreflexive equalizers (the common retraction of [
and )[ is ` : )). → ). ). Choose an equalizer (�., \. ).

�. ). )).
\.

[

)[

If 5 : -  . is thunkable then [ ◦ 5 ♯ = )[ ◦ 5 ♯ (and con-
versely, this is Proposition 3.13). Hence in this case there is a
unique arrow- → �. making the triangle in the following
diagram commute.

-

�. ). )).

5 ♯

\.

[

)[

In otherwords, we have a bijection between thunkablemorph-
isms -  . and arrows - → �. of C:

Kl() )thunk(-,. ) � C(-, �. ). (3)

Since this bijection is obviously natural in - , we have the
required adjunction. As usual, there is a canonical extension
of the object assignment � to a functor Kl() )thunk → C.
For completeness, we will describe its action of morphisms
explicitly. So now let 6 : .  / be thunkable. Notice
that, by construction, \. : �. → ). forms a fork with
the pair ([,)[), and so its counterpart (\. )♭ : �.  .

of Kl() ) is thunkable by Proposition 3.13. The composition
6 ◦ (\. )

♭ : �.  / is then thunkable too, and so its coun-
terpart �. → )/ in C fits into the following fork.

�. )/ ))/
[

)[

Therefore by the universal property of the coequalizer (�/,\/ ),
there is a unique morphism �. → �/ making the triangle
in the following diagram commute.

�.

�/ )/ ))/
\/

[

)[

This morphism �. → �/ is �6. It is automatic but easy to
check that � preserves identities and composition, and the
\. assemble to form a natural transformation � ⇒ ) .

It is also plain that the bijection (3) is natural in . , mak-
ing � a right-adjoint to 8 . We denote the resulting monad
simply by� (instead of�8). Since 8 is a left-adjoint bijective-
on-objects functor, its codomain Kl() )thunk is isomorphic to
Kl(�). Moreover, as Kl(�) ⊆ Kl() ), the monad � is a sub-
monad of) .
As we will see in the next section, � is often idempotent.

5 Sober objects and idempotence

The original notion of sobriety (for mathematical objects)
refers to a property of topological spaces (-,O(- )). Roughly
speaking, a topological space is sober if the existence and
equality of its points is determined by the frame O(- ) of
its open sets. On a sober topological space, a point can be
uniquely identified by saying in which open sets it is con-
tained, and conversely, any suitable consistent choice of open
sets (called a completely prime filter) corresponds to a point
of the space. The notion of sober topological space has been
linked to an equalizer of a continuation-style monad by sev-
eral authors [3, 28, 34]. Our definition is less specific, and
gives a notion of sobriety which in general depends on the
monad.
Categorically, the points of a topological space - corres-

pond to ‘maps in’ 1→ - and the opens correspond to ‘maps
out’ - → S where S is the Sierpinski space. The latter can
be thought of as ‘observable’ [1] or ‘affirmable’ [36] proper-
ties of the points of - . They play a similar role to events in
probability theory. Indeed, in probability theory one faces a
similar challenge: suppose we have a measure that assigns
only the values 0 or 1 to each event (measurable set). When
is this measure a Dirac delta at a unique point? Whenever
this is the case for all measures, we call the space sober, by
analogy with topological spaces. We can define the concept
of sobriety in general, in terms of the monad � , as follows.

Definition 5.1. Let ) be a monad on a category C. An ob-
ject - ∈ C is sober for the monad ) if its unit fork (1) is an
equalizer.

A similar definitionwas given by Taylor [34, Definition 4.7].
See also [3, Section 3].
Equivalently, - is sober if the unit 4 : - → �- of the

monad � is an isomorphism. That is, sober objects for )
are exactly the fixed points of the adjunction (3), the one
associated to � . Denote by Sober() ) the full subcategory
of C (equivalently, of Kl(�)) of sober objects. This is also
known as the center of the adjunction.

Remark 5.2. The following conditions are equivalent for a
monad) on a category C:

• Every object of C is sober.
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• Themonad) satisfiesMoggi’s “equalizing requirement”
[25, Section 4].
• Every thunkable morphism is uniquely pure.

In particular, every object is sober whenever every de-
terministic morphism ofKl() ) is uniquely pure. For the case
of Markov categories, this is in particular an instance of rep-
resentability, as defined in [8, Section 3].

Example 5.3. For the distribution monad on Set, every ob-
ject is sober.

Example 5.4. For theGirymonad restricted to the category
of standard Borel spaces, every object is sober. See for ex-
ample [6, Example 10.5] (where the Kleisli category is called
BorelStoch).

Moreover, by Remark 2.9, every object in the form )- is
sober for every monad) .
In general, not all objects are sober. However, in several

cases, given any object we can find a universal “sobrifica-
tion”. This is the case whenever the adjunction (3) is idem-
potent. By the general theory of idempotent adjunctions ap-
plied to the case of the Kleisli category of � , we have the
following statement.

Proposition 5.5. The following conditions are equivalent.

• The monad � is idempotent.
• For every - , the object �- is sober.
• The functor � : Kl(�) → C is fully faithful.
• The inclusion of fixed points Sober() ) ↩→ Kl(�) is an
equivalence.

• For every - , the counit \♭ : �-  - is an isomorph-
ism.

If any (hence all) of the conditions above holds, we can
view � as a “sobrification” functor, analogous to the case of
topological spaces, exhibiting sober objects as a reflective
subcategory of C.

Theorem 5.6. For the following categories C and monads ) ,
the associated monad � is idempotent:

• The “Giry” monads of probability and subprobability
measures % and" on Meas;
• The lower Vietoris monad (a.k.a. Hoare powerdomain)
on Top.

For more details on the latter see [12, Section 2].
Theorem5.6 can be proven by the following helpful lemma.

Lemma 5.7. The monad � is idempotent if and only if for
every - , the map )\ : )�- → ))- is monic. In particular,
as the map \ : �- → )- is an equalizer, it suffices to show
that ) maps regular monomorphisms to monomorphisms.

Proof. First of all, by Proposition 5.5, � is idempotent if and
only if for every - , the counit \♭ : �-  - is an isomorph-
ism.

Denote now by 4 : - → �- the unit of the monad � ,
which can be obtain from the universal property of � as an
equalizer for the unit fork, as in the following diagram.

-

�- )- ))-

4
[

\

[

)[

By the triangle identities of the adjunction of � , \♭ is split
epi with section given by the map � ≔ ([ ◦ 4)♭ : -  �-

induced by unit 4 : - → �- . Therefore \♭ is an isomorph-
ism if and only if � is its actual inverse, i.e. if � ⊚ \♭ = id�- ,
which in terms of the category C reads

�-
\
−→ )-

)4
−−→ )�- = �-

[
−→ )�- . (4)

So suppose that (4) holds. Then

)�-
)\
−−→ ))-

))4
−−−→ ))�-

`
−→ )�-

= )�-
)[
−−→ ))�-

`
−→ )�-

= )�-
id
−→ )�-,

so )\ is split monic.
Conversely, suppose that )\ is monic. Then

�-
\
−→ )-

)4
−−→ )�-

)\
−−→ ))- = �-

\
−→ )-

)[
−−→ ))-

= �-
\
−→ )-

[
−→ ))-

= �-
[
−→ )�-

)\
−−→ ))-,

which implies (4). �

Proof of Theorem 5.6. By Lemma 5.7, it suffices to show that
theGirymonadmaps regularmonomorphisms ofMeas (i.e. em-
beddings ofmeasurable spaces) to monomorphisms ofMeas

(i.e. injective measurable functions). So let 8 : - → . be an
embedding of measurable spaces, that is, an injective func-
tion such that the every measurable subset � of - is in the
form 5 −1(�) for some measurable subset � of . . Let ? and
@ be measures on - , and suppose that 5∗? = 5∗@. Then for
every measurable subset � ⊆ - we can find a measurable
� ⊆ . such that

? (�) = ? (5 −1(�)) = 5∗? (�) = 5∗@(�) = @(5
−1(�)) = @(�).

Therefore, ? = @ already on - , and hence 5∗ : "- → ".

and its restriction %- → %. are injective.
The lower Vietoris monad case is analogous, once one

sees closed sets as dual to open sets (as in Section 9.2). �

The idempotent monad associated to the lower Vietoris
monad is not only idempotent, but it is also the sobrification
monad of topology, hence the name “sober”.

Theorem 5.8. The monad � associated to the lower Vietoris
monad� on Top is the functor assigning to a topological space
- the subset of �- given by the irreducible closed sets.
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The proof of this theorem is given at the end of Section 9.2.
The result resembles the known characterizations of sobri-
ety in terms of equalizers [3, 28, 34], but note that�- is not
quite a continuation (it behaves more like a subspace of the
continuation — but of course Top is not cartesian closed, see
also [12, Appendix B]).

6 Observational monads

In higher-order programming languages one typically has a
‘ground type’ such as ‘nat’ or ‘bool’, representing actual data
that we can handle as input or output, as well as higher-
order types (i.e. function types), or open terms, which are
never directly accessible as inputs or outputs and only ap-
pear at intermediate stages of computation. Thus it is of in-
terest to consider when two values of a higher-order type
can be interchanged in the middle of programs without al-
tering the observable behaviour of the computer. From the
point of view of probability theory one has the same intu-
ition for real numbers, i.e. proving equality of probability
measures involves, in the end, proving that certain integrals
give the same number. An observational monad makes this
intuition precise: in the sense proposed here it corresponds
to a semantics of open terms which is abstract for a certain
kind of observable equivalence.
Let C be a cartesian monoidal category and ) a commut-

ative monad. Since each - ∈ C is a commutative comonoid
in Kl() ), for each = ∈ N there is a canonical map

copy= : )-  ()- )⊗=

obtained by iterating the copymap (all possibilities are equal
by coassociativity).
By post-composing with force ⊗ . . . ⊗ force : ()- )⊗=  

- ⊗=, we define a map

samp= : )-  - ⊗=, (5)

the =’th sampling map. As special cases, samp0 = del and
samp1 = force. (Note that the map samp appearing in [8]
and [7] corresponds to our samp1 = force.)
We now want to make the intuition precise that probab-

ility measures can be tested for equality by taking repeated
independent samples.

Definition6.1. Let) be a commutativemonad on a cartesian
monoidal category C. Then ) is an observational monad if
for every object - the family of maps (samp= : )-  
- ⊗=)=∈N is jointly monic in Kl() ).

Remark6.2. Thenotion of observational monad alsomakes
sense for strong monads that are not necessarily commutat-
ive, but we will not pursue that line here.

Proposition 6.3 (Remark 6.3 in the published version). The
maps (5) are jointly monic in Kl() ) iff the maps

))-
) (Δ=)
−−−−−→ ) (()- )=)

) (∇= )
−−−−−→ )) (-=)

`
−→ ) (-=) (6)

are jointly monic in C.

Intuitively, the map in (6) takes a distribution on distri-
butions on - , samples to get a distribution on - , and then
returns the result of = independent samples from that distri-
bution.

Proof. Consider the following diagram in Kl() ).

� )- )- ⊗= - ⊗=
5

6

copy= thunk⊗=

The condition that the maps samp= form a monic family
in Kl() ) means that whenever the composites thunk⊗= ⊚
copy= ⊚ 5 and thunk⊗= ⊚ copy= ⊚ 6 in the diagram above
are equal for all =, then 5 = 6.
Now in terms of the categoryCwe can rewrite the (Kleisli)

composites above as follows.

� ))- ) (()- )=) )) (-=) ) (-=)
5 ♯

6♯

) (Δ=) ) (∇= ) `

The condition that the maps samp= form a monic family
in Kl() ) now reads: whenever the composites in this new
diagram are equal, then 5 = 6, or equivalently 5 ♯ = 6♯. But
this means precisely that the maps in (6) are jointly monic
in C. �

From (6) it is clear that taking one sample = = 1 is in gen-
eral insufficient: that would correspond to hoping that the
map ` : ))- → )- alone is monic. This is in general not
the case. For the Giry monad, for example, this is far from
injective: a probability measure can be in general obtained
as a mixture of other measures in several different ways.
The two major consequences of observationality will be

given in Section 8 and Section 7. In the rest of this section,
we give some technical sufficient conditions that one can
use in order to prove that a monad is observational, and we
introduce the idea of “objects which are directly observable”
(such as real numbers for probability).

6.1 Observations via result objects

An observational monad is one for which an ‘observation
procedure’ for the powers of - can be transferred to one
for )- . Ordinarily, direct observations are only made for
ground types, e.g. Boolean values or real numbers, and all ob-
servations at higher types ultimately implemented in terms
of direct ground observations. We call these special types
the result objects.

Definition 6.4. Let ' be an object of C. We say that the
monad) is '-observational iff for each object - , the family
of morphisms

)-
samp=

- ⊗=
ℎ♭1 ⊗...⊗ℎ

♭
=

'⊗= (7)

where = ∈ N and ℎ1, . . . , ℎ= : - → )', is jointly monic. We
call ' the result object.
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It is easy to see that if) is '-observational then) is obser-
vational. We can also write the '-observationality condition
in terms of the category C, analogously to Proposition 6.3.
It reads that the following maps need to be jointly monic for
all =.

))-
) ()ℎ1,...,)ℎ= )
−−−−−−−−−−−→ ) (())')=)

) (∇=∇= )
−−−−−−−→ ))) ('=)

``
−−→ ) ('=)

(8)
As well as being useful for demonstrating that a given

monad is observational, the property of being'-observational
allows us to exploit Lemma 5.7. Recall that an object % is
M-injective [24] with respect to a classM of morphisms iff
whenever (8 : � → �) ∈ M and ℎ : � → % , there exists a
(not necessarily unique) map : : � → % with : ◦ 8 = ℎ.

Proposition 6.5. Suppose that) is '-observational and that
)' is injective with respect to the class of regular monomorph-
isms. Then the submonad � of thunkable morphisms is idem-
potent.

Proof. By Lemma 5.7 it suffices to show that )\- is monic.
Since [))- ◦)\- = ))\- ◦[)�- it suffices for this to show
that))\- is monic. (Indeed, this is also necessary, since we
saw above that if )\- is monic then it is also split monic).
The '-observationality condition for �- says that the fam-
ily of maps (8) is monic, so it suffices to show that

`` ◦) (∇=∇=) ◦) ()ℎ1, . . . ,)ℎ=) ◦))\-

= `` ◦) (∇=∇=) ◦) () (ℎ1 ◦ \- ), . . . ,) (ℎ= ◦ \- ))

is monic. By '-observationality, it is sufficient that every
map B : �- → )' factorize as ℎ ◦ \- for some ℎ : )- →
)', since then this family is equivalent to the one in the '-
observationality condition for)- . But this just says that)'
is a {\- }-injective object. �

6.2 Result objects with a monoid structure

A particularly useful case of result object is when' is a mon-
oid in C. Then)' is a monoid in the category of) -algebras,
with unit 4)' and multiplication<)' given as follows,

1
[
−→ ) 1

)4'

−−−→ )' )' ×)'
∇
−→ ) (' × ')

)<'

−−−→ )' (9)

where 4' and <' are the unit and multiplication of '. For
probability monads, we generally take )' to be the unit in-
terval [0, 1], which is a monoid under multiplication (as well
as an algebra under integration). In particular,

• For the distribution andGirymonad% , the object [0, 1]
can be written as %{0, 1} (where the product in ' =

{0, 1} is multiplication);
• For the monad of subprobability measures " , the ob-
ject [0, 1] can be written as "1 (with the trivial mon-
oid structure on ' = 1).

Let now ((, B : )( → () be a ) -algebra with monoid
structure (for example, in the form ( = )' as above, with

' a monoid in C.) The Eilenberg-Moore adjunction gives a
bijection for each object - ,

C(-, () Alg() ) ()-, ()

5 Y 5 = B ◦) 5 .

�

For the Giry monad, for example, given the function 5 :
- → [0, 1], the corresponding morphism Y 5 : %- → [0, 1]
is the integral of 5 :

? ↦→

∫

5 3?.

Because of this correspondence, we can test observation-
ality of ) in terms of the maps Y 5 . Now, these maps alone
are in general not enough to test observationality, but their
products are. Let’s define what we mean by “product”. Let’s
write the unit and multiplication of the monoid ( by 4( :
1→ ( and<( : ( × ( → ( . Denote now by<(

= : (= → ( the
maps given by

• <0 = 4;
• <1 = id;
• <2 =<;
• For< > 2,<= is the unique (by associativity) way of
multiplying = objects, ( × · · · × ( → ( .

Given nowℎ1, . . . , ℎ= : - → ( , define the pointwise product
ℎ1 · · ·ℎ= as the map

-
Δ=
−−→ -= ℎ1×...×ℎ=

−−−−−−−→ (=
<=
−−→ (. (10)

In Meas, if the ℎ8 are functions into [0, 1], this gives the or-
dinary product of functions G ↦→ ℎ1 (G) · · ·ℎ= (G).
We can now test observationality by means of the maps

Y 5 and their products.

Lemma 6.6. Let ' be a monoid in C, and consider the free
algebra ((, B) = ()', `) with its induced monoid structure.
The monad ) is '-observational (hence observational) if the
following maps are jointly monic,

))-
) (Yℎ1 · · ·Yℎ= )
−−−−−−−−−→ )(

B
−→ ( (11)

for all = ∈ N and ℎ1, . . . , ℎ= : - → ( .

Note that we can write the maps above even more con-
cisely as YYℎ1 · · ·Yℎ= .

Proof. It suffices to show that the maps of the family (11)
can be obtained from the maps of family (8) by postcompos-
ition (because if the former are jointly monic, then surely
the latter have to be as well).
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Now since ( = )' and B = `' , we have that Yℎ8 = `' ◦)ℎ8 ,
and so we can rewrite (11) as follows,

` ◦) (` ◦)ℎ1 · · · ` ◦)ℎ=)

= ` ◦) (<(
=) ◦) (` ◦)ℎ1, . . . , ` ◦)ℎ=)

= ` ◦)) (<'
= ) ◦)∇= ◦) (`

=) ◦) ()ℎ1, . . . ,)ℎ=)

= )<'
= ◦ ` ◦)∇= ◦) (`

=) ◦) ()ℎ1, . . . ,)ℎ=)

= )<'
= ◦ ` ◦) ` ◦))∇= ◦)∇= ◦) ()ℎ1, . . . ,)ℎ=)

= )<'
= ◦ ` ◦ ` ◦))∇= ◦)∇= ◦) ()ℎ1, . . . ,)ℎ=)

where we used, in turn,

• the pointwise product formula (10);
• the fact that<(

= = )<'
= ◦ ∇, from (9);

• naturality of `;
• compatibility of the monoidal structure ∇ of) with `;
• the associativity square for `.

The last line is exactly the composition of)<'
= with (8). �

Lemma 6.6 allows us to prove observationality of several
monads, including the Giry monad (see Section 9).

7 Determinism in the observational case

The key consequence of a monad’s being observational is
the following.

Theorem7.1. Let) be an observational commutative monad
on a cartesian monoidal category C. Then every deterministic
morphism in Kl() ) is thunkable.

Proof. Let 5 : �  � be deterministic. It suffices to check
that

�
5

�
thunk

)� �
thunk

)�
) ♭ 5

)�

become equal after postcomposition with each of the samp=
maps from (5). For = = 1,

samp1 ⊚ thunk ⊚ 5

= force ⊚ thunk ⊚ 5

= 5

= 5 ⊚ force ⊚ thunk

= force ⊚) ♭ 5 ⊚ thunk

= samp1 ⊚)
♭ 5 ⊚ thunk.

For = = 0, we use the facts that 5 is discardable and thunk

and ) ♭ (5 ) are both pure (and so discardable):

samp0 ⊚ thunk ⊚ 5

= del ⊚ thunk ⊚ 5

= del

= del ⊚) ♭ 5 ⊚ thunk

= samp0 ⊚)
♭ 5 ⊚ thunk.

For = ≥ 2, we use the facts that 5 is copyable and that thunk
and ) ♭ (5 ) are both pure (and so copyable) and the already
proved = = 1 case.

samp= ⊚ thunk ⊚ 5

= force⊗= ⊚ copy= ⊚ thunk ⊚ 5

= force⊗= ⊚ thunk⊗= ⊚ copy= ⊚ 5

= force⊗= ⊚ thunk⊗= ⊚ 5 ⊗= ⊚ copy=

= force⊗= ⊚ () ♭ 5 )⊗= ⊚ thunk⊗= ⊚ copy=

= force⊗= ⊚ copy= ⊚)
♭ 5 ⊚ thunk

= samp= ⊚)
♭ 5 ⊚ thunk. �

Corollary 7.2. Let) be an observational commutative monad
on a cartesian category. The associated submonad � is equi-
valently characterizing the deterministicmorphisms ofKl() ).

This will be the case for example for the Giry monad, as
we show in in Section 9.1.

8 De Finetti’s theorem

De Finetti’s theorem [5] gives a connection between random
distributions and exchangeable sequences. As we show in this
section, the notion of observationality can say something
about de Finetti’s theorem, as infinite sequences can be seen
as limits of a finite, arbitrarily large amount of observations.
In general, in a Kleisli categorywe havemonoidal products

rather than cartesian ones. Because of that, in order to talk
about infinite sequences in - , one cannot take a countable
cartesian product of copies of - . One, rather, has to extend
monoidal products to the infinite case. Thiswas accomplished
in [13] for the case of Markov categories. Here we give the
analogous construction for CD categories (which is almost
the same). For further context, motivation, and applications
we refer to the aforementioned source, as well as to the later
[7].

8.1 Kolmogorov products

In order to form Kolmogorov products, let’s take a look at
the so-called marginalization maps. Given objects - and .
in a CD category, their tensor product - ⊗ . can be inter-
preted as the object of joint states. For example, if we are in
a Kleisli category, a morphism �  - ⊗. corresponds to an
arrow 1 → ) (- × . ) of the base category, which is a joint
probability measure if) is the Giry monad. We can then ap-

ply the map - ⊗ .
id⊗del

- ⊗ � � - , which intuitively
“discards” . . This maps a joint state into the marginal state
on - . For the case of the Giry monad, this corresponds to
taking the marginal probability.
Since ⊗ is a bifunctor, marginalizations are deterministic,

and also natural in the sense that the following diagram
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commutes.

- ⊗ . - ⊗ �

� ⊗ . �

id⊗del

del⊗id del⊗id

id⊗del

The same is true for marginalizations of finite sequences
-1 ⊗ · · · ⊗ -=.

Definition 8.1. Let � be an infinite set, and let {-8 } be an � -
indexed collection of objects of a CD category. TheKolmogorov
product of the family {-8}, denoted by -� , is the (cofiltered)
limit of the diagramwhose objects are the finite tensor products
⊗

8 ∈� -8 over all the finite subsets � of � , and whose morph-
isms are themarginalizations, if moreover the following two
further conditions are satisfied:

• The arrows of the limit cone are deterministic;
• The limit is preserved by the tensor product - ⊗− for
each object - .

We call aKolmogorov power a Kolmogorov product where
the objects -8 are all isomorphic to a same object - . In that
casewe denote the product by- � . In the context of de Finetti,
we are interested in countable Kolmogorov powers, i.e. where
� is, equivalently, the set N of natural numbers.

Let’s now look at the interaction between observational
monads andKolmogorov powers. If the Kolmogorov product
�N exists, themaps samp= make the following diagram com-
mute for each= and for eachmarginal projection c : �⊗=  
�⊗=−1, i.e. c ⊚ samp= = samp=−1. Therefore, there exist a
unique map samp

N
making the following diagram commute

for each =.

�N

)�

�⊗=

c

samp
N

samp=

Thismap ismonic if and only if the family {samp=} is jointly
monic. Therefore, ifKl() ) has countable Kolmogorov products,
) is observable if and only if samp

N
is monic for every ob-

ject �.

8.2 Application to the synthetic de Finetti theorem

In [7] a de Finetti theoremwas proved forMarkov categories
satisfying particular conditions. It reads as follows.

Theorem 8.2 (Theorem 4.4 in[7]). Consider a Markov cat-
egory with countable Kolmogorov powers, conditionals, and
almost-surely-compatibly representable, with probabilitymonad
% .1 Then amorphism ? : � -N is exchangeable if and only
if there is a morphism d : � %- such that

? = samp
N
⊚ d.

1For the precise definition of these properties, we refer to the original
source.

We now know that if (and only if) the probability monad
% is observational, then samp

N
is monic. Therefore, in the

theorem above, we can even conclude that the morphism d

is unique. This is in particular the case for the Giry monad
on standard Borel spaces, and so for the Markov category
BorelStoch. In traditional probability theory, the uniqueness
of d (at least for states, � = � ) is already known. Our form-
alism, however, incorporates this statement of uniqueness
into the categorical formalism. This opens the road to study
de Finetti’s theorem and similar statements as categorical
universal properties, a path undertaken already (using a dif-
ferent formalism) for example by [32].

9 Examples

Here we give some important examples of observational
monads: the Giry and sub-Giry monads and the lower Viet-
oris monad of nondeterminism. We also give an interesting
but unusual example with the name generation monad.

9.1 The Giry monads on measurable spaces

Theorem9.1. TheGirymonad and themonad" of subprob-
ability measures are observational.

The proof uses the following version of the celebrated
functional monotone class theorem, (a.k.a. the “c-_ theorem
for functions”). See [2, Theorem 2.12.9] for a reference.

Theorem 9.2 (Functional monotone class theorem). Let -
be ameasurable space, and denote by � (- ) the space of bounded
measurable functions - → R. Consider a vector subspace
� ⊆ � (- ) containing the function 1, and such that its posit-
ive cone is closed under sequential increasing limits. Consider
a subset  ⊆ � closed under pointwise products, and denote
by f ( ) the f-algebra generated by the functions in  . Then
� contains all f ( )-measurable functions.

In order to prove Theorem 9.1, let’s also recall that given
a measurable set - , the (“Giry”) f-algebra of"- is equival-
ently generated by the functions

"- [0, 1]

<
∫

5 3<

Y5

for each measurable function 5 : - → [0, 1] (see [18]).
Let’s now prove our theorem.

Proof of Theorem 9.1. Let’s prove the assert for " , the case
of % is analogous. We will use Lemma 6.6 with ( = [0, 1]
(i.e. result object ' = 1). So it suffices to show that the maps
(11) are jointly monic. Let’s unpack the expression (11) for
our case. We need to show that on a measurable space - , if
? and @ are measures on"- , i.e. in""- , then ? = @ if and
only if ? and @ agree on the following products,

∫

"-

Yℎ1 · · · Yℎ= 3? =

∫

"-

Yℎ1 · · · Yℎ= 3@ (12)
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for each finite collection {ℎ1, . . . , ℎ=} of measurable func-
tions - → [0, 1], including the 0-ary product (the function
1, meaning that ? and @ have the same normalization).

Now consider the collection of all finite pointwise products
of the functions Y 5 ,

 ≔
{

Y 51 · · · Y 5= : = ∈ N, 58 ∈ � (- ), _ ∈ R
}

.

This collection generates the sigma algebra of"- , and it is
closed under products. Take now the measures ?,@ on "- ,
i.e. in ""- . Denote by � the subset of bounded measur-
able functions 6 : "- → R such that

∫

63? =

∫

63@. By
linearity andmonotone continuity of integration,� is a vec-
tor subspace of � ("- ) and its positive cone is closed under
sequential increasing limits. Moreover, it contains 1. Since
? and @ agree on  (by (12)),  ⊆ � , and so we are in the
hypothesis of Theorem 9.2. The theorem tells us that every
function that is measurable for the f-algebra generated by
 lies in � , i.e. cannot tell ? and @ apart. But since  gener-
ates the whole f-algebra of "- , this means that ? = @. �

Corollary 9.3. The (sub-)Giry monad admits an idempotent
submonad of deterministic states.

Proof. Weknow fromTheorem5.6 that themonad� of thunkable
morphisms is an idempotent submonad of" (resp. %). Since
" (resp. %) is observational, we know by Theorem 7.1 that
thunkable and deterministic morphisms coincide. Therefore
we can equivalently view � as the monad whose Kleisli
morphisms are deterministic (i.e. zero-one) Markov kernels.
In particular, the elements of �- are the zero-one measures
on - . �

9.2 The lower Vietoris monad on topological spaces

Theorem 9.4. The lower Vietoris monad on Top (a.k.a. the
Hoare powerdomain) is observational.

Again as result object we take the terminal object 1, so
that ( = �1 is the Sierpinski space {0, 1}, equipped with its
usual topology (generated by {1}). This way, a continuous
function 5 : - → {0, 1} is equivalently and open subset of
- (by taking 5 −1(1)).

We use the following statement, [12, Lemma 2.3].

Proposition 9.5. Let - be a topological space. Let B be a
basis of the topology of - . Let � and � be closed subsets of - ,
i.e. elements of �- . Then � = � if and only if for every open
* in B, the set � intersects * if and only if � does.

Moreover, the topology of �- is the weakest topology
making the following maps continuous for all open sets *
of - ,

�- {0, 1}

�

{

1 � ∩* ≠ ∅;

0 � ∩* = ∅.

Y*

(13)

As maps into {0, 1} corresponds to open sets, we can view
the Y* as open sets of �- (generating the topology). For
more details, see again [12, Section 2].
Let’s now prove the theorem. In some sense, the role of

the c-_ theorem this time is played by Proposition 9.5.

Proof of Theorem 9.4. We use Lemma 6.6 where ( is the Si-
erpinski space, with monoid structure given by ‘meet’, and
� -algebra structure, i.e. (topological) sup-semilattice struc-
ture, given by ‘join’. It suffices to show that the maps (11)
are jointly monic. Unpacking the expression of Lemma 6.6,
and using (13), given closed subsets �,� ⊆ �- we have to
show that they are equal if and only if for all = and for all
open sets*1,⊆ *= ⊆ - , the set� intersects the intersection

Y*1 ∩ · · · ∩ Y*= (14)

if and only� does. Now, as the topology of�- is generated
by the Y* , the Y* for a subbasis, and hence their intersec-
tion form a basis. By Proposition 9.5, then, the sets (14) are
indeed enough to test that � = � . �

In particular, Kleisli morphisms for the monad � are de-
terministic if and only if they are thunkable.
We are now ready to prove Theorem 5.8, i.e. that for the

monad� , sober objects are exactly sober topological spaces.

Proof of Theorem 5.8. Let - be a topological space, and let
� ∈ �- be a closed subset of - . We have to prove that � is
irreducible if and only if it is thunkable as a morphism 1→
�- of Top, or equivalently, deterministic. Now first of all,�
is discardable as a Kleisli morphism of � if and only if� , as
a set, is nonempty. Moreover, � as a morphism is copyable
if and only if the closed subsets�×� and copy(�) = {(2, 2) :
2 ∈ �} of - × - are equal. By Proposition 9.5 we can test
equalities of closed subsets of - × - by looking at a basis,
and we pick the basis given by the products * ×+ of open
subsets* ,+ ⊆ - . We have that�×� intersects* ×+ if and
only if � intersects * and + separately, and that copy(�)
intersects * × + if and only if � intersects * and + at the
same point, i.e. if � ∩* ∩+ is nonempty. In other words,

(� ×�) ∩ (* ×+ ) = copy(�) ∩ (* ×+ ),

for all * and + , and so � ×� and copy(�) are equal, if and
only if the mapping on open sets

$ (- ) {0, 1}

*

{

1 � ∩* ≠ ∅;

0 � ∩* = ∅.

preserves binary intersections. That is, � induces a com-
pletely prime filter on the frame $ (- ), which means pre-
cisely that� is irreducible. �
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9.3 Local names

In [29] it was shown that randomness can be used to model
fresh name generation, exploiting the fact that repeated uni-
form sampling from [0, 1] returns distinct values with prob-
ability 1. Conversely, the traditional model of local names
from [31] is an interesting model of categorical probability.
We take D = [Inj, Set] and the name-generation monad

()- )0 = colim1∈Inj- (0 + 1).

If a ‘stage of computation’ means the (finite) set of names
which are in use so far, an object - ∈ [Inj, Set] consists of a
set of values at each stage. A value of)- at stage 0 consists
of a set 1 of local names that have been generated together
with a value of - at the resulting stage 0 + 1. The object
)- is quotiented so that: 1) the names in 1 are ‘bound’ or
U-convertible; 2) names that are not referenced in the value
of - are out of scope and so discarded.
The monad ) is commutative and affine (satisfies ) 1 �

1). It does not satisfy the equalizing requirement, but it is
observational.

Theorem 9.6. The monad ) on [Inj, Set] is observational.

Proof. Let [1, [2, G]] and [1 ′, [2 ′, G ′]] be representatives of
elements of ())- )0 which are equal under all of the samp=
maps. Then, for every = ∈ N, writing 21, . . . , 2= and 2 ′1, . . . , 2

′
=

for tuples of copies of 2 and 2 ′ using fresh names and G8 =
G [28/2], G ′8 = G

′[2 ′8/2
′], we have that

(1 + 21 + . . . + 2=, (G1, . . . , G=))

and
(1 ′ + 2 ′1 + . . . + 2

′
=, (G

′
1, . . . , G

′
=))

are equivalent elements of ()- ) (0), meaning that there are
injections 5 : 1+21+. . .+2= ↩→ 3 and 5 ′ : 1 ′+2 ′1+. . .+2

′
= ↩→ 3

such that- (10 + 5 ) (G8) = - (10 + 5 ′) (G ′8 ) ∈ - (0+3) for each
each 1 ≤ 8 ≤ =. By choosing = sufficiently large, i.e. bigger
than |1 | + |1 ′|, we can ensure that for some 8 the image of 28
under 5 is disjoint from the image of 1 ′ under 5 ′ and also
that the image of 2 ′8 under 5

′ is disjoint from the image of
1 under 5 . Let 31 = im(5 |1) ∪ im(5 ′ |1′) and 32 = 3 \ 31.
Then [1, [2, G]] is also represented by [31, [32, - (10 + 5 |1 +
5 |21+...+2= ) (G8)]] and similarly [1 ′, [2 ′, G ′]] is also represen-
ted by [31, [32, - (10+5 ′ |1+5 ′|2′1+...2′= ) (G

′
8 )]], but by construc-

tion these are actually equal. �

It is well known that the full subcategory of [Inj, Set]
whose objects are the pullback-preserving functors is equi-
valent to the Schanuel topos, or topos of nominal sets [16].
The following facts are straightforward to establish.

1. Every object)- is a nominal set.
2. ) preserves monos whose codomain is a nominal set.
3. Every nominal set is sober with respect to ) .

Corollary 9.7. The sober objects for the name-generationmonad
are precisely the nominal sets, and the sobrification monad is
idempotent.

10 Conclusion

10.1 Related work

The notion of sober space comes from topology, meaning a
topological space where the set of points (set of values) is de-
termined by the set of open subsets (observable predicates).
The idea that abstractly a ‘sober’ object is one for which the
fork (1) is an equalizer has appeared before, e.g. [3, 28, 34].
These works were not focused on probability, but there is
some overlap in the examples of interest. In [34], it is shown
that the passage C ↦→ Kl() )thunk ‘freely adjoins sobriety’ to
C. Our concern is a little different: we use thunkable morph-
isms to transform the objects of C into sober objects in the
same category.
The concepts of discardability, copyability, and thunkab-

ility have been developed, for example, in [14, 15, 21, 35].
Sincemostworkwas on general computational effects, there
is another fundamental class of morphisms of interest, the
central morphisms. For commutative effects as studied in
this paper, every morphism is central. Thus in general one
needs to consider symmetric premonoidal categories [23], rather
than symmetric monoidal categories. We note that much of
our framework does not rely onmonoidality rather than pre-
monoidality, but we leave to future work the investigation
of noncommutative examples.

10.2 Summary

We have given natural conditions on a commutative monad,
observationality (Def. 6) and (-observational (Def. 6.4), for
which the deterministic computations are precisely the thunkable
ones. Under mild conditions we showed that these imply
that the monad has an associated, idempotent sobrification
submonad (§4, §5). We showed that these conditions apply
to several examples of interest, including the Giry monad
on measurable spaces, and the lower Vietoris monad on to-
pological spaces (Theorem 5.6).
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