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Background:Heritable mutations of the breast cancer gene
BRCA1 are rare, occurring in fewer than 1% of women in
the general population, and therefore account for a small
proportion of cases of breast and ovarian cancers. Neverthe-
less, the presence of such mutations is highly predictive of the
development of these cancers.Purpose:We developed and
applied a mathematic model for calculating the probability
that a woman with a family history of breast and/or ovarian
cancer carries a mutation of BRCA1.Methods and Results:
As a basis for the model, we use Mendelian genetics and
apply Bayes’ theorem to information on the family history of
these diseases. Of importance are the exact relationships of
all family members, including both affected and unaffected
members, and ages at diagnosis of the affected members and
current ages of the unaffected members. We used available
estimates of BRCA1 mutation frequencies in the general
population and age-specific incidence rates of breast and
ovarian cancers in carriers and noncarriers of mutations to
estimate the probability that a particular member of the
family carries a mutation. This probability is based on can-
cer statuses of all first- and second-degree relatives. We first
describe the model by considering single individuals: a
woman diagnosed with breast and/or ovarian cancer and
also a woman free of cancer. We next considered two artifi-
cial and two actual family histories and addressed the sensi-
tivity of our calculations to various assumptions. Particular
relationships of family members with and without cancer can
have a substantial impact on the probability of carrying a
susceptibility gene. Ages at diagnosis of affected family mem-
bers and their types of cancer are also important. A woman
with two primary cancers can have a probability of carrying
a mutation in excess of 80%, even with no other information
about family history. The number and relationships of un-
affected members, along with their current ages or ages at
death, are critical determinants of one’s carrier probability.
An affected woman with several cancers in her family can
have a probability of carrying a mutation that ranges from
close to 100% to less than 5%.Conclusion:Our model gives
informative and specific probabilities that a particular
woman carries a mutation. Implications: This model focuses
on mutations in BRCA1 and assumes that all other breast
cancer is sporadic. With the cloning of BRCA2, we now
know that this assumption is incorrect. We have adjusted the
model to include BRCA2, but the use of this version must
await publication of penetrance data for BRCA2, including
those for male breast cancer that are apparently associated
with BRCA2 but not with BRCA1. The current model is,
nevertheless, appropriate and useful. Of principal impor-
tance is its potential and that of improved versions for aiding

women and their health care providers in assessing the need
for genetic testing. [J Natl Cancer Inst 1997;89:227-37]

There are approximately 180 000 new cases of breast cancer
diagnosed each year in the United States. Approximately 45000
women die of the disease annually. Although only about 26000
cases of ovarian cancer are diagnosed each year, proportionately
more women (14000 annually) die of ovarian cancer (1). It is
estimated that 2% of all breast cancers and 10% of ovarian
cancers occur in women who carry a mutation in the BRCA1
susceptibility gene for breast cancer (2). The prevalence of mu-
tations at BRCA1 has been estimated to be 0.04%-0.20% in the
general population (3), but prevalence may vary, depending on
racial or ethnic group (4). Approximately 85% of female carriers
will develop breast cancer and 63% will develop ovarian cancer
by the age of 70 years (2). Moreover, these two cancers seem
to be statistically independent (2). In particular, based on
these estimates, for female carriers who live to age 70 years,
about 95% [or 1 − (1 − 0.85) (1 − 0.63)] have developed one or
the other cancer and about 54% (or 0.85 × 0.63) have both
cancers.

The high penetrances of breast and ovarian cancers among
women with BRCA1 mutations mean that family history of these
diseases is a strong indicator of whether a mutation is present in
the family. This article presents a method for finding the prob-
ability that a particular family member carries a mutation at
BRCA1 on the basis of her family’s history of these two dis-
eases.

Methods and Results

Bayes’ Theorem

The fundamental tool for finding the probability of a genotype based on
empiric information is Bayes’ theorem (5,6). LetM stand for ‘‘individual carries
a mutation,’’N for its complement ‘‘individual does not carry a mutation,’’ and
H for ‘‘individual’s family history.’’ Bayes’ theorem relatesP(M|H), the prob-
ability of M conditional on family historyH (called posterior probability), with
its unconditional or prior probability,P(M). Family history enters through its
‘‘likelihood’’ under M and underN: P(H|M) andP(H|N). By Bayes’ theorem,

P~M|H! =
P~H|M!P~M!

P~H!
.

This is sometimes called the theorem of inverse probabilities because it relates
the roles ofP(M|H) andP(H|M). According to the law of total probability,P(H)
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Fig. 1. A) Cumulative risks of breast and ovarian cancers for carriers of muta-
tions at BRCA1. These curves are fit with the use of a three-parameter gamma
cumulative function to the estimates of Easton et al. (2). In the notation of the
‘‘Methods and Results’’ section, these curves areBM(age) andOM(age).B)
Age-specific incidence of breast and ovarian cancers among carriers of mutations
at BRCA1. These are derived from the corresponding curves in A by taking
differences in values for successive years. In the ‘‘Methods and Results’’ section,
these curves arebM(age) andoM(age).C) Cumulative risks of breast and ovarian
cancers for noncarriers of mutations at BRCA1. In the notation of the ‘‘Methods
and Results’’ section, these curves areBN(age) andON(age).D) Age-specific
incidence of breast and ovarian cancers among noncarriers of mutations at

BRCA1. These are derived from the corresponding curves in A. In the ‘‘Methods
and Results’’ section, these curves arebN(age) andoN(age).E) The likelihood
ratio (LR) and posterior probability of carrying a mutation at BRCA1 based on
only the age of diagnosis of a woman’s cancer. LR4 bM(age)/bN(age) for breast
cancer only and LR4 oM(age)/oN(age) for ovarian cancer only. In both cases,
probability of mutation4 LR/(LR + 832).F) The LR and posterior probability
of carrying a mutation at BRCA1 based on only the current age of a disease-free
woman. LR4 (1 − BM(age))/(1 −BN(age)) for breast cancer and LR4 (1 −
OM(age))/(1 −ON(age)) for ovarian cancer. The LR for a woman free of both
diseases is the product of these two LRs, and is labeled ‘‘cancer free.’’ In each
case, probability of mutation4 LR/(LR + 832).
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4 P(H|M)P(M) + P(H|N)P(N). Some albegra reveals thatP(H|M) andP(H|N)
enter Bayes’ theorem only through their ratio, called likelihood ratio (LR):

LR =
P~H|M!

P~H|N!
.

We will use the following version of Bayes’ theorem:

P~M|H! =
LR

LR + P~N!/P~M!
,

whereP(N)/P(M) is the prior odds against being a carrier. Calculating the nu-
merator of the likelihood ratio,P(H|M), means assuming that the individual of
interest carries a mutation, and calculating the denominator,P(H|N), means
assuming that she is not a carrier; both assume Mendelian genetics.
Posterior probabilities generalize positive and negative predictive values that

are standard measures of the usefulness of a laboratory test. They are more
general in that there are two types of evidence (positive and negative) for labo-
ratory tests, but many types of family histories must be considered in the analysis
described in this article.
The adjectives ‘‘prior’’ and ‘‘posterior’’ refer to before and after a particular

piece of evidence. Both prior and posterior probabilities are based on evidence,
but the latter is based on more evidence—in our case, family history. Bayes’
theorem applies sequentially to any number of pieces of evidence (and in any
order), with the posterior for one piece of evidence serving as the prior for the
next. For example, probabilityP(M|H) is the probability that the individual of
interest carries a mutation posterior to observing her family historyH, but
P(M|H) serves as the prior probability for the result of a genetic test.
The probability prior to family history isP(M)4 2f − f 2, wheref is the allelic

frequency of mutations in the population of interest, that is, the population
containing the individual of interest. This frequency is not known precisely; we
consider the effect of uncertainty inf on LR and on the posterior probability of
being a carrier, but for most of this article, we assumef 4 0.0006 (3). Under this
assumption, the proportion of carriers in the population isP(M) 4 0.0012 and
the prior odds against being a carrier equalP(N)/P(M)4 (1 − 0.0012)/0.00124
0.9988/0.00124 832. The posterior carrier probability is then

P~M|H! =
LR

LR + 832
.

If f were equal to 0.005, as is claimed for Ashkenazi Jews (4), then the prior odds
equal 0.99/0.014 99 and the posterior carrier probability is

P~M|H! =
LR

LR + 99
.

In findingP(M|H), the information in a family history enters through the LR.
The LR compares the probability of the individual’s actual family history as-
suming she carries a mutation with the probability of her family history assuming
she does not carry a mutation. Large values of LRs indicate that the first prob-
ability is large when compared with the second; LR4 1 is the break-even point
at which family history is noninformative as regardsM; that is, LR4 1 means
that the posterior probability of carrying a mutation does not change from the
prior probability:P(M|H) 4 P(M).
Family history used in our model includes the ages at which affected first- and

second-degree relatives were diagnosed with breast or ovarian cancer and the
current ages or ages at death for unaffected relatives. Extensions to third-degree
and more distant relatives are possible, but the calculations are more cumber-
some and this information has less value for most families. In addition, infor-
mation regarding distant relatives is usually less accurate.
The technical development of the method is presented gradually in the fol-

lowing sections. We first address the relatively simple but informative case of a
single individual who has been diagnosed with breast or ovarian cancer or both.
With the use of the available estimates of BRCA1 mutation frequencies in the
general population and the age-specific incidence of breast and ovarian cancers
for women with mutations, we calculate the probability that an affected indi-
vidual carries a mutation at BRCA1 based on her age at diagnosis. We then
calculate this probability for a female family member who is disease free, de-
pending on her age. In the Appendix, we describe how the breast and ovarian
cancer histories of first- and second-degree relatives are incorporated into the
calculations.

Women With Breast Cancer

Consider a very simple family historyH: a 30-year-old woman has just been
diagnosed with breast cancer. Suppose that her ovarian cancer status is unknown
and temporarily ignore the information from other members of her family. The
numeratorP(H|M) of the LR is the probability that a carrier would be diagnosed
with breast cancer at age 30 years. This is the incidence of breast cancer among
30-year-old carriers, which we estimate as follows.
Easton et al. (2) give estimates of the cumulative proportion of BRCA1 car-

riers who have been diagnosed with breast cancer depending on age. A smoothed
version is shown in Fig. 1, A. We denote this asBM(age). The second curve in
this figure shows the corresponding proportion with ovarian cancer,OM(age).
(The smoothing method used is described in the figure legend. Neither the curves
in Fig. 1, A, nor the eventual conclusions are sensitive to the smoothing method
used.) Age-specific incidence,bM(age), is the increase in the cumulative propor-
tion at that age—the derivative ofBM(age). This is shown in Fig. 1, B, along with
the corresponding age-specific incidence for ovarian cancer,oM(age).
The numerator of LR is thenbM(30), which from Fig. 1, B, is about 0.0088.
The denominatorP(H|N) of LR is the probability that a noncarrier would be

diagnosed with breast cancer at age 30 years, which is just the incidence of breast
cancer among 30-year-old noncarriers. We denote this asbN(30). This is found
in the same way as for carriers. Fig. 1, C, shows the cumulative proportions of
breast and ovarian cancers among noncarriers,BN(age) andON(age) (7,8). Fig. 1,
D, gives the corresponding age-specific incidences for noncarriers,bN(age) and
oN(age). From this figure,bN(30) is about 0.00016.
Therefore, the likelihood ratio is

LR =
bM~30!

bN~30!
=
0.0088

0.00016
= 55 .

This means that the likelihood of observing breast cancer in a 30-year-old woman
is 55 times greater if she is a carrier than if she is not a carrier. (Note of caution:
There is a strong tendency in science and the law to confuse such a statement
with one about posterior probabilities. The statement does not mean that a 30-
year-old woman with breast cancer is 55 times as likely to be a carrier as she is
to be a noncarrier. Reversing the conditionals in this fashion requires Bayes’
theorem.) Applying Bayes’ theorem, where family historyH is ‘‘individual di-
agnosed with breast cancer at age 30’’:

P~M|H! =
55

55+ 832
= 6.2% .

The evidence that this woman had breast cancer at a very young age increases the
probability that she carries a mutation fromP(M) 4 0.12% by about 50-fold.
Fig. 1, E, shows LR4 bM(age)/bN(age) and also the posterior probability of

carrying a mutation, depending on the individual’s age. This is the ratio of the
two curves labeled ‘‘Breast’’ in Fig. 1, B and D. The functional relationship
between the labeling on the left vertical axis and that on the right in Fig. 1, E, is
Bayes’ theorem:P(M|H)4 LR/(LR + 832). The dependence on age is dramatic.
Since breast cancer is much more common at younger ages among carriers than
among noncarriers, the evidence in favor of being a carrier is much stronger if the
individual is young. The evidence in favor of being a carrier is slight for an
individual who was diagnosed when older. For example, for a 70-year-old indi-
vidual diagnosed with breast cancer, LR4 0.0102/0.00314 3.3, and so the
posterior probability that she is a carrier increases to only about 0.4%. While
breast cancer at any age is evidence in favor of being a carrier, such evidence is
about 15 times as strong for a woman who is aged 30 years (6.2%) than for one
who is aged 70 years (0.4%).

Woman Free of Cancer

If an individual is observed not to have breast cancer, the LR is the ratio of the
probability of this observation assumingM to the probability of this observation
assumingN. These are, respectively, one minus the probability of having breast
cancer by the given age assumingM andN—BM(age) andBN(age)—shown in
Fig. 1, A and C:

LR =
1 − BM~age!

1 − BN~age!
.

As an example, consider a 70-year-old woman. Only 21.3% (4 1 − BM(70)4 1 −
0.787) of women who are carriers survive to age 70 years without experiencing
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breast cancer, while 92.5% (4 1 − BN(70)4 1 − 0.075) of noncarriers are free
of breast cancer at age 70 years. The LR is

LR =
1 − BM~70!

1 − BN~70!
=
0.213

0.925
= 0.23 .

In other words, the evidence that a 70-year-old woman is free of breast cancer is
about four times as likely if she is not a carrier than if she is a carrier. For a
woman who is free of breast cancer at age 70 years, the probability that she
carries a mutation has decreased fromP(M) 4 0.00124 0.12% at birth to

P~M|H! =
LR

LR + 832
=

0.23

0.23+ 832
= 0.00028= 0.028%.

Fig. 1, F, shows the effect of age on the LR and also on the posterior probability
of being a carrier, assuming that she does not have breast cancer. (These curves
apply as well for a woman who died cancer free, where age is that at death.) For
a very young woman who is disease free, there is very little evidence about her
carrier status—i.e., the LR is close to 1. The evidence against being a carrier gets
stronger with age, provided she remains disease free.

Including Both Breast and Ovarian Cancer Statuses

Consider a woman’s ovarian cancer status. Ignoring her breast cancer status
gives results analogous to those for breast cancer, now using the ovarian cancer
curves in Fig. 1, A-D; the LR and posterior carrier probability results are labeled
‘‘Ovarian’’ in Fig. 1, E and F. Conditioning on both ovarian and breast cancer
statuses requires information about the proportions of carriers who have both
diseases and also about noncarriers who have both diseases. The data given by
Easton et al. (2) suggest that for each age, the proportion of carriers with both
cancers is the proportion having breast cancer times the proportion having ovar-
ian cancer, i.e., that these diseases are independent. In this article, we assume
independence of the incidence of the two cancers for both carriers and noncar-
riers. (This does not mean that these two cancers are independent when ignoring
carrier status, and, in fact, it implies that they are positively correlated in the
general population.)
There are four cases to consider: the woman has both breast and ovarian

cancers, only breast cancer, only ovarian cancer, and neither cancer. In each case,
the patient LR is the product of the separate LRs, one for breast cancer and the
other for ovarian cancer. We provide details for only the first two cases.

1) In the first case, the woman has both breast and ovarian cancers—breast
cancer diagnosed at ageB and ovarian cancer diagnosed at ageO. WhereoM and
oN are the ovarian analogues of incidencesbM andbN, the LR is

LR =
bM~ageB!

bN~ageB!

oM~ageO!

oN~ageO!
.

The result is the product of a pair of numbers that can be read off the respective
curves in Fig. 1, E. For example, for a woman who was diagnosed at ages 30 and
45 years, respectively, the overall likelihood ratio is

LR =
bM~30!

bN~30!

oM~45!

oN~45!
=
0.0088

0.00016

0.0125

0.00017
= 552 73= 4015.

The corresponding posterior probability of carrying a mutation is

P~M|H! =
LR

LR + 832
=

4015

4015+ 832
= 0.83= 83%.

2) Now suppose the woman has breast cancer diagnosed at ageB but does not
have ovarian cancer and her current age is ageO. Then the LR is

LR =
bM~ageB!

bN~ageB!

1 − OM~ageO!

1 − ON~ageO!
,

whereOM andON are cumulative incidences for ovarian cancer for carriers and
noncarriers that are analogous toBM andBN for breast cancer. The second factor
in this expression is shown in Fig. 1 (which also shows the LR for a woman who
is free of both cancers).
As an example, consider a 45-year-old woman who was diagnosed with breast

Fig. 2.Family history 1 (H1) of breast and ovarian cancers. Label BC34 indicates
that member 1 was diagnosed with breast cancer at age 34 years; label OC43
indicates that her sister, member 2, was diagnosed with ovarian cancer at age 43
years; age is current or at death (the latter shown by a diagonal slash) and
indicates that the individual has no cancers other than listed. Member 3 is free of
both cancers. There is substantial evidence of a mutation on the maternal side of
this family but not on the paternal side.

Fig. 3.Family history 2 (H2) is the same as H1 (seeFig. 2) but switches paternal
and maternal aunts and grandmothers. As opposed to H1, there is evidence of
mutations on both maternal and paternal sides of this family.

Table 1. Likelihood ratios (LRs) and posterior probabilities of having a
mutation in BRCA1 gene for members of families 1 and 2

Member LR1 P(M|H1) LR2 P(M|H2)

1 31 500 0.974 33 600 0.976
2 42 900 0.981 44 300 0.982
3 807 0.492 997 0.545
4 0.74 0.0009 526 0.387
5 8 × 107 0.99999 3930 0.825

4 or 5* 5 × 107 0.99999 195 000 0.998

*Either or both of these members carries a mutation.

ARTICLES Journal of the National Cancer Institute, Vol. 89, No. 3, February 5, 1997230

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/89/3/227/2526689 by U

.S. D
epartm

ent of Justice user on 16 August 2022



cancer at age 30 years and assume that she does not have ovarian cancer. The
appropriate likelihoods now include both diseases. Therefore, the LR is

LR =
bM~30!

bN~30!

1 − OM~45!

1 − ON~45!
= 552

1 − 0.079

1 − 0.0022
= 552 0.92= 51.

The posterior carrier probability is somewhat smaller than when ignoring ovarian
cancer status:

P~M|H! =
LR

LR + 832
=

51

51+ 832
= 0.058= 5.8%.

As another example, reconsider the 70-year-old woman who has just been di-
agnosed with breast cancer and assume that she does not have ovarian cancer.
The LR of carrier to noncarrier for this observation is

LR =
bM~70!

bN~70!

1 − OM~70!

1 − ONJ~70!
= 3.32

1 − 0.57

1 − 0.0097
= 3.32 0.43= 1.4.

This is only slightly larger than 1 because the evidence that she carries a mutation
is rather weak. The posterior probability that she is a carrier is

P~M|H! =
LR

LR + 832
=

1.4

1.4+ 832
= 0.0017= 0.17%,

which is not much increased from the prior probability of 0.12%.

General Family Histories

The Appendix indicates how Bayes’ theorem applies to include history of
breast cancer among first-degree relatives. Details of calculations including his-
tory of ovarian cancer and unilateral and bilateral breast cancer among first- and
second-degree relatives are given separately (9).
Family history includes the age at diagnosis of breast cancer, ovarian cancer,

or both for each affected family member and the current age or age at death for
each unaffected member. Our method considers all affected and unaffected first-
and second-degree relatives, including their exact relationships (such as paternal
aunt). Missing data do not present a problem for the model, although obviously,
accurate information is better than no information. If the status of a family
member is unknown, that family member is simply not included in the calcula-
tion. However, it may be more likely to be known that a relative has cancer than
that she does not have cancer, and so this may create a bias. If a woman was
known to be cancer free at a particular age, that age is taken as her current age.
If a family member’s age at diagnosis is unknown, we recommend using a best
guess. However, since a relative’s age at diagnosis can have a substantial impact
on one’s carrier probability, we recommend varying this age over the range of
possibilities and providing the resulting interval of probabilities to the woman.

Application to Two Artificial Family Histories

Figs. 2 and 3 show family histories 1 and 2, called H1 and H2. The members
of interest are numbered 1-5 and are the same in both families. The only differ-
ence in the families is that the sisters and mothers of members 4 and 5 have been
exchanged. We assume that the mutation frequencyf is 0.0006 (3) and, therefore,

Fig. 4.Family history 3 (H3). Current age or age at death shown for each female
family member, when known. With no indication of breast cancer (BC) or
ovarian cancer (OC), the member is thought to be free of both breast and ovarian
cancers. We took the age of the paternal aunt (BC30s) to be 35 years at diagnosis
and the paternal grandmother (50s) to be 55 years at death. We do not know the
current ages or the ages at death of members 1 and 2, and so with regard to
ovarian cancer, we censored them at the time of their breast cancer; that is, we
used the information that they were free of ovarian cancer at age 38 years. We
regarded the other three individuals with unknown ages as missing. (Taking all
three ages to be 70 years results in a decrease in likelihood ratio by a factor of
about 3.) The reason for member 3’s relatively young age of 51 years is that she
was diagnosed with endometrial cancer at that age and so her current age was not
elicited.

Fig. 5. Family history 4 (H4). Current age or
age at death shown for each female family
member, when known. If there is no indication
of breast cancer (BC) or ovarian cancer (OC),
the member is thought to be free of both breast
and ovarian cancers. The age of the sister-in-
law of member 1-4 is unknown, but it has es-
sentially no effect on the results, because her
daughter does not have cancer. We do not
know the current ages or the ages at death of
the family members with breast or ovarian
cancer and so with regard to the other cancer,
we censored them at the time of their known
cancer. For example, we conditioned on mem-
ber 1 being free of ovarian cancer at age 49
years.
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thatP(M) 4 0.0012. With the use of our computer program, we calculated the
LRs LR1 and LR2 for these families and the corresponding posterior probabili-
tiesP(M|H1) andP(M|H2). These are shown in Table 1.
H1 and H2 provide similarly convincing evidence that members 1 and 2 are

carriers. Both women have cancer, and each serves to increase the LR of the
other. In both families, the mother (member 5) provides a likely source for the
mutation of genes in her daughters. In H1, the cancers observed in the two
daughters support the hypothesis that their mother carries a mutation; in H2,
these cancers support the hypothesis that at least one of the parents carries a
mutation. The father (member 4) is a likely source of a mutation in H2 but not
in H1. This second possible source in H2 increases the probability that members
1 and 2 carry two mutations, but it has little effect on the strength of the
conclusion that they carry at least one. Our program can evaluate the probability
that there is at least one or more than one mutation in a subset of family members.
For example, the probability that both parents in H2 carry a mutation is 0.214,
and the respective probabilities that members 1 and 2 carry two mutations are
0.117 and 0.118. (This probability for member 1 would be only1⁄4 of 0.214 or
about 0.053 without conditioning on her cancer status.)
The conclusions in the two families are somewhat different with regard to

member 3. In H1 she has probability of1⁄2 of inheriting her mother’s likely
mutation. Her cancer-free status means that her carrier probability cannot be
greater than1⁄2. (This upper limit applies at birth and can only decrease with age
if the woman remains cancer free.) However, the possibility of mutations on both
sides of the family in H2 allows the carrier probability to increase beyond1⁄2.
With both her mother and her father being possible sources of mutations, the
effective upper limit for the probability of a cancer-free woman carrying a
mutation is3⁄4.

Application to Two Actual Family Histories

Figs. 4 and 5 give family histories H3 and H4. Three female members are
numbered. Again, assumef 4 0.0006. The results for H3 are shown in Table 2.
The breast cancers of members 1 and 2 enhance each other’s probability of
carrying a mutation. There is a likely link between these two members and the
paternal aunt with breast cancer. However, the possibility of a maternal mutation
cannot be ruled out—hence the moderate LR3 for member 3, the mother of
members 1 and 2. Although there is no evidence in favor of a maternal mutation,
there is not much evidence against it: The only female relative on the mother’s
side is the maternal grandmother, and even though the mother is free of breast
and ovarian cancer, she is relatively young.
The results for H4 are shown in Table 3. For members 1-4 of H4, there is no

evidence of a mutation particular to the paternal side of the family. And there is
only weak evidence on the maternal side. The maternal aunt with breast cancer
(BC39) is evidence in favor of a mutation. (The LR considered separate from the
rest of the family is about 22.) However, the mother was free of both breast and
ovarian cancers at age 78 years, and this applies for only about 5% of carriers.
So, even if the maternal aunt is a carrier, the mother’s disease-free status makes
it unlikely that she shares her sister’s mutation. The mother’s disease-free status
substantially weakens the possibility of a link between the cancers of the ma-

ternal aunt and members 1 and 2. The result is that all six members have
moderate LRs. (If the maternal aunt were switched with the two paternal aunts,
both of whom died cancer free at age 83 years, then the probabilities that
members 1 and 2 carry mutations are greatly increased—to 0.196 and 0.205.)

Discussion

Claus et al. (10-14) have developed excellent models for pre-
dicting breast cancer incidence based on family history. Their
approach includes segregation analysis with the use of popula-
tion-based, case–control data from the Cancer and Steroid Hor-
mone (CASH) study, in which the liability classes are based on
the observed cumulative risk of breast cancer at 10-year age
intervals for female relatives. A diallelic major locus model was
assumed. An autosomal dominant model provided the best fit to
the data.

The approach of Claus et al. is different from ours in several
ways. Their models are not tied to any particular breast cancer
susceptibility gene but focus on the cumulative probability over
age that an unaffected woman will be diagnosed with breast
cancer based on her family history. Our model is tied to BRCA1,
and we calculate the probability that a woman carries a mutation
at this gene. The woman may be affected or unaffected. Our
model can be used to find the cumulative probability of breast
cancer before a particular age by averaging the cumulative in-
cidence probabilities for carriers and noncarriers, where the
weights are those from our model. For example, member 3 of
family history 1 is 30 years old. The probability that she carries
a mutation at BRCA1 is 49.2%. The probability that she devel-
ops breast cancer by age 50 years isBM(50) −BM(30)4 0.437
− 0.0494 38.8% if she carries a mutation, and it isBN(50) −
BN(30)4 0.021 − 0.0014 2.0% if she does not carry a muta-
tion. So, the unconditional probability that she will develop
breast cancer by age 50 years is 0.492 × 38.8% + 0.508 × 2.0%
4 20.1%. In addition, our model considers the number, rela-
tionship, and ages of unaffected individuals. Having many un-
affected family members can substantially lower a carrier prob-
ability. Also, our model explicitly considers the ovarian cancer

Table 2. Likelihood ratios (LRs) and posterior probabilities of having a
mutation in BRCA1 gene for members of family 3

Member LR3 P(M|H3)

1, 2 1020 0.550
3 82.9 0.089

Table 3. Likelihood ratios (LRs) and posterior probabilities of having a
mutation in BRCA1 gene for members of family 4

Member LR4 P(M|H4)

1 20.1 0.024
2 21.7 0.025
3 3.16 0.004
4 6.18 0.007
5 9.28 0.011
6 1.92 0.002

Table 4.Effect of changing mutation frequencyf on likelihood ratios (LRs)
and posterior probabilities of having a mutation on BRCA1 gene for members

of families 1 and 2

Member

f 4 0.0002 f 4 0.0010

LR1 P(M|H1) LR1 P(M|H1)

1 91 800 0.973 19 500 0.975
2 122 000 0.980 27 200 0.982
3 2420 0.492 484 0.492
4 0.74 0.0003 0.73 0.0015
5 8 × 107 0.99997 7 × 107 0.99999

4 or 5* 5 × 107 0.99997 5 × 107 0.99999

Member

f 4 0.0002 f 4 0.0010

LR2 P(M|H2) LR2 P(M|H2)

1 73 500 0.967 23 300 0.979
2 90 500 0.973 31 900 0.985
3 2600 0.510 657 0.568
4 1080 0.302 401 0.446
5 8640 0.776 3000 0.857

4 or 5* 153 000 0.992 243 000 0.999

*Either or both of these members carries a mutation.

ARTICLES Journal of the National Cancer Institute, Vol. 89, No. 3, February 5, 1997232

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/89/3/227/2526689 by U

.S. D
epartm

ent of Justice user on 16 August 2022



status of each family member. For BRCA1, the presence or
absence of ovarian cancer (including age at diagnosis or current
age) is an important consideration. [Claus et al. have recently
incorporated age-specific risk estimates of ovarian cancer in
mothers and sisters into the genetic risk model for breast cancer
(14)].

Uncertainty Concerning Prevalence of Mutations
in BRCA1

In the ‘‘Methods and Results’’ section, the calculations of an
individual’s probability of carrying a mutation at BRCA1 were
based on population mutation frequencyf 4 0.0006. The cor-
responding prevalence is about 0.0012. The value off is not
known precisely. It has been estimated to be 0.0006, with a 95%
confidence interval of from 0.0002 to 0.0010 (3). Furthermore,
mutation frequency may vary with ethnicity (4). One way to
handle uncertainty inf (and also that in the age-specific inci-
dence) is to allow the various unknown quantities to have a
probability distribution when calculating the posterior probabil-
ity P(M|H) of carrying a mutation in BRCA1, given an individu-
al’s family history (9). In the following, we address the effect of
uncertainty differently, by lettingf take on its upper and lower
confidence limits.

If f 4 0.0006, then, as indicated in the ‘‘Methods and Re-
sults’’ section,

P~M|H! =
LR

LR + 832
.

For f 4 0.0002 or 0.0010, the respective posterior probabilities
are

P~M|H! =
LR

LR + 2499
andP~M|H! =

LR

LR + 499
.

(We caution that the calculation of LR itself involvesf [see
Appendix], and so LR is different in these three expressions.)

The prior probability of carrying a mutation isP(M) 4 2f −
f2, and so it increases approximately proportionally tof when f
is small. Suppose the posterior probabilityP(M|H) is close to 0
for a particularf. Then an increase inf will result in an increase
in P(M|H) by approximately the same proportion. But ifP(M|H)
is close to 1 (or close to1⁄2 for an unaffected individual), then
changingf has little impact on the posterior probability.

Consider family histories H1 and H2 (Figs. 2 and 3; Table 1)
and consider values off at the upper and lower 95% confidence
intervals mentioned above. The effect on the LR and on the
posterior probabilityP(M|H) is shown in Table 4. The evidence
that members 1 and 2 carry mutations is so strong in both H1 and
H2 thatP(M|H1) andP(M|H2) are close to 1, even forf as small
as 0.0002. These posterior probabilities increase only slightly
when f increases by fivefold to 0.0010. Similarly, unaffected
member 3’sP(M|H3) is essentially unchanged when increasingf
by a factor of 5, because 0.492 is already about as large as
possible in the absence of evidence for multiple mutations in the
family. Member 3’s posterior probability increases more in H2
when changingf from 0.0002 to 0.0010, because of evidence for
two distinct mutations in this family.

Uncertainty Concerning Penetrance and Incidence

We indicated that Claus et al. (10-14) used data from the
CASH study, which used a defined population in geographic
regions of eight population-based tumor registries of the Sur-
veillance, Epidemiology, and End Results1 (SEER) Program.
The families represent a spectrum of cancer families in the popu-
lation and are not tied to genetic characteristics. On the other
hand, Easton et al. (2) studied so-called breast cancer families.
Families with a high proportion of cancer—highly penetrant—
may not be representative of the general population. In particu-
lar, they may exaggerate the penetrance of BRCA1. If Easton et
al. overestimate penetrance, then our calculation of the probabil-
ity of being a BRCA1 carrier may be underestimated in some
families and overestimated in others.

An example is family 4 (Fig. 5). Suppose that the incidences
by age of breast and ovarian cancers are kept proportional to
those shown in Fig. 1, B. Reducing penetrance actually increases
the carrier probabilities for family members 1 and 2. The reason
is that the cancer-free status of their mother would not as defin-
itively break the connection between them and their maternal
aunt. With the use of our program, we find that the maximum
carrier probability for member 1 is 0.064 (up from 0.024 in Table
3) and for member 2 is 0.070 (up from 0.025 in Table 3). These
maxima occur when the penetrance of breast cancer is 48%
(down from 85% in Fig. 1, A) and that of ovarian cancer is 36%
(down from 63% in Fig. 1, A).

When counseling a woman about testing, a clinician or ge-
netics counselor might incorporate the uncertainty in penetrance,
incidence, and prevalence by providing a woman with a range of
posterior probabilities. A version of our computer program cal-
culates ranges by considering combinations of upper and lower
limits of the penetrance, incidence, and prevalence and giving
the smallest and largest posterior probabilities.

Including Bilateral Breast Cancer

We have described calculations for unilateral breast cancer.
Carriers of BRCA1 mutations are very likely to have bilateral
disease (2). Estimates of the incidence of bilateral disease have
positive and negative biases. On one hand, the unaffected breast
of a woman with unilateral breast cancer is likely to be subjected
to more frequent mammographic and clinical examinations. On
the other hand, some patients from breast cancer families opt for
bilateral mastectomies, and systemic therapies that some women
receive for breast cancer may help prevent contralateral disease.
These biases have unknown magnitudes, and it is not clear which
is more important. The incidence of bilateral disease among
BRCA1 carriers reported by Easton et al. (2) suggests that cancer
occurs independently in the two breasts. Bilateral breast cancers
in a family can be input to our computer program; the calcula-
tions assume independence of the occurrences of cancers in the
left and right breasts and are described elsewhere (9).

Role of BRCA2 and Other Breast Cancer Genes

Our model focuses on mutations in BRCA1 and assumes that
all other breast cancer is sporadic. In view of the cloning of
BRCA2 (15), this assumption is incorrect. However, our model
can be modified to include multiple genes. We have accom-
plished this modification in our program, but its use awaits pub-
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lication of data concerning the age-specific incidence of breast
and ovarian cancers and male breast cancer (apparently associ-
ated with BRCA2 but not with BRCA1). Considering both
BRCA1 and BRCA2 gives three possibilities for breast cancer:
that associated with BRCA1, that associated with BRCA2, and
sporadic. Each has a prior probability, and Bayes’ theorem ap-
plies to give the corresponding posterior probabilities based on
family history. Summing the probabilities (whether prior or pos-
terior) for BRCA1 and BRCA2 gives the probability of carrying
a mutation at either gene.

Including BRCA2 as well as BRCA1 and considering all
other breast cancer as sporadic may well give a different prob-
ability—usually smaller—that an individual carries a mutation
of BRCA1. It may also give a different probability—usually
larger—that an individual carries a mutation at one or more
breast cancer genes. The effect of ignoring BRCA2 is as follows:
Suppose that the breast cancer penetrance of BRCA2 is the same
as BRCA1 but that ovarian cancer penetrance of BRCA2 is
relatively small (3). For a family with numerous cases of ovarian
cancer, the probability of carrying BRCA1 would be approxi-
mately that calculated by the use of our current program, and that
of carrying BRCA2 would be quite small. For a family with a
large number of cases of breast cancer and no ovarian cancer, the
probability of carrying BRCA2 would be greater than that of
BRCA1. (Since the prevalence of BRCA2 is probably only a
fraction of that of BRCA1, the number of cases of breast cancer
would have to be rather large for the probability of BRCA2 to
dominate over that of BRCA1.) For a family with some male
breast cancer, the BRCA1 version of our program would be of
little help—except that using it while ignoring cases of male
breast cancer in the family gives a lower estimate of the prob-
ability that a female member carries a mutation of BRCA2.
Finally, for a family with a small number of cases of ovarian
cancer (small relative to the number of breast cancers), the pro-
gram described here approximates the probability of carrying a
mutation at either BRCA1 or BRCA2, wheref is then the total
allelic frequency of mutations at the two genes. In this case, the
appropriate allocation of the resulting probability to BRCA1 and
BRCA2 depends on the penetrance of ovarian cancer among
BRCA2 carriers.

Impact of Genetic Testing

A woman who has a family history of breast and ovarian
cancers may consider genetic testing. Such a decision is com-
plicated, as described in Clinical Considerations below.

An important consideration in deciding whether to be tested is
the test’s specificity (1 − false-positive rate) and sensitivity (1 −
false-negative rate). Leta 4 specificity andb 4 sensitivity.
Bayes’ theorem (5) applies (just as for any diagnostic procedure)
to update the probability of being a carrier.P(M|H) now plays
the role of the prior probability and the test result (+/−) is the
evidence. The positive predictive value of the test is:

P~M|H,+! =
bP~M|H!

bP~M|H! + ~1 − a!P~N|H!
,

and its negative predictive value is

P~M|H,−! =
~1 − b!P~M|H!

~1 − b!P~M|H! + aP~N|H!
.

As an example, consider member 1 of family 4 (Fig. 5) and
supposea 4 95% andb 4 85%. On the basis of her family
history, her carrier probability isP(M|H4) 4 0.024. If she is
tested, the probability of a positive test isbP(M|H4) + (1 −a)
P(N|H4) 4 0.85 × 0.024 + 0.05 × 0.9764 0.069, and the
probability of a negative test is 1 − 0.0694 0.931. If her test
were positive, then her updated carrier probability would be

P~M|H4,+! =
0.85~0.024!

0.069
= 0.295.

If she were to test negative, then her updated probability would
be

P~M|H4,−! =
0.15~0.024!

0.931
= 0.004.

As another example, consider member 3 of family 1 (Fig. 2)
and supposea4 95% andb4 50%, as it might be for a test that
examines only a portion of the BRCA1 gene. The carrier prob-
ability of this 30-year-old woman isP(M|H1) 4 0.492. The
probability of a positive test isbP(M|H1) + (1 −a)P(N|H1) 4
0.50 × 0.492 + 0.05 × 0.5084 0.271, and the probability of a
negative test is 1 − 0.2714 0.729. After a positive test:

P~M|H1,+! =
0.50~0.492!

0.271
= 0.908.

After a negative test:

P~M|H1,−! =
0.50~0.492!

0.729
= 0.338.

Should this 30-year-old, disease-free woman submit to test-
ing? There are a variety of considerations and these will be
discussed below. However, her decision problem is not easy,
even restricting consideration to length of life. (We quantify the
benefit of genetic testing in terms of quality-adjusted life years
as part of an ongoing decision analysis project of the Duke
SPORE [Specialized Program of Research Excellence] in breast
cancer.) Any benefit of testing depends on the woman’s prob-
ability of being a carrier based on family history and on the
sensitivity and specificity of the testing procedure. It also de-
pends on the effectiveness of available prophylactic interven-
tions, such as mastectomy and oophorectomy. If they are re-
garded as highly effective, then the woman might choose them,
even if her probability of being a carrier is small. In the example
with its rather large probability, even for a negative test, she
might choose the same intervention, regardless of the test result.
In such a case, there is no advantage to testing. But if she would
choose one combination of interventions for a positive test result
and another for a negative test, then testing has some value. The
expected value of testing can be found by averaging expected
life years in the two circumstances by their probabilities.

Clinical Considerations

The decision to undergo genetic testing for BRCA1 or other
cancer susceptibility genes is complex. Women who have been
diagnosed with breast and/or ovarian cancer and who have a
family history of these cancers will be among the first to be
offered testing. Many unaffected relatives of these women, many
of whom already realize they are at increased risk of developing
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cancer, will be interested in genetic testing. In view of the po-
tential risks associated with testing (psychological distress; loss
or restriction of health, life, and disability insurance; etc.) and
uncertain benefits of testing, making a decision about whether to
proceed with testing—even one that is fully informed—will not
be easy.

For an unaffected woman, the testing decision will be influ-
enced by a wide range of factors, including her fears of and
anxieties about developing breast or ovarian cancer (16). For
women who have already been diagnosed with cancer, the issues
are somewhat different, but the decision will still be difficult.
Such women may be concerned about the possibility of devel-
oping second (and third) primary cancers. They may also have
worries and concerns about their unaffected family members.
Many women overestimate their chance of having a genetic
characteristic that predisposes them to developing breast cancer
(17,18).

Providing a woman with a probability estimate may allow her
to make a more informed decision about testing. It will also
assist physicians and genetic counselors in advising women fac-
ing decisions about testing. In view of the individual differences
in attitudes about testing, one cannot recommend a single prob-
ability cutoff so that testing is appropriate above that cutoff and
not appropriate below it. Different women will have different
probability ranges for which they will consider testing. Physi-
cians and counselors may be able to help women determine what
probability of identifying a mutation would lead them to testing
and use our model to decide whether a woman’s probability of
having a mutation falls in this range.

Our model has potential implications for health policy.
BRCA1 testing will be costly, with estimates ranging as high as
$1500 for the first family member tested. BRCA2 testing will be
even more expensive. Given these costs, it is initially important
to consider testing in those individuals and families who have at
least a moderate chance of carrying a mutation. While the sen-
sitivity and specificity of BRCA1 testing have yet to be deter-
mined, its positive predictive value will be lower in individuals
who have a low chance of having a mutation. The cost per true
positive in low-risk populations will be high because of the
number of individuals who have to be screened to identify each
true positive. By identifying accurately the women who are un-
likely to have mutations, our model has the potential to result in
substantial savings.

Appendix: Including Other Family Members

In this Appendix, we extend the development in the ‘‘Meth-
ods and Results’’ section concerning a woman’s carrier prob-
ability by including her first-degree relatives. Extending to fam-
ily members other than the individual of interest entails applying
Mendelian principles of inheritance in both the numerator and
denominator of the LR (19). We assume an autosomal dominant
inheritance of mutations, empirically supported by the analysis
of Claus et al. (10). In the numerator of the LR, we assume that
the individual of interest carries a mutation at BRCA1 and cal-
culate the probability of the observed family history under this
assumption. We do this by considering the possibilities that she
inherited the mutation from her father and her mother and by
tracing the mutation’s possible passage from and to other family

members. In the denominator, we assume that the individual is
not a carrier. Any disease among other members of the family is
then sporadic or the result of a mutation that is not present in the
individual of interest. These two possibilities are weighed ac-
cordingly. In the denominator of the LR, we assume that she
carries no mutations of BRCA1.

We assume that occurrences of breast cancer in a family are
conditionally independent, given the family members’ genetic
statuses. So when we assume that certain family members carry
mutations and others do not, we can multiply the corresponding
probabilities of these observations. (Without conditioning on the
family members’ statuses, occurrences of breast cancer are not
independent. In particular, observing breast cancer in one family
member makes it more likely to observe breast cancer in an-
other.)

As an example, consider member 1 of family 1 (Fig. 2). For
simplicity, consider only breast cancer and consider only family
members 1-5. Member 1’s breast cancer was diagnosed at age 34
years. Her mother had breast cancer that was diagnosed at age 35
years. Her two sisters’ current ages are 43 and 30 years and
neither has breast cancer. We seek the probability ofM: member
1 carries a mutation.

The numerator of LR is the probability of observing this
family history (members 1-5) conditioning onM. The denomi-
nator of the LR is the probability of observing this family history
conditioning onN. We stress that both conditions involve the
carrier status of member 1. Conditioning on member 1’s genetic
status implies probabilities that other family members are carri-
ers. To find both the numerator and the denominator of the LR,
we average over the possible genetic statuses of the various
family members conditioning on the respective genetic status of
member 1.

Restricting Consideration to the Possibility of a Single
Mutation in a Family

Our model allows for the possibility that the individual of
interest carries two mutations, even though this is extremely rare.
However, for expository purposes, we first make the simplifying
assumption that there is, at most, one mutation in the family.
This means that, if the family member of interest is a carrier,
then one of her alleles is a mutation and her other allele is
normal. Also, for the purposes of this section, we assume that if
the member of interest is not a carrier, then there are no muta-
tions in the family.

The numerator of the LR is the probability of the various
observations of breast cancer (and not) in this family and is the
product of five factors, where Factori is the contribution to the
numerator of family memberi:

Factor 1: bM(34)4 0.0137

Factor 2: 1
2
(1 −BM(43)) +

1
2
(1 −BN(43)) 4

1
2
(0.730) + 1

2
(0.990)4 0.860

Factor 3: 1
2
(1 −BM(30)) +

1
2
(1 −BN(30)) 4

1
2
(0.951) + 1

2
(0.999)4 0.975

Factor 4: (Member 4 is male and so contributes no information
about BRCA1 carrier status.)

Factor 5: 1
2
bM(35) +

1
2
bN(35) 4

1
2
(0.0150) + 1

2
(0.000437)4

0.00770
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Member 1 was diagnosed with breast cancer at age 34 years.
The incidence of breast cancer among carriers at this age is thus
her contribution to the numerator. With regard to Factor 5, mem-
ber 1’s mutation is either maternal (probability1⁄2) or paternal
(probability 1⁄2). If it is maternal, then the probability of her
mother (member 5) being diagnosed with breast cancer at age 35
years isbM (35). If it is paternal, then this observation has prob-
ability bN (35). Factor 5 is thus a simple average of these two
quantities.

With regard to Factors 2 and 3, both sisters are free of breast
cancer. If member 1 carries a mutation, then each sister inherited
the same mutation with probability1⁄2, regardless of whether
the mutation is paternal or maternal. If a sister inherited the
mutation, then the probability that she is free of breast cancer is
1 − BM (sister’s age). If she did not inherit the mutation, then this
probability is 1 −BN(sister’s age). Each sister’s contribution to
the numerator is the average of these quantities.

The numerator of LR is the product of the above five factors:
(0.0137)(0.0077)(0.860)(0.975)(1)4 8.85 × 10−5.

Calculating the denominator of LR is straightforward because
under the condition that member 1 is not a carrier, we have
assumed in this section that there is no mutation in the family. So
the denominator is the product of the following five factors:

Factor 1: bN(34)= 0.000364

Factor 2: 1− BN(43) = 0.990

Factor 3: 1− BN(30) = 0.999

Factor 4: 1 (Member 4 is male.)

Factor 5: bN(35) = 0.000437

The product of all five factors equals 1.57 × 10−7. Therefore, the
LR in favor of member 1 carrying a mutation is

LR =
8.852 10−5

1.572 10−7 = 564.

The corresponding posterior probability is

P~M|H1! =
LR

LR + 832
=

564

564+ 832
= 40.4%.

Allowing for Multiple Mutations in a Family

Now consider the possibility of more than one mutation in
this family. This possibility is remote, since the probability that
a particular individual carries two mutations is on the order off2

≅ 10−6. Therefore, the assumptions made in the previous section
of this Appendix are usually reasonable. In particular, for family
1, allowing for more than one mutation will not change the
conclusion much—as shown below. However unlikely it is, any
particular family may carry more than one mutation. For some
families, there are cases of breast and ovarian cancers on both the
paternal and maternal sides. Such families are very likely to
present at a genetic counseling clinic, and so they are more
important to counselors than their rarity suggests.

We will improve the calculations given above to allow for the
possibility of more than one mutation in the same family, and for
the possibility that other family members may carry mutations
even when the individual of interest does not. Here we assume

that there can be no more than two mutations in a family, al-
though our computer program allows for more than two. A
woman who carries two mutations may be more likely to expe-
rience cancer than does someone who carries only one mutation,
but we have no evidence for this. Therefore, we assume the same
incidences of breast and ovarian cancer for carriers of two mu-
tations as for carriers of one mutation.

As before, calculations in the numerator of the LR are con-
ditional on the family member of interest being a carrier. Now,
there are two possibilities: She carries one mutation, and she
carries two mutations. The probability that she is a carrier of
either type isf 2 + 2f(1 − f) 4 2f − f 2. Whenf 4 0 (or is very
small), the calculations involved in the LR reduce to those in the
previous section. The probability that the individual of interest
carries two mutations, given that she carries at least one muta-
tion, is the probability of 2 divided by the probability of at least
1. This conditional probability is approximatelyf/2. More pre-
cisely, it equals

f2

2f − f2
=

f

2 − f
=

0.001

2 − 0.001
≅ 0.0005.

The improved numerator of the LR weighs the two possibili-
ties of at least one mutation: exactly 1 and exactly 2. When the
individual of interest carries two mutations, her mother must
carry at least one. Unlike her mother, her sisters may not share
one of her alleles. Each sister shares both alleles with probability
1⁄4, one with probability1⁄2 (total of 3⁄4), and neither allele with
probability 1⁄4. When the member of interest carries a single
mutation, then the probability that she shares it with her mother
is 1⁄2. (These probabilities are approximate. Our program makes
use of exact probabilities which, for small values off, are very
close to the approximations used here.)

Calculating probabilities of the observed cancer-free statuses
of the sisters is more complicated. The numerator of the LR has
two principal terms, the first for two mutations and the second
for one mutation. Within the second term, there are three possi-
bilities for a second mutation, depending on the genes not in-
herited from her parents by member 1: (i) neither is a mutation
(probability (1 −f)2), (ii) the same parent who passed a mutation
on to member 1 has the other mutation (probabilityf(1 − f)), and
(iii) the parent opposite from the one who passed a mutation on
to member 1 has the other mutation (probabilityf(1 − f)). (We are
ignoring the possibility that both of these genes are mutations—
an event with probabilityf 2—because this would total three
mutations in the family.) These three possibilities correspond to
the three terms within the braces of the second principal term of
the numerator of the LR, as follows:

f

2 − f
bM~34!bM~35! F34~1 − BM~43!! +

1

4
~1 − BN~43!!G

F34 ~1 − BM~30!! +
1

4
~1 − BN~30!!G +

2 − 2f

2 − f

bM~34!

1 − f2

H~1 − f!2F12 bM~35! +
1

2
bN~35!G

F12~1 − BM~43!! +
1

2
~1 − BN~43!!G
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F12~1 − BM~30!! +
1

2
~1 − BN~30!!G

+ f~1 − f!F12 bM~35! +
1

2
bN~35!G

~1 − BM~43!!~1 − BM~30!! + f~1 − f!bM~35!

F34 ~1 − BM~43!! +
1

4
~1 − BN~43!!G

F34 ~1 − BM~30!! +
1

4
~1 − BN~30!!GJ .

Calculations in the denominator of the LR are conditional on
the individual of interest being a noncarrier. Her mother may still
carry a mutation, and does so with probabilityf. Her sisters may
carry mutations, inheriting them from either mother or father.
There are three possibilities for the genes not inherited from her
parents by member 1: (i) neither is a mutation, (ii) exactly one is
a mutation, and (iii) both are mutations. Each corresponds to a
term in the denominator of the LR, as follows:

bN~34!H~1 − f2! bN~35!~1 − BN~43!!~1 − BN~30!!

+ f~1 − f!@bN~35! + bM~35!#

F12 ~1 − BM~43!! +
1

2
~1 − BN~43!!G

F12~1 − BM~30!! +
1

2
~1 − BN~30!!G

+ f2bM~35!F34 ~1 − BM~43!! +
1

4
~1 − BN~43!!G

F34 ~1 − BM~30!! +
1

4
~1 − BN~30!!GJ .

The result for member 1 of family 1 is LR4 564, as before. And
the posterior probability is also 40.4%, as before.

Details of calculations in the general case of first- and second-
degree relatives and considering ovarian cancer as well as breast
cancer (bilateral as well as unilateral) are given separately (9).
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Notes

1Editor’s note: SEER is a set of geographically defined, population-based
central tumor registries in the United States, operated by local nonprofit orga-
nizations under contract to the National Cancer Institute (NCI). Each registry
annually submits its cases to the NCI on a computer tape. These computer tapes
are then edited by the NCI and made available for analysis.
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